JP2021028618A - Sealing material deterioration diagnosis method and deterioration diagnosis device - Google Patents

Sealing material deterioration diagnosis method and deterioration diagnosis device Download PDF

Info

Publication number
JP2021028618A
JP2021028618A JP2019148198A JP2019148198A JP2021028618A JP 2021028618 A JP2021028618 A JP 2021028618A JP 2019148198 A JP2019148198 A JP 2019148198A JP 2019148198 A JP2019148198 A JP 2019148198A JP 2021028618 A JP2021028618 A JP 2021028618A
Authority
JP
Japan
Prior art keywords
vibration
sealing material
deterioration
amount
damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019148198A
Other languages
Japanese (ja)
Other versions
JP7320225B2 (en
Inventor
佐藤 学
Manabu Sato
学 佐藤
小西 義則
Yoshinori Konishi
義則 小西
真之 長谷川
Masayuki Hasegawa
真之 長谷川
英明 富永
Hideaki Tominaga
英明 富永
拓也 柳
Takuya Yanagi
拓也 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKA IND KK
Tohoku Electric Power Co Inc
Original Assignee
YUKA IND KK
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKA IND KK, Tohoku Electric Power Co Inc filed Critical YUKA IND KK
Priority to JP2019148198A priority Critical patent/JP7320225B2/en
Publication of JP2021028618A publication Critical patent/JP2021028618A/en
Application granted granted Critical
Publication of JP7320225B2 publication Critical patent/JP7320225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

To provide a method and a device that non-destructively measure a deterioration state of a sealing material attached to a machine, an apparatus, a pipe or the like and diagnose the same with simple and high accuracy.SOLUTION: The method for diagnosing deterioration of a sealing material according to the present invention detects, by a vibration sensor installed at a structure, a vibration generated when the structure is vibrated with respect to the structure connecting a first member and a second member through the sealing material, extracts a frequency spectrum of a specific vibration mode via the sealing material from the detected vibration waveform, calculates an attenuation amount from the vibration waveform corresponding to the frequency spectrum, and diagnoses a deterioration state of the sealing material based on the attenuation amount.SELECTED DRAWING: Figure 1

Description

本発明は、機械や装置、配管などの構造物における内部の気体あるいは液体の漏洩を防ぐ目的で使用されるシール材の劣化診断方法および劣化診断装置に関するものである。 The present invention relates to a deterioration diagnosis method and a deterioration diagnosis device for a sealing material used for the purpose of preventing leakage of gas or liquid inside in a structure such as a machine, a device, or a pipe.

内部に気体あるいは液体を封じた機器の機器接続部や配管接続部等には、気密あるいは液密のためのシール材が用いられている。例えば、油入変圧器は内部に絶縁油を封じており、変圧器本体と付属品の接続箇所には絶縁油が漏洩しないようにシール材が用いられている。
シール材の材質には主に高分子材料が用いられ、とりわけゴムを主原料としたシール材が多く用いられる。ゴムは高分子材料であるため、長期間の使用で酸化劣化等の劣化が進行し、ゴム弾性が低下する。ゴム弾性とは外力によって変形したゴムが、高い内部応力によって瞬時に元の形状に復元する性質を指し、元の形状に復元しようとする力でシール性を発揮している。ゴム弾性が劣化により低下すると密閉性が低下し内部流体が漏洩する可能性が高くなることから、シール材の劣化状態を見極めて適切な時期にシール材を交換することが必要である。
Sealing materials for airtightness or liquidtightness are used for equipment connection parts and pipe connection parts of equipment in which gas or liquid is sealed inside. For example, an oil-filled transformer has an insulating oil sealed inside, and a sealing material is used at the connection point between the transformer main body and the accessory so that the insulating oil does not leak.
A polymer material is mainly used as the material of the sealing material, and in particular, a sealing material mainly made of rubber is used. Since rubber is a polymer material, deterioration such as oxidative deterioration progresses with long-term use, and rubber elasticity decreases. Rubber elasticity refers to the property that rubber deformed by an external force instantly restores its original shape due to high internal stress, and exhibits sealing properties with the force that tries to restore it to its original shape. If the rubber elasticity decreases due to deterioration, the airtightness decreases and the possibility of internal fluid leakage increases. Therefore, it is necessary to check the deteriorated state of the sealing material and replace the sealing material at an appropriate time.

シール材の劣化診断は、一般的には使用機器からシール材を取り外し、化学組成、物性等の測定が行われる。油回転真空ポンプのような小型かつ分解も容易な機器であれば、定期的にシール材を取り外し、必要に応じて交換することが出来るが、電力用機器など容易に機器を停止できない上に、分解も容易でない機器は、撤去時やオーバーホール時にしかシール材を採取することができない。例えば、油入変圧器に使用されるシール材の劣化を評価するためには、変圧器から付属品を取り外し、シール材を採取する必要がある。
そのためには、まず変圧器を電力系統から切り離し、次いで内部の絶縁油をポンプ車により抜油する。抜油後付属品をクレーン車で釣りながら、ボルトを外し変圧器本体と付属品を切り離すなどの多大な労力と時間を有する。また、仮に機器からシール材を取り外せたとしても、シール材の劣化状態に関わらず一度機器から取り外したシール材は再利用することができないため、機器に取り付けられた状態のままシール材の劣化を診断できることが望ましい。
In the deterioration diagnosis of the sealing material, generally, the sealing material is removed from the equipment used, and the chemical composition, physical properties, etc. are measured. If the equipment is small and easy to disassemble, such as an oil rotary vacuum pump, the sealing material can be removed regularly and replaced if necessary, but the equipment cannot be stopped easily, such as electric power equipment. Equipment that is not easy to disassemble can only collect sealing material when it is removed or overhauled. For example, in order to evaluate the deterioration of the sealing material used for the oil-immersed transformer, it is necessary to remove the accessories from the transformer and collect the sealing material.
To do so, first disconnect the transformer from the power system and then drain the internal insulating oil with a pump truck. After degreasing, it takes a lot of labor and time to remove the bolts and separate the transformer body and the accessories while fishing the accessories with a crane car. Even if the sealing material can be removed from the device, the sealing material once removed from the device cannot be reused regardless of the deterioration state of the sealing material. Therefore, the sealing material may deteriorate while being attached to the device. It is desirable to be able to diagnose.

構造物内部の状態を評価する試験法はいくつか開示されており、中でも比較的容易に行える評価方法として加振試験が様々な分野で応用されている(特許文献1〜4、非特許文献1参照)。
加振試験では構造物をハンマなどで加振(打撃)し、加振により生じた振動を加速度センサ等で検出する。加振により発生する振動は構造物内部の状態を反映したものとなるため、振動特性と劣化を関連付けることが出来れば劣化診断への応用が可能である。
Several test methods for evaluating the internal state of a structure are disclosed, and among them, the vibration test is applied in various fields as a relatively easy evaluation method (Patent Documents 1 to 4 and Non-Patent Document 1). reference).
In the vibration test, the structure is vibrated (strike) with a hammer or the like, and the vibration generated by the vibration is detected by an acceleration sensor or the like. Since the vibration generated by the vibration reflects the state inside the structure, it can be applied to deterioration diagnosis if the vibration characteristics and deterioration can be related.

特許文献1に記載の技術は予め形状、材質、特性が判別されている基準物に打撃を与えて基準物から発生する振動の共振周波数および減衰係数の関係に対して新品域、要取替域、材質判別域を領域化し、該領域における基準となる共振周波数および減衰係数の関係に対して基準物に固有の劣化傾き特性を設定する工程を有する。また、特許文献1に記載の技術は、前記測定した被測定物の共振周波数および減衰係数の関係の前記領域化された材質判別域における関係から被測定物の材質を特定する工程と、前記測定した被測定物の共振周波数および減衰係数の関係に対して対応する前記基準劣化傾き特性を特定する工程を有する。更に、特許文献1に記載の技術は、前述のように特定された劣化傾き特性に対する前記新品域の関係からおよび前記劣化傾き特性に対する前記要取替域の関係からそれぞれ被測定物の亀裂量および被測定物の寿命を算出する工程とを有することを特徴とした物品の劣化診断方法である。 The technique described in Patent Document 1 hits a reference object whose shape, material, and characteristics have been determined in advance, and has a relationship between the resonance frequency and the attenuation coefficient of the vibration generated from the reference object. , The material discrimination region is made into a region, and there is a step of setting the deterioration inclination characteristic peculiar to the reference object with respect to the relationship between the resonance frequency and the attenuation coefficient as the reference in the region. Further, the technique described in Patent Document 1 includes a step of specifying the material of the object to be measured from the relationship between the measured resonance frequency and the attenuation coefficient of the object to be measured in the regioned material discrimination region, and the measurement. It has a step of specifying the reference deterioration inclination characteristic corresponding to the relationship between the resonance frequency and the attenuation coefficient of the measured object. Further, the technique described in Patent Document 1 has the crack amount of the object to be measured and the relationship of the replacement required area with respect to the deterioration inclination characteristic as described above. It is a method for diagnosing deterioration of an article, which comprises a step of calculating the life of an object to be measured.

特許文献1に記載の劣化診断装置は、予め形状、材質、特性が判別されている基準物に打撃を与えて基準物から発生する振動の共振周波数および減衰係数の関係に対して基準物の材質、亀裂量および寿命を含む劣化特性に関するデータを記憶しているデータベース手段と、被測定物に打撃を与える打撃手段と、該打撃により発生する被測定物の振動の共振周波数および減衰係数を測定する振動測定手段を有する。特許文献1に記載の劣化診断装置は、前述のように測定した被測定物の共振周波数および減衰係数の関係に対応する前記データベース手段の前記データから、被測定物の材質、亀裂量および寿命を含む劣化特性を求める劣化演算手段とを有することを特徴とする。 The deterioration diagnostic apparatus described in Patent Document 1 is a material of a reference material with respect to the relationship between the resonance frequency and the attenuation coefficient of vibration generated from the reference material by hitting a reference material whose shape, material, and characteristics are determined in advance. , A database means for storing data on deterioration characteristics including crack amount and life, a striking means for striking the object to be measured, and measuring the resonance frequency and damping coefficient of vibration of the object to be measured generated by the striking. It has a vibration measuring means. The deterioration diagnostic apparatus described in Patent Document 1 determines the material, crack amount, and life of the measured object from the data of the database means corresponding to the relationship between the resonance frequency and the attenuation coefficient of the measured object measured as described above. It is characterized by having a deterioration calculation means for obtaining deterioration characteristics including the deterioration characteristics.

特許文献2に記載の技術では、同じ厚さの部分を有するコンクリート構造物において、予め測定対象のコンクリート構造物の健全部を加振して共振周波数を測定し、健全部の基準共振周波数スペクトルを作成する。次に、他の測定部を加振して測定部共振周波数を測定し、該測定部共振周波数スペクトルを作成し、作成した両共振周波数スペクトルを重ね合わせて、両共振周波数スペクトルのずれの程度を分析することによって内部組織の劣化度合を判定する。
特許文献2に記載の技術によれば、健全部のスペクトルと比較して複雑になっている複雑さの度合を分析、あるいは、スペクトルのピークが鈍っている度合を分析することによって、測定個所のセメントの軟質化、亀裂、鉄筋のコンクリートからの遊離等の程度を測定することができる。
In the technique described in Patent Document 2, in a concrete structure having a portion having the same thickness, the sound portion of the concrete structure to be measured is vibrated in advance to measure the resonance frequency, and the reference resonance frequency spectrum of the sound portion is obtained. create. Next, another measuring unit is vibrated to measure the resonance frequency of the measuring unit, the resonance frequency spectrum of the measuring unit is created, and the created resonance frequency spectra are superposed to determine the degree of deviation between the two resonance frequency spectra. The degree of deterioration of the internal structure is determined by analysis.
According to the technique described in Patent Document 2, by analyzing the degree of complexity that is complicated compared to the spectrum of the sound part, or by analyzing the degree of blunting of the peak of the spectrum, the measurement point can be measured. The degree of softening of cement, cracks, release of reinforcing bars from concrete, etc. can be measured.

また、特許文献2に記載の第2発明の概要は、ほぼ同じ厚さの部分を有するコンクリート構造物において、予め測定対象のコンクリート構造物の健全部を加振して健全部での振動の基本モードの基準共振周波数を検出しておく。次に、該基準共振周波数から基準位相速度の値を算出するとともに、他の測定部を加振して前記基準共振周波数の付近での振動の共振周波数のピークを検出する。そして、該ピークでの測定部の共振周波数から振動の位相速度値を算出し、両位相速度値を比較し、その差の値を分析することによって内部組織の劣化度合を判定する。以上の第2発明によれば、定量的に鉄筋コンクリート構造物の内部組織の劣化度合を判断することができる。 Further, the outline of the second invention described in Patent Document 2 is based on vibration in a sound portion by vibrating a sound portion of the concrete structure to be measured in advance in a concrete structure having a portion having substantially the same thickness. The reference resonance frequency of the mode is detected. Next, the value of the reference phase velocity is calculated from the reference resonance frequency, and another measuring unit is vibrated to detect the peak of the resonance frequency of the vibration in the vicinity of the reference resonance frequency. Then, the phase velocity value of the vibration is calculated from the resonance frequency of the measuring unit at the peak, the two phase velocity values are compared, and the difference value is analyzed to determine the degree of deterioration of the internal structure. According to the above second invention, the degree of deterioration of the internal structure of the reinforced concrete structure can be quantitatively determined.

特許文献3に記載の技術は、鉄道車両の防振部材である軸ばねゴムに直接打撃を加え、軸ばねゴムを振動させ、その振動特性に基づいて劣化状況を判定するものである。
この技術によれば、軸ばねゴムの加振により生じた振動を検出し、新品と使用品の振動加速度の時間変化や加速度/加振力を測定し、新品と使用品の測定結果を比較することで使用品の劣化状況を判定することができる。
使用品が劣化していると判定する目安は、時間の経過とともに使用品の振動加速度の振幅が新品の振動加速度の振幅に比べて小さくなる場合や、使用品の振動加速度の周期が新品の振動加速度の周期に比べて短い場合、使用品の振動加速度/加振力の1/3オクターブバンド分析結果と、新品の振動加速度/加振力の1/3オクターブバンド分析結果との比較を行う。そして、使用品の振動加速度/加振力が新品の振動加速度/加振力に比べて全体的に高周波数側にシフトしている場合、振動波高値が使用期間の増加に対して総合的に増加する場合、振動レベル値が使用期間の増加に伴って増加する場合に、軸ばねゴムが劣化していると判定される。
The technique described in Patent Document 3 directly hits the shaft spring rubber, which is a vibration-proof member of a railroad vehicle, causes the shaft spring rubber to vibrate, and determines the deterioration state based on the vibration characteristics.
According to this technology, the vibration generated by the vibration of the shaft spring rubber is detected, the time change of the vibration acceleration of the new product and the used product, and the acceleration / excitation force are measured, and the measurement results of the new product and the used product are compared. Therefore, the deterioration status of the used product can be determined.
The guideline for determining that the used product has deteriorated is when the amplitude of the vibration acceleration of the used product becomes smaller than the amplitude of the new vibration acceleration over time, or when the period of the vibration acceleration of the used product is new vibration. If it is shorter than the acceleration cycle, the vibration acceleration / excitation force 1/3 octave band analysis result of the used product is compared with the new vibration acceleration / excitation force 1/3 octave band analysis result. Then, when the vibration acceleration / excitation force of the used product is shifted to the higher frequency side as a whole compared to the new vibration acceleration / excitation force, the vibration wave height value is comprehensively increased with respect to the increase in the usage period. When it increases, it is determined that the shaft spring rubber has deteriorated when the vibration level value increases as the period of use increases.

特許文献4に記載の技術は、シール部材を挟んで締結された二つの部材のうちの一方の部材を加振手段により加振し、該加振による該一方の部材の振動に応じて該二つの部材のうちの他方の部材に生じる振動を振動検出手段により検出する。特許文献4の技術は、該振動検出手段で検出された該他方の部材の振動信号を変換手段によりフーリエ変換して得られる該他方の部材の振動のパワースペクトルを用い、該シール部材の良否を判定する検査方法である。
この検査方法では、前記変換手段から出力された該他方の部材の振動のパワースペクトルのピーク周波数及びそのゲインを基準の振動のパワースペクトルのピーク周波数及びそのゲインと比較することにより該シール部材の良否を判定することを特徴としている。また、基準の振動のパワースペクトルのピーク周波数及びそのゲインの点を中心に、この点よりもピーク周波数及びゲインの双方について幅をもたせた領域を設定し、変換手段から出力された該他方の部材の振動のパワースペクトルのピーク周波数及びそのゲインが該領域から外れた場合、該シール部材に異常があると判定することを特徴としている。
The technique described in Patent Document 4 vibrates one of two members fastened with a seal member sandwiched by a vibrating means, and responds to the vibration of the one member by the vibration. The vibration generated in the other member of the one member is detected by the vibration detecting means. The technique of Patent Document 4 uses the power spectrum of the vibration of the other member obtained by Fourier transforming the vibration signal of the other member detected by the vibration detecting means by the conversion means, and determines the quality of the sealing member. This is an inspection method for determining.
In this inspection method, the quality of the sealing member is improved by comparing the peak frequency of the vibration power spectrum of the other member and its gain output from the conversion means with the peak frequency of the reference vibration power spectrum and its gain. Is characterized by determining. Further, a region having a width wider than this point for both the peak frequency and the gain is set around the peak frequency of the reference vibration power spectrum and the gain point thereof, and the other member output from the conversion means. When the peak frequency of the power spectrum of the vibration and its gain deviate from the region, it is determined that the sealing member has an abnormality.

非特許文献1には、2枚の鋼板の間に樹脂膜を挟んだ拘束型制振鋼板(以下、制振鋼板)の両端自由はり及び片持ちはりの曲げ振動に対する振動減衰特性試験方法について記載されている。所定の保持方法で固定した制振鋼板に対してハンマ、電磁加振機、インパルスハンマを用いて加振し、生じた減衰自由振動波形において、応答変位の極大値X、X、・・・Xを読み取り、横軸にXk+1、縦軸にXをとってプロットし、原点を通り各点を結ぶ直線の傾きθから下記の(1)式より損失係数(η)を求める。 Non-Patent Document 1 describes a vibration damping characteristic test method for bending vibration of a free beam at both ends and a cantilever beam of a restraint type vibration damping steel plate (hereinafter, vibration damping steel plate) in which a resin film is sandwiched between two steel plates. Has been done. The vibration damping steel plate fixed by the predetermined holding method is vibrated using a hammer, an electromagnetic vibrator, and an impulse hammer, and in the generated damping free vibration waveform, the maximum values of the response displacements X 1 , X 2 , ... -Read X n , plot with X k + 1 on the horizontal axis and X k on the vertical axis, and obtain the loss coefficient (η) from the slope θ of the straight line connecting the points through the origin from the following equation (1).

Figure 2021028618
Figure 2021028618

また、非特許文献1には、加振によって得られた周波数応答曲線を求め、任意の共振ピークにおいてi次の共振周波数fiと、伝達関数の絶対値が最大値より3dB下がった点での周波数fi1,fi2を読み取り、下記の(2)式より損失係数(η)を求める方法が示されている。 Further, in Non-Patent Document 1, the frequency response curve obtained by excitation is obtained, and the i-order resonance frequency fi at an arbitrary resonance peak and the frequency at the point where the absolute value of the transfer function is 3 dB lower than the maximum value. A method of reading f i1 and f i2 and obtaining the loss coefficient (η) from the following equation (2) is shown.

Figure 2021028618
Figure 2021028618

特開昭62−293151号公報Japanese Unexamined Patent Publication No. 62-293151 特許第3340702号公報Japanese Patent No. 3340702 特開2006−90811号公報Japanese Unexamined Patent Publication No. 2006-90811 特許第3646551号公報Japanese Patent No. 3646551

JIS G0602 制振鋼板の振動減衰特性試験方法JIS G0602 Vibration damping characteristics test method for vibration damping steel sheet

以上の特許文献に共通するのは、被測定物に打撃を与え、その結果生じる振動を測定し、得られた振動波形や共振周波数スペクトルの変化から被測定物の健全性を評価する技術の開示である。従来技術では、基準となるデータとの差異で良否を判定する場合が多いが、シール材が使用されている部位は測定物毎に形状が様々であり、その構造毎に複雑な振動特性を有することから、測定物毎に基準物を用意するのは困難である。
シール材は複数の構造物に挟まれた状態で使用されるため、その共振周波数スペクトルは各構造物の共振周波数と構造物同士の接触により生じる共振周波数が重畳したものとなるため、極めて複雑な形状となる。したがって従来技術のように共振周波数スペクトルを測定するだけでは劣化状況を解析するのは困難である。
また、特許文献3では新品との差異を評価するのみであり、定量的な評価には言及していない。特許文献4ではシール材を含む構造物の良否の判定はできてもシール材の劣化の程度を定量的に示すまでには至っていない。
What is common to the above patent documents is the disclosure of a technique for hitting an object to be measured, measuring the vibration generated as a result, and evaluating the soundness of the object to be measured from changes in the obtained vibration waveform and resonance frequency spectrum. Is. In the prior art, quality is often judged by the difference from the reference data, but the part where the sealing material is used has various shapes for each object to be measured, and each structure has complicated vibration characteristics. Therefore, it is difficult to prepare a reference object for each measurement object.
Since the sealing material is used in a state of being sandwiched between a plurality of structures, its resonance frequency spectrum is extremely complicated because the resonance frequency of each structure and the resonance frequency generated by the contact between the structures are superimposed. It becomes a shape. Therefore, it is difficult to analyze the deterioration state only by measuring the resonance frequency spectrum as in the prior art.
Further, Patent Document 3 only evaluates the difference from a new product, and does not mention the quantitative evaluation. Although Patent Document 4 can determine the quality of a structure containing a sealing material, it has not yet quantitatively indicated the degree of deterioration of the sealing material.

シール材を挟み込んだ構造物は制振材料とみなすことができ、非特許文献1に記載の技術によって構造物の損失係数を評価すれば、シール材の特性変化を検出可能と考えられるが、非特許文献1で規定する制振鋼板に比べシール材を挟み込んだ構造物は構造が複雑であり、多数の振動モードを有することから、非特許文献1の試験法を直接適用することは困難である。 The structure sandwiching the sealing material can be regarded as a vibration damping material, and if the loss coefficient of the structure is evaluated by the technique described in Non-Patent Document 1, it is considered that a change in the characteristics of the sealing material can be detected. Compared to the vibration damping steel plate specified in Patent Document 1, the structure sandwiching the sealing material has a complicated structure and has many vibration modes, so that it is difficult to directly apply the test method of Non-Patent Document 1. ..

よって、本発明における課題は、機械や装置、配管などに取り付けられたシール材の劣化状況を非破壊で測定し、簡便かつ高い精度で診断する方法を提供することである。 Therefore, an object of the present invention is to provide a method for non-destructively measuring the deterioration state of a sealing material attached to a machine, an apparatus, a pipe, or the like, and diagnosing it easily and with high accuracy.

(1)本発明のシール材劣化診断方法は、第1の部材と第2の部材をシール材を介して連結する構造体に対し、該構造体を加振させたときに生じる振動を前記構造体に設置した振動センサで検出し、検出した振動波形から前記シール材を介した特定の振動モードの周波数スペクトルを抽出し、該周波数スペクトルに該当する振動波形から減衰量を算出し、該減衰量に基づいて前記シール材の劣化状況を診断することを特徴とする。 (1) In the method for diagnosing deterioration of a sealing material of the present invention, a structure in which a first member and a second member are connected via a sealing material is subjected to vibration generated when the structure is vibrated. It is detected by a vibration sensor installed on the body, a frequency spectrum of a specific vibration mode via the sealing material is extracted from the detected vibration waveform, a damping amount is calculated from the vibration waveform corresponding to the frequency spectrum, and the damping amount is calculated. It is characterized in that the deterioration state of the sealing material is diagnosed based on the above.

(2)本発明は、(1)に記載のシール材劣化診断方法において、前記振動センサで振動を検出する際、前記構造体に対し加振する位置または加振する方向を変更して複数の振動波形を観測し、これら振動波形の中に単一の振動モードが励起されている周波数スペクトルを有する振動波形が含まれていた場合、この振動波形から減衰量を算出し、該減衰量に基づいて前記シール材の劣化状況を診断することを特徴とする。
(3)本発明は、(1)に記載のシール材劣化診断方法において、測定した振動波形が、速く減衰する振動成分と遅く減衰する振動成分が混在された振動波形であり、複数の振動モードが重なった振動波形である場合、この振動波形から必要な周波数スペクトルを抽出し、この周波数スペクトルから特定のピークのみの振動モードの振動波形を逆演算により求め、この振動波形から減衰量を求め、この減衰量に基づいて前記シール材の劣化状況を診断することを特徴とする。
(2) According to the present invention, in the sealing material deterioration diagnosis method according to (1), when the vibration is detected by the vibration sensor, a plurality of vibration positions or vibration directions are changed with respect to the structure. When the vibration waveforms are observed and the vibration waveforms include a vibration waveform having a frequency spectrum in which a single vibration mode is excited, the damping amount is calculated from this vibration waveform and based on the damping amount. It is characterized in that the deterioration state of the sealing material is diagnosed.
(3) The present invention is a vibration waveform in which the vibration waveform measured in the sealing material deterioration diagnosis method according to (1) is a mixture of a vibration component that decays quickly and a vibration component that decays slowly, and a plurality of vibration modes. When is an overlapping vibration waveform, the required frequency spectrum is extracted from this vibration waveform, the vibration waveform of the vibration mode of only a specific peak is obtained from this frequency spectrum by inverse calculation, and the amount of attenuation is obtained from this vibration waveform. It is characterized in that the deterioration state of the sealing material is diagnosed based on this damping amount.

(4)本発明は、(1)〜(3)のいずれかに記載のシール材劣化診断方法において、前記シール材の新品時の減衰量を計測しておき、一定の時間経過後に再度前記シール材の減衰量を計測して減衰量比を求め、あらかじめ定めた減衰量比による劣化評価基準に従いシール材の劣化を診断することを特徴とする。
(5)本発明は、(1)〜(4)のいずれかに記載のシール材劣化診断方法において、圧縮永久ひずみ率100%時の減衰量を使用限界値(限界減衰量)として規定し、前記限界減衰量に一定量の裕度を定めた劣化評価基準に従いシール材の劣化を診断することを特徴とする。
(6)本発明は、(3)に記載のシール材劣化診断方法において、特定のピークのみの振動モードの振動波形を逆演算により求める場合、逆FFT変換、wavelet変換、Hibert-Huang変換のいずれかを用いることを特徴とする。
(4) In the present invention, in the sealing material deterioration diagnosis method according to any one of (1) to (3), the amount of attenuation of the sealing material when it is new is measured, and after a certain period of time, the sealing material is again sealed. It is characterized in that the attenuation amount of the material is measured to obtain the attenuation amount ratio, and the deterioration of the sealing material is diagnosed according to the deterioration evaluation standard based on the attenuation amount ratio determined in advance.
(5) In the present invention, in the sealing material deterioration diagnosis method according to any one of (1) to (4), the attenuation amount when the compression set is 100% is defined as the use limit value (limit attenuation amount). It is characterized in that deterioration of the sealing material is diagnosed according to a deterioration evaluation standard in which a certain amount of margin is set for the critical attenuation amount.
(6) According to the present invention, in the sealing material deterioration diagnosis method according to (3), when the vibration waveform of the vibration mode of only a specific peak is obtained by an inverse calculation, any of the inverse FFT conversion, wavelet conversion, and Hibert-Huang conversion. It is characterized by using.

(7)本発明のシール材劣化診断装置は、第1の部材と第2の部材をシール材を介して連結する構造体に対し、該構造体を加振させたときに生じる振動による振動波形を振動センサから受け、前記振動波形から前記シール材を介した特定の振動モードの周波数スペクトルを抽出するとともに、該周波数スペクトルに該当する振動波形から減衰量を算出する演算手段と、該減衰量に基づいて前記シール材の劣化状況を判定する劣化状況判定手段を備えたことを特徴とする。 (7) In the sealing material deterioration diagnostic apparatus of the present invention, a vibration waveform due to vibration generated when the structure is vibrated with respect to a structure connecting the first member and the second member via the sealing material. Is received from the vibration sensor, the frequency spectrum of the specific vibration mode via the sealing material is extracted from the vibration waveform, and the calculation means for calculating the attenuation amount from the vibration waveform corresponding to the frequency spectrum and the attenuation amount are used. It is characterized by providing a deterioration status determining means for determining the deterioration status of the sealing material based on the above.

(8)本発明のシール材劣化診断装置において、前記構造体に対し加振する位置または加振する方向を変更して複数の振動波形を前記振動センサで観測し、これら振動波形の中に単一の振動モードが励起されている周波数スペクトルを有する振動波形が含まれていた場合、この振動波形から減衰量を算出する機能を前記演算手段が具備したことが好ましい。
(9)本発明のシール材劣化診断装置において、測定した振動波形が、速く減衰する振動成分と遅く減衰する振動成分が混在された振動波形であり、複数の振動モードが重なった振動波形である場合、この振動波形から必要な周波数スペクトルを抽出し、この周波数スペクトルから特定のピークのみの振動モードの振動波形を逆演算により求め、この振動波形から減衰量を求める機能を前記演算手段を具備したことが好ましい。
(8) In the sealing material deterioration diagnostic apparatus of the present invention, a plurality of vibration waveforms are observed by the vibration sensor by changing the vibration position or the vibration direction with respect to the structure, and a single vibration waveform is included in these vibration waveforms. When a vibration waveform having a frequency spectrum in which one vibration mode is excited is included, it is preferable that the calculation means has a function of calculating the amount of attenuation from the vibration waveform.
(9) In the sealing material deterioration diagnostic apparatus of the present invention, the measured vibration waveform is a vibration waveform in which a vibration component that attenuates quickly and a vibration component that attenuates slowly are mixed, and is a vibration waveform in which a plurality of vibration modes overlap. In this case, the calculation means is provided with a function of extracting a necessary frequency spectrum from this vibration waveform, obtaining a vibration waveform of a vibration mode of only a specific peak from this frequency spectrum by an inverse calculation, and obtaining an amount of attenuation from this vibration waveform. Is preferable.

(10)本発明のシール材劣化診断装置において、前記シール材の新品時の減衰量が前記劣化状況判定手段に記憶され、一定の時間経過後に計測された前記シール材の減衰量と前記新品時の減衰量との減衰量比を対比し、あらかじめ定めた減衰量比による劣化評価基準に従いシール材の劣化を診断する機能を前記劣化状況判定手段に備えたことが好ましい。
(11)本発明のシール材劣化診断装置において、圧縮永久ひずみ率100%時の減衰量が使用限界値(限界減衰量)として前記劣化状況判定手段に記録され、前記限界減衰量に一定量の裕度を定めた劣化評価基準に従いシール材の劣化を診断する機能を具備することが好ましい。
(12)本発明のシール材劣化診断装置において、特定のピークのみの振動モードの振動波形を逆演算により求める機能として、逆FFT変換、wavelet変換、Hibert-Huang変換のいずれかが適用されていることが好ましい。
(10) In the sealing material deterioration diagnostic apparatus of the present invention, the attenuation amount of the sealing material when new is stored in the deterioration status determining means, and the attenuation amount of the sealing material measured after a certain period of time and the new product are measured. It is preferable that the deterioration status determining means is provided with a function of comparing the attenuation ratio with the attenuation amount of the above and diagnosing the deterioration of the sealing material according to the deterioration evaluation standard based on the attenuation ratio determined in advance.
(11) In the sealing material deterioration diagnostic apparatus of the present invention, the attenuation amount when the compression set is 100% is recorded in the deterioration status determination means as the use limit value (limit attenuation amount), and a constant amount is recorded in the limit attenuation amount. It is preferable to have a function of diagnosing deterioration of the sealing material according to a deterioration evaluation standard that defines a margin.
(12) In the sealing material deterioration diagnostic apparatus of the present invention, any of inverse FFT conversion, wavelet conversion, and Hibert-Huang conversion is applied as a function of obtaining the vibration waveform of the vibration mode of only a specific peak by inverse calculation. Is preferable.

本発明によれば、構造体を加振する位置または方向を変更して振動させたときに生じる単一の振動モードの振動波形を振動センサにより計測し、この振動モードから求めた周波数スペクトルから減衰量を算出し、この減衰量に基づいてシール材の劣化状況を把握することができる。
従って、本発明によれば、非破壊かつ簡便な工程で機械や装置、配管などに取り付けられたシール材の劣化状況を診断し、把握することができ、シール材の交換の要否を外部診断で判定することができる。
According to the present invention, the vibration waveform of a single vibration mode generated when the structure is vibrated by changing the vibrating position or direction is measured by a vibration sensor and attenuated from the frequency spectrum obtained from this vibration mode. The amount can be calculated, and the deterioration state of the sealing material can be grasped based on this damping amount.
Therefore, according to the present invention, it is possible to diagnose and grasp the deterioration status of the sealing material attached to the machine, device, piping, etc. in a non-destructive and simple process, and externally diagnose the necessity of replacing the sealing material. Can be determined by.

また、振動センサが計測した振動波形に複数の振動モードが重畳され、複雑な振動波形であったとしても、周波数スペクトルの中から特定のピークのみを有する振動モードを抽出し、逆演算により振動波形を求めることで、減衰量を算出し、この減衰量に基づいてシール材の劣化状況を把握することができる。 In addition, a plurality of vibration modes are superimposed on the vibration waveform measured by the vibration sensor, and even if the vibration waveform is complicated, the vibration mode having only a specific peak is extracted from the frequency spectrum, and the vibration waveform is calculated by inverse calculation. By obtaining the above, the amount of damping can be calculated, and the deterioration state of the sealing material can be grasped based on the amount of damping.

上述のようにシール材の劣化を診断する場合、新品時のシール材の減衰量と比較し、所定時間経過後に測定した減衰量との減衰量比を求め、予め定めておいた評価基準に基づき、シール材の劣化状況を診断し、把握できる。
また、圧縮永久ひずみ率100%の時の減衰量を限界減衰量と規定し、限界減衰量から一定量の裕度を定めた劣化評価基準を定めておけば、新品時の減衰量が不明なシール材であっても劣化診断ができる。
When diagnosing deterioration of the sealing material as described above, the damping amount is compared with the damping amount of the sealing material when it is new, and the damping amount ratio with the damping amount measured after a lapse of a predetermined time is obtained, and based on a predetermined evaluation standard. , Can diagnose and grasp the deterioration status of the sealing material.
In addition, if the damping amount when the compression set rate is 100% is defined as the limit damping amount and the deterioration evaluation standard that defines a certain amount of margin from the limit damping amount is set, the damping amount when new is unknown. Deterioration diagnosis can be performed even with a sealing material.

前述の逆演算を行う場合、逆FFT変換、wavelet変換、Hibert-Huang変換のいずれを用いても特定のピークを有する周波数スペクトルから振動波形を求めることができ、シール材の劣化診断を実施できる。 When the above-mentioned inverse calculation is performed, the vibration waveform can be obtained from the frequency spectrum having a specific peak by using any of the inverse FFT transform, wavelet transform, and Hibert-Huang transform, and the deterioration diagnosis of the sealing material can be performed.

本発明の一実施形態に係るシール材の劣化診断方法を実施する場合に行う加振試験について説明するための図であり、(A)は加速度センサを設置した対象物にハンマで加振した状態を示す説明図、(B)はシール材を有する対象物に加速度センサを設置し、対象物をハンマで加振した状態を示す説明図、(C)は(A)に示す加振試験により振動センサが計測した振動波形を示すグラフ、(D)は(B)に示す加振試験により振動センサが計測した振動波形を示すグラフである。It is a figure for demonstrating the vibration test performed when carrying out the deterioration diagnosis method of the sealing material which concerns on one Embodiment of this invention, and (A) is the state which vibrated by the hammer to the object which installed the acceleration sensor. (B) is an explanatory diagram showing a state in which an acceleration sensor is installed on an object having a sealing material and the object is vibrated with a hammer, and (C) is a vibration according to the vibration test shown in (A). A graph showing the vibration waveform measured by the sensor, (D) is a graph showing the vibration waveform measured by the vibration sensor by the vibration test shown in (B). シール材を介し管フランジとバタフライ弁を接続した構造体の一例を示すもので、(A)は第1の加振試験について説明するために構造体を一側から見た斜視図、(B)は第2の加振試験について説明するために構造体を他側から見た斜視図である。An example of a structure in which a pipe flange and a butterfly valve are connected via a sealing material is shown, and (A) is a perspective view of the structure as viewed from one side in order to explain a first vibration test, (B). Is a perspective view of the structure viewed from the other side in order to explain the second vibration test. 振動解析により得られたバタフライ弁の振動の様子を可視化した場合の一例を示す説明図である。It is explanatory drawing which shows an example of the case where the state of the vibration of a butterfly valve obtained by the vibration analysis is visualized. 加振試験により得られた振動波形をフーリエ変換して求めた周波数スペクトルを示すもので、(A)は図2(A)に示す第1の加振試験により得られた振動波形の一例から求めた周波数スペクトルを示すグラフ、(B)は図2(B)に示す第2の加振試験により得られた振動波形の一例から求めた周波数スペクトルを示すグラフである。The frequency spectrum obtained by Fourier transforming the vibration waveform obtained by the vibration test is shown, and (A) is obtained from an example of the vibration waveform obtained by the first vibration test shown in FIG. 2 (A). The graph showing the frequency spectrum (B) is a graph showing the frequency spectrum obtained from an example of the vibration waveform obtained by the second vibration test shown in FIG. 2 (B). 加振試験により得られる振動波形と減衰量の関係を示すもので、(A)は振動波形の一例を示すグラフ、(B)は(A)に示す振動波形をデシベル(dB)表示して減衰量を求めた結果を示すグラフである。The relationship between the vibration waveform obtained by the vibration test and the amount of attenuation is shown. (A) is a graph showing an example of the vibration waveform, and (B) is the vibration waveform shown in (A) displayed in decibels (dB) for attenuation. It is a graph which shows the result of having calculated the quantity. シール材の圧縮永久ひずみ率とシール材の減衰量比の関係を示すグラフ。The graph which shows the relationship between the compression set rate of a sealing material, and the damping amount ratio of a sealing material. ハンマの先端に取り付けるチップを交換して加振した場合に各ハンマが作用させ得る周波数特性を示すグラフ。A graph showing the frequency characteristics that each hammer can act on when the tip attached to the tip of the hammer is replaced and vibrated. ハンマの先端に取り付けるチップを交換して加振した場合に各ハンマにより得られる振動波形をフーリエ変化して求めた周波数スペクトルを示すグラフ。A graph showing a frequency spectrum obtained by Fourier transforming the vibration waveform obtained by each hammer when the tip attached to the tip of the hammer is replaced and vibrated. 本発明の一実施形態に係るシール材の劣化診断方法の一例を示すフローチャートである。It is a flowchart which shows an example of the deterioration diagnosis method of the sealing material which concerns on one Embodiment of this invention. 同シール材の劣化診断方法を実施する場合に用いる劣化診断装置の一例を示す構成図。The block diagram which shows an example of the deterioration diagnosis apparatus used when carrying out the deterioration diagnosis method of the seal material. 圧縮永久ひずみ率と加振試験結果を関係付けることを目的として、シール材の劣化と減衰量の変化を求めるために用いたフランジボトルについてハンマによる加振位置と振動センサの設置位置を示す斜視図。Perspective view showing the vibration position by hammer and the installation position of the vibration sensor for the flange bottle used to obtain the deterioration of the sealing material and the change of the damping amount for the purpose of associating the compression set rate with the vibration test result. .. 加振試験により複数の振動モードが混在した場合に目的の振動モードを選択して減衰量比を求める過程を示すもので、(A)は加振試験において振動センサが計測した元の振動波形を示すグラフ、(B)は(A)に示す元の振動波形からフーリエ変換により求めた周波数スペクトルを示すグラフ、(C)は目的の周波数スペクトルのみを抽出した状態を示すグラフ、(D)は抽出した周波数スペクトルから逆FFTにより振動波形を求めた結果を示すグラフである。It shows the process of selecting the target vibration mode and obtaining the attenuation ratio when multiple vibration modes are mixed by the vibration test. (A) shows the original vibration waveform measured by the vibration sensor in the vibration test. The graph shown, (B) is a graph showing a frequency spectrum obtained by Fourier transform from the original vibration waveform shown in (A), (C) is a graph showing a state in which only the target frequency spectrum is extracted, and (D) is extracted. It is a graph which shows the result of having obtained the vibration waveform by the inverse FFT from the frequency spectrum. 本発明に係るシール材の劣化診断方法に用いて好適な加振装置の一例を示す断面図。FIG. 5 is a cross-sectional view showing an example of a vibration exciter suitable for use in the method for diagnosing deterioration of a sealing material according to the present invention. 図13に示す加振装置の動作について示すもので、(A)は初期状態を示す断面図、(B)はノブを引いた状態を示す断面図、(C)はハンマを突き出した状態を示す断面図、(D)は初期状態に戻した状態を示す断面図である。The operation of the vibration exciter shown in FIG. 13 is shown. FIG. 13A is a cross-sectional view showing an initial state, (B) is a cross-sectional view showing a state in which a knob is pulled, and (C) shows a state in which a hammer is projected. The cross-sectional view, (D) is a cross-sectional view showing a state returned to the initial state.

以下、本発明に係るシール材の劣化診断方法に関する一実施形態について詳しく説明する。まず、第1実施形態において採用する加振試験による診断方法の原理について説明する。
加振試験とは、図1(A)に示すように対象物3をハンマ1で加振(打撃)し、その結果生じる振動を振動センサ2で検出する試験方法である。加振により発生する振動特性は対象物3の構造によって決まり、図1(B)に示すように対象物3の内部にシール材4が存在すると、シール材4の弾性力によって対象物3の振動特性が変化することに基づいてシール材4の特性変化を検出することができる。
なお、ハンマ1の先端に交換自在なチップ1aを有するハンマを使用することが好ましい。このチップ1aを構成材料毎に複数用意しておき、チップ1aを変更することで異なる周波数帯域の加振ができる。なお、このチップ1aと周波数帯域の関係については後に詳述する。
Hereinafter, an embodiment relating to the method for diagnosing deterioration of the sealing material according to the present invention will be described in detail. First, the principle of the diagnostic method by the vibration test adopted in the first embodiment will be described.
The vibration test is a test method in which an object 3 is vibrated (struck) by a hammer 1 as shown in FIG. 1A, and the resulting vibration is detected by a vibration sensor 2. The vibration characteristics generated by the vibration are determined by the structure of the object 3, and when the sealing material 4 is present inside the object 3 as shown in FIG. 1 (B), the elastic force of the sealing material 4 causes the vibration of the object 3 to vibrate. The change in the characteristics of the sealing material 4 can be detected based on the change in the characteristics.
It is preferable to use a hammer having a replaceable tip 1a at the tip of the hammer 1. A plurality of the chips 1a are prepared for each constituent material, and by changing the chips 1a, vibrations in different frequency bands can be performed. The relationship between the chip 1a and the frequency band will be described in detail later.

図1(A)に示すように対象物3が1枚の金属板である場合、振動センサ2が計測する振動加速度(m/s)は図1(C)に示すように単調に徐々に減少するタイプの振動波形として得られるが、シール材4が存在する場合に振動センサ2が計測する振動加速度が示す波形は、図1(D)に示すように減衰割合が指数関数的に大きくなる振動波形として観測される。しかし、シール材4の弾性力が変化すると、振動特性が変化するので、振動特性の変化から、シール材4の弾性力の変化を把握することが可能となる。
つまり、劣化が進展し、シール材4の特性が変化すれば振動特性もそれに応じて変化することから、本手法によれば、シール材4の硬さの変化や圧縮による変形等を検出することが可能であり、稼働中の機器からシール材を採取しなくてもシール材の劣化評価が可能になると考えられる。
When the object 3 is a single metal plate as shown in FIG. 1 (A), the vibration acceleration (m / s 2 ) measured by the vibration sensor 2 gradually becomes monotonous as shown in FIG. 1 (C). Although it is obtained as a decreasing type of vibration waveform, the waveform indicated by the vibration acceleration measured by the vibration sensor 2 in the presence of the sealing material 4 has an exponentially large attenuation ratio as shown in FIG. 1 (D). Observed as a vibration waveform. However, when the elastic force of the sealing material 4 changes, the vibration characteristics change, so that it is possible to grasp the change in the elastic force of the sealing material 4 from the change in the vibration characteristics.
That is, as deterioration progresses and the characteristics of the sealing material 4 change, the vibration characteristics also change accordingly. Therefore, according to this method, changes in the hardness of the sealing material 4 and deformation due to compression can be detected. It is considered possible to evaluate the deterioration of the sealing material without collecting the sealing material from the operating equipment.

機械や装置、配管などのような構造物は、通常多数の固有振動モードを有し、これらのモードの振動数はその構造物の材質、形状によって様々である。加振により励起される振動数は構造物の固有振動モードに沿ったものとなるが、どのモードが励起されるかは加振する位置、方向等によって変化する。
本発明者らは、シール材を含む構造体の振動モードについて調査した結果、加振する位置、方向を適宜な位置とするならば、特定の振動モードのみを励起させることができることを見出した。
例えば、図2(A)に示すように油入変圧器で使用されるバタフライ弁6はバタフライ弁6の前後にシール材7を介して管フランジ8が接続された構造体9となっている。この構造体9に関し、フランジ面を加振した場合はバタフライ弁6と管フランジ8が一体として動く振動モードが励起される一方で、バタフライ弁6の側面のみを加振すると、バタフライ弁単体の振動を励起させることができる。
Structures such as machines, devices, and pipes usually have a large number of natural vibration modes, and the frequencies of these modes vary depending on the material and shape of the structure. The frequency excited by the vibration is in line with the natural vibration mode of the structure, but which mode is excited varies depending on the vibration position, direction, and the like.
As a result of investigating the vibration mode of the structure including the sealing material, the present inventors have found that only a specific vibration mode can be excited if the vibration position and direction are set to appropriate positions.
For example, as shown in FIG. 2A, the butterfly valve 6 used in the oil-immersed transformer has a structure 9 in which the pipe flange 8 is connected to the front and rear of the butterfly valve 6 via a sealing material 7. Regarding this structure 9, when the flange surface is vibrated, the vibration mode in which the butterfly valve 6 and the pipe flange 8 move together is excited, while when only the side surface of the butterfly valve 6 is vibrated, the butterfly valve alone vibrates. Can be excited.

一体的な構造体9としての振動は、シール材7の特性変化の影響を受けにくく、診断指標として適切ではない。一方、バタフライ弁6単体の振動であればシール材7を介した振動であるため、シール材7の特性変化がより顕著に現れる。つまり、シール材7を含む一体的な構造体9の振動モードの内、特定の構造物単体(バタフライ弁6単体)の固有振動モードのみを励起させることで、シール材7の劣化を高い精度で検出することが可能になると考えられる。
また、特定の振動モードのみを励起できない場合であっても、予め構造物単体の固有振動数を把握しておくことができるならば、特定の周波数成分のみを抽出して振動波形を再現することにより、同様の評価が可能になると考えられる。さらに、目的の周波数成分が明らかであるならば、加振力が目的の周波数以下になるように加振することにより、余計な振動モードを除外して評価することが可能になると考えられる。
The vibration of the integrated structure 9 is not easily affected by the change in the characteristics of the sealing material 7, and is not suitable as a diagnostic index. On the other hand, if the vibration of the butterfly valve 6 alone is the vibration through the sealing material 7, the characteristic change of the sealing material 7 appears more remarkably. That is, by exciting only the natural vibration mode of a specific structure (single butterfly valve 6) among the vibration modes of the integrated structure 9 including the sealing material 7, the deterioration of the sealing material 7 can be deteriorated with high accuracy. It will be possible to detect it.
Even if it is not possible to excite only a specific vibration mode, if the natural frequency of the structure itself can be grasped in advance, only the specific frequency component should be extracted to reproduce the vibration waveform. Therefore, it is considered that the same evaluation becomes possible. Further, if the target frequency component is clear, it is considered that the evaluation can be performed excluding the unnecessary vibration mode by vibrating so that the exciting force is equal to or lower than the target frequency.

内部を流体が流れる配管においてその管フランジ8をシール材7を介し接続した構造体9において、シール材7は長期間の使用により劣化が進行し、密封性が低下し、シール材7を介した接合部分から内部流体が漏洩する可能性が高くなる。シール材7の劣化は、圧縮量に対する永久ひずみ量の割合として表される圧縮永久ひずみ率で評価するのが一般的とされている。 In the structure 9 in which the pipe flange 8 is connected via the sealing material 7 in the pipe through which the fluid flows, the sealing material 7 deteriorates due to long-term use, the sealing property deteriorates, and the sealing material 7 is used. There is a high possibility that internal fluid will leak from the joint. Deterioration of the sealing material 7 is generally evaluated by the compression set ratio expressed as the ratio of the permanent strain amount to the compression amount.

そこで、本実施形態では、シール材の劣化を圧縮永久ひずみ率で定義し、圧縮永久ひずみ率と加振試験結果を関係付けることにより、シール材の劣化診断を可能とする。 Therefore, in the present embodiment, the deterioration of the sealing material is defined by the compression set, and the deterioration of the sealing material can be diagnosed by associating the compression set with the vibration test result.

使用中のシール材は構造物からの圧縮応力を受けて変形する。シール材が新品の場合は圧縮応力を取り除けば元の形状に戻るが、シール材が劣化品の場合は、横方向への塑性変形による厚さの減少や永久ひずみ量の増加により圧縮永久ひずみ率が増加している。圧縮永久ひずみ率の増加はシール材の弾性力の低下を意味し、構造体へ作用する弾性力が低下することで、構造体の振動特性が変化する。
構造体内部のシール材は制振材料としても作用し、生じた振動エネルギーを熱エネルギーへと変換することで振動を減衰、抑制する。そのため、加振により生じた振動はシール材の制振作用により減衰を受ける。シール材の制振作用はシール材の弾性力に応じて変化する。
The sealing material in use is deformed by receiving compressive stress from the structure. If the sealing material is new, it will return to its original shape if the compressive stress is removed, but if the sealing material is deteriorated, the compression set will be reduced due to the decrease in thickness due to plastic deformation in the lateral direction and the increase in the amount of permanent strain. Is increasing. An increase in the compression set means a decrease in the elastic force of the sealing material, and a decrease in the elastic force acting on the structure changes the vibration characteristics of the structure.
The sealing material inside the structure also acts as a damping material, and by converting the generated vibration energy into heat energy, the vibration is dampened and suppressed. Therefore, the vibration generated by the vibration is damped by the vibration damping action of the sealing material. The damping action of the sealing material changes according to the elastic force of the sealing material.

つまり、シール材の劣化により圧縮永久ひずみ率が増加すると、シール材の弾性力が低下し、流体漏れが発生し易くなるとともに、シール材による振動の抑制作用も低下することから、加振試験により生じた振動の減衰特性を評価することでシール材の劣化診断が可能になると考えられる。
振動の減衰特性を評価する手順として、シール材を含む構造体への加振により生じた振動を加速度センサ等で計測する。その際の加振位置は構造物単体の固有振動のみを励起させるような箇所で加振を行うことが好ましい。
加振位置の決定については加振時の振動の様子を可視化することで、最も効率的に計測できる点を見極めることが出来る。振動の様子の可視化には、有限要素法や実験モード解析などを利用できる。
That is, when the compression set rate increases due to deterioration of the sealing material, the elastic force of the sealing material decreases, fluid leakage is likely to occur, and the vibration suppressing effect of the sealing material also decreases. It is considered that deterioration diagnosis of the sealing material becomes possible by evaluating the damping characteristics of the generated vibration.
As a procedure for evaluating the damping characteristics of vibration, the vibration generated by the vibration to the structure including the sealing material is measured by an acceleration sensor or the like. At that time, it is preferable to perform the vibration at a position where only the natural vibration of the structure itself is excited.
Regarding the determination of the vibration position, it is possible to determine the most efficient measurement point by visualizing the state of vibration during vibration. Finite element method and experimental mode analysis can be used to visualize the state of vibration.

本実施形態では実験モード解析による加振位置の決定方法について以下に説明する。
実験モード解析とは、対象となる構造物の形状を座標軸上に定義し、その各々のポイントにおける周波数応答関数(伝達関数)を測定し、位相とゲインの情報から、これらの構造体が共振(振動し易い周波数で振動する)した時の振動モード形を可視化する方法である。
一例として、油入変圧器のタンク本体とラジエータ等を接続するバタフライ弁の実験モード解析による加振位置決定方法について以下に説明する。まず、バタフライ弁と管フランジの構造において、図2のように座標を定義し、測定点を決める。
管フランジ8については、矩形状のフランジ面を6行×10列のセルに区分するように各セルの境界線を区分線として設定し、管フランジ8の上面と下面を6行×2列のセルに区分するように各セルの境界線を区分線として、管フランジ8の両側面については2行×10列のセルに区分するように各セルの境界線を区分線として設定する。バタフライ弁6については、その上面と下面を6行×4列のセルに区分するように区分線を設定し、両側面を4行×10列のセルに区分するように区分線を設定する。そして、これら全ての区分線の交点の部分を測定点に設定する。
In this embodiment, a method of determining the excitation position by the experimental mode analysis will be described below.
In the experimental mode analysis, the shape of the target structure is defined on the coordinate axes, the frequency response function (transfer function) at each point is measured, and these structures resonate (from the phase and gain information). It is a method of visualizing the vibration mode form when (vibrates at a frequency that easily vibrates).
As an example, a method for determining the excitation position by experimental mode analysis of a butterfly valve that connects a tank body of an oil-immersed transformer to a radiator or the like will be described below. First, in the structure of the butterfly valve and the pipe flange, the coordinates are defined as shown in FIG. 2, and the measurement points are determined.
For the pipe flange 8, the boundary line of each cell is set as a dividing line so that the rectangular flange surface is divided into cells of 6 rows × 10 columns, and the upper surface and the lower surface of the pipe flange 8 are 6 rows × 2 columns. The boundary line of each cell is set as a dividing line so as to divide into cells, and the boundary line of each cell is set as a dividing line so as to divide both side surfaces of the pipe flange 8 into cells of 2 rows × 10 columns. For the butterfly valve 6, a dividing line is set so as to divide the upper surface and the lower surface into cells of 6 rows × 4 columns, and a dividing line is set so as to divide both side surfaces into cells of 4 rows × 10 columns. Then, the intersections of all these dividing lines are set as measurement points.

また、図2に示す座標区分の設定基準は一つの例であって、図2に示す場合よりも更に小さいセルに区分するように、あるいはより大きなセルに区分するように区分線を設定しても良い。しかし、測定点が多すぎると測定に手間がかかり、測定点が少なすぎると特定の構造物に特異な振動モードが励起されていることを発見し難くなるので、測定対象の構造体について例えば20〜50ヶ所程度の測定点を設定できる区分であることが望ましい。なお、この区分数については構造体が大規模構造物である場合はこの範囲に限らず、更に細分化しても良い。
図2においては管フランジ8を備えた配管10について、その厚みや長さを略して記載し、配管10の位置のみを記載し、管フランジ8、8とバタフライ弁6を貫通してこれらを一体化したボルトやナットは記載を省略している。
更に、図2では略しているが、一方の管フランジ8に接続された配管10の他端側には変圧器タンクなどの変圧器構造物が接続され、他方の管フランジ8に接続された配管10の他端側にはラジエータ、ブッシング、リレー配管などの他の変圧器構造物が接続されている。このため、図2に示す構造体9において、一方の配管10の他端側は変圧器構造物により拘束されて振動抑制され、他方の配管10の他端側も変圧器構造物により拘束されて振動抑制されている。
Further, the setting standard of the coordinate division shown in FIG. 2 is an example, and the division line is set so as to divide into smaller cells or larger cells than in the case shown in FIG. Is also good. However, if there are too many measurement points, it takes time to measure, and if there are too few measurement points, it becomes difficult to discover that a vibration mode peculiar to a specific structure is excited. Therefore, for example, 20 for the structure to be measured. It is desirable that the division can set about 50 measurement points. The number of divisions is not limited to this range when the structure is a large-scale structure, and may be further subdivided.
In FIG. 2, the thickness and length of the pipe 10 provided with the pipe flange 8 are abbreviated, and only the position of the pipe 10 is described, and these are integrated through the pipe flanges 8 and 8 and the butterfly valve 6. The description of the changed bolts and nuts is omitted.
Further, although omitted in FIG. 2, a transformer structure such as a transformer tank is connected to the other end side of the pipe 10 connected to one pipe flange 8, and the pipe connected to the other pipe flange 8. Other transformer structures such as radiators, bushings, and relay pipes are connected to the other end side of the 10. Therefore, in the structure 9 shown in FIG. 2, the other end side of one pipe 10 is restrained by the transformer structure to suppress vibration, and the other end side of the other pipe 10 is also restrained by the transformer structure. Vibration is suppressed.

図2(A)、(B)に示す区分線の交点が測定ポイントとなるが、全ての測定ポイントで測定する必要はなく、未測定点は周囲の測定点のデータから補間することもできる。
図2(A)(B)に例示するように、本実施形態では、面を正面から見た時の上側右の測定ポイントをS1と定め、上側中S2、上側左S3、中段をS4〜6、下段をS7〜9のように定めた。対面側の測定ポイントも同様にS10〜18、上面をS19〜26、下面をS27〜35と定めた。なお、上面中段中はバタフライ弁6の図示していないハンドルがあるため、測定ポイントからは除外している。なお、後に説明する可視化の過程において、ハンドルは無いものとして扱い、他と同様にフラットな形状であると仮定して計算している。
The intersections of the dividing lines shown in FIGS. 2A and 2B are the measurement points, but it is not necessary to measure at all the measurement points, and the unmeasured points can be interpolated from the data of the surrounding measurement points.
As illustrated in FIGS. 2A and 2B, in the present embodiment, the measurement point on the upper right side when the surface is viewed from the front is defined as S1, the upper middle S2, the upper left S3, and the middle stage are S4 to 6. , The lower row is defined as S7-9. Similarly, the measurement points on the facing side were set to S10 to 18, the upper surface was set to S19 to 26, and the lower surface was set to S27 to 35. Since there is a handle of the butterfly valve 6 not shown in the middle stage of the upper surface, it is excluded from the measurement points. In the process of visualization described later, the handle is treated as having no handle, and the calculation is performed on the assumption that the shape is flat like the others.

また、図2(A)に示す構造体9は、鋼管からなる配管(外径:103mm、内径 93mm)の端部に厚さ25mm、高さ×幅(170×170)mmの鋼板からなる管フランジを備えた構造物を一対と、厚さ50mm、高さ×幅(170×170)mmのバタフライ弁を有する。このバタフライ弁の両側に厚さ6mm、外径×内径(143mm×125mm)のニトリルブタジエンゴム(NBR)製ゴムリングからなるシール材を介挿させ、管フランジとバタフライ弁の外枠を貫通したボルトとこれらボルトに螺合するナットで一体化して構造体9が構成されている。 Further, the structure 9 shown in FIG. 2A is a pipe made of a steel plate having a thickness of 25 mm and a height × width (170 × 170) mm at the end of a pipe (outer diameter: 103 mm, inner diameter 93 mm) made of a steel pipe. It has a pair of structures with flanges and a butterfly valve having a thickness of 50 mm and a height x width (170 x 170) mm. A bolt made of a nitrile butadiene rubber (NBR) rubber ring with a thickness of 6 mm and an outer diameter x inner diameter (143 mm x 125 mm) is inserted on both sides of this butterfly valve and penetrates the pipe flange and the outer frame of the butterfly valve. And the nuts screwed into these bolts are integrated to form the structure 9.

図2(A)、(B)に示す構造体9の場合、上述した36ヵ所の測定点を定義して以下の計測を行った。
測定はフランジ面加振であれば測定点“S1”に振動センサを取り付けた状態で測定点“S36”をハンマで加振してデータを取得する。次に、測定点“S2”に振動センサを移動し、測定点“S36”をハンマで加振してデータを取得する。測定点“S36”は、配管10の右側に位置するフランジ面の右端側の測定点である。図2(A)においては、フランジ面を左右方向に6等分する5本の区分線とフランジ面を上下方向に10等分する9本の区分線で区画した場合、フランジ面の左側から5番目の区分線とフランジ面の上側から5本目の区分線が交わる交点を加振することとする。
以降同様に測定点を移動させながらハンマで加振して順次測定を行い、定義したすべての測定点でデータを取得する。この時使用する振動センサは3次元の振動を可視化するため、3軸の振動センサを用いる。
In the case of the structure 9 shown in FIGS. 2A and 2B, the following measurements were performed by defining the 36 measurement points described above.
If the flange surface is vibrated, the measurement point "S36" is vibrated with a hammer with the vibration sensor attached to the measurement point "S1" to acquire data. Next, the vibration sensor is moved to the measurement point “S2”, and the measurement point “S36” is vibrated with a hammer to acquire data. The measurement point “S36” is a measurement point on the right end side of the flange surface located on the right side of the pipe 10. In FIG. 2A, when the flange surface is divided into 5 division lines that divide the flange surface into 6 equal parts in the left-right direction and 9 division lines that divide the flange surface into 10 equal parts in the vertical direction, 5 from the left side of the flange surface. The intersection of the third dividing line and the fifth dividing line from the upper side of the flange surface is vibrated.
After that, the measurement points are moved in the same manner and vibrated with a hammer to perform sequential measurement, and data is acquired at all the defined measurement points. The vibration sensor used at this time is a three-axis vibration sensor for visualizing three-dimensional vibration.

以上の測定データを用いて実験モード解析を行い、構造体9の3次元振動の様子を可視化した。3軸の振動センサを36ヶ所の測定点に設置して測定位置毎のデータを取得するならば、振動センサを設置した位置毎の3次元的な振動を計測できるので、左右の管フランジ8とそれらにシール材を介して挟まれたバタフライ弁6が個々にどのような方向に振動しているのか、可視化する(アニメーション表示する)ことができる。 An experimental mode analysis was performed using the above measurement data, and the state of the three-dimensional vibration of the structure 9 was visualized. If three-axis vibration sensors are installed at 36 measurement points and data is acquired for each measurement position, three-dimensional vibration can be measured for each position where the vibration sensor is installed. It is possible to visualize (animate the display) in what direction the butterfly valves 6 sandwiched between them are vibrating individually.

図2(A)に示す構造体9に関し、特徴的な共振周波数における振動モードを可視化したところ、比較的低い周波数領域(3kHz前後)では上下を軸とした回転運動、いわゆるヨーイングと呼ばれる振動モードであることがわかった。また、周波数が高くなるにつれてヨーイングに膨張収縮振動が重畳し、比較的高い周波数領域(7kHz以上)になると膨張収縮振動がより顕著に現れることがわかった。 Regarding the structure 9 shown in FIG. 2 (A), when the vibration mode at a characteristic resonance frequency was visualized, in a relatively low frequency region (around 3 kHz), a rotational motion around the vertical axis, a vibration mode called yawing, was used. It turned out that there was. It was also found that the expansion / contraction vibration was superimposed on the yawing as the frequency increased, and the expansion / contraction vibration appeared more prominently in a relatively high frequency region (7 kHz or more).

図2(A)に示す構造体9において、フランジ面の加振で生じる構造体9のヨーイングによる振動は、構造体9そのものの振動であるため、シール材7の影響を受けにくい振動である。一方、高周波領域で見られた膨張収縮振動はバタフライ弁6の構造物単体としての振動モードであるため、シール材7の評価に適した振動モードであると考えられる。
そこでこのバタフライ弁6の構造物単体としての振動モードである膨張収縮振動をより強く励起させるため、バタフライ弁6の側面、図2(B)に示す測定点“S14”を加振した。測定は測定点“S1”に振動センサを取り付けた状態で測定点“S14”を加振してデータを取得する。次に、測定点“S2”に振動センサを移動し,測定点“S14”を加振してデータを取得する。次に、測定点“S14”を除いて測定点をS3〜S35まで順次移動し、測定点“S14”を加振してデータを取得する。
以上のように測定点を移動させながら加振と測定を順次行い、定義したすべての測定点でデータを取得する。この測定データを用いて実験モード解析を行い、バタフライ弁6と管フランジ8、8の振動の様子を可視化した。
その一例を図3に示す。図3では、管フランジ8がその両側に存在する変圧器構造物により振動抑制されているが、バタフライ弁6は1つの構造物として強く振動していることが分かった。
In the structure 9 shown in FIG. 2A, the vibration caused by yawing of the structure 9 caused by the vibration of the flange surface is the vibration of the structure 9 itself, and is therefore not easily affected by the sealing material 7. On the other hand, since the expansion / contraction vibration observed in the high frequency region is the vibration mode of the butterfly valve 6 as a single structure, it is considered to be a vibration mode suitable for the evaluation of the sealing material 7.
Therefore, in order to more strongly excite the expansion / contraction vibration, which is the vibration mode of the butterfly valve 6 as a single structure, the side surface of the butterfly valve 6 and the measurement point “S14” shown in FIG. 2 (B) are vibrated. For the measurement, the measurement point "S14" is vibrated with the vibration sensor attached to the measurement point "S1" to acquire data. Next, the vibration sensor is moved to the measurement point “S2”, and the measurement point “S14” is vibrated to acquire data. Next, the measurement points are sequentially moved from S3 to S35 except for the measurement point "S14", and the measurement point "S14" is vibrated to acquire data.
Vibration and measurement are performed in sequence while moving the measurement points as described above, and data is acquired at all the defined measurement points. An experimental mode analysis was performed using this measurement data, and the state of vibration of the butterfly valve 6 and the pipe flanges 8 and 8 was visualized.
An example thereof is shown in FIG. In FIG. 3, it was found that the pipe flange 8 was vibration-suppressed by the transformer structures existing on both sides thereof, but the butterfly valve 6 vibrated strongly as one structure.

以下に、構造体9などの対象物の振動の様子をアニメーション表示させて可視化する手法について述べる。
対象物表面の振動を表現するには、対象物表面に有限個の座標点を定め、各座標点における変位の方向と大きさを再現することになる。各点の運動は複雑ではあるが、周期運動であることから、周波数の異なる単振動の重ね合わせで表すことが可能である。そこで、各点の時間軸で表される振動をフーリエ変換して周波数ごとの振幅を求める。
次に、特定の周波数について、各点がどのような相対的な位相差を持って振動しているか求める。具体的には、座標点のうち任意な2点間の位相差を求めることが必要であり、伝達関数を求めることで達成される。
The method of visualizing the vibration of an object such as the structure 9 by displaying it in animation will be described below.
To express the vibration of the object surface, a finite number of coordinate points are set on the object surface, and the direction and magnitude of the displacement at each coordinate point are reproduced. Although the motion of each point is complicated, since it is a periodic motion, it can be represented by superposition of simple vibrations having different frequencies. Therefore, the vibration represented by the time axis of each point is Fourier transformed to obtain the amplitude for each frequency.
Next, for a specific frequency, what kind of relative phase difference each point oscillates is obtained. Specifically, it is necessary to obtain the phase difference between any two coordinate points, which is achieved by obtaining the transfer function.

伝達関数とは、ある一点(A点)を単位大きさの力で加振してもう一点(B点)で応答、すなわちどれだけの振幅と位相をもって振動するかを示した量である。そこで、座標点のうち一点を加振点とし、残りの座標点すべてに振動センサを設置して加振試験する。この伝達関数にはマックスウェルの相反定理という性質があり、B点を加振してA点で応答を測定した場合にも同じ伝達関数が得られるというものである。
よって、加振点に振動センサを設置した測定はしていないにも関わらず、各座標点間の応答関数はすべて求めることができる。また、1つの振動センサを用いて加振試験して、振動センサを順次移動させることにより、すべての座標点間の応答関数を求めることもできる。
また、同様に、振動センサを1箇所に固定して設置し、残りの座標点を順次加振していくことでもすべての応答関数を求めることが可能であり、センサ設置のし易さやハンマでの加振のし易さに応じて測定方法を選択することができる。
The transfer function is a quantity that indicates how much amplitude and phase a certain point (point A) is vibrated with a force of a unit magnitude and a response is made at another point (point B). Therefore, one of the coordinate points is set as the vibration point, and vibration sensors are installed at all the remaining coordinate points to perform the vibration test. This transfer function has the property of Maxwell's reciprocity theorem, and the same transfer function can be obtained when the response is measured at point A by vibrating point B.
Therefore, all the response functions between each coordinate point can be obtained even though the measurement is not performed by installing the vibration sensor at the vibration point. It is also possible to obtain a response function between all coordinate points by performing a vibration test using one vibration sensor and sequentially moving the vibration sensor.
Similarly, it is possible to obtain all response functions by fixing the vibration sensor in one place and vibrating the remaining coordinate points in sequence, which makes it easy to install the sensor and hammers. The measurement method can be selected according to the ease of vibration.

そして、座標点のうちある一点を基準点とし、ある周波数について基準点が単振動する様子に合わせて、残りの座標点がその点における振幅と基準点との位相差を持って単振動する様子を市販のソフト“Vibrant Technology社製の解析ソフトME'scopeVES”を用いるなどすれば、対象物表面の振動の様子を解析ソフトを作動させているパーソナルコンピュータの表示画面上にアニメーション表示することができる。
図3はバタフライ弁をフランジ板で挟み込んだ構造体に対し、図2(A)、(B)に示す測定点に対し、上述の手法に基づき、各測定点の単振動する様子を捉え、アニメーション表示している状態の1画面を切り取って示す説明図である。
Then, one of the coordinate points is set as a reference point, and the remaining coordinate points simply vibrate with a phase difference between the amplitude and the reference point at that point in accordance with the simple vibration of the reference point at a certain frequency. By using the commercially available software "ME'scope VES", which is a commercially available software, the vibration of the surface of the object can be displayed as an animation on the display screen of the personal computer running the analysis software. ..
FIG. 3 captures and animates the simple vibration of each measurement point with respect to the measurement points shown in FIGS. 2 (A) and 2 (B) with respect to the structure in which the butterfly valve is sandwiched between the flange plates, based on the above method. It is explanatory drawing which cuts out one screen of the display state.

図4(A)にフランジ面の“S36”を加振し、測定点“S5”において測定した振動波形をFFT(fast Fourier transform:高速フーリエ変換)によりフーリエ変換して求めた振動の周波数スペクトルを示し、図4(B)にバタフライ弁6の測定点“S14”を加振し、測定点“S5”において測定した振動波形をFFTによりフーリエ変換して求めた振動の周波数スペクトルを示す。 The frequency spectrum of the vibration obtained by vibrating the flange surface “S36” in FIG. 4 (A) and Fourier transforming the vibration waveform measured at the measurement point “S5” by FFT (fast Fourier transform) is obtained. Shown in FIG. 4B, the frequency spectrum of vibration obtained by vibrating the measurement point “S14” of the butterfly valve 6 and Fourier transforming the vibration waveform measured at the measurement point “S5” by FFT is shown.

図4(A)に示すようにフランジ面の加振では複数の共振周波数が見られていたが、図4(B)に示すバタフライ弁側面の加振では一つの共振周波数のみが特に強く励起された周波数スペクトルが得られた。その共振周波数における振動モードを可視化したところ、バタフライ弁6の膨張収縮振動であることがわかった。
なお、バタフライ弁側面の加振では、フランジ面加振で見られたヨーイング等の振動はほとんど励起されなかった。フランジ面加振では管フランジ8の固有振動,バタフライ弁6の固有振動,バタフライ弁構造としての固有振動が重畳して非常に複雑な周波数特性となったが、バタフライ弁6の側面加振ではバタフライ弁の固有振動が強く励起されるため、相対的にその他による振動が小さくなり、シンプルな周波数特性が得られた。
As shown in FIG. 4 (A), a plurality of resonance frequencies were observed in the excitation of the flange surface, but in the excitation of the side surface of the butterfly valve shown in FIG. 4 (B), only one resonance frequency was particularly strongly excited. The frequency spectrum was obtained. When the vibration mode at the resonance frequency was visualized, it was found to be the expansion / contraction vibration of the butterfly valve 6.
In the vibration of the side surface of the butterfly valve, the vibration such as yawing observed in the vibration of the flange surface was hardly excited. In the flange surface vibration, the natural vibration of the pipe flange 8, the natural vibration of the butterfly valve 6, and the natural vibration of the butterfly valve structure were superimposed to form a very complicated frequency characteristic, but in the side vibration of the butterfly valve 6, the butterfly Since the natural vibration of the valve is strongly excited, the vibration caused by others is relatively small, and simple frequency characteristics are obtained.

この実施形態では、ほぼ単一の周波数特性が得られていることから、加振により得られた振動波形から直接振動の減衰量を求めることが出来る。
減衰量の算出は、図5(A)に示す振動波形が得られた場合、この振動波形の信号を図5(B)に示す如くデシベル表示(振動比の対数表示)へ変換する。
振動は指数関数的に減少していくため、図5(B)に示すようにデシベル表示にすると振動波形は各波の頂点を結ぶ右下がりの直線部分を描くことができる波形となり、この直線の傾きが時間あたりの減衰量(dB/sec)を表し、減衰特性の指標となる。
In this embodiment, since a substantially single frequency characteristic is obtained, it is possible to directly obtain the damping amount of the vibration from the vibration waveform obtained by the vibration.
When the vibration waveform shown in FIG. 5 (A) is obtained, the attenuation amount is calculated by converting the signal of the vibration waveform into a decibel display (logarithmic display of the vibration ratio) as shown in FIG. 5 (B).
Since the vibration decreases exponentially, when the decibel display is used as shown in Fig. 5 (B), the vibration waveform becomes a waveform that can draw a downward-sloping straight line connecting the peaks of each wave, and this straight line The slope represents the amount of attenuation per hour (dB / sec) and is an index of attenuation characteristics.

上記例のように単一の振動モードのみを励起させることが困難な場合もある。
このような場合は、必要な周波数スペクトルのみを抽出し、逆FFTにより特定の周波数成分のみの振動波形を再現することで評価が可能となる。
この場合、振動波形をFFTによりフーリエ変換し、周波数スペクトルを求める。
前述の実験モード解析等で特定したシール材の特性を反映した振動モードに由来する振動数のみを抽出し、逆FFTにより振動波形を再現することができる。
It may be difficult to excite only a single vibration mode as in the above example.
In such a case, evaluation is possible by extracting only the necessary frequency spectrum and reproducing the vibration waveform of only a specific frequency component by the inverse FFT.
In this case, the vibration waveform is Fourier transformed by FFT to obtain the frequency spectrum.
Only the frequency derived from the vibration mode reflecting the characteristics of the sealing material specified by the above-mentioned experimental mode analysis or the like can be extracted, and the vibration waveform can be reproduced by the inverse FFT.

なお、シール材の特性を反映した振動モードに由来する振動数が低周波数領域(6kHz以下)にあり、かつ、構造物由来の振動モードが高周波数領域(8kHz以上)にある場合は、加振するハンマ先端のチップ材質を柔らかい材質(樹脂製あるいはゴム製)へ変更し、高周波数領域を励起しないようにすることでも特定の振動モードのみを励起させることが出来る。 If the frequency derived from the vibration mode reflecting the characteristics of the sealing material is in the low frequency region (6 kHz or less) and the vibration mode derived from the structure is in the high frequency region (8 kHz or more), vibration is applied. It is also possible to excite only a specific vibration mode by changing the chip material at the tip of the hammer to a soft material (made of resin or rubber) so as not to excite the high frequency region.

図7はハンマ1の先端部に取り付けたチップ1aを交換自在に構成し、金属製のハードチップを備えたハンマと、樹脂製のミディアムチップを備えたハンマと、硬度の異なるゴム製のソフトチップを備えたハンマを使い分けて加振試験を行った場合に得られる周波数スペクトルの測定結果を示す。
ハードチップを備えたハンマは10kHzまで加振できることがわかり、ミディアムチップを備えたハンマは5kHzまで加振できることがわかり、硬度の高いゴム製のソフトチップを備えたハンマは4kHzまで加振できることがわかり、硬度の低いゴム製のソフトチップを備えたハンマは2kHzまで加振できることがわかる。
In FIG. 7, the tip 1a attached to the tip of the hammer 1 is interchangeably configured, and a hammer equipped with a metal hard tip, a hammer equipped with a resin medium tip, and a rubber soft tip having different hardness. The measurement result of the frequency spectrum obtained when the vibration test is performed by using the hammers provided with the above is shown.
It was found that a hammer with a hard tip can vibrate up to 10 kHz, a hammer with a medium tip can vibrate up to 5 kHz, and a hammer with a hard rubber soft tip can vibrate up to 4 kHz. It can be seen that a hammer equipped with a rubber soft tip having low hardness can vibrate up to 2 kHz.

図7に示す4種類の周波数スペクトルに基づいて加振できる4種類のハンマを使い分けて加振試験を先に説明した図4(A)に示すフランジ面加振の条件で行った場合に得られる振動波形をFFTによりフーリエ変換して求めた周波数スペクトルを図8に示す。
図8に示す結果から、ハードチップ(メタルチップ)を備えたハンマは0〜10kHzまでの広い周波数領域で周波数スペクトルを得ることができるが、ミディアムチップを備えたハンマでは5kHzまでの周波数領域で周波数スペクトルを得ることができ、硬度の高いゴム製のソフトチップを備えたハンマは2kHzまでの周波数領域で周波数スペクトルを得られるとわかる。
このことから、ハンマに装着するチップを使い分けることで目的の周波数領域を励起できることがわかった。
It is obtained when the vibration test is performed under the flange surface vibration conditions shown in FIG. 4 (A) described above by properly using four types of hammers that can be excited based on the four types of frequency spectra shown in FIG. FIG. 8 shows a frequency spectrum obtained by Fourier transforming the vibration waveform by FFT.
From the results shown in FIG. 8, a hammer equipped with a hard chip (metal chip) can obtain a frequency spectrum in a wide frequency range from 0 to 10 kHz, but a hammer equipped with a medium chip has a frequency in a frequency domain up to 5 kHz. It can be seen that the spectrum can be obtained, and that the hammer equipped with the soft chip made of rubber having high hardness can obtain the frequency spectrum in the frequency domain up to 2 kHz.
From this, it was found that the target frequency region can be excited by properly using the chips mounted on the hammer.

図9はこれまで説明した本実施形態に係るシール材の劣化診断方法を実施する場合のフローチャートであり、図10はシール材の劣化診断方法を実施する場合に用いるシール材の劣化診断装置の一例を示す構成図である。
本実施形態の劣化診断装置Aは、前述の構造体9に沿わせて配置される振動センサ(加速度センサ)2と、この振動センサ2からの出力信号を受けて増幅する信号増幅器(振動センサアンプ)25とこの信号増幅器25からの出力を受ける信号解析器26とこの信号解析器26に接続された演算装置27を主体として構成されている。なお、図10においては説明の簡略化のために、配管10、10の管フランジ8、8の間にバタフライ弁6が介在された構造体9を略記するとともに、配管10、10の他端側に接続されている変圧器のタンク28とラジエータ29を簡略記載した。
FIG. 9 is a flowchart when the method for diagnosing deterioration of the sealing material according to the present embodiment described above is carried out, and FIG. 10 is an example of a deterioration diagnosing device for the sealing material used when carrying out the method for diagnosing deterioration of the sealing material. It is a block diagram which shows.
The deterioration diagnosis device A of the present embodiment includes a vibration sensor (acceleration sensor) 2 arranged along the structure 9 described above, and a signal amplifier (vibration sensor amplifier) that receives and amplifies an output signal from the vibration sensor 2. ) 25, a signal analyzer 26 that receives the output from the signal amplifier 25, and a computing device 27 connected to the signal analyzer 26. In FIG. 10, for the sake of simplification of the description, the structure 9 in which the butterfly valve 6 is interposed between the pipe flanges 8 and 8 of the pipes 10 and 10 is abbreviated, and the other end side of the pipes 10 and 10 is shown. The tank 28 and radiator 29 of the transformer connected to the above are briefly described.

一例として、図10に示す解析器26と演算装置27はパーソナルコンピューターから構成され、演算装置27がCPUであり、メモリやハードディスクなどの記憶装置が解析器26に搭載されている。また、解析器26の記憶装置には図5(A)に示す振動波形をデシベル表示して図5(B)に示す直線の傾きを算出して減衰量を算出する機能と、図5(A)に示す振動波形からFFTによるフーリエ変換を行って図4(A)に示す周波数スペクトルのグラフを求める機能が組み込まれている。
また、後に説明する図6に示す減衰量比と圧縮永久ひずみ量の関係からシール材の劣化を診断する機能が組み込まれ、図4(B)に示す周波数スペクトルの特定のピークから逆FFTにより振動波形を求める機能と、この振動波形からデシベル表示を介して減衰量を算出する機能が組み込まれている。
As an example, the analyzer 26 and the arithmetic unit 27 shown in FIG. 10 are composed of a personal computer, the arithmetic unit 27 is a CPU, and a storage device such as a memory or a hard disk is mounted on the analyzer 26. Further, the storage device of the analyzer 26 has a function of displaying the vibration waveform shown in FIG. 5 (A) in decibels and calculating the slope of the straight line shown in FIG. 5 (B) to calculate the attenuation amount, and FIG. 5 (A). ) Is subjected to Fourier transform by FFT to obtain a graph of the frequency spectrum shown in FIG. 4 (A).
In addition, a function for diagnosing deterioration of the sealing material from the relationship between the damping amount ratio and the compression set amount shown in FIG. 6 to be described later is incorporated, and vibration is performed by inverse FFT from a specific peak in the frequency spectrum shown in FIG. 4 (B). It has a built-in function to obtain the waveform and a function to calculate the amount of attenuation from this vibration waveform via the decibel display.

本実施形態に係るシール材の劣化診断方法では、図9に示すステップS1において構造体9に対する加振位置を特定する。
加振位置の特定は、先に図2(A)、(B)を基に先に説明したように構造体9の管フランジ8、8の外周面とバタフライ弁の外周面に対し複数の座標軸を設定し、ステップS1においてハンマ1による加振位置を上述のように決定し、ステップS2においてハンマ1による加振を行い、ステップS3においてハンマ1による加振に伴う振動波形を上述のように計測する。
この後、座標軸の各交点に振動センサ2の設置位置を変更しながら全ての測定点において加振と測定を繰り返す。振動波形の測定結果のグラフは全て解析器26の記憶装置に記録する。
In the method for diagnosing deterioration of the sealing material according to the present embodiment, the vibration position with respect to the structure 9 is specified in step S1 shown in FIG.
The vibration position is specified by a plurality of coordinate axes with respect to the outer peripheral surfaces of the pipe flanges 8 and 8 of the structure 9 and the outer peripheral surface of the butterfly valve as described above based on FIGS. 2A and 2B. Is set, the vibration position by the hammer 1 is determined in step S1 as described above, the vibration by the hammer 1 is performed in step S2, and the vibration waveform accompanying the vibration by the hammer 1 is measured in step S3 as described above. To do.
After that, the vibration and the measurement are repeated at all the measurement points while changing the installation position of the vibration sensor 2 at each intersection of the coordinate axes. All the graphs of the measurement results of the vibration waveform are recorded in the storage device of the analyzer 26.

得られた振動の測定結果に対し、ステップS4において個々にFFTによるフーリエ変換を行い、周波数スペクトルのグラフを求め、解析器26の記憶装置に結果を記録する。 The obtained vibration measurement results are individually subjected to Fourier transform by FFT in step S4 to obtain a graph of the frequency spectrum, and the results are recorded in the storage device of the analyzer 26.

全ての測定点において測定が終了したならば、ステップS6において振動モードの可視化を行い、例えば、図2(A)に示す構造体9であるならば、バタフライ弁6が構造物単体としての振動モードを有しているか否か確認する。
可視化により、バタフライ弁が構造物単体としての振動モードを有していると判断できるならば、先に説明した通り、以下の順序で測定を行う。
When the measurement is completed at all the measurement points, the vibration mode is visualized in step S6. For example, in the case of the structure 9 shown in FIG. 2 (A), the butterfly valve 6 is the vibration mode as a single structure. Check if you have.
If it can be determined by visualization that the butterfly valve has a vibration mode as a single structure, measurement is performed in the following order as described above.

バタフライ弁6の構造物単体としての膨張収縮振動をより強く励起させるため、バタフライ弁6の側面、測定点“S14”を加振する。測定は測定点“S1”に振動センサを取り付けた状態で測定点“S14”を加振してデータを取得する。次に、測定点“S2”に振動センサを移動し,測定点“S14”を加振してデータを取得する。次に、測定点“S14”を除いて測定点をS3〜S35まで順次移動し、測定点“S14”を加振してデータを取得する。 In order to excite the expansion / contraction vibration of the butterfly valve 6 as a single structure more strongly, the side surface of the butterfly valve 6 and the measurement point “S14” are vibrated. For the measurement, the measurement point "S14" is vibrated with the vibration sensor attached to the measurement point "S1" to acquire data. Next, the vibration sensor is moved to the measurement point “S2”, and the measurement point “S14” is vibrated to acquire data. Next, the measurement points are sequentially moved from S3 to S35 except for the measurement point "S14", and the measurement point "S14" is vibrated to acquire data.

ステップS5において周波数スペクトルのグラフを確認し、図4(A)に示すような複数の振動ピークが含まれている複雑な波形のグラフではなく、図4(B)に示すように単純な1つの振動ピークを有するグラフであった場合、ステップS7においてフーリエ変換する以前の図5(A)に示す元の振動波形から、図5(B)に示すデシベル表示への変換を行い、直線部分の傾きを演算装置27で算出し、減衰量比(dB/sec)を求める。
ここでは、適当と思われる測定点(バタフライ弁であれば側面を加振して加振方向と同じ軸方向で振動を計測)で測定して振動データを取得し、周波数スペクトルを確認し、単一の周波数特性が得られればステップS7へ移行し、複雑な周波数特性が得られた場合やより詳細な評価が必要な場合にステップS6において可視化を行い、解析する周波数を特定する。
The graph of the frequency spectrum is confirmed in step S5, and it is not a graph of a complicated waveform including a plurality of vibration peaks as shown in FIG. 4 (A), but one simple one as shown in FIG. 4 (B). In the case of a graph having a vibration peak, the original vibration waveform shown in FIG. 5 (A) before the Fourier conversion in step S7 is converted to the decibel display shown in FIG. 5 (B), and the inclination of the linear portion is performed. Is calculated by the arithmetic unit 27 to obtain the attenuation ratio (dB / sec).
Here, the vibration data is acquired by measuring at a measurement point that seems appropriate (in the case of a butterfly valve, the side surface is vibrated and the vibration is measured in the same axial direction as the vibration direction), and the frequency spectrum is confirmed. If one frequency characteristic is obtained, the process proceeds to step S7, and if a complicated frequency characteristic is obtained or a more detailed evaluation is required, visualization is performed in step S6 to specify the frequency to be analyzed.

また、ステップS5において周波数スペクトルのグラフを確認し、図4(A)に示すような複数の振動ピークが含まれている複雑な波形のグラフであることをステップS5で確認した場合は、ステップS8において先に説明したように特定周波数のスペクトルを抽出し、ステップS9において先に説明したように逆FFT変換を行って特定の周波数成分のみの振動波形を再現する。
FFTによるフーリエ変換により複数のピークが現れる場合、それぞれのピークが十分に離れていれば、解析したいピーク以外の振幅は無視して逆FFT変換により解析したいピークのみの生波形(振動波形)を抽出することができ、この振動波形から減衰量を求めることができる。
Further, when the frequency spectrum graph is confirmed in step S5 and it is confirmed in step S5 that the graph is a complex waveform including a plurality of vibration peaks as shown in FIG. 4 (A), step S8 The spectrum of the specific frequency is extracted as described above, and the inverse FFT conversion is performed as described above in step S9 to reproduce the vibration waveform of only the specific frequency component.
When multiple peaks appear by Fourier transform by FFT, if the peaks are sufficiently separated, the raw waveform (vibration waveform) of only the peak to be analyzed by inverse FFT transform is extracted, ignoring the amplitude other than the peak to be analyzed. The amount of attenuation can be obtained from this vibration waveform.

その方法の1つは「1自由度のローカルフィット法」と呼ばれる。また、ピークが十分離れていないか、さらに正確な減衰を求めるには、「多自由度のグローバルフィット法」と呼ばれる方法にて複数のピークに対して同時に周波数と減衰を求める必要がある。
その解析手法は複雑であるが、市販の計算ソフトを用いれば容易に計算できる。本実施形態ではVibrant Technology社製の解析ソフトME'scopeVESを用いて解析することができる。
One of the methods is called "one degree of freedom local fit method". In addition, in order to obtain more accurate attenuation if the peaks are not sufficiently separated, it is necessary to obtain the frequency and attenuation for a plurality of peaks at the same time by a method called "global fit method with multiple degrees of freedom".
The analysis method is complicated, but it can be easily calculated by using commercially available calculation software. In this embodiment, analysis can be performed using the analysis software ME'scope VES manufactured by Vibrant Technology.

例えば、図4(A)に示す周波数スペクトルから、前述の実験モード解析等で特定したシール材の特性を反映した振動モードに由来する振動数のみを図4(B)に示すように抽出し、逆FFT変換により図5(A)等に示すような振動波形を再現することができる。
この振動波形からステップS10において先に説明したように図5(B)に示すようにデシベル表示を行い、減衰量を算出することができる。なお、この手法の詳細については後の実施例3において詳述する。
For example, from the frequency spectrum shown in FIG. 4 (A), only the frequencies derived from the vibration mode reflecting the characteristics of the sealing material specified in the above-mentioned experimental mode analysis or the like are extracted as shown in FIG. 4 (B). The vibration waveform as shown in FIG. 5A and the like can be reproduced by the inverse FFT conversion.
From this vibration waveform, the decibel display can be performed as shown in FIG. 5B as described above in step S10, and the attenuation amount can be calculated. The details of this method will be described in detail later in Example 3.

次に、ステップS11において演算装置27が圧縮永久ひずみ率と減衰量比の関係からシール材の劣化診断を行う。
本実施形態では、シール材の劣化を圧縮永久ひずみ率で定義し、圧縮永久ひずみ率と加振試験結果を関係付けることにより、シール材の劣化診断を可能とする。
Next, in step S11, the arithmetic unit 27 diagnoses the deterioration of the sealing material from the relationship between the compression set ratio and the attenuation ratio.
In the present embodiment, the deterioration of the sealing material is defined by the compression set, and the deterioration of the sealing material can be diagnosed by associating the compression set with the vibration test result.

(圧縮永久ひずみ率と加振試験結果の関連付け:新品シール材減衰量が明らかな場合)
本発明者は、圧縮永久ひずみ率と加振試験結果を関係付けることを目的として、シール材の劣化と減衰量の変化を検討するため、図11に示すステンレス製のフランジボトル30のフランジ31と蓋板32の間にシール材(NBR製ゴム:硬さ60)33を圧縮率25%で挟み込み、100℃、120℃、および、150℃に設定した恒温槽内に設置し、100日経過後に取り出し、加熱前後のフランジボトル30の振動特性(減衰量比)、圧縮永久ひずみ率を評価した。
(Association of compression set with vibration test result: When the amount of damping of new sealant is clear)
The present inventor has the same as the flange 31 of the stainless steel flange bottle 30 shown in FIG. 11 in order to examine the deterioration of the sealing material and the change in the damping amount for the purpose of associating the compression set with the vibration test result. A sealing material (NBR rubber: hardness 60) 33 is sandwiched between the lid plates 32 at a compression rate of 25% and placed in a constant temperature bath set at 100 ° C., 120 ° C., and 150 ° C., and after 100 days have passed. The vibration characteristics (damping amount ratio) and compression set rate of the flange bottle 30 before and after taking out and heating were evaluated.

フランジボトルは、外径70mm、内径60mmのステンレス鋼管の両端に厚さ10mm、外径130mmの管フランジが一体化された配管部を有している。また、両方の管フランジを閉じるように厚さ10mm、外径130mmのステンレス鋼製の蓋板を厚さ5mmのリング状シール材を介しボルトで一体化した構造体である。
ハンマ1による加振位置は図11に示す上側の蓋板32の上面側右隅端部とし、その対角位置となる上側のフランジ板31の下面側左隅端部に振動センサ(加速度センサ)34を取り付けて測定を行った。また、ハンマ1による他の加振位置は図11に示す下側のフランジ板31の上面側右隅端部とし、その対角位置となる下側の蓋板32の下面側左隅端部に振動センサ(加速度センサ)34を取り付けて測定を行った。
The flange bottle has a piping portion in which a pipe flange having a thickness of 10 mm and an outer diameter of 130 mm is integrated at both ends of a stainless steel pipe having an outer diameter of 70 mm and an inner diameter of 60 mm. Further, it is a structure in which a stainless steel lid plate having a thickness of 10 mm and an outer diameter of 130 mm is integrated with a bolt via a ring-shaped sealing material having a thickness of 5 mm so as to close both pipe flanges.
The vibration position by the hammer 1 is the upper right corner end of the upper lid plate 32 shown in FIG. 11, and the vibration sensor (accelerometer) 34 is located at the lower left corner end of the upper flange plate 31 diagonally thereof. Was attached and measurement was performed. Further, the other vibration position by the hammer 1 is the upper right corner end of the lower flange plate 31 shown in FIG. 11, and the vibration occurs at the lower left corner of the lower lid plate 32 which is the diagonal position thereof. A sensor (accelerometer) 34 was attached and measurement was performed.

減衰特性は加熱前後の減衰量の比(減衰量比:加熱後減衰量[dB/sec]/加熱前減衰量[dB/sec])で評価した。
また、図11に示す構造体の蓋板とフランジ間に種々の新品のシール材を挟み込んだ状態で加熱処理を行い、強制的にシール材を劣化させたときのデータを採取した。加熱処理は100℃、120℃、150℃に設定した恒温槽内に試験用の構造体を設置し、所定期間加熱処理を行った後に測定した。加熱期間は100℃が7日〜60日、120℃が20日〜100日、150℃が12日〜64日で、圧縮永久ひずみ率が40%〜100%となるよう劣化させた。
以上の測定結果を図6に示す。
図6に示すように圧縮永久ひずみ率60%までは減衰量比が増加するが、さらに劣化が進行すると減衰量比が低下し始め、シール材の寿命レベルと思われる圧縮永久ひずみ率90%まで劣化させると初期値より20%程度減衰量比が低下した。
The damping characteristics were evaluated by the ratio of the attenuation before and after heating (attenuation ratio: attenuation after heating [dB / sec] / attenuation before heating [dB / sec]).
In addition, heat treatment was performed with various new sealing materials sandwiched between the lid plate and the flange of the structure shown in FIG. 11, and data was collected when the sealing material was forcibly deteriorated. The heat treatment was performed after the test structure was placed in a constant temperature bath set at 100 ° C., 120 ° C., and 150 ° C., and the heat treatment was performed for a predetermined period. The heating period was 7 to 60 days at 100 ° C., 20 to 100 days at 120 ° C., 12 to 64 days at 150 ° C., and the compression set was deteriorated to 40% to 100%.
The above measurement results are shown in FIG.
As shown in FIG. 6, the damping ratio increases up to a compression set ratio of 60%, but as the deterioration progresses, the damping ratio begins to decrease, and the compression set ratio seems to be the life level of the sealing material up to 90%. When deteriorated, the attenuation ratio decreased by about 20% from the initial value.

図6に示す結果において、劣化初期の減衰量比の増加はシール材の横方向への変形による接触面積の増加に起因し、劣化後期の減衰量比の低下は永久ひずみ量の増加によるシール材厚さの減少に起因すると考えられる。この減衰量比の増減は、シール材の特性変化に起因するものであるため、対象物の構造に関係なく評価が可能と考えられる。
実施例としては新品時のシール材の減衰量を計測しておき、一定の時間経過後に再度減衰量を計測し減衰量比を求めることで、以下の表1に示すような区別に従い、シール材の劣化診断ができる。
In the results shown in FIG. 6, the increase in the damping amount ratio at the initial stage of deterioration is due to the increase in the contact area due to the lateral deformation of the sealing material, and the decrease in the damping amount ratio at the late stage of deterioration is due to the increase in the permanent strain amount. It is thought to be due to the decrease in thickness. Since this increase / decrease in the attenuation ratio is due to a change in the characteristics of the sealing material, it is considered that evaluation is possible regardless of the structure of the object.
As an example, the damping amount of the sealing material when it is new is measured, and after a certain period of time, the damping amount is measured again to obtain the damping amount ratio. Therefore, the sealing material is classified according to the distinction shown in Table 1 below. Deterioration diagnosis is possible.

Figure 2021028618
Figure 2021028618

具体的には、表1の内容を解析器26の記憶装置に記憶しておき、先に求めた測定結果を上記表1の内容と対比し、演算装置27がシール材の劣化診断を実施する。
減衰量比が1以上であれば継続使用可でシール材の圧縮永久ひずみ率は80%以下(≦80%)と判断できる。減衰量比が1未満〜0.8以上であれば、シール材の劣化が進んでいて圧縮永久ひずみ率としては80〜90%と判断できる。減衰量比が0.8未満の場合は、シール材が寿命レベルに達しており、早期に交換などの対策が必要と判断できる。
演算装置27はこれらの判定結果をステップS12において表示装置などに表示し、シール材の劣化診断結果として出力する。
Specifically, the contents of Table 1 are stored in the storage device of the analyzer 26, the previously obtained measurement results are compared with the contents of Table 1 above, and the arithmetic unit 27 performs a deterioration diagnosis of the sealing material. ..
If the attenuation ratio is 1 or more, it can be continuously used, and it can be judged that the compression set ratio of the sealing material is 80% or less (≦ 80%). If the attenuation ratio is less than 1 to 0.8 or more, the sealing material is deteriorated and the compression set can be judged to be 80 to 90%. If the attenuation ratio is less than 0.8, it can be judged that the sealing material has reached the life level and it is necessary to take measures such as replacement at an early stage.
The arithmetic unit 27 displays these determination results on a display device or the like in step S12, and outputs them as the deterioration diagnosis result of the sealing material.

(新品時のシール材減衰量が不明の場合)
新品時のシール材の減衰量が不明の場合、圧縮永久ひずみ率100%時の減衰量を使用限界値(限界減衰量)として規定することができる。
限界減衰量に一定量の裕度を定め、構造物の減衰量からシール材の継続使用可否を診断することができる。なお、使用限界値は対象構造物の構造モデルを製作することで推定できる。また、機器の撤去時などにシール材のみを取り外した状態で加振試験を実施することや、構造物の一部を用いて構造モデルを製作することでも使用限界値を求めることが出来る。
裕度αは対象とする構造物毎に任意に設定することが出来、圧縮永久ひずみ率70〜80%に相当する減衰量から設定することが望ましい。油入変圧器の本体とラジエータを接続するバタフライ弁の場合はα=500が設定値として適していると考えられる。
(When the amount of sealant attenuation when new is unknown)
When the damping amount of the sealing material at the time of a new product is unknown, the damping amount when the compression set is 100% can be specified as the use limit value (limit damping amount).
A certain amount of margin is set for the limit damping amount, and it is possible to diagnose whether or not the sealing material can be continuously used from the damping amount of the structure. The usage limit value can be estimated by producing a structural model of the target structure. In addition, the use limit value can be obtained by conducting a vibration test with only the sealing material removed when removing the equipment, or by manufacturing a structural model using a part of the structure.
The margin α can be arbitrarily set for each target structure, and it is desirable to set it from the amount of attenuation corresponding to the compression set ratio of 70 to 80%. In the case of a butterfly valve that connects the main body of the oil-immersed transformer and the radiator, α = 500 is considered to be suitable as the set value.

Figure 2021028618
Figure 2021028618

測定結果を上記表2に当てはめ、診断を実施することができる。
減衰量が限界減衰量+α以上であれば継続使用可でシール材の圧縮永久ひずみ率は<70〜80%以下と判断できる。減衰量が限界減衰量以上〜限界減衰量+α未満であればシール材の劣化が進んでいて圧縮永久ひずみ率としては70〜80%を超過していると判断できる。減衰量が0.8未満の場合はシール材が入っていない状態と等しく、継続使用不可と判断できる。
演算装置27はこれらの判定結果をステップS12において表示装置などに表示し、シール材の劣化診断結果として出力することができる。
The measurement results can be applied to Table 2 above to carry out the diagnosis.
If the damping amount is the limit damping amount + α or more, it can be continuously used, and it can be judged that the compression set ratio of the sealing material is <70 to 80% or less. If the amount of damping is equal to or more than the limit damping amount to less than the limit damping amount + α, it can be determined that the sealing material has deteriorated and the compression set exceeds 70 to 80%. If the amount of attenuation is less than 0.8, it is equivalent to the state without the sealing material, and it can be judged that continuous use is not possible.
The arithmetic unit 27 can display these determination results on a display device or the like in step S12 and output them as the deterioration diagnosis result of the sealing material.

以上説明の如く、本実施形態によれば、非破壊かつ簡便な工程で機械や装置、配管などに取り付けられたシール材の劣化状況を診断し、把握することができ、シール材の交換の要否を外部診断で判定することができる。
以下、実施例に従い本発明を更に詳細に説明するが、本発明は以下に説明する実施例に拘束されるものでは無い。
As described above, according to the present embodiment, it is possible to diagnose and grasp the deterioration status of the sealing material attached to the machine, device, piping, etc. in a non-destructive and simple process, and it is necessary to replace the sealing material. Whether or not it can be determined by an external diagnosis.
Hereinafter, the present invention will be described in more detail according to Examples, but the present invention is not limited to the Examples described below.

(第1実施例)
1次電圧66kV、2次電圧6.9kV、定格容量6000kVA、1969年製の油入変圧器の本体と付属品であるラジエータはバタフライ弁を介して接続されており、このバタフライ弁の接続部に使用されていたシール材の劣化状況を加振試験により診断した。この接続部は図2(A)に示す構造と同等であるため、加振位置は前述したバタフライ弁の実験モード解析結果に従い、バタフライ弁の側面とし、加振面の反対側に設置した加速度センサにより振動を計測した。
得られた振動波形をFFTによりフーリエ変換し、周波数スペクトルを求めた結果、ほぼ単一の周波数スペクトルが得られたため、振動波形から直接減衰量を求めた結果、減衰量2487dB/secと求められた。
(First Example)
The primary voltage is 66 kV, the secondary voltage is 6.9 kV, the rated capacity is 6000 kVA, and the main body of the oil-immersed transformer made in 1969 and the accessory radiator are connected via a butterfly valve, and are connected to the connection part of this butterfly valve. The deterioration status of the sealing material used was diagnosed by a vibration test. Since this connection portion has the same structure as that shown in FIG. 2A, the vibration position is set as the side surface of the butterfly valve according to the above-mentioned experimental mode analysis result of the butterfly valve, and the acceleration sensor installed on the opposite side of the vibration surface. The vibration was measured by.
As a result of Fourier transforming the obtained vibration waveform by FFT and obtaining a frequency spectrum, an almost single frequency spectrum was obtained. Therefore, as a result of directly obtaining an attenuation amount from the vibration waveform, an attenuation amount of 2487 dB / sec was obtained. ..

当該変圧器は既設品であるため、初期減衰量が不明であった。そこで、事前に別の変圧器で使用されていた同一型のバタフライ弁を用いて構造モデルを製作し、構造モデルの加振試験から初期減衰量1520dB/secおよび限界減衰量1056dB/secを得た。
この結果を基に減衰量比を求めると1.6となり、シール材は圧縮永久ひずみ率80%以下であり継続使用可と診断できた。また、限界減衰量から評価しても、限界減衰量+500dB/secを上回っており、継続使用可と診断できた。
後日、この油入変圧器について撤去する機会があったので、当該変圧器の撤去時にシール材を採取し、圧縮永久ひずみ率を計測した結果、圧縮永久ひずみ率48%となり、診断結果と一致し、継続使用可のシール材であった。
Since the transformer is an existing product, the initial attenuation was unknown. Therefore, a structural model was manufactured using a butterfly valve of the same type used in another transformer in advance, and an initial attenuation of 1520 dB / sec and a limit attenuation of 1056 dB / sec were obtained from the vibration test of the structural model. ..
Based on this result, the attenuation ratio was 1.6, and the sealing material had a compression set ratio of 80% or less, and it was diagnosed that it could be used continuously. Moreover, even when evaluated from the limit attenuation amount, it exceeded the limit attenuation amount + 500 dB / sec, and it was diagnosed that continuous use was possible.
At a later date, I had the opportunity to remove this oil-filled transformer, so when I removed the transformer, I collected the sealing material and measured the compression set, which was 48%, which was consistent with the diagnosis. , It was a sealing material that can be used continuously.

(第2実施例)
1次電圧33kV、2次電圧6.9kV、定格容量6000kVA、1989年製の油入変圧器の本体と付属品であるラジエータはバタフライ弁を介して接続されており、このバタフライ弁部に使用されていたシール材の劣化状況を加振試験により診断した。
加振センサ位置は(第1実施例)と同様である。得られた振動波形をFFTによりフーリエ変換し、周波数スペクトルを求めた結果、ほぼ単一の周波数スペクトルが得られたため、振動波形から直接減衰量を求めた結果、減衰量1686dB/secと求められた。
(Second Example)
The primary voltage is 33 kV, the secondary voltage is 6.9 kV, the rated capacity is 6000 kVA, and the main body of the oil-immersed transformer made in 1989 and the accessory radiator are connected via a butterfly valve, which is used for this butterfly valve. The deterioration status of the sealing material was diagnosed by a vibration test.
The vibration sensor position is the same as in (1st Example). As a result of Fourier transforming the obtained vibration waveform by FFT and obtaining a frequency spectrum, an almost single frequency spectrum was obtained. Therefore, as a result of directly obtaining an attenuation amount from the vibration waveform, an attenuation amount of 1686 dB / sec was obtained. ..

第1実施例と同様に構造モデルの加振試験を基に減衰量比を求めると1.1となり、シール材は圧縮永久ひずみ率80%以下であり継続使用可と診断できた。また限界減衰量から評価しても、限界減衰量+500dB/secを上回っており、継続使用可と診断できた。ただし、管理基準値1556dB/secに対して100dB/secしか差が無く、かなり劣化が進んできている状態と判断できた。
後日、当該変圧器の撤去時にシール材を採取し、圧縮永久ひずみ率を計測した結果、圧縮永久ひずみ率70%となり、診断結果と一致した。
As in the first example, the damping amount ratio was calculated to be 1.1 based on the vibration test of the structural model, and the sealing material had a compression set ratio of 80% or less, and it was diagnosed that it could be used continuously. Moreover, even when evaluated from the limit attenuation amount, it exceeded the limit attenuation amount + 500 dB / sec, and it was diagnosed that continuous use was possible. However, there was only a difference of 100 dB / sec with respect to the control standard value of 1556 dB / sec, and it was judged that the deterioration had progressed considerably.
Later, when the transformer was removed, a sealing material was collected and the compression set was measured. As a result, the compression set was 70%, which was in agreement with the diagnosis result.

(第3実施例)
1次電圧66kV、2次電圧6.9kV、定格容量15000kVA、1972年製の油入変圧器の本体とラジエータを繋ぐバタフライ弁を変圧器撤去時に収集し、バタフライ弁の前後に管フランジを取り付け、バタフライ弁構造モデルとし、圧縮永久ひずみ率91%相当のシール材を挟み込み、加振試験を行った。
(Third Example)
Primary voltage 66kV, secondary voltage 6.9kV, rated capacity 15000kVA, butterfly valve connecting the main body of the oil-filled transformer made in 1972 and the radiator was collected when the transformer was removed, and pipe flanges were attached to the front and back of the butterfly valve. A butterfly valve structure model was used, and a vibration test was performed by sandwiching a sealing material equivalent to a compression set of 91%.

加振位置はバタフライ弁のフランジ面とし、加振面の反対側に設置した加速度センサにより振動を計測した。
得られた振動波形を図12(A)に示す。図12(A)に示す振動波形には、速く減衰する振動成分と該減衰より遅く減衰する振動成分が混在しており、このままでは単一モードの減衰量を算出することはできない。
得られた振動波形をFFTによりフーリエ変換し、周波数スペクトルを求めた結果を図12(B)に示す。
図12(B)に示す周波数スペクトルに示すように、複数のピークが現れた。個々のピークはそれぞれ固有の振動モードの応答の大きさを表している。それらの振動モードのうち、シール材の粘性が運動に影響している振動成分について減衰量を評価する。
The vibration position was the flange surface of the butterfly valve, and the vibration was measured by an acceleration sensor installed on the opposite side of the vibration surface.
The obtained vibration waveform is shown in FIG. 12 (A). The vibration waveform shown in FIG. 12A contains a mixture of a vibration component that attenuates quickly and a vibration component that attenuates slower than the damping, and the amount of damping in a single mode cannot be calculated as it is.
The obtained vibration waveform is Fourier transformed by FFT to obtain the frequency spectrum, and the result is shown in FIG. 12 (B).
As shown in the frequency spectrum shown in FIG. 12B, a plurality of peaks appeared. Each peak represents the magnitude of the response of its own vibration mode. Among these vibration modes, the amount of damping is evaluated for the vibration component in which the viscosity of the sealing material affects the motion.

重なった振動モードを分離して振動モードごとに減衰量を求めるには、逆FFT変換、wavelet変換、Hilbert−Huang変換などいくつかの方法があるが、ここでは逆FFT変換を用いる方法について説明する。
FFT変換にて複数ピークが現れる場合でも、それぞれのピークが十分に離れていれば、解析したいピーク以外の振幅は無視して逆FFT変換により解析したいピークのみの生波形を抽出することができ、減衰量を求めることができる。
There are several methods such as inverse FFT conversion, wavelet transform, and Hilbert-Hung transform to separate the overlapping vibration modes and obtain the attenuation amount for each vibration mode. Here, the method using the inverse FFT transform will be described. ..
Even if multiple peaks appear in the FFT transform, if the peaks are sufficiently separated, the raw waveform of only the peak to be analyzed can be extracted by the inverse FFT transform, ignoring the amplitude other than the peak to be analyzed. The amount of attenuation can be obtained.

そのような方法は「1自由度のローカルフィット法」と呼称されるが、ピークが十分離れていないか、さらに正確な減衰を求めるには、「多自由度のグローバルフィット法」と呼ばれる方法により、複数のピークに対して同時に周波数と減衰を求める必要がある。
その解析手法は複雑であるが、市販の計算ソフトを用いれば容易に計算できる。
ここではVibrant Technology社製の解析ソフトME‘scopeVESを用いて解析した結果を示す。
Such a method is called the "one-degree-of-freedom local-fit method", but if the peaks are not sufficiently separated or more accurate attenuation is obtained, a method called the "multi-degree-of-freedom global fit method" is used. , It is necessary to obtain the frequency and attenuation for multiple peaks at the same time.
The analysis method is complicated, but it can be easily calculated by using commercially available calculation software.
Here, the results of analysis using the analysis software ME'scopeVES manufactured by Vibrant Technology are shown.

まず、抽出したいピークを定め、カーブフィッティングしてピークの周波数と減衰を求めた。どの周波数にピークが存在するかは周波数スペクトルの位相が反転する位置から求められる。
また、抽出するピークは各周波数における振動モードを解析し、シール材の運動に関係した振動モードを選択する。本実施例では周波数6.3kHzのピークが、バタフライ弁単体の固有振動であったので、6.3kHzのピークを選択した。
次に抽出した周波数スペクトルに対して逆FFT変換にて振動波形を再現することで、6.3kHzの周波数における振動波形のみが再現され、減衰量を求めることが出来る。
First, the peak to be extracted was determined, and curve fitting was performed to obtain the peak frequency and attenuation. The frequency at which the peak exists is determined from the position where the phase of the frequency spectrum is inverted.
In addition, the peak to be extracted analyzes the vibration mode at each frequency and selects the vibration mode related to the movement of the sealing material. In this example, the peak with a frequency of 6.3 kHz was the natural vibration of the butterfly valve alone, so the peak with a frequency of 6.3 kHz was selected.
Next, by reproducing the vibration waveform by inverse FFT conversion on the extracted frequency spectrum, only the vibration waveform at the frequency of 6.3 kHz can be reproduced, and the attenuation amount can be obtained.

なお、Vibrant Technology社製の解析ソフトME‘scopeVESによれば、カーブフィッティングした時点で臨界減衰比(Damping(%))を求めることができる。
臨界減衰比は臨界減衰係数と実際の減衰との比をとったものであるため、劣化後の臨界減衰比(Damping(%))を劣化前の臨界減衰比(Damping(%))で除すことによっても減衰量比を求めることが出来る。
According to the analysis software ME'scope VES manufactured by Vibrant Technology, the critical damping ratio (Damping (%)) can be obtained at the time of curve fitting.
Since the critical damping ratio is the ratio of the critical damping coefficient to the actual damping, the critical damping ratio after deterioration (Damping (%)) is divided by the critical damping ratio before deterioration (Damping (%)). The attenuation ratio can also be obtained by this.

図12(C)に示す周波数スペクトルから、逆FFT解析で得られた図12(D)に示す振動波形から、減衰量を求めた結果、減衰量1249dB/secを求めることができた。バタフライ弁構造モデルに新品シール材を挟み込み、初期減衰量を求めた結果、減衰量1627dB/secを求めることができた。この結果を基に減衰量比を求めると、0.77となり、このシール材は圧縮永久ひずみ率90%以上であり、寿命レベルであると診断され、挟み込んだシール材の仕様と一致した。 As a result of obtaining the attenuation amount from the frequency spectrum shown in FIG. 12 (C) and the vibration waveform shown in FIG. 12 (D) obtained by the inverse FFT analysis, the attenuation amount of 1249 dB / sec could be obtained. As a result of sandwiching a new sealing material in the butterfly valve structure model and obtaining the initial damping amount, the damping amount of 1627 dB / sec could be obtained. When the damping amount ratio was calculated based on this result, it was 0.77, and this sealing material was diagnosed as having a compression set ratio of 90% or more and a life level, which was in agreement with the specifications of the sandwiched sealing material.

(加振装置)
図13は本発明において構造体を加振する場合に用いて好適な加振装置の一例を示す断面図である。
この例の加振装置40は、中空の外装体41の先端側内部にハンマチップ42を備えた質量可変ハンマ43を外装体41に沿って前後方向に移動自在に備え、ハンマチップ42と質量可変ハンマ43の間にフォースセンサ45が組み込まれている。外装体41の後部側には質量可変ハンマ43に接続されたねじ軸46が接続され、このねじ軸46が外装体41の後端壁41aを貫通して外装体41の外部に突出されている。
(Vibration device)
FIG. 13 is a cross-sectional view showing an example of a vibrating device suitable for vibrating a structure in the present invention.
In the vibration device 40 of this example, a mass-variable hammer 43 having a hammer tip 42 inside the tip side of the hollow exterior body 41 is provided so as to be movable in the front-rear direction along the exterior body 41, and the mass is variable with the hammer tip 42. A force sensor 45 is incorporated between the hammers 43. A screw shaft 46 connected to a mass variable hammer 43 is connected to the rear side of the exterior body 41, and the screw shaft 46 penetrates the rear end wall 41a of the exterior body 41 and projects to the outside of the exterior body 41. ..

外装体41の内部側であって、質量可変ハンマ43の後端部側にねじ軸46に軸支されたトリガープレート47が介挿され、外装体41の外部に突出されたねじ軸46の後端部にリリース位置調整ナット48が螺合されている。外装体41の後端壁41aとリリース位置調整ナット48との間に位置するねじ軸46にはリリーススプリング49が巻装され、外装体41の内部側であって、トリガープレート47と外装体41の後端壁41aとの間に位置するねじ軸46にはハンマスプリング50が巻装されている。また、外装体41の後部側側壁の一部に図示略の挿通孔が形成され、この挿通孔を貫通するようにトリガーチップ51が設けられている。このトリガーチップ51はその先端部側で挿通孔を通過して外装体41の内部に侵入自在に構成されている。 A trigger plate 47 pivotally supported by a screw shaft 46 is inserted into the rear end side of a mass-variable hammer 43 on the inner side of the exterior body 41, and is rear of the screw shaft 46 protruding to the outside of the exterior body 41. A release position adjusting nut 48 is screwed to the end. A release spring 49 is wound around a screw shaft 46 located between the rear end wall 41a of the exterior body 41 and the release position adjusting nut 48, and is on the inner side of the exterior body 41, the trigger plate 47 and the exterior body 41. A hammer spring 50 is wound around a screw shaft 46 located between the rear end wall 41a. Further, an insertion hole (not shown) is formed in a part of the rear side wall of the exterior body 41, and a trigger tip 51 is provided so as to penetrate the insertion hole. The trigger tip 51 is configured to pass through the insertion hole on the tip end side thereof so as to enter the inside of the exterior body 41.

なお、外装体41の先端部にはハンマチップ42の先端部が通過できる大きさの透孔が形成され、この透孔を覆うように弾性体からなる当接板53が設けられている。なお、図13においてはこの当接板53の記載を略し、当接板53は図14に表示している。
また、外装体41の先端部下面側にフォースセンサ45の接続コネクタ55が設けられ、この接続コネクタ55に信号伝達用のケーブルが接続されている。このケーブルは図10に示す増幅器25を介し信号解析器26に接続される。
A through hole having a size through which the tip of the hammer tip 42 can pass is formed at the tip of the exterior body 41, and a contact plate 53 made of an elastic body is provided so as to cover the through hole. In FIG. 13, the description of the contact plate 53 is omitted, and the contact plate 53 is shown in FIG.
Further, a connection connector 55 for the force sensor 45 is provided on the lower surface side of the tip end portion of the exterior body 41, and a signal transmission cable is connected to the connection connector 55. This cable is connected to the signal analyzer 26 via the amplifier 25 shown in FIG.

以上構成の加振装置40の動作について図14(A)〜(D)を元に以下に説明する。
加振装置40は図14(A)に示す初期状態において、外装体41の先端より若干内側にハンマチップ42の先端を望ませた状態でハンマチップ42が外装体41内に収容されている。
この状態から、図14(B)に示すようにリリース位置調整ナット48を後方に引いてハンマスプリング50を外装体41の後端壁41aに押し付けつつハンマスプリング50を縮小させ、トリガープレート47がトリガーチップ51の後方に移動したならば、トリガーチップ51を外装体41の内部に押し込んでトリガープレート47を係止する。
The operation of the vibrating device 40 having the above configuration will be described below with reference to FIGS. 14A to 14D.
In the initial state shown in FIG. 14A, the vibration device 40 accommodates the hammer tip 42 in the exterior body 41 in a state in which the tip of the hammer tip 42 is desired slightly inside the tip of the exterior body 41.
From this state, as shown in FIG. 14 (B), the release position adjusting nut 48 is pulled backward to push the hammer spring 50 against the rear end wall 41a of the exterior body 41 while contracting the hammer spring 50, and the trigger plate 47 triggers. After moving to the rear of the tip 51, the trigger tip 51 is pushed into the exterior body 41 to lock the trigger plate 47.

次に、加振装置40の当接板53を構造体9の加振位置、例えば、バタフライ弁6の側面の加振位置に押し当てて静止する。
この状態から、図14(C)に示すようにトリガーチップ51によるトリガープレート47の係止を解除すると、ハンマスプリング50のばね力によりハンマチップ42の先端部が前方に移動してハンマチップ42の先端部が当接板53の先方に所定量突出する。
この操作によりバタフライ弁6の側面にハンマチップ42の先端を衝突させて一定の加振力をバタフライ弁6の側面に加えることができる。
先の実施形態において説明したようにハンマ1を用いて加振する場合と比較し、加振装置40を用いることで常に一定の加振力(衝撃力)をバタフライ弁6の側面に付加することができる。
Next, the contact plate 53 of the vibration device 40 is pressed against the vibration position of the structure 9, for example, the vibration position on the side surface of the butterfly valve 6 to stand still.
From this state, when the trigger plate 47 is unlocked by the trigger tip 51 as shown in FIG. 14C, the tip of the hammer tip 42 moves forward due to the spring force of the hammer spring 50, and the hammer tip 42 The tip portion projects a predetermined amount toward the tip of the contact plate 53.
By this operation, the tip of the hammer tip 42 can collide with the side surface of the butterfly valve 6 to apply a constant excitation force to the side surface of the butterfly valve 6.
Compared with the case where the hammer 1 is used for vibration as described in the previous embodiment, a constant vibration force (impact force) is always applied to the side surface of the butterfly valve 6 by using the vibration device 40. Can be done.

ハンマチップ42の先端をバタフライ弁6の側面に衝突させた後、外装体41の後端壁41aにリリーススプリング49が衝突し、反力が作用するので、ハンマチップ42は外装体41の内側に引き戻される。これにより、図14(D)に示すように加振装置40を初期状態に戻すことができる。
図13、図14に示す加振装置40を用いて図2(A)、(B)に示す各点に衝撃を加えて加振し、振動センサ2を用いて振動波形を記録することで、本願の目的を達成することができる。
図13、図14に示す加振装置40であるならば、常に一定の打撃力で加振できるので、人力でハンマ1により加振する場合に比べ、安定した加振による振動検出ができる。
また、加振装置40に設けたフォースセンサ45により、図7に示すように加振力と加振力の周波数特性を計測することができる。
After the tip of the hammer tip 42 collides with the side surface of the butterfly valve 6, the release spring 49 collides with the rear end wall 41a of the exterior body 41 and a reaction force acts, so that the hammer tip 42 is inside the exterior body 41. Be pulled back. As a result, the vibration exciter 40 can be returned to the initial state as shown in FIG. 14 (D).
By using the vibration device 40 shown in FIGS. 13 and 14 to apply an impact to each point shown in FIGS. 2 (A) and 2 (B) to vibrate, and recording the vibration waveform using the vibration sensor 2. The object of the present application can be achieved.
With the vibration device 40 shown in FIGS. 13 and 14, vibration can always be performed with a constant striking force, so that vibration can be detected by stable vibration as compared with the case where vibration is performed manually by the hammer 1.
Further, the force sensor 45 provided in the excitation device 40 can measure the excitation force and the frequency characteristics of the excitation force as shown in FIG. 7.

なお、これまで説明した実施例と実施形態においては、バタフライ弁6の両側にシール材7を介し、配管10を接続した構造体9に対し本発明を適用した例について説明した。しかし、本発明を適用する範囲はこれらの例に限るものではなく、1つのシール材の両側に配管を接続した構造に適用しても良いのは勿論である。
よって、シール材の両側に配置される第1の部材と第2の部材は、バタフライ弁と配管の組み合わせである場合、配管と配管の組み合わせである場合、その他、種々の構造物どうしの組み合わせである場合のいずれの場合であっても良い。
In the examples and embodiments described so far, an example in which the present invention is applied to the structure 9 in which the pipe 10 is connected to both sides of the butterfly valve 6 via the sealing material 7 has been described. However, the scope of application of the present invention is not limited to these examples, and it goes without saying that the present invention may be applied to a structure in which pipes are connected to both sides of one sealing material.
Therefore, the first member and the second member arranged on both sides of the sealing material may be a combination of a butterfly valve and a pipe, a combination of a pipe and a pipe, or a combination of various structures. It may be any case.

1…ハンマ、1a…チップ、2…振動センサ(加速度センサ)、3…対象物、4…シール材、6…バタフライ弁、7…シール材、8…管フランジ、9…構造体、10…配管、
S1、S2、〜S36…測定点あるいは加振点、
A…劣化診断装置、25…アンプ(信号増幅器)、26…信号解析器、27…演算装置、28…タンク、29…ラジエータ、30…フランジボトル30、31…フランジ、32…蓋板、33…シール材、34…振動センサ(加速度センサ)、
40…加振装置、41…外装体、42…ハンマチップ、43…質量可変ハンマ、45…フォースセンサ、46…ねじ軸、47…トリガープレート、48…リリース位置調整ナット、49…リリーススプリング、50…ハンマスプリング、51…トリガーチップ、53…当接板。
1 ... Hammer, 1a ... Chip, 2 ... Vibration sensor (accelerometer), 3 ... Object, 4 ... Sealing material, 6 ... Butterfly valve, 7 ... Sealing material, 8 ... Pipe flange, 9 ... Structure, 10 ... Piping ,
S1, S2, ~ S36 ... Measurement point or vibration point,
A ... Deterioration diagnostic device, 25 ... Amplifier (signal amplifier), 26 ... Signal analyzer, 27 ... Computational device, 28 ... Tank, 29 ... Radiator, 30 ... Flange bottle 30, 31 ... Flange, 32 ... Lid plate, 33 ... Sealing material, 34 ... Vibration sensor (accelerometer),
40 ... Vibration device, 41 ... Exterior body, 42 ... Hammer tip, 43 ... Variable mass hammer, 45 ... Force sensor, 46 ... Screw shaft, 47 ... Trigger plate, 48 ... Release position adjustment nut, 49 ... Release spring, 50 ... hammer spring, 51 ... trigger tip, 53 ... contact plate.

Claims (12)

第1の部材と第2の部材をシール材を介して連結する構造体に対し、該構造体を加振させたときに生じる振動を前記構造体に設置した振動センサで検出し、検出した振動波形から前記シール材を介した特定の振動モードの周波数スペクトルを抽出し、該周波数スペクトルに該当する振動波形から減衰量を算出し、該減衰量に基づいて前記シール材の劣化状況を診断することを特徴とするシール材劣化診断方法。 The vibration generated when the structure is vibrated with respect to the structure connecting the first member and the second member via the sealing material is detected by the vibration sensor installed in the structure, and the detected vibration. Extracting the frequency spectrum of the specific vibration mode via the sealing material from the waveform, calculating the damping amount from the vibration waveform corresponding to the frequency spectrum, and diagnosing the deterioration state of the sealing material based on the damping amount. A sealing material deterioration diagnosis method characterized by. 請求項1記載のシール材劣化診断方法において、前記振動センサで振動を検出する際、前記構造体に対し加振する位置または加振する方向を変更して複数の振動波形を観測し、これら振動波形の中に単一の振動モードが励起されている周波数スペクトルを有する振動波形が含まれていた場合、この振動波形から減衰量を算出し、該減衰量に基づいて前記シール材の劣化状況を診断することを特徴とするシール材劣化診断方法。 In the sealing material deterioration diagnosis method according to claim 1, when the vibration sensor detects vibration, a plurality of vibration waveforms are observed by changing the vibration position or the vibration direction with respect to the structure, and these vibrations. When the waveform includes a vibration waveform having a frequency spectrum in which a single vibration mode is excited, a damping amount is calculated from this vibration waveform, and the deterioration status of the sealing material is determined based on the damping amount. A method for diagnosing deterioration of a sealing material, which comprises diagnosing. 請求項1記載のシール材劣化診断方法において、測定した振動波形が、速く減衰する振動成分と遅く減衰する振動成分が混在された振動波形であり、複数の振動モードが重なった振動波形である場合、この振動波形から必要な周波数スペクトルを抽出し、この周波数スペクトルから特定のピークのみの振動モードの振動波形を逆演算により求め、この振動波形から減衰量を求め、この減衰量に基づいて前記シール材の劣化状況を診断することを特徴とするシール材劣化診断方法。 When the measured vibration waveform in the sealing material deterioration diagnosis method according to claim 1 is a vibration waveform in which a vibration component that attenuates quickly and a vibration component that attenuates slowly are mixed, and a vibration waveform in which a plurality of vibration modes overlap. , The required frequency spectrum is extracted from this vibration waveform, the vibration waveform of the vibration mode of only a specific peak is obtained from this frequency spectrum by inverse calculation, the damping amount is obtained from this vibration waveform, and the seal is based on this damping amount. A method for diagnosing deterioration of a sealing material, which comprises diagnosing a deterioration state of a material. 請求項1〜請求項3のいずれか一項に記載のシール材劣化診断方法において、前記シール材の新品時の減衰量を計測しておき、一定の時間経過後に再度前記シール材の減衰量を計測して減衰量比を求め、あらかじめ定めた減衰量比による劣化評価基準に従いシール材の劣化を診断することを特徴とするシール材劣化診断方法。 In the sealing material deterioration diagnosis method according to any one of claims 1 to 3, the amount of damping of the sealing material when it is new is measured, and after a certain period of time, the amount of damping of the sealing material is again measured. A method for diagnosing deterioration of a sealing material, which comprises measuring and obtaining a damping amount ratio and diagnosing deterioration of the sealing material according to a deterioration evaluation standard based on a predetermined damping amount ratio. 請求項1〜請求項4のいずれか一項に記載のシール材劣化診断方法において、圧縮永久ひずみ率100%時の減衰量を使用限界値(限界減衰量)として規定し、前記限界減衰量に一定量の裕度を定めた劣化評価基準に従いシール材の劣化を診断することを特徴とするシール材劣化診断方法。 In the sealing material deterioration diagnosis method according to any one of claims 1 to 4, the damping amount when the compression set is 100% is defined as the use limit value (limit damping amount), and the limit damping amount is used. A sealing material deterioration diagnosis method characterized by diagnosing deterioration of a sealing material according to a deterioration evaluation standard that defines a certain amount of margin. 請求項3に記載のシール材劣化診断方法において、特定のピークのみの振動モードの振動波形を逆演算により求める場合、逆FFT変換、wavelet変換、Hibert-Huang変換のいずれかを用いることを特徴とするシール材劣化診断方法。 In the method for diagnosing deterioration of a sealing material according to claim 3, when the vibration waveform of the vibration mode of only a specific peak is obtained by an inverse calculation, any one of inverse FFT conversion, wavelet conversion, and Hibert-Huang conversion is used. Sealing material deterioration diagnosis method. 第1の部材と第2の部材をシール材を介して連結する構造体に対し、該構造体を加振させたときに生じる振動による振動波形を振動センサから受け、前記振動波形から前記シール材を介した特定の振動モードの周波数スペクトルを抽出するとともに、該周波数スペクトルに該当する振動波形から減衰量を算出する演算手段と、該減衰量に基づいて前記シール材の劣化状況を判定する劣化状況判定手段を備えたことを特徴とするシール材劣化診断装置。 The structure that connects the first member and the second member via the sealing material receives a vibration waveform due to vibration generated when the structure is vibrated from the vibration sensor, and the sealing material is received from the vibration waveform. A calculation means for extracting the frequency spectrum of a specific vibration mode via the above and calculating the damping amount from the vibration waveform corresponding to the frequency spectrum, and the deterioration status for determining the deterioration status of the sealing material based on the damping amount. A seal material deterioration diagnostic device characterized by being provided with a determination means. 前記構造体に対し加振する位置または加振する方向を変更して複数の振動波形を前記振動センサで観測し、これら振動波形の中に単一の振動モードが励起されている周波数スペクトルを有する振動波形が含まれていた場合、この振動波形から減衰量を算出する機能を前記演算手段が具備したことを特徴とする請求項7に記載のシール材劣化診断装置。 A plurality of vibration waveforms are observed by the vibration sensor by changing the vibration position or the vibration direction with respect to the structure, and the vibration waveform has a frequency spectrum in which a single vibration mode is excited. The seal material deterioration diagnostic apparatus according to claim 7, wherein the calculation means has a function of calculating a damping amount from the vibration waveform when the vibration waveform is included. 測定した振動波形が、速く減衰する振動成分と遅く減衰する振動成分が混在された振動波形であり、複数の振動モードが重なった振動波形である場合、この振動波形から必要な周波数スペクトルを抽出し、この周波数スペクトルから特定のピークのみの振動モードの振動波形を逆演算により求め、この振動波形から減衰量を求める機能を前記演算手段が具備したことを特徴とする請求項7に記載のシール材劣化診断装置。 When the measured vibration waveform is a vibration waveform in which a vibration component that decays quickly and a vibration component that decays slowly are mixed, and a vibration waveform in which a plurality of vibration modes overlap, a necessary frequency spectrum is extracted from this vibration waveform. The sealing material according to claim 7, wherein the calculation means has a function of obtaining a vibration waveform of a vibration mode of only a specific peak from this frequency spectrum by an inverse calculation and obtaining a damping amount from the vibration waveform. Deterioration diagnostic equipment. 前記シール材の新品時の減衰量が前記劣化状況判定手段に記憶され、一定の時間経過後に計測された前記シール材の減衰量と前記新品時の減衰量との減衰量比を対比し、あらかじめ定めた減衰量比による劣化評価基準に従いシール材の劣化を診断する機能を前記劣化状況判定手段に備えたことを特徴とする請求項7に記載のシール材劣化診断装置。 The amount of damping of the sealing material when it is new is stored in the deterioration status determining means, and the damping amount ratio of the sealing material measured after a certain period of time is compared with the amount of damping when the sealing material is new is compared in advance. The sealing material deterioration diagnostic apparatus according to claim 7, wherein the deterioration status determining means is provided with a function of diagnosing deterioration of the sealing material according to a deterioration evaluation standard based on a predetermined attenuation ratio. 圧縮永久ひずみ率100%時の減衰量が使用限界値(限界減衰量)として前記劣化状況判定手段に記録され、前記限界減衰量に一定量の裕度を定めた劣化評価基準に従いシール材の劣化を診断する機能を具備することを特徴とする請求項7〜請求項10のいずれか一項に記載のシール材劣化診断装置。 The amount of attenuation when the compression set is 100% is recorded in the deterioration status determination means as the use limit value (limit attenuation amount), and the sealing material is deteriorated according to the deterioration evaluation standard in which a certain amount of margin is set for the limit attenuation amount. The seal material deterioration diagnostic apparatus according to any one of claims 7 to 10, further comprising a function of diagnosing. 特定のピークのみの振動モードの振動波形を逆演算により求める機能として、逆FFT変換、wavelet変換、Hibert-Huang変換のいずれかが適用されていることを特徴とする請求項9に記載のシール材劣化診断装置。 The sealing material according to claim 9, wherein any of inverse FFT conversion, wavelet conversion, and Hibert-Huang conversion is applied as a function of obtaining the vibration waveform of the vibration mode of only a specific peak by inverse calculation. Deterioration diagnostic equipment.
JP2019148198A 2019-08-09 2019-08-09 Deterioration diagnosis method and deterioration diagnosis device for sealing material Active JP7320225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019148198A JP7320225B2 (en) 2019-08-09 2019-08-09 Deterioration diagnosis method and deterioration diagnosis device for sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019148198A JP7320225B2 (en) 2019-08-09 2019-08-09 Deterioration diagnosis method and deterioration diagnosis device for sealing material

Publications (2)

Publication Number Publication Date
JP2021028618A true JP2021028618A (en) 2021-02-25
JP7320225B2 JP7320225B2 (en) 2023-08-03

Family

ID=74667529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019148198A Active JP7320225B2 (en) 2019-08-09 2019-08-09 Deterioration diagnosis method and deterioration diagnosis device for sealing material

Country Status (1)

Country Link
JP (1) JP7320225B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174579A (en) * 1992-12-02 1994-06-24 Yakichi Higo Monitor method of state of gasket
JP2000235022A (en) * 1999-02-16 2000-08-29 Mitsubishi Motors Corp Inspection device
WO2013190973A1 (en) * 2012-06-20 2013-12-27 日本電気株式会社 State determination device for structure and state determination method for structure
JP2014130135A (en) * 2012-11-28 2014-07-10 Ihi Corp Composite structure interface inspection method and device
JP2015183362A (en) * 2014-03-20 2015-10-22 国立大学法人愛媛大学 Vibration measurement device and vibration measurement method
JP2016075481A (en) * 2014-10-02 2016-05-12 株式会社日立製作所 Bearing device and rotating machine including the same
WO2017145850A1 (en) * 2016-02-22 2017-08-31 日本電気株式会社 Inspection device, inspection method, and recording medium on which inspection program has been recorded
JP2019095244A (en) * 2017-11-20 2019-06-20 三菱日立パワーシステムズ株式会社 Inspection method for fireproof part, repair method for the fireproof part, and inspection device for the fireproof part
JP2019132658A (en) * 2018-01-30 2019-08-08 西日本高速道路エンジニアリング中国株式会社 Non-destructive diagnosis method of pc grout filling state
JP2019210809A (en) * 2018-05-31 2019-12-12 株式会社荏原製作所 Pump equipment and maintenance control method for the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174579A (en) * 1992-12-02 1994-06-24 Yakichi Higo Monitor method of state of gasket
JP2000235022A (en) * 1999-02-16 2000-08-29 Mitsubishi Motors Corp Inspection device
WO2013190973A1 (en) * 2012-06-20 2013-12-27 日本電気株式会社 State determination device for structure and state determination method for structure
JP2014130135A (en) * 2012-11-28 2014-07-10 Ihi Corp Composite structure interface inspection method and device
JP2015183362A (en) * 2014-03-20 2015-10-22 国立大学法人愛媛大学 Vibration measurement device and vibration measurement method
JP2016075481A (en) * 2014-10-02 2016-05-12 株式会社日立製作所 Bearing device and rotating machine including the same
WO2017145850A1 (en) * 2016-02-22 2017-08-31 日本電気株式会社 Inspection device, inspection method, and recording medium on which inspection program has been recorded
JP2019095244A (en) * 2017-11-20 2019-06-20 三菱日立パワーシステムズ株式会社 Inspection method for fireproof part, repair method for the fireproof part, and inspection device for the fireproof part
JP2019132658A (en) * 2018-01-30 2019-08-08 西日本高速道路エンジニアリング中国株式会社 Non-destructive diagnosis method of pc grout filling state
JP2019210809A (en) * 2018-05-31 2019-12-12 株式会社荏原製作所 Pump equipment and maintenance control method for the same

Also Published As

Publication number Publication date
JP7320225B2 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
Li et al. PZT based smart corrosion coupon using electromechanical impedance
Nikravesh et al. A review paper on looseness detection methods in bolted structures
Andreaus et al. Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response
EP3987283B1 (en) Method and system for analysing a test piece using a vibrational response signal
Żółtowski Investigations of harbour brick structures by using operational modal analysis
CN102865952B (en) Nondestructive testing method for working stress of concrete
US20120031193A1 (en) Identification of loads acting on an object
Jin et al. Impact-based nonlinear acoustic testing for characterizing distributed damage in concrete
Lee et al. Identification of fatigue crack under vibration by nonlinear guided waves
Hosoya et al. Axial force measurement of the bolt/nut assemblies based on the bending mode shape frequency of the protruding thread part using ultrasonic modal analysis
Zagrai et al. Micro-and macroscale damage detection using the nonlinear acoustic vibro-modulation technique
Scalerandi Power laws and elastic nonlinearity in materials with complex microstructure
Li et al. Structural damage detection using generalized flexibility matrix and changes in natural frequencies
Karve et al. On the performance of vibro‐acoustic‐modulation‐based diagnosis of breathing cracks in thick, elastic slabs
Luo et al. Structural health monitoring of carbon fiber reinforced polymer composite laminates for offshore wind turbine blades based on dual maximum correlation coefficient method
Żółtowski et al. The use of modal analysis in the evaluation of welded steel structures.
Grishchenko et al. Experimental investigation of the acoustic anisotropy field in the sample with a stress concentrator
Alshalal et al. Damage detection in one-and two-dimensional structures using residual error method
Ostachowicz et al. Wave propagation in delaminated beam
JPH06300667A (en) Method and equipment for detecting abnormality of valve rod
JP2021028618A (en) Sealing material deterioration diagnosis method and deterioration diagnosis device
Stoyko et al. Finding a pipe's elastic and dimensional properties using ultrasonic guided wave cut-off frequencies
Lee et al. Pipe defect visualization and quantification using longitudinal ultrasonic modes
Munoz et al. Nonlinear ultrasonics for early damage detection
Zanarini ESPI measurements in structural dynamics: fatigue life assessment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230713

R150 Certificate of patent or registration of utility model

Ref document number: 7320225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150