JP2021017601A - Spheroidal graphite cast iron material and scroll member - Google Patents

Spheroidal graphite cast iron material and scroll member Download PDF

Info

Publication number
JP2021017601A
JP2021017601A JP2019131627A JP2019131627A JP2021017601A JP 2021017601 A JP2021017601 A JP 2021017601A JP 2019131627 A JP2019131627 A JP 2019131627A JP 2019131627 A JP2019131627 A JP 2019131627A JP 2021017601 A JP2021017601 A JP 2021017601A
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
graphite cast
iron material
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019131627A
Other languages
Japanese (ja)
Inventor
昌幸 山田
Masayuki Yamada
昌幸 山田
雅之 辻野
Masayuki Tsujino
雅之 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019131627A priority Critical patent/JP2021017601A/en
Publication of JP2021017601A publication Critical patent/JP2021017601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

To provide a spheroidal graphite cast iron material that does not prevent an increase of a surface roughness after cutting without increasing the production cost.SOLUTION: A spheroidal graphite cast iron material contains Fe, C and Si and the Si content is 3.8-6.0 wt.%.SELECTED DRAWING: Figure 5

Description

本発明は、球状黒鉛鋳鉄材及びスクロール部材に関する。 The present invention relates to a spheroidal graphite cast iron material and a scroll member.

鋳鉄の中でも球状黒鉛鋳鉄材(Ferrum Casting Ductile:FCD)は、強度及び靭性に優れ、複雑な形状を一体的に形成できることから様々な用途に採用されている。このような球状黒鉛鋳鉄材から、スクロール圧縮機に用いられる渦巻き状の歯部を有するスクロール部材が製造され得る。 Among cast irons, spheroidal graphite cast iron material (Ferrum Casting Ductile: FCD) is used for various purposes because it has excellent strength and toughness and can integrally form a complicated shape. From such a spheroidal graphite cast iron material, a scroll member having a spiral tooth portion used in a scroll compressor can be manufactured.

球状黒鉛鋳鉄材は、凝固時に収縮するので寸法精度及び面精度が増大し、鋳造後に切削加工されることが多い。要求される面粗度を満足するために、切削加工は、荒仕上、中仕上、仕上加工といった複数の工程を経る必要がある。 Since the spheroidal graphite cast iron material shrinks during solidification, dimensional accuracy and surface accuracy increase, and it is often cut after casting. In order to satisfy the required surface roughness, the cutting process needs to go through a plurality of steps such as rough finishing, intermediate finishing, and finishing.

鋳鉄材の切削加工後における面粗度が小さければ、切削加工の工程数を低減し得る。特許文献1は、Cu、Ni、Coを球状黒鉛鋳鉄材に添加して切削加工後の面粗度を低下させる方法を開示し、特許文献2は、球状黒鉛鋳鉄材に含まれるC元素量及びCu元素量を調整して切削加工後の面粗度を低下させる方法を開示している。 If the surface roughness of the cast iron material after cutting is small, the number of cutting steps can be reduced. Patent Document 1 discloses a method of adding Cu, Ni, and Co to a spheroidal graphite cast iron material to reduce the surface roughness after cutting, and Patent Document 2 discloses the amount of C element contained in the spheroidal graphite cast iron material and A method of adjusting the amount of Cu elements to reduce the surface roughness after cutting is disclosed.

特開昭61−133360号公報Japanese Unexamined Patent Publication No. 61-133360 特開2003−226907号公報Japanese Unexamined Patent Publication No. 2003-226907

特許文献1に開示されている方法では、高価な元素であるCu、Ni、Coを用いるため製造コストが増大し、さらに球状黒鉛鋳鉄材においてパーライト化を促進するCuを用いているので、球状黒鉛鋳鉄材において高硬度であるパーライトの割合が増大し、切削加工中に工具刃先が欠けて、切削加工後の面粗度が増大するという問題がある。特許文献2に開示されている方法では、内部のミクロ引け巣が表面に露出して面粗度が増大するのを防いでいる。しかしながら、このような方法では、切削加工時において、切削工具への材料溶着が生じ、構成刃先の発生、成長、分裂、脱落により切削加工後の面粗度が増大するという問題がある。 In the method disclosed in Patent Document 1, since expensive elements Cu, Ni, and Co are used, the production cost increases, and Cu that promotes pearlite formation in the spheroidal graphite cast iron material is used, so that spheroidal graphite is used. There is a problem that the proportion of pearlite having high hardness in cast iron material increases, the tool cutting edge is chipped during cutting, and the surface roughness after cutting increases. The method disclosed in Patent Document 2 prevents the internal micro shrinkage cavities from being exposed on the surface and increasing the surface roughness. However, such a method has a problem that material welding to a cutting tool occurs at the time of cutting, and the surface roughness after cutting increases due to the generation, growth, splitting, and dropping of the constituent cutting edge.

本発明は、上記の問題点を解決するためになされたものであり、製造コストを増大させることなく、切削加工後の面粗度が増大しにくい球状黒鉛鋳鉄材、及びそのような球状黒鉛鋳鉄材から製造されたスクロール部材を提供することを目的とする。 The present invention has been made to solve the above problems, and is a spheroidal graphite cast iron material in which the surface roughness after cutting is unlikely to increase without increasing the manufacturing cost, and such spheroidal graphite cast iron. It is an object of the present invention to provide a scroll member manufactured from a material.

上記目的を達成すべく、本発明の球状黒鉛鋳鉄材は、Fe、C及びSiを含み、Siの割合は、3.8〜6.0重量%である。 In order to achieve the above object, the spheroidal graphite cast iron material of the present invention contains Fe, C and Si, and the proportion of Si is 3.8 to 6.0% by weight.

この発明によれば、製造コストを増大させることなく、切削加工後の面粗度が増大しにくい球状黒鉛鋳鉄材が提供される。 According to the present invention, there is provided a spheroidal graphite cast iron material in which the surface roughness after cutting is unlikely to increase without increasing the manufacturing cost.

本実施の形態に係る球状黒鉛鋳鉄材から製造されたスクロール部材を示す図The figure which shows the scroll member manufactured from the spheroidal graphite cast iron material which concerns on this embodiment. 本実施の形態に係る球状黒鉛鋳鉄材の製造方法を説明するフローチャート図The flowchart explaining the manufacturing method of the spheroidal graphite cast iron material which concerns on this embodiment. 球状黒鉛鋳鉄材の製造方法を説明するための取鍋の断面図Cross-sectional view of a ladle for explaining a method for producing a spheroidal graphite cast iron material 球状黒鉛鋳鉄材の製造方法を説明するための取鍋の断面図Cross-sectional view of a ladle for explaining a method for producing a spheroidal graphite cast iron material Si量に対する切削加工後の面粗度Raを示したグラフGraph showing surface roughness Ra after cutting with respect to Si amount Cu量に対するパーライト率を示したグラフGraph showing the pearlite rate with respect to the amount of Cu Sn量に対するパーライト率を示したグラフGraph showing the pearlite rate with respect to the amount of Sn

以下、本発明の実施の形態に係る球状黒鉛鋳鉄材及びスクロール部材について説明する。 Hereinafter, the spheroidal graphite cast iron material and the scroll member according to the embodiment of the present invention will be described.

本発明の実施の形態に係る球状黒鉛鋳鉄材は、球状の黒鉛及びFeを有する基地組織を含み、黒鉛の周辺を基地組織が囲んでいる。基地組織は、主にフェライト及びパーライトに分類される。球状黒鉛鋳鉄材は、FCD450であり得る。なお、FCD450とは、引張強さ450MPa以上、伸び10%以上の特性を有する球状黒鉛鋳鉄材をいう。球状黒鉛鋳鉄材は、Si、Fe及びCを含み、さらにCu、Snといった不可避混入物を含み得る。球状黒鉛鋳鉄材は、球状黒鉛鋳鉄材の総重量に基づき、3.8〜6.0重量%のSiを含む。球状黒鉛鋳鉄材は、球状黒鉛鋳鉄材の総重量に基づき、4.1〜6.0重量%のSiを含むことが好ましい。球状黒鉛鋳鉄材が、3.8重量%以上のSiを含むと、切削加工後において、一般的に良好な機械仕上面とされるRa=約1.6μm以下の面粗度を有する球状黒鉛鋳鉄材が得られる。なお、Raは、JIS B0601(1994)に規定の算術平均粗さを表す。特に、球状黒鉛鋳鉄材が、4.1重量%以上のSiを含むと、切削加工後において、Ra=1.6μ未満の面粗度を有する球状黒鉛鋳鉄材が得られる。さらに、球状黒鉛鋳鉄材のフェライトを固溶強化し、基地組織の硬度を高め得る。このため、切削加工時において、切削工具の刃先への材料溶着を防ぎ、構成刃先が生成されるのを防ぐので、切削加工後の面粗度の増大を防ぎ得る。さらに、高価な元素であるCu、Ni、Coを意図的に用いていないため、製造コストが増大し得ない。なお、球状黒鉛鋳鉄材が、6.0重量%超のSiを含むと、黒鉛化作用が強すぎて浮上黒鉛、爆発状黒鉛といった異常な黒鉛形態を生じるおそれがある。 The spheroidal graphite cast iron material according to the embodiment of the present invention contains a base structure having spherical graphite and Fe, and the base structure surrounds the graphite. Base structures are mainly classified into ferrite and pearlite. The spheroidal graphite cast iron material can be FCD450. The FCD450 is a spheroidal graphite cast iron material having a tensile strength of 450 MPa or more and an elongation of 10% or more. The spheroidal graphite cast iron material contains Si, Fe and C, and may further contain unavoidable contaminants such as Cu and Sn. The spheroidal graphite cast iron material contains 3.8 to 6.0% by weight of Si based on the total weight of the spheroidal graphite cast iron material. The spheroidal graphite cast iron material preferably contains 4.1 to 6.0% by weight of Si based on the total weight of the spheroidal graphite cast iron material. When the spheroidal graphite cast iron material contains 3.8% by weight or more of Si, the spheroidal graphite cast iron has a surface roughness of Ra = about 1.6 μm or less, which is generally regarded as a good mechanical finish surface after cutting. The material is obtained. Ra represents the arithmetic mean roughness specified in JIS B0601 (1994). In particular, when the spheroidal graphite cast iron material contains 4.1% by weight or more of Si, a spheroidal graphite cast iron material having a surface roughness of less than Ra = 1.6μ can be obtained after cutting. Further, the ferrite of the spheroidal graphite cast iron material can be solid-solved and strengthened to increase the hardness of the matrix structure. Therefore, during cutting, it is possible to prevent the material from being welded to the cutting edge of the cutting tool and prevent the constituent cutting edge from being generated, so that it is possible to prevent an increase in surface roughness after cutting. Furthermore, since the expensive elements Cu, Ni, and Co are not intentionally used, the manufacturing cost cannot be increased. If the spheroidal graphite cast iron material contains more than 6.0% by weight of Si, the graphitizing action is too strong and there is a possibility that abnormal graphite morphology such as floating graphite and explosive graphite may occur.

球状黒鉛鋳鉄材の製造工程において、Cu、Snが球状黒鉛鋳鉄材に含まれ得る。この場合、球状黒鉛鋳鉄材に含まれるCu量及びSn量はそれぞれ、球状黒鉛鋳鉄材の総重量に基づき、0.1重量%未満及び0.02重量%未満であることが好ましい。Cu及びSn量がそれぞれこのような範囲であると、基地組織におけるフェライトよりも著しく強硬度なパーライトの割合を低下させ得る。これにより、切削加工時においてパーライトにより工具刃先が欠けることに起因した、切削加工後の面粗度の増大を防ぎ得る。 Cu and Sn may be contained in the spheroidal graphite cast iron material in the manufacturing process of the spheroidal graphite cast iron material. In this case, the amount of Cu and the amount of Sn contained in the spheroidal graphite cast iron material are preferably less than 0.1% by weight and less than 0.02% by weight, respectively, based on the total weight of the spheroidal graphite cast iron material. When the amounts of Cu and Sn are in such a range, the proportion of pearlite having a significantly stronger hardness than that of ferrite in the matrix structure can be reduced. This makes it possible to prevent an increase in surface roughness after cutting due to chipping of the tool cutting edge due to pearlite during cutting.

本発明の実施の形態に係る球状黒鉛鋳鉄材から、スクロール圧縮機に用いられる渦巻き状の歯部を有するスクロール部材100を製造し得る。 From the spheroidal graphite cast iron material according to the embodiment of the present invention, a scroll member 100 having a spiral tooth portion used in a scroll compressor can be manufactured.

本発明の実施の形態に係る球状黒鉛鋳鉄材から製造されたクロール部材100は、図1に示すように、ベース部101と、ベース部101に立設された渦巻状の壁体を有する渦巻き状の歯部102と、を備える。スクロール圧縮機は、2つのスクロール部材100を備える。一方のスクロール部材100は、固定されている。他方のスクロール部材100は、渦巻き状の歯部102と固定された一方のスクロール部材100の渦巻き状の歯部102とがかみ合わされて、配置されている。他方のスクロール部材100が揺動すると、対向する二つの渦巻き状の歯部102に囲まれた領域内の空気が圧縮される。スクロール圧縮機では、歯部102全体の加工精度が低いと歯部102の隙間から空気が漏れるため歯部102全体を高精度に加工することが好ましい。さらに、歯部102の高さが高いほど、1回転で圧縮できる空気の量が増すので、歯部102の高さを高くすることが好ましいが、歯部102の高さが高くなればなるほど高精度な加工が難しく、高精度な加工を満たすべく上述したような荒仕上、中仕上、仕上加工といった複数の工程を経なければならなかった。切削加工後において、面粗度が増大しにくい本発明の実施の形態に係る球状黒鉛鋳鉄材からスクロール部材100を製造することで、上述したような複数の工程を経ることなく、高精度に加工されたスクロール部材100が得られる。 As shown in FIG. 1, the crawl member 100 manufactured from the spheroidal graphite cast iron material according to the embodiment of the present invention has a spiral shape having a base portion 101 and a spiral wall body erected on the base portion 101. The tooth portion 102 of the above is provided. The scroll compressor includes two scroll members 100. One scroll member 100 is fixed. The other scroll member 100 is arranged so that the spiral tooth portion 102 and the spiral tooth portion 102 of the one fixed scroll member 100 are meshed with each other. When the other scroll member 100 swings, the air in the region surrounded by the two opposing spiral tooth portions 102 is compressed. In the scroll compressor, if the processing accuracy of the entire tooth portion 102 is low, air leaks from the gap of the tooth portion 102, so that it is preferable to process the entire tooth portion 102 with high accuracy. Further, the higher the height of the tooth portion 102, the larger the amount of air that can be compressed in one rotation. Therefore, it is preferable to increase the height of the tooth portion 102, but the higher the height of the tooth portion 102, the higher the height. Precise machining is difficult, and in order to satisfy high-precision machining, it is necessary to go through a plurality of processes such as rough finishing, intermediate finishing, and finishing as described above. By manufacturing the scroll member 100 from the spheroidal graphite cast iron material according to the embodiment of the present invention in which the surface roughness does not easily increase after cutting, the scroll member 100 is processed with high accuracy without going through a plurality of steps as described above. The resulting scroll member 100 is obtained.

次に、本実施の形態に係る球状黒鉛鋳鉄材の製造方法を図2〜図4を参考しながら説明する。 Next, a method for producing a spheroidal graphite cast iron material according to the present embodiment will be described with reference to FIGS. 2 to 4.

図2は、本実施の形態に係る球状黒鉛鋳鉄材の製造方法を説明するフローチャート図である。図3及び図4は、球状黒鉛鋳鉄材の製造方法を説明するための取鍋11の断面図である。 FIG. 2 is a flowchart illustrating a method for producing a spheroidal graphite cast iron material according to the present embodiment. 3 and 4 are cross-sectional views of a ladle 11 for explaining a method for producing a spheroidal graphite cast iron material.

図2に示すように、球状黒鉛鋳鉄材の製造方法は、溶解炉での材料溶解工程(ステップS101)、化学成分の分析工程(ステップS102)、出湯準備工程(ステップS103)、出湯工程(ステップS104)、及び鋳込み工程(ステップS105)をこの順に含む。 As shown in FIG. 2, the method for producing a spheroidal graphite cast iron material includes a material melting step (step S101), a chemical component analysis step (step S102), a hot water preparation step (step S103), and a hot water discharge step (step) in a melting furnace. S104) and the casting step (step S105) are included in this order.

溶解炉での材料溶解工程(ステップS101)は、公知の方法で、銑鉄、スクラップといった含鉄材を溶解炉において溶解させて元湯40を作製する工程である。さらに、元湯40には、フェロシリコン、加炭材が投入され得る。 The material melting step (step S101) in the melting furnace is a step of melting iron-containing materials such as pig iron and scrap in the melting furnace to prepare the main hot water 40 by a known method. Further, ferrosilicon and a carbonizing material can be added to the main hot water 40.

化学成分の分析工程(ステップS102)は、元湯40中の各種化学成分の割合を分析して確認する工程である。具体的には、元湯40の一部を柄杓ですくって金型に注ぎ、凝固後スパーク放電発光分光分析により、C、Feといった分析対象の化学成分を確認する。分析の結果、分析対象の化学成分が規定値内に入れば(ステップS102’の「Yes」の場合)次の工程に進む。分析対象の化学成分が規定値内に入っていなければ(ステップS102’の「No」の場合)、再度、必要な材料を元湯40に投入し、分析対象の化学成分を確認する。これを、分析対象の化学成分が規定値内に入るまで繰り返す。 The chemical component analysis step (step S102) is a step of analyzing and confirming the ratio of various chemical components in the original hot water 40. Specifically, a part of the original hot water 40 is scooped up with a cassotte and poured into a mold, and after solidification, spark discharge emission spectroscopic analysis is performed to confirm the chemical components to be analyzed such as C and Fe. As a result of the analysis, if the chemical component to be analyzed falls within the specified value (in the case of "Yes" in step S102'), the process proceeds to the next step. If the chemical composition to be analyzed is not within the specified value (in the case of "No" in step S102'), the necessary material is put into the original hot water 40 again, and the chemical component to be analyzed is confirmed. This is repeated until the chemical composition to be analyzed falls within the specified value.

出湯準備工程(ステップS103)は、溶解炉からの元湯40を受ける取鍋11中に、カバー材33、接種剤35、球状化剤37、必要に応じてSi調整剤31を投入する工程である。この工程により、球状黒鉛鋳鉄材に含まれるSi量が調整され、最終的には、球状黒鉛鋳鉄材は、球状黒鉛鋳鉄材の総重量に基づき、3.8〜6.0重量%、より好ましくは4.1〜6.0重量%のSiを含む。上述のように、球状黒鉛鋳鉄材が、3.8重量%以上のSiを含むと、切削加工後において、Ra=約1.6μm以下の面粗度を有する球状黒鉛鋳鉄材が得られ、球状黒鉛鋳鉄材が、4.1重量%以上のSiを含むと、切削加工後において、Ra=1.6μ未満の面粗度を有する球状黒鉛鋳鉄材が得られる。また、球状黒鉛鋳鉄材が、6.0重量%超のSiを含むと、黒鉛化作用が強すぎて浮上黒鉛、爆発状黒鉛といった異常な黒鉛形態を生じるおそれがある。カバー材33は、鉄屑、Fe−Si系合金が好ましく、Fe−Si系合金がより好ましい。Fe−Si系合金を用いると、必要とされない元素を球状黒鉛鋳鉄材に含めることなく以下に示すSi調整剤を用いなくてもSiを上述した割合にし得る。接種剤35は、Fe−Si系接種剤、Ca−Si系接種剤、フェロシリコンと黒鉛とを混合した黒鉛系接種剤が好ましく、Fe−Si系接種剤がより好ましい。Fe−Si系接種剤を用いると、必要とされない元素を球状黒鉛鋳鉄材に含めることなく以下に示すSi調整剤を用いなくてもSiを上述した割合にし得る。球状化剤37は、Mg含有合金であり、Fe−Si−Mg−Ca系合金、Fe−Si−Mg−C系合金、Fe−Si−Mg系合金が好ましく、Fe−Si−Mg系合金がより好ましい。Fe−Si−Mg系合金を用いると、必要とされない元素を球状黒鉛鋳鉄材に含めることなく炭素の黒鉛化及びフェライト化を促進しやすい。Si調整剤31は、ケイ素、炭化ケイ素、及びケイ化鉄のうちのいずれかまたはこれらの混合物を含むことが好ましい。Si調整剤31は、Fe−Si系合金であることがより好ましい。Si調整剤31が、Fe−Si系合金であると球状黒鉛鋳鉄材に含まれるSiの割合を調整しやすい。図3及び図4に示すように、本実施の形態に係る球状黒鉛鋳鉄材の製造方法では、サンドイッチ法が採用されている。そのため、隔壁21により取鍋11の底は、上方が開放された2室に分けられている。図3に示すように、一方の室の底に球状化剤37を置き、その上に接種剤35を置き、さらにそれらを覆うカバー材33を置き、他方の室にSi調整剤31を置く。球状化剤37は、Mg含有合金であり、高温下で空気に触れると爆発的に反応してMgが損耗するので、球状化剤37の上に接種剤35及びカバー材33を配置して、球状化剤37をなるべく空気に触れさせないことが好ましい。また、図3に示す例では、Si調整剤31をカバー材33、接種剤35及び球状化剤37が配置された室とは異なる室に配置しているが、Si調整剤31をカバー材33、接種剤35及び球状化剤37が配置された室と同じ室に配置してもよい。この場合、Si調整剤31は、球状化剤37が空気に触れることを防ぐために、球状化剤37とカバー材33との間に配置することが好ましい。さらに、図4に示すように、接種剤35は、Siを含むため、投入する接種剤35の量を増やすことで、Si調整剤31を別途投入することなく、最終的に球状黒鉛鋳鉄材に含まれるSi量を調整し得る。 The hot water preparation step (step S103) is a step of putting the cover material 33, the inoculant 35, the spheroidizing agent 37, and the Si adjusting agent 31 as needed into the ladle 11 that receives the hot water 40 from the melting furnace. is there. By this step, the amount of Si contained in the spheroidal graphite cast iron material is adjusted, and finally, the spheroidal graphite cast iron material is 3.8 to 6.0% by weight, more preferably, based on the total weight of the spheroidal graphite cast iron material. Contains 4.1-6.0 wt% Si. As described above, when the spheroidal graphite cast iron material contains 3.8% by weight or more of Si, a spheroidal graphite cast iron material having a surface roughness of Ra = about 1.6 μm or less can be obtained after cutting. When the graphite cast iron material contains 4.1% by weight or more of Si, a spheroidal graphite cast iron material having a surface roughness of less than Ra = 1.6μ can be obtained after cutting. Further, if the spheroidal graphite cast iron material contains more than 6.0% by weight of Si, the graphitizing action is too strong, and there is a possibility that abnormal graphite morphology such as floating graphite and explosive graphite may occur. The cover material 33 is preferably iron scrap or a Fe—Si based alloy, and more preferably a Fe—Si based alloy. When the Fe—Si alloy is used, Si can be made to the above-mentioned ratio without including unnecessary elements in the spheroidal graphite cast iron material and without using the Si adjusting agent shown below. The inoculant 35 is preferably a Fe-Si inoculant, a Ca-Si inoculant, or a graphite inoculant in which ferrosilicon and graphite are mixed, and a Fe-Si inoculant is more preferable. When the Fe-Si inoculant is used, Si can be made to the above-mentioned ratio without including unnecessary elements in the spheroidal graphite cast iron material and without using the Si adjusting agent shown below. The spheroidizing agent 37 is an Mg-containing alloy, preferably a Fe-Si-Mg-Ca alloy, a Fe-Si-Mg-C alloy, or a Fe-Si-Mg alloy, and a Fe-Si-Mg alloy is preferable. More preferred. When a Fe-Si-Mg-based alloy is used, it is easy to promote graphitization and ferrite formation of carbon without including unnecessary elements in the spheroidal graphite cast iron material. The Si modifier 31 preferably contains any one of silicon, silicon carbide, and iron silicate, or a mixture thereof. The Si adjuster 31 is more preferably an Fe—Si based alloy. When the Si adjuster 31 is an Fe—Si alloy, it is easy to adjust the proportion of Si contained in the spheroidal graphite cast iron material. As shown in FIGS. 3 and 4, the sandwich method is adopted in the method for producing a spheroidal graphite cast iron material according to the present embodiment. Therefore, the bottom of the ladle 11 is divided into two chambers whose upper part is open by the partition wall 21. As shown in FIG. 3, a spheroidizing agent 37 is placed on the bottom of one chamber, an inoculant 35 is placed therein, a cover material 33 covering them is placed, and a Si adjusting agent 31 is placed in the other chamber. The spheroidizing agent 37 is an Mg-containing alloy, and when it comes into contact with air at a high temperature, it reacts explosively to wear Mg. Therefore, the inoculant 35 and the cover material 33 are arranged on the spheroidizing agent 37. It is preferable that the spheroidizing agent 37 is not exposed to air as much as possible. Further, in the example shown in FIG. 3, the Si adjusting agent 31 is arranged in a chamber different from the chamber in which the cover material 33, the inoculant 35 and the spheroidizing agent 37 are arranged, but the Si adjusting agent 31 is arranged in the cover material 33. , The inoculant 35 and the spheroidizing agent 37 may be placed in the same room as the room. In this case, the Si adjusting agent 31 is preferably arranged between the spheroidizing agent 37 and the cover material 33 in order to prevent the spheroidizing agent 37 from coming into contact with air. Further, as shown in FIG. 4, since the inoculant 35 contains Si, by increasing the amount of the inoculant 35 to be added, the Si adjusting agent 31 is finally added to the spheroidal graphite cast iron material without adding it separately. The amount of Si contained can be adjusted.

出湯工程(ステップS104)は、溶解炉からの元湯40を取鍋11に流す工程である。図3及び図4の破線矢印に示すように、取鍋11のカバー材33、接種材及び球状化材が入っていない室をめがけて溶解炉からの元湯40を取鍋11に流し込む。このとき、カバー材33、接種剤35、球状化剤37、Si調整剤31が元湯40に溶け込み、球状化反応が生じて溶湯が作製される。 The hot water discharge step (step S104) is a step of flowing the original hot water 40 from the melting furnace into the pan 11. As shown by the broken line arrows in FIGS. 3 and 4, the main hot water 40 from the melting furnace is poured into the ladle 11 toward the chamber containing the cover material 33, the inoculator material and the spheroidizing material of the ladle 11. At this time, the cover material 33, the inoculant 35, the spheroidizing agent 37, and the Si adjusting agent 31 dissolve in the original hot water 40, and a spheroidizing reaction occurs to prepare a molten metal.

鋳込み工程(ステップS105)は、球状化反応が終わった溶湯を鋳型に流し入れて、球状黒鉛鋳鉄材を製造する工程である。鋳型をスクロール部材用の鋳型とすれば、スクロール部材が得られる。鋳型としては、鋳型用の砂をバインダで硬化させたもの、金型で作製されたものであり得る。もちろんスクロール部材以外の金属部材を製造し得、歯車または自動車の排気系部品を製造し得る。 The casting step (step S105) is a step of pouring the molten metal after the spheroidizing reaction into a mold to produce a spheroidal graphite cast iron material. If the mold is used as a mold for a scroll member, a scroll member can be obtained. The mold may be one in which sand for a mold is hardened with a binder or one made by a mold. Of course, metal members other than scroll members can be manufactured, and gears or automobile exhaust system parts can be manufactured.

次に、上述した球状黒鉛鋳鉄材の製造方法によりSi、Cu、Sn量を変化させて鋳造した試験品を分析し、Ra及びパーライト率を測定した。Si量を変化させてRaを測定した結果を表1に示し、Si、Cu、Sn量を変化させてパーライト率を測定した結果を表2に示す。さらに表1をグラフ化したものを図5に示し、表2のCu量及びSn量をパーライト率に対してグラフ化したものをそれぞれ図6及び図7に示す。 Next, a test product cast by changing the amounts of Si, Cu, and Sn by the above-mentioned method for producing a spheroidal graphite cast iron material was analyzed, and Ra and the pearlite ratio were measured. Table 1 shows the results of measuring Ra by changing the amount of Si, and Table 2 shows the results of measuring the pearlite rate by changing the amounts of Si, Cu, and Sn. Further, a graph of Table 1 is shown in FIG. 5, and a graph of the Cu amount and Sn amount in Table 2 with respect to the pearlite ratio is shown in FIGS. 6 and 7, respectively.

表1及び表2に示すSi量は、JIS G 1212(鉄及び鋼−ケイ素定量方法)に準拠して測定された。さらに、Raは、以下の切削条件及び面粗度測定機器を用いて測定された。
<切削条件>
切削速度:120m/min
送り量:0.14mm/rev
切込み量:1.0mm(片側)
雰囲気:水性油剤供給による湿式加工
<面粗度測定機器>
測定機器:触針式表面粗さ測定機SJ−400サーフテスト(Mitsutoyo製)
スタイラス(触針)型番:12AAB415(触針の先端半径10μm)
測定条件:基準長さ0.8mm、評価長さ4.0mm
測定規格:JIS B 0601(2001年改訂版)
The amount of Si shown in Tables 1 and 2 was measured according to JIS G 1212 (iron and steel-silicon quantification method). Further, Ra was measured using the following cutting conditions and a surface roughness measuring device.
<Cutting conditions>
Cutting speed: 120m / min
Feed amount: 0.14 mm / rev
Cut amount: 1.0 mm (one side)
Atmosphere: Wet processing by supplying water-based oil <Surface roughness measuring equipment>
Measuring equipment: Needle-type surface roughness measuring machine SJ-400 surf test (manufactured by Mitutoyo)
Stylus (needle) Model number: 12AAB415 (tip radius of the stylus 10 μm)
Measurement conditions: Reference length 0.8 mm, evaluation length 4.0 mm
Measurement standard: JIS B 0601 (revised 2001)

表2に示すCu量及びSn量は、スパーク放電発光分光分析により測定され、パーライト率は、試験品の断面の金属組織写真から画像処理によって、(1)黒鉛を除いた組織を抽出し、(2)黒鉛及びフェライトを除き、パーライトを抽出し、(パーライトの面積)/(パーライト+フェライトの面積)により算出した。 The amount of Cu and the amount of Sn shown in Table 2 were measured by spark discharge emission spectroscopic analysis, and the pearlite ratio was determined by extracting (1) the structure excluding graphite from the metal structure photograph of the cross section of the test product by image processing. 2) After removing graphite and ferrite, pearlite was extracted and calculated by (area of pearlite) / (area of pearlite + ferrite).

表1及び図5からわかるように、球状黒鉛鋳鉄材にSiが3.8重量%以上含まれると、切削加工後において、Raが約1.6μm以下となり、面粗度が低くて表面が滑らかである。さらに表2ならびに図6及び図7からわかるように、球状黒鉛鋳鉄材中のCu量及びSn量がそれぞれ0.1重量%及び0.02重量%未満であると、パーライト率を25%以下に抑えられる。これにより、球状黒鉛鋳鉄材におけるフェライトの割合が大きいので、切削加工時においてパーライトにより工具刃先が欠けることに起因した、切削加工後の面粗度の増大を防ぎ得る。 As can be seen from Table 1 and FIG. 5, when the spheroidal graphite cast iron material contains 3.8% by weight or more of Si, Ra becomes about 1.6 μm or less after cutting, and the surface roughness is low and the surface is smooth. Is. Further, as can be seen from Table 2, FIGS. 6 and 7, when the amount of Cu and the amount of Sn in the spheroidal graphite cast iron material are less than 0.1% by weight and 0.02% by weight, respectively, the pearlite ratio is reduced to 25% or less. It can be suppressed. As a result, since the proportion of ferrite in the spheroidal graphite cast iron material is large, it is possible to prevent an increase in surface roughness after cutting due to chipping of the tool cutting edge due to pearlite during cutting.

本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention allows for various embodiments and modifications without departing from the broad spirit and scope of the present invention. Moreover, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated by the scope of claims, not by the embodiment. Then, various modifications made within the scope of the claims and the equivalent meaning of the invention are considered to be within the scope of the present invention.

11 取鍋、21 隔壁、31 Si調整剤、33 カバー材、35 接種剤、37 球状化剤、40 元湯、100 スクロール部材、101 ベース部、102 歯部。 11 Ladle, 21 partition wall, 31 Si adjuster, 33 cover material, 35 inoculant, 37 spheroidizing agent, 40 yuan hot water, 100 scroll member, 101 base part, 102 tooth part.

Claims (4)

Fe、C及びSiを含み、前記Siの割合は、3.8〜6.0重量%である、球状黒鉛鋳鉄材。 A spheroidal graphite cast iron material containing Fe, C and Si, and the proportion of the Si is 3.8 to 6.0% by weight. 前記Siの割合は、4.1〜6.0重量%である、請求項1に記載の球状黒鉛鋳鉄材。 The spheroidal graphite cast iron material according to claim 1, wherein the proportion of Si is 4.1 to 6.0% by weight. Cuの割合は、0.1重量%未満であり、かつSnの割合は、0.02重量%未満である、請求項1または2に記載の球状黒鉛鋳鉄材。 The spheroidal graphite cast iron material according to claim 1 or 2, wherein the proportion of Cu is less than 0.1% by weight and the proportion of Sn is less than 0.02% by weight. 請求項1から3のいずれか1項に記載の球状黒鉛鋳鉄材から製造された、スクロール部材。 A scroll member manufactured from the spheroidal graphite cast iron material according to any one of claims 1 to 3.
JP2019131627A 2019-07-17 2019-07-17 Spheroidal graphite cast iron material and scroll member Pending JP2021017601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019131627A JP2021017601A (en) 2019-07-17 2019-07-17 Spheroidal graphite cast iron material and scroll member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019131627A JP2021017601A (en) 2019-07-17 2019-07-17 Spheroidal graphite cast iron material and scroll member

Publications (1)

Publication Number Publication Date
JP2021017601A true JP2021017601A (en) 2021-02-15

Family

ID=74563053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019131627A Pending JP2021017601A (en) 2019-07-17 2019-07-17 Spheroidal graphite cast iron material and scroll member

Country Status (1)

Country Link
JP (1) JP2021017601A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322473A (en) * 1993-05-10 1994-11-22 Hitachi Metals Ltd Ferro alloy for casting and its manufacture
JPH08176656A (en) * 1994-12-21 1996-07-09 Toyota Motor Corp Production of cast iron with high ductility
JP2005133142A (en) * 2003-10-30 2005-05-26 Aisin Seiki Co Ltd Cast iron based soft magnetic material
JP2006009960A (en) * 2004-06-25 2006-01-12 Aisin Seiki Co Ltd Clutch plate, and electromagnetic clutch mechanism employing the same clutch plate
JP2015197076A (en) * 2014-04-02 2015-11-09 三菱電機株式会社 Compressor sliding component, and scroll compressor having the component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322473A (en) * 1993-05-10 1994-11-22 Hitachi Metals Ltd Ferro alloy for casting and its manufacture
JPH08176656A (en) * 1994-12-21 1996-07-09 Toyota Motor Corp Production of cast iron with high ductility
JP2005133142A (en) * 2003-10-30 2005-05-26 Aisin Seiki Co Ltd Cast iron based soft magnetic material
JP2006009960A (en) * 2004-06-25 2006-01-12 Aisin Seiki Co Ltd Clutch plate, and electromagnetic clutch mechanism employing the same clutch plate
JP2015197076A (en) * 2014-04-02 2015-11-09 三菱電機株式会社 Compressor sliding component, and scroll compressor having the component

Similar Documents

Publication Publication Date Title
CN1923412B (en) High nickel austenite spheroidal graphite cast-iron gas exhaust branch pipe casting technique
EP1711291B1 (en) Cylinder liner for insert casting
KR101186445B1 (en) Member produced by powder forging, powder mixture for powder forging, process for producing member by powder forging, and fracture splitting connecting rod obtained from the same
JP4557731B2 (en) Cast iron with excellent corrosion resistance and wear resistance
CN110029267B (en) Nodular cast iron
US20030007882A1 (en) High temperature oxidation resistant ductile iron
CN104498816A (en) Grey cast iron with excellent cutting property and production method thereof
US20230392237A1 (en) Spheroidal graphite cast iron, cast article and automobile structure part made thereof, and method for producing spheroidal graphite cast iron article
JP2021017601A (en) Spheroidal graphite cast iron material and scroll member
JP2002309935A (en) Exhaust system parts of heat-resisting steel
JP2005528522A (en) Inoculated alloys to prevent micro sinkholes for casting pig iron processing
WO2015059641A2 (en) Differential apparatus component, differential apparatus therewith and manufacturing method thereof
WO2023243726A1 (en) Austenitic heat-resistant cast steel and exhaust system component formed of same
Asensio Lozano et al. Microstructural optimization of unalloyed ductile cast irons with a ferritic matrix used in the manufacture of wind turbine rotors
JP2005256088A (en) Spheroidal graphite cast-iron member
KR20190042656A (en) Cold forging steel and its manufacturing method
UA121059C2 (en) METHOD OF CASTING ROLLING ROLLS FROM CAST IRON WITH VERMICULAR GRAPHITE
SU1446187A1 (en) High-strength gast iron
RU2177041C1 (en) Method of gray cast iron production
UA121246C2 (en) METHOD OF CASTING ROLLING ROLLS FROM CAST IRON WITH VERMICULAR GRAPHITE
Paszkiewicz et al. Innovation technology for the production of massive slag ladles at the Krakodlew SA Foundry. Presentation of design works on research and development
UA118243C2 (en) METHOD OF CASTING ROLLING RAIL ROLLS WITH VERMICULAR GRAPHITE
UA121247C2 (en) METHOD OF CASTING ROLLING ROLLS FROM CAST IRON WITH VERMICULAR GRAPHITE
SU1583459A1 (en) Iron for castings of nonuniform wall thickness
SU1698308A1 (en) Cast iron alloying and modifying additive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240312