JP2021004808A - Test piece for magnetic particle flaw detection inspection, and manufacturing method thereof - Google Patents

Test piece for magnetic particle flaw detection inspection, and manufacturing method thereof Download PDF

Info

Publication number
JP2021004808A
JP2021004808A JP2019119138A JP2019119138A JP2021004808A JP 2021004808 A JP2021004808 A JP 2021004808A JP 2019119138 A JP2019119138 A JP 2019119138A JP 2019119138 A JP2019119138 A JP 2019119138A JP 2021004808 A JP2021004808 A JP 2021004808A
Authority
JP
Japan
Prior art keywords
magnetic
scratch
test piece
magnetic particle
particle inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019119138A
Other languages
Japanese (ja)
Other versions
JP6985335B2 (en
Inventor
哲男 一本
Tetsuo Ichimoto
哲男 一本
俊 伊東
Shun Ito
俊 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP2019119138A priority Critical patent/JP6985335B2/en
Priority to CN202010577423.5A priority patent/CN112147214A/en
Publication of JP2021004808A publication Critical patent/JP2021004808A/en
Application granted granted Critical
Publication of JP6985335B2 publication Critical patent/JP6985335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/84Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields by applying magnetic powder or magnetic ink

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

To create a test piece for magnetic particle flaw detection inspection capable of evaluating detection performance of a flaw that is a flaw created naturally or artificially, permits easy cleaning, prevents magnetic particles from entering inside, and has high reproducibility as the test piece for magnetic particle flaw detection inspection.SOLUTION: A test piece for magnetic particle flaw detection inspection impregnates a nonmagnetic substance as a resin up to nearly the bottom of a flaw created naturally or artificially by using a vacuum equal to or less than minus 70 KPa in a test piece for evaluating flaw detection performance of a magnetic particle flaw detection inspection system, and removes a nonmagnetic substance not impregnated into the flaw on a surface of the test piece.SELECTED DRAWING: Figure 2

Description

本発明は、磁粉探傷検査用の傷を有する試験体とその製造方法に関する。 The present invention relates to a test piece having a scratch for magnetic particle inspection and a method for manufacturing the same.

磁粉探傷検査は、ビレット等の鋼材や自動車部品の被検査体の表面の探傷検査に適用され、JIS−Z−2320に規格化されている。磁粉探傷法による磁性体の傷の検査法は、軸通電法やコイル法によって磁性体である被検査物に磁場を発生させ、その表面に磁粉液などを塗布し、被検査物に傷などの間隙がある場合には、傷部に磁粉が集積することで傷部を検出する。 The magnetic particle flaw detection inspection is applied to the flaw detection inspection of the surface of a steel material such as a billet or an automobile part to be inspected, and is standardized in JIS-Z-2320. In the magnetic particle inspection method, a magnetic field is generated on the magnetic material to be inspected by the axial energization method or the coil method, and a magnetic powder liquid or the like is applied to the surface of the magnetic material to inspect the object to be inspected. When there is a gap, the wound is detected by the accumulation of magnetic powder on the wound.

磁粉探傷検査装置ならびに磁粉探傷検査用磁粉の傷検出性能の評価は、磁粉メーカー、鉄鋼メーカー、自動車メーカーなどの磁粉探傷検査装置ユーザーにおいて必要とされる。被検査物に加える電流や磁場、あるいは磁粉が、磁粉探傷検査に適切かどうかを確認する上で、適切な自然または人工的につくられた傷を有する磁性体部材が必要である。一方で、表面に開口する傷には、加えられた磁粉が入り込み、洗浄作業が困難で、再使用時の再現性に問題があった。 Evaluation of the scratch detection performance of the magnetic particle inspection device and the magnetic particle for magnetic particle inspection is required by users of the magnetic particle inspection device such as magnetic powder makers, steel makers, and automobile makers. In order to confirm whether the current or magnetic field applied to the object to be inspected or the magnetic powder is suitable for the magnetic particle inspection, a magnetic member having appropriate natural or artificially created scratches is required. On the other hand, the added magnetic powder enters the scratches that open on the surface, making cleaning work difficult and causing problems in reproducibility during reuse.

特開平9−43203号公報Japanese Unexamined Patent Publication No. 9-43203

特許文献1には、磁粉探傷検査用試験体として、人工的に作られた傷に、厚さ0.1〜0.5mmの厚みをもつシート体を貼り付けて作成された試験体が開示されている。このシート体によって、人工的につくられた傷の内部に磁粉が入り込むことなく、洗浄作業が簡便となった。しかし、薄いシートには強度的な問題があり、シートの厚みがある為、鮮明な磁粉指示模様を形成できないという課題があった。 Patent Document 1 discloses a test body prepared by attaching a sheet body having a thickness of 0.1 to 0.5 mm to an artificially made scratch as a test body for magnetic particle inspection. ing. This sheet body simplifies the cleaning work without magnetic particles getting inside the artificially created scratches. However, the thin sheet has a problem of strength, and there is a problem that a clear magnetic particle instruction pattern cannot be formed due to the thickness of the sheet.

また、傷が表面に開口している場合、傷内部に磁粉が入り込み、これを蛍光磁粉探傷法にて検出する際、幅方向に角度が付くと、視認性が低下して評価結果が悪化する場合があった。 In addition, when the scratch is open on the surface, magnetic powder enters the inside of the scratch, and when this is detected by the fluorescent magnetic particle flaw detection method, if there is an angle in the width direction, the visibility is lowered and the evaluation result is deteriorated. There was a case.

本発明は、上記課題を解決するため、磁粉探傷検査用試験体として、自然もしくは人工的に作られた傷であって、洗浄作業が容易で、傷の内部に磁粉が入り込むことなく、再現性の高い傷検出性能評価が可能な、磁粉探傷検査用試験体の作成を課題とする。 In order to solve the above problems, the present invention is a wound that is naturally or artificially made as a test piece for magnetic particle inspection, is easy to clean, and is reproducible without magnetic particles getting inside the wound. The challenge is to create a specimen for magnetic particle inspection, which enables high evaluation of scratch detection performance.

上記課題を解決するために、本発明の磁粉探傷検査用試験体は、
磁粉探傷検査システムの傷検出性能を評価する鉄などの強磁性体の試験体において、
傷の内部に非磁性物質を含浸することを特徴とする。
In order to solve the above problems, the magnetic particle inspection test piece of the present invention is used.
In a test piece of a ferromagnetic material such as iron for evaluating the scratch detection performance of a magnetic particle inspection system,
It is characterized by impregnating the inside of a wound with a non-magnetic substance.

更に、本発明の磁粉探傷検査用試験体は、
前記非磁性物質は、前記傷の略底部まで含浸していることを特徴とする。
Further, the magnetic particle inspection test piece of the present invention is
The non-magnetic substance is characterized in that it is impregnated to substantially the bottom of the scratch.

更に、本発明の磁粉探傷検査用試験体は、
前記非磁性物質は、シリコーンであることを特徴とする。
Further, the magnetic particle inspection test piece of the present invention is
The non-magnetic substance is characterized by being silicone.

更に、本発明の磁粉探傷検査用試験体は、
前記試験体の表面の前記傷の内部に含浸されなかった前記非磁性物質は、除去されていることを特徴とする。
Further, the magnetic particle inspection test piece of the present invention is
The non-magnetic substance that has not been impregnated inside the scratches on the surface of the test piece has been removed.

更に、磁粉探傷検査システムの傷検出性能を評価する試験体の製造方法において、
傷の表面に非磁性物質を塗布する工程と、
真空を用いて前記傷の内部の略底部まで前記非磁性物質を含浸する工程と、
前記傷の内部に含浸されなかった前記非磁性物質を除去する工程と、を有することを特徴とする。
Furthermore, in the manufacturing method of the test piece for evaluating the scratch detection performance of the magnetic particle inspection system,
The process of applying a non-magnetic substance to the surface of the scratch,
A step of impregnating the non-magnetic substance to substantially the bottom inside the scratch using a vacuum, and
It is characterized by having a step of removing the non-magnetic substance that has not been impregnated inside the scratch.

更に、本発明の磁粉探傷検査用試験体の製造方法は、
前記真空は、マイナス70kPa以下であることを特徴とする。
Further, the method for manufacturing the magnetic particle inspection test piece of the present invention is as follows.
The vacuum is characterized by being minus 70 kPa or less.

本発明によれば、磁粉探傷検査システムの傷検出性能を評価する鉄などの強磁性体の試験体において、傷の内部に非磁性物質を含浸することを特徴とするので、洗浄作業が容易で、傷の内部に磁粉が入り込むことのない、再現性の高い傷検出性能評価が可能な、磁粉探傷検査用試験体を提供することが可能である。 According to the present invention, in a test piece of a ferromagnetic material such as iron for evaluating the scratch detection performance of a magnetic particle inspection system, the inside of the scratch is impregnated with a non-magnetic substance, so that cleaning work is easy. It is possible to provide a magnetic particle flaw detection test specimen capable of highly reproducible scratch detection performance evaluation in which magnetic powder does not enter the inside of a scratch.

更に、本発明の磁粉探傷検査用試験体は、非磁性物質は、傷の略底部まで含浸しているので、洗浄作業によっても傷内部の非磁性物質は除去されず、再現性の高い傷検出性能評価が可能な、磁粉探傷検査用試験体を提供することが可能である。 Further, in the magnetic particle inspection test piece of the present invention, since the non-magnetic substance is impregnated to substantially the bottom of the scratch, the non-magnetic substance inside the scratch is not removed even by the cleaning operation, and the scratch detection with high reproducibility is performed. It is possible to provide a magnetic particle flaw detection test specimen capable of performance evaluation.

更に、本発明の磁粉探傷検査用試験体は、前記非磁性物質は、シリコーンであるので、試験体全体の洗浄作業が容易で、再現性が高く、傷の内部に磁粉が入り込むことなく、再現性の高い傷検出性能評価が可能な、磁粉探傷検査用試験体を提供することが可能である。 Further, in the magnetic particle inspection test piece of the present invention, since the non-magnetic substance is silicone, the entire test piece can be easily cleaned, has high reproducibility, and can be reproduced without magnetic particles getting inside the scratch. It is possible to provide a magnetic particle flaw detection test specimen capable of highly highly scratch-detecting performance evaluation.

更に、本発明の磁粉探傷検査用試験体は、試験体の表面の傷の内部に含浸されなかった非磁性物質は、除去されているので、試験体全体の洗浄作業が容易で、再現性が高く、傷の内部に磁粉が入り込むことなく、再現性の高い傷検出性能評価が可能な、磁粉探傷検査用試験体を提供することが可能である。 Further, in the magnetic particle inspection test piece of the present invention, the non-magnetic substance that has not been impregnated inside the scratches on the surface of the test piece has been removed, so that the entire test piece can be easily cleaned and reproducible. It is possible to provide a specimen for magnetic particle inspection, which is high and can evaluate scratch detection performance with high reproducibility without magnetic particles getting inside the scratch.

更に、磁粉探傷検査システムの傷検出性能を評価する試験体の製造方法は、傷の表面に非磁性物質を塗布する工程と、真空を用いて傷の内部の略底部まで非磁性物質を含浸する工程と、傷の内部に含浸されなかった非磁性物質を除去する工程と、を有するので、洗浄作業によっても傷内部の非磁性物質は除去されず、再現性の高い傷検出性能評価が可能な、磁粉探傷検査用試験体を提供することが可能である。 Furthermore, the manufacturing method of the test piece for evaluating the scratch detection performance of the magnetic particle inspection system is a step of applying a non-magnetic substance to the surface of the scratch and impregnating the non-magnetic substance to almost the bottom inside the scratch using vacuum. Since it has a step and a step of removing the non-magnetic substance that has not been impregnated inside the scratch, the non-magnetic substance inside the scratch is not removed even by the cleaning operation, and it is possible to evaluate the scratch detection performance with high reproducibility. , It is possible to provide a specimen for magnetic particle inspection.

更に、本発明の磁粉探傷検査用試験体の製造方法は、真空はマイナス70kPa以下であるので、洗浄作業によっても傷内部の非磁性物質は除去されず、再現性の高い傷検出性能評価が可能な、磁粉探傷検査用試験体を提供することが可能である。 Further, in the method for manufacturing the magnetic particle flaw detection test piece of the present invention, since the vacuum is minus 70 kPa or less, the non-magnetic substance inside the scratch is not removed even by the cleaning work, and the scratch detection performance with high reproducibility can be evaluated. It is possible to provide a test piece for magnetic particle flaw detection inspection.

本実施形態に係る磁粉探傷検査用試験体の斜視図である。It is a perspective view of the magnetic particle inspection test piece which concerns on this embodiment. 図1のA−A断面図である。FIG. 1 is a sectional view taken along the line AA of FIG. 本実施形態に係る別の磁粉探傷検査用試験体の斜視図である。It is a perspective view of another magnetic particle inspection test piece which concerns on this embodiment. 図3のB−B断面図である。FIG. 3 is a sectional view taken along line BB in FIG. 試験体の蛍光磁粉探傷検査の発光量の角度依存性である。It is the angle dependence of the amount of light emitted from the fluorescent magnetic particle inspection of the test piece. 実施例1の試験前の拡大写真である。It is an enlarged photograph before the test of Example 1. 実施例1のクリーニング後の拡大写真である。It is an enlarged photograph after cleaning of Example 1. 比較例1の試験前の拡大写真である。It is an enlarged photograph before the test of Comparative Example 1. 比較例1のクリーニング後の拡大写真である。It is an enlarged photograph after cleaning of Comparative Example 1.

磁粉探傷検査システムは微細な傷を対象とする場合は、通常、蛍光物質を添加した蛍光磁粉をもちいる。鉄製ビレットなどの磁性体の被検査物を、軸通電法あるいはコイル法等により磁化すると、表面の傷または表面に近い傷より磁束が漏洩する。ここに磁粉を塗布すると、磁束に磁粉が吸着され集積する。この蛍光磁粉に紫外線を照射すると蛍光を発し、蛍光磁粉指示模様を得ることができる。 The magnetic particle inspection system usually uses fluorescent magnetic powder to which a fluorescent substance is added when targeting fine scratches. When a magnetic object to be inspected, such as an iron billet, is magnetized by an axial energization method, a coil method, or the like, magnetic flux leaks from scratches on the surface or scratches near the surface. When magnetic powder is applied here, the magnetic powder is adsorbed by the magnetic flux and accumulated. When this fluorescent magnetic powder is irradiated with ultraviolet rays, it emits fluorescence, and a fluorescent magnetic powder instruction pattern can be obtained.

軸通電法は、長物の磁性体検査物に軸方向に電流を通電し、電流の方向とは直角方向に発生する磁場を用いる。磁場の方向に対して直角方向の傷に対して感度があるため、この場合、軸方向の傷を検出することが可能である。 The axial energization method uses a magnetic field in which an electric current is applied to a long magnetic material inspection object in the axial direction and generated in a direction perpendicular to the direction of the electric current. In this case, it is possible to detect axial scratches because it is sensitive to scratches perpendicular to the direction of the magnetic field.

コイル法は、長物の磁性体検査物の軸方向に外部から磁場を加える。コイルの磁極と被検査体とで磁気回路を形成して行う。この場合も磁場の方向に対して直角方向の傷に対して感度があるため、周方向の傷を検出することが可能である。 In the coil method, a magnetic field is applied from the outside in the axial direction of a long magnetic material inspection object. A magnetic circuit is formed by the magnetic poles of the coil and the object to be inspected. In this case as well, since it is sensitive to scratches in the direction perpendicular to the direction of the magnetic field, it is possible to detect scratches in the circumferential direction.

コイル法と軸通電法の交流による複合磁化では、互いに直交するコイル法と軸通電法の磁場を合成して方向性が回転する磁場を発生させる。この回転する磁場によって全方向の傷を検出することが可能である。 In the combined magnetization of the coil method and the axial energization method, the magnetic fields of the coil method and the axial energization method, which are orthogonal to each other, are combined to generate a magnetic field whose directionality rotates. It is possible to detect scratches in all directions by this rotating magnetic field.

一方、この磁粉探傷検査システムが正常に稼働しているかどうか、あるいは、蛍光磁粉液が適切かどうかを診断する上で、自然または人工的につくられた傷を用いて性能評価をする必要がある。 On the other hand, in order to diagnose whether this magnetic particle inspection system is operating normally or whether the fluorescent magnetic particle solution is appropriate, it is necessary to evaluate the performance using natural or artificially created scratches. ..

傷に対して直角方向に磁場を加えた場合、被検査体が鉄などの強磁性体である場合には被検査体の透磁率は傷の間隙の透磁率に比べて非常に大きいため、傷部に磁極が発生する。ここに磁粉を付与すると、磁粉が磁極からもれ出た磁束に捕捉され集積する。もしこの傷が開口していると、傷の内部に磁粉が入り込むことになる。この傷内部に入り込んだ磁粉の除去は、被検査物の消磁を行い、たわしなどで掻き出す必要があり、非常に困難である。傷内の磁粉が完全に除去できない状態で再利用すると除去されなかった磁紛が再試験時の結果に影響を及ぼす。すなわち、本来の性能以上の傷検出性能を示す結果となる場合がある。 When a magnetic field is applied in the direction perpendicular to the scratch, if the object to be inspected is a ferromagnetic material such as iron, the magnetic permeability of the object to be inspected is much larger than the magnetic permeability of the gap between the scratches. A magnetic pole is generated in the part. When magnetic powder is applied here, the magnetic powder is captured by the magnetic flux leaking from the magnetic poles and accumulated. If this scratch is open, magnetic particles will get inside the scratch. It is very difficult to remove the magnetic powder that has entered the inside of the scratch because it is necessary to degauss the object to be inspected and scrape it out with a scrubbing brush or the like. If the magnetic powder in the scratch is reused in a state where it cannot be completely removed, the magnetic powder that is not removed affects the result at the time of retesting. That is, the result may show scratch detection performance higher than the original performance.

磁粉探傷検査用試験体として鉄などの強磁性体の材料を用いて、図1に示した試験体1を作成する。図2はA−Aの断面図である。人工傷2はレーザー加工または放電加工で作成する。幅は10〜100μm、長さ2〜20mm、深さ0.1〜3.0mmである。この傷2は軸方向であり、軸通電法において有効である。この傷2には、樹脂である非磁性物質3が略底部4まで含浸されている。試験体の表面の傷の内部に含浸されなかった樹脂である非磁性物質は、固化した後カッターナイフなどを用いて除去する。 The test piece 1 shown in FIG. 1 is prepared by using a material of a ferromagnetic material such as iron as a test piece for magnetic particle inspection. FIG. 2 is a cross-sectional view taken along the line AA. The artificial scratch 2 is created by laser processing or electric discharge machining. The width is 10 to 100 μm, the length is 2 to 20 mm, and the depth is 0.1 to 3.0 mm. This scratch 2 is in the axial direction and is effective in the axial energization method. The scratch 2 is impregnated with a non-magnetic substance 3 which is a resin up to substantially the bottom 4. The non-magnetic substance, which is a resin that has not been impregnated inside the scratches on the surface of the test piece, is solidified and then removed using a cutter knife or the like.

さらに本発明の別の実施形態として、図3に試験体11を示す。図4はB−Bの断面図である。人工傷12は上述と同様に作成され、周方向であり、コイル法において有効である。この人工傷12には樹脂である非磁性物質13が略底部14まで含浸されている。 Further, as another embodiment of the present invention, the test body 11 is shown in FIG. FIG. 4 is a cross-sectional view of BB. The artificial scratch 12 is created in the same manner as described above, is in the circumferential direction, and is effective in the coil method. The artificial scratch 12 is impregnated with a non-magnetic substance 13 which is a resin up to substantially the bottom 14.

磁粉探傷検査用試験体として、図1の軸方向の傷や、図3の周方向の傷以外に、不図示の斜め方向の傷であっても良い。この斜め方向の傷は、斜め方向に磁場を発生させるコイル法と軸通電法の交流による複合磁化に有効である。 As the magnetic particle inspection test piece, in addition to the axial scratches in FIG. 1 and the circumferential scratches in FIG. 3, diagonal scratches (not shown) may be used. This oblique scratch is effective for the combined magnetization of the coil method and the axial energization method, which generate a magnetic field in the oblique direction.

図1や3の被検査物は円柱状であるが、角柱状やその他の形状であっても良い。 The object to be inspected in FIGS. 1 and 3 has a columnar shape, but may have a prismatic shape or other shape.

傷2、12に含浸させる非磁性物質3、13は樹脂であり、粘度70Pa・s以下のシリコーンが好適である。粘度が70Pa・sを超えると傷の内部の空気が真空中に出てこない為、傷深部まで含浸する事が出来ない。さらに、樹脂として、エポキシ樹脂やワニスなどの天然樹脂であっても良い。 The non-magnetic substances 3 and 13 impregnated in the scratches 2 and 12 are resins, and silicone having a viscosity of 70 Pa · s or less is preferable. If the viscosity exceeds 70 Pa · s, the air inside the scratch does not come out into the vacuum, so it is not possible to impregnate the deep part of the scratch. Further, the resin may be a natural resin such as an epoxy resin or a varnish.

通常の試験体を用いて磁粉探傷検査を行うと、傷の開口部から内部に磁粉が入り込む。これに紫外線を照射し、磁粉指示模様を観察する際、紫外線照明や目視、カメラといった観察部が幅方向に角度が付いていると、視認性が低下する。すなわち、被検査物の表面の垂直方向から撮像しなければならない。幅50μm、長さ5mm、深さ0.3mmの傷の場合は10°の角度があると、約50%明るさが低下する。 When a magnetic particle flaw detection inspection is performed using a normal test piece, magnetic powder enters the inside through the opening of the scratch. When irradiating this with ultraviolet rays and observing the magnetic powder instruction pattern, if the observation unit such as ultraviolet illumination, visual inspection, or a camera is angled in the width direction, the visibility is deteriorated. That is, the image must be taken from the vertical direction of the surface of the object to be inspected. In the case of a scratch having a width of 50 μm, a length of 5 mm, and a depth of 0.3 mm, an angle of 10 ° reduces the brightness by about 50%.

一度磁粉探傷検査に使用した試験体を再利用する際には、磁粉を予め除去する必要がある。まず、被検査物を消磁しなければならない。傷内部の磁粉はたわし等で機械的に除去した後、超音波洗浄にて数分間洗浄する必要がある。傷内部に磁粉が残存すると、本来の磁粉探傷システムの性能で付着した磁粉以外に残存した磁粉も評価してしまい、性能を過大評価してしまう。 When reusing a test piece once used for magnetic particle inspection, it is necessary to remove magnetic powder in advance. First, the object to be inspected must be degaussed. After mechanically removing the magnetic powder inside the scratch with a scrubbing brush or the like, it is necessary to wash it with ultrasonic cleaning for several minutes. If magnetic powder remains inside the scratch, the remaining magnetic powder will be evaluated in addition to the magnetic powder adhered by the performance of the original magnetic particle inspection system, and the performance will be overestimated.

この試験体の表面の傷内部に、手などによって、シリコーンなどの樹脂である非磁性物質を塗り込んだ場合、傷内部まで挿入することができず、加工面表面もしくは傷の表層部のみに薄く塗布されるだけとなる。この場合、たわし等で機械的に試験面を洗浄すると、練り込んだシリコーンなどの樹脂が容易に除去されてしまう。 When a non-magnetic substance such as silicone is applied to the inside of the scratch on the surface of the test piece by hand, it cannot be inserted into the scratch and is thin only on the surface of the machined surface or the surface layer of the scratch. It will only be applied. In this case, if the test surface is mechanically cleaned with a scrubbing brush or the like, the kneaded resin such as silicone is easily removed.

また、引用文献1のように、傷表面に非磁性体の0.1〜0.5mm程度の厚さの薄いシートを貼り付ける方法もある。この場合、シートの厚みはより薄い方が好ましいが、薄い0.1mm以下のシートは強度的に問題がある。得られる磁粉指示模様はシートの厚みに依存して不鮮明になり好ましく無い。 Further, as in Cited Document 1, there is also a method of attaching a thin sheet of non-magnetic material having a thickness of about 0.1 to 0.5 mm to the scratch surface. In this case, the thickness of the sheet is preferably thinner, but a thin sheet of 0.1 mm or less has a problem in strength. The obtained magnetic particle instruction pattern becomes unclear depending on the thickness of the sheet, which is not preferable.

そこで、本発明では、真空を利用して傷内部までシリコーンなどの樹脂を含浸する。作成された人工傷2、12の表面の傷開口部にシリコーンなどの樹脂の非磁性物質を0.8mm以下の厚みで塗る。これを真空器に入れ、真空度をマイナス70kPa以下の真空で排気する。すると傷内部の空気が抜ける。ここで大気圧に戻すと、傷表面の非磁性物質が真空で引かれ、図2や図4に示す様に、傷の略底部4、14まで含浸する。シリコーンなどの樹脂の非磁性物質が固まった後、試験体の表面の傷の内部に含浸されなかったシリコーンを除去し、図2や図4に示す非磁性物質3、13となる。 Therefore, in the present invention, a resin such as silicone is impregnated into the inside of the scratch using a vacuum. A non-magnetic resin substance such as silicone is applied to the scratch openings on the surfaces of the artificial scratches 2 and 12 created to a thickness of 0.8 mm or less. This is put in a vacuum chamber and evacuated with a vacuum degree of -7 kPa or less. Then, the air inside the wound is released. When the pressure is returned to atmospheric pressure, the non-magnetic substance on the surface of the scratch is evacuated and impregnated to substantially the bottoms 4 and 14 of the scratch as shown in FIGS. 2 and 4. After the non-magnetic substance of the resin such as silicone has hardened, the silicone that has not been impregnated inside the scratches on the surface of the test piece is removed to obtain the non-magnetic substances 3 and 13 shown in FIGS. 2 and 4.

真空を利用して傷内部までシリコーンなどの樹脂を含浸する際の真空度がマイナス70kPaより低真空の場合、含浸は傷の略底部まで到達せず、非磁性物質の充填が不完全になる。この場合、たわしによるクリーニングによって容易に除去されてしまう場合がある。 When the degree of vacuum when impregnating a resin such as silicone to the inside of a scratch using a vacuum is lower than minus 70 kPa, the impregnation does not reach substantially the bottom of the scratch, and the filling of a non-magnetic substance becomes incomplete. In this case, it may be easily removed by cleaning with a scrubbing brush.

樹脂である非磁性物質としてはシリコーンが好適である。シリコーンの粘度は70Pa・s以下が好ましい。シリコーンの厚みは以下の表1に示した様に粘度に依存し、粘度が大きい場合は薄く塗布する必要がある。表1は幅50μm、長さ5mm、深さ0.3mmの傷に適用した際のデータである。シリコーンの粘度が70Pa・sより大きい場合、あるいは塗布する厚さが0.8mmより厚い場合は、傷内部の空気が真空中に出てこない為、傷内部に含浸する事が出来ない。 Silicone is suitable as the non-magnetic substance that is a resin. The viscosity of the silicone is preferably 70 Pa · s or less. The thickness of the silicone depends on the viscosity as shown in Table 1 below, and when the viscosity is high, it is necessary to apply it thinly. Table 1 shows the data when applied to a scratch having a width of 50 μm, a length of 5 mm, and a depth of 0.3 mm. If the viscosity of the silicone is greater than 70 Pa · s, or if the thickness to be applied is thicker than 0.8 mm, the air inside the scratch does not come out into the vacuum, so it cannot be impregnated inside the scratch.

本発明の試験体1、11は、真空槽に入らない大型の場合、可搬式真空装置を用いて真空にする。オーリング等の真空シールを有する吸引器を傷部に密着させて、真空吸引することで、傷に非磁性物質を含浸させる。真空ポンプとして、ロータリーポンプ、ダイアフラムポンプ等を用いる。手動式ポンプを使用しても良い。 When the test bodies 1 and 11 of the present invention are large enough not to fit in the vacuum chamber, they are evacuated by using a portable vacuum device. A suction device having a vacuum seal such as an O-ring is brought into close contact with the wound portion and vacuum suction is performed to impregnate the wound with a non-magnetic substance. A rotary pump, a diaphragm pump, or the like is used as the vacuum pump. A manual pump may be used.

本発明で作成された試験体1、11の表面に磁粉を塗布した場合、磁粉は傷2、12の内部に入り込まない。この為、照明や観察部が斜めに配置されていても磁粉指示模様を観察する事ができる。また、磁粉が傷2、12内部に入り込まないため、検査後のクリーニングが容易である。 When the magnetic powder is applied to the surfaces of the test bodies 1 and 11 created by the present invention, the magnetic powder does not enter the inside of the scratches 2 and 12. Therefore, the magnetic particle instruction pattern can be observed even if the illumination or the observation unit is arranged diagonally. Further, since the magnetic powder does not enter the inside of the scratches 2 and 12, cleaning after the inspection is easy.

磁粉探傷検査法では、まず、鉄鋼などの強磁性体の被検査物の表面を溶剤などで清浄にした後、乾燥させる。次に、電磁石等により強磁性体を磁化する。磁化している最中に磁粉を掛ける連続法と、磁場を除いた後に検出する残留法がある。磁粉は、空気中に磁粉を散布して振り掛ける乾式法と、水や有機溶媒を用いる湿式法がある。蛍光物質が付着した磁粉を振り掛ける。磁粉を振り掛けたところに傷部があり、漏洩磁場があると、そこに磁粉がとどまる。紫外線を照射すると磁粉に付けられた蛍光物質が発光して、傷部の指示模様が得られる。傷部の判定は、目視による。あるいは、撮像装置によって画像化し、コンピューターにより自動的に判定する。傷部が検出された箇所にはマーキングを行い、印を付ける場合がある。コンピューターによる自動判定の場合、自動的にマーキングすることで効率良く傷部が確認できる。 In the magnetic particle inspection method, first, the surface of a ferromagnetic material such as steel to be inspected is cleaned with a solvent or the like, and then dried. Next, the ferromagnet is magnetized by an electromagnet or the like. There are a continuous method in which magnetic powder is applied during magnetization and a residual method in which magnetic powder is detected after removing the magnetic field. There are two types of magnetic powder: a dry method in which magnetic powder is sprayed and sprinkled in the air, and a wet method in which water or an organic solvent is used. Sprinkle magnetic powder with fluorescent material on it. There is a scratched part where the magnetic powder is sprinkled, and if there is a leaking magnetic field, the magnetic powder stays there. When irradiated with ultraviolet rays, the fluorescent substance attached to the magnetic powder emits light, and an indicated pattern of the scratched portion can be obtained. The scratched part is judged visually. Alternatively, it is imaged by an imaging device and automatically determined by a computer. Marking may be performed on the portion where a scratch is detected. In the case of automatic judgment by a computer, the scratched part can be confirmed efficiently by marking automatically.

探傷検査が終わった被検査物は、消磁、洗浄、防錆などの後処理を行う。 The object to be inspected after the flaw detection inspection is subjected to post-treatment such as degaussing, cleaning, and rust prevention.

本発明の磁粉探傷検査用試験体は、被検査物である鉄などの強磁性体部材に、人工的にレーザー加工もしくは放電加工で傷を作り、この傷の表面にシリコーンなどの樹脂である非磁性物質を0.8mm以下の厚みで塗布する。これを真空装置または可搬式真空器を用いてマイナス70kPa以下の真空にさらして傷内部を真空にし、これを真空状態から大気圧に戻す過程で表面の非磁性物質を傷内部の略底部まで含浸させる。シリコーンなどの樹脂である非磁性物質が固化したところで、傷表面の余剰な非磁性物質を除去する。
この試験体を磁粉探傷検査に用いると、照明角度や観測角度によらない磁粉指示模様を形成することが出来る。さらに、使用後は、傷内部に磁粉が入り込まない構造なので、容易に磁粉を除去することが可能であり、再現性が高い。
In the magnetic particle inspection test piece of the present invention, a scratch is artificially made on a ferromagnetic member such as iron, which is an object to be inspected, by laser processing or electric discharge machining, and the surface of the scratch is made of a resin such as silicone. The magnetic substance is applied to a thickness of 0.8 mm or less. This is exposed to a vacuum of minus 70 kPa or less using a vacuum device or a portable vacuum device to evacuate the inside of the scratch, and in the process of returning this from the vacuum state to atmospheric pressure, the non-magnetic substance on the surface is impregnated to almost the bottom inside the scratch. Let me. When the non-magnetic substance, which is a resin such as silicone, has solidified, the excess non-magnetic substance on the scratch surface is removed.
When this test piece is used for magnetic particle inspection, it is possible to form a magnetic particle instruction pattern regardless of the illumination angle or observation angle. Further, since the structure does not allow the magnetic powder to enter the inside of the scratch after use, the magnetic powder can be easily removed and the reproducibility is high.

次に、実施例を挙げて本発明を具体的に説明するが、これらの実施例は何ら本発明を制限するものではない。 Next, the present invention will be specifically described with reference to examples, but these examples do not limit the present invention in any way.

(実施例1)
本発明の実施例1として、図1に示した様に、鉄棒に、軸方向に、幅50μm、長さ5mm、深さ0.3mmの人工傷をレーザー加工法で作成した。この試験体に粘度40Pa・sのシリコーンを0.5mmの厚さで塗布した後、マイナス75kPaの真空で傷内部の空気を除去し、これを大気圧に戻す過程で傷内部にシリコーンを略底部まで含浸させた。この試験体を軸通電法で500Aの電流を5秒間通電して磁化した。蛍光磁粉を塗布して磁粉指示模様を得た。
(Example 1)
As Example 1 of the present invention, as shown in FIG. 1, an artificial scratch having a width of 50 μm, a length of 5 mm, and a depth of 0.3 mm was created on the horizontal bar by a laser processing method. After applying silicone with a viscosity of 40 Pa · s to this test piece to a thickness of 0.5 mm, the air inside the scratch is removed with a vacuum of minus 75 kPa, and in the process of returning this to atmospheric pressure, the silicone is substantially bottomed inside the scratch. Impregnated to. This test piece was magnetized by energizing a current of 500 A for 5 seconds by the axial energization method. Fluorescent magnetic powder was applied to obtain a magnetic powder instruction pattern.

(比較例1)
比較例1として、実施例1で作成したものと同様の人工傷のある鉄棒に、シリコーンを手で塗り込んだ試験体を作成した。この試験体を軸通電法で磁化し、蛍光磁粉を塗布して磁粉指示模様を得た。
(Comparative Example 1)
As Comparative Example 1, a test piece in which silicone was manually applied to an iron rod having an artificial scratch similar to that prepared in Example 1 was prepared. This test piece was magnetized by the axial energization method, and fluorescent magnetic powder was applied to obtain a magnetic particle instruction pattern.

(比較例2)
比較例2として、実施例1で作成したものと同様の人工傷のある鉄棒をもちい、傷内部には何も充填しない状態の試験体を作成した。この試験体を軸通電法で磁化し、蛍光磁粉を塗布して磁粉指示模様を得た。
(Comparative Example 2)
As Comparative Example 2, a test piece in a state where nothing was filled inside the wound was prepared using an iron rod having an artificial scratch similar to that prepared in Example 1. This test piece was magnetized by the axial energization method, and fluorescent magnetic powder was applied to obtain a magnetic particle instruction pattern.

(磁粉探傷検査)
磁粉探傷検査として得られた磁粉指示模様を比較した。図5に蛍光磁粉光量の角度依存性を示した。角度は傷に対して直角方向の角度である。実施例1および比較例1では、図5の様に傷の幅方向の観測角度を変化させても、指示模様の明るさはほとんど変化しなかった。一方、比較例2では、図5に示した様に、大きな観測角度依存性がみられた。表面に対して垂直方向が最も明るく、観測角度を10°にすると明るさは50%に低下した。
(Magnetic particle inspection)
The magnetic particle instruction patterns obtained as a magnetic particle inspection were compared. FIG. 5 shows the angle dependence of the amount of fluorescent magnetic powder light. The angle is the angle in the direction perpendicular to the scratch. In Example 1 and Comparative Example 1, the brightness of the indicated pattern hardly changed even when the observation angle in the width direction of the scratch was changed as shown in FIG. On the other hand, in Comparative Example 2, as shown in FIG. 5, a large observation angle dependence was observed. It was brightest in the direction perpendicular to the surface, and when the observation angle was set to 10 °, the brightness decreased to 50%.

(クリーニングと再利用)
試験体の再利用の為に、消磁を行い、ブラッシングを行った。実施例1と比較例1について、表面の拡大写真を図6A、6B、7A、7Bに示す。図の右下に0.1mmのスケールを表示した。図6Aは実施例1の使用前の状態を示し、図6Bは実施例1のクリーニング後を示す。実施例1では、クリーニング後、磁粉は除去されたが傷内部のシリコーンは除去されず、再利用可能である。図7Aは比較例1の使用前の状態を示し、図7Bは比較例1のクリーニング後を示す。比較例1の場合、磁粉は除去されたが、人工傷内のシリコーンも一部取り除かれてしまった。比較例1は再利用すると傷内部に磁粉が入り込む為、再現性が得られない。比較例2の場合、人工傷内部の磁粉は完全に除去する事が出来なかった。
(Cleaning and reuse)
In order to reuse the test piece, degaussing and brushing were performed. Enlarged photographs of the surfaces of Example 1 and Comparative Example 1 are shown in FIGS. 6A, 6B, 7A, and 7B. A scale of 0.1 mm is displayed at the lower right of the figure. FIG. 6A shows the state before use of Example 1, and FIG. 6B shows the state after cleaning of Example 1. In Example 1, after cleaning, the magnetic powder was removed, but the silicone inside the scratch was not removed, and the material can be reused. FIG. 7A shows the state of Comparative Example 1 before use, and FIG. 7B shows the state after cleaning of Comparative Example 1. In the case of Comparative Example 1, the magnetic powder was removed, but a part of the silicone in the artificial wound was also removed. In Comparative Example 1, if it is reused, magnetic powder enters the inside of the scratch, so that reproducibility cannot be obtained. In the case of Comparative Example 2, the magnetic powder inside the artificial wound could not be completely removed.

(結果のまとめ)
磁粉探傷検査用試験体の実施例として、実施例1、比較例1、比較例2の磁粉探傷検査を行った結果、実施例1と比較例1は観測角度に依存しない磁粉指示模様が得られた。一方比較例2では、磁粉指示模様が得られたが、測定角度が変わると明るさが低減する不備があった。
さらに、クリーニングでは、実施例1と比較例1は磁粉を除去できたが、比較例2は傷の中に磁粉が残存した。また、再利用については、実施例1は良好であったが、比較例1は傷内に塗り込んだシリコーンがクリーニングの際に除去されてしまった為、再利用は出来なかった。比較例2も、傷内部に磁粉が残存した為、再利用出来なかった。
(Summary of results)
As an example of the magnetic particle inspection test piece, as a result of performing the magnetic particle inspection of Example 1, Comparative Example 1 and Comparative Example 2, the magnetic particle instruction pattern of Example 1 and Comparative Example 1 was obtained regardless of the observation angle. It was. On the other hand, in Comparative Example 2, the magnetic particle instruction pattern was obtained, but there was a defect that the brightness was reduced when the measurement angle was changed.
Further, in the cleaning, the magnetic powder could be removed in Example 1 and Comparative Example 1, but the magnetic powder remained in the scratches in Comparative Example 2. Regarding reuse, Example 1 was good, but Comparative Example 1 could not be reused because the silicone applied to the inside of the wound was removed during cleaning. Comparative Example 2 also could not be reused because magnetic powder remained inside the wound.

本開示の磁粉探傷検査用試験体は、軸通電法やコイル法などの磁粉探傷検査において、磁粉探傷検査システムの磁場や電流の最適化や、用いる磁粉の粒径、濃度などの最適化に関して、再現性の高い傷検出性能評価を行う事ができる。 The specimen for magnetic particle inspection of the present disclosure relates to the optimization of the magnetic field and current of the magnetic particle inspection system and the optimization of the particle size and concentration of the magnetic powder used in the magnetic particle inspection such as the axial energization method and the coil method. It is possible to evaluate the scratch detection performance with high reproducibility.

1、11 磁粉探傷検査用試験体
2、12 傷
3、13 非磁性物質
4、14 底部
1,11 Magnetic particle inspection test piece 2,12 Scratch 3,13 Non-magnetic substance 4,14 Bottom

Claims (6)

磁粉探傷検査システムの傷検出性能を評価する鉄などの強磁性体の試験体において、
傷の内部に非磁性物質を含浸することを特徴とする磁粉探傷検査用試験体。
In a test piece of a ferromagnetic material such as iron for evaluating the scratch detection performance of a magnetic particle inspection system,
A magnetic particle inspection test piece characterized by impregnating the inside of a scratch with a non-magnetic substance.
前記非磁性物質は、前記傷の略底部まで含浸していることを特徴とする、
請求項1に記載の磁粉探傷検査用試験体。
The non-magnetic substance is impregnated up to substantially the bottom of the scratch.
The test piece for magnetic particle inspection according to claim 1.
前記非磁性物質は、シリコーンであることを特徴とする、
請求項1または2に記載の磁粉探傷検査用試験体。
The non-magnetic substance is silicone.
The test piece for magnetic particle inspection according to claim 1 or 2.
前記試験体の表面の前記傷の内部に含浸されなかった前記非磁性物質は、除去されていることを特徴とする、
請求項1乃至3のいずれかに記載の磁粉探傷検査用試験体。
The non-magnetic substance that has not been impregnated inside the scratches on the surface of the test piece has been removed.
The test piece for magnetic particle inspection according to any one of claims 1 to 3.
磁粉探傷検査システムの傷検出性能を評価する試験体の製造方法において、
傷の表面に非磁性物質を塗布する工程と、
真空を用いて前記傷の内部の略底部まで前記非磁性物質を含浸する工程と、
前記傷の内部に含浸されなかった前記非磁性物質を除去する工程と、を有することを特徴とする、
磁粉探傷検査用試験体の製造方法。
In the manufacturing method of the test piece for evaluating the scratch detection performance of the magnetic particle inspection system
The process of applying a non-magnetic substance to the surface of the scratch,
A step of impregnating the non-magnetic substance to substantially the bottom inside the scratch using a vacuum, and
It is characterized by having a step of removing the non-magnetic substance that has not been impregnated inside the scratch.
A method for manufacturing a specimen for magnetic particle inspection.
前記真空はマイナス70kPa以下であることを特徴とする、
請求項5に記載の磁粉探傷検査用試験体の製造方法。
The vacuum is characterized by being minus 70 kPa or less.
The method for producing a test piece for magnetic particle inspection according to claim 5.
JP2019119138A 2019-06-26 2019-06-26 Specimen for magnetic particle inspection and its manufacturing method Active JP6985335B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019119138A JP6985335B2 (en) 2019-06-26 2019-06-26 Specimen for magnetic particle inspection and its manufacturing method
CN202010577423.5A CN112147214A (en) 2019-06-26 2020-06-22 Test body for magnetic powder inspection and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119138A JP6985335B2 (en) 2019-06-26 2019-06-26 Specimen for magnetic particle inspection and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021004808A true JP2021004808A (en) 2021-01-14
JP6985335B2 JP6985335B2 (en) 2021-12-22

Family

ID=73891989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119138A Active JP6985335B2 (en) 2019-06-26 2019-06-26 Specimen for magnetic particle inspection and its manufacturing method

Country Status (2)

Country Link
JP (1) JP6985335B2 (en)
CN (1) CN112147214A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761944A (en) * 1980-10-01 1982-04-14 Tokushu Toryo Kk Control method of magnetic powder concentration in wet type magnetic powder flaw detection test
US4661369A (en) * 1985-09-05 1987-04-28 The United States Of America As Represented By The Secretary Of The Air Force Non-destructive evaluation method for coated carbon-carbon composites
JPH0943203A (en) * 1995-07-31 1997-02-14 Marktec Corp Estimation jig of magnetic particles for magnetic particle flaw detection method
JP2003014700A (en) * 2001-06-29 2003-01-15 Marktec Corp Foamable fluorescent magnetic powder for wet magnetic powder test and its producing method
JP2005351910A (en) * 1999-10-26 2005-12-22 Hitachi Ltd Defect inspection method and its apparatus
JP2009075098A (en) * 2007-08-30 2009-04-09 Nippon Denji Sokki Kk Apparatus and method for measuring magnetic powder concentration
JP2011507001A (en) * 2007-12-17 2011-03-03 ライフ テクノロジーズ コーポレーション Method for detecting defects in polymer surfaces coated with inorganic materials
JP2011075377A (en) * 2009-09-30 2011-04-14 Nsk Ltd Standard test piece for measuring instrument of nonmetallic inclusion in steel
US20140273240A1 (en) * 2013-03-15 2014-09-18 The Boeing Company Method and system for detecting exposure of composites to high-temperature
KR20180039833A (en) * 2016-10-11 2018-04-19 대우조선해양 주식회사 Anti-corrosion performance enhanced coating composition for the magnetic particle testing and method for magnetic particle testing using the same
CN108373920A (en) * 2018-04-26 2018-08-07 南昌航空大学 A kind of fluorescent penetrant and its application
JP2018194494A (en) * 2017-05-19 2018-12-06 電子磁気工業株式会社 Concentration measuring method of fluorescent magnetic powder liquid, concentration measuring apparatus of fluorescent magnetic powder liquid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1698732A1 (en) * 1989-09-15 1991-12-15 Научно-Исследовательский Институт Интроскопии A standard test sample for checking magnetic-particles test means
JPH10177010A (en) * 1996-12-18 1998-06-30 Hitachi Ltd Damage detection method
JP3614419B2 (en) * 2002-11-25 2005-01-26 川崎重工業株式会社 Magnetic particle inspection method and magnetic particle inspection device
CN105758932A (en) * 2014-12-15 2016-07-13 重庆迅升机车配件有限公司 Magnetic powder flaw detection technology
JP6815140B2 (en) * 2016-09-12 2021-01-20 マークテック株式会社 Magnetic particle flaw detector and magnetic particle flaw detector
CN206648994U (en) * 2017-01-20 2017-11-17 武汉理工大学 A kind of magnaflux for being easy to cylinder periphery to detect

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761944A (en) * 1980-10-01 1982-04-14 Tokushu Toryo Kk Control method of magnetic powder concentration in wet type magnetic powder flaw detection test
US4661369A (en) * 1985-09-05 1987-04-28 The United States Of America As Represented By The Secretary Of The Air Force Non-destructive evaluation method for coated carbon-carbon composites
JPH0943203A (en) * 1995-07-31 1997-02-14 Marktec Corp Estimation jig of magnetic particles for magnetic particle flaw detection method
JP2005351910A (en) * 1999-10-26 2005-12-22 Hitachi Ltd Defect inspection method and its apparatus
JP2003014700A (en) * 2001-06-29 2003-01-15 Marktec Corp Foamable fluorescent magnetic powder for wet magnetic powder test and its producing method
JP2009075098A (en) * 2007-08-30 2009-04-09 Nippon Denji Sokki Kk Apparatus and method for measuring magnetic powder concentration
JP2011507001A (en) * 2007-12-17 2011-03-03 ライフ テクノロジーズ コーポレーション Method for detecting defects in polymer surfaces coated with inorganic materials
JP2011075377A (en) * 2009-09-30 2011-04-14 Nsk Ltd Standard test piece for measuring instrument of nonmetallic inclusion in steel
US20140273240A1 (en) * 2013-03-15 2014-09-18 The Boeing Company Method and system for detecting exposure of composites to high-temperature
KR20180039833A (en) * 2016-10-11 2018-04-19 대우조선해양 주식회사 Anti-corrosion performance enhanced coating composition for the magnetic particle testing and method for magnetic particle testing using the same
JP2018194494A (en) * 2017-05-19 2018-12-06 電子磁気工業株式会社 Concentration measuring method of fluorescent magnetic powder liquid, concentration measuring apparatus of fluorescent magnetic powder liquid
CN108373920A (en) * 2018-04-26 2018-08-07 南昌航空大学 A kind of fluorescent penetrant and its application

Also Published As

Publication number Publication date
CN112147214A (en) 2020-12-29
JP6985335B2 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
Raj et al. Practical non-destructive testing
JP6815140B2 (en) Magnetic particle flaw detector and magnetic particle flaw detector
JP5531286B2 (en) Magnetic powder concentration measuring apparatus and magnetic powder concentration measuring method
JP4184976B2 (en) Fluorescent magnetic particle inspection device and fluorescent magnetic particle inspection method
JP6985335B2 (en) Specimen for magnetic particle inspection and its manufacturing method
US4428672A (en) Variable threshold workpiece examination
US20100142753A1 (en) device and method for monitoring a magnetic powder
JP2010276538A (en) Detection method of crack defect
CN110658255A (en) Magnetic powder detection method based on physical mode
JPH06300739A (en) Fluorescent magnetic-particle flaw detection method
JP6603265B2 (en) Concentration measuring method of fluorescent magnetic powder liquid, concentration measuring apparatus of fluorescent magnetic powder liquid
JP2015203622A (en) Portable interpole-type magnetic particle flaw detector and operation method thereof
JP5484953B2 (en) Magnetic particle testing method
JP2018189424A (en) Penetrant test fast drying developer and penetrant test method using developer thereof
JP7281979B2 (en) Electrodes for magnetic particle flaw detectors
JP6775410B2 (en) Magnetic particle flaw detector, magnetic particle flaw detector method
JPH0743348A (en) Wet magnetic powder flaw detection testing method and removing device for surplus magnetic powder used for it
JPH09113674A (en) Remote inspection device and its inspection method
JPS6225253A (en) Magnetic powder flaw detecting method
JP2008224241A (en) Magnetic powder flaw detection method
JP2013221743A (en) Scratch detection sensitivity adjustment method, magnetic particle inspection method, and magnetic particle inspection device in magnetic particle inspection
Thoo et al. An improved method of projected area determination in nanoindentation using image processing with sub-pixel edge location
JP5420343B2 (en) Magnetic particle inspection equipment
EP2147299B1 (en) Device and method for controlling test material
Iwashita et al. Update on study of welding porosity in Nb EBW

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211125

R150 Certificate of patent or registration of utility model

Ref document number: 6985335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150