JP2020176590A - Well characteristic estimation system of geothermal power generation plant, well characteristic estimation method and well characteristic estimation program therefor, and geothermal power generation plant - Google Patents

Well characteristic estimation system of geothermal power generation plant, well characteristic estimation method and well characteristic estimation program therefor, and geothermal power generation plant Download PDF

Info

Publication number
JP2020176590A
JP2020176590A JP2019081002A JP2019081002A JP2020176590A JP 2020176590 A JP2020176590 A JP 2020176590A JP 2019081002 A JP2019081002 A JP 2019081002A JP 2019081002 A JP2019081002 A JP 2019081002A JP 2020176590 A JP2020176590 A JP 2020176590A
Authority
JP
Japan
Prior art keywords
well
flow rate
steam
hot water
geothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019081002A
Other languages
Japanese (ja)
Inventor
福田 憲弘
Norihiro Fukuda
憲弘 福田
象二郎 齊藤
Shojiro Saito
象二郎 齊藤
一記 辻井
Kazuki Tsujii
一記 辻井
嘉春 天野
Yoshiharu Amano
嘉春 天野
聖規 川副
Seiki Kawazoe
聖規 川副
和己 大里
Kazumi Osato
和己 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinetsu Gijutsu Kaihatsu KK
Mitsubishi Power Ltd
West Japan Engineering Consultants Inc
Original Assignee
Chinetsu Gijutsu Kaihatsu KK
Mitsubishi Hitachi Power Systems Ltd
West Japan Engineering Consultants Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinetsu Gijutsu Kaihatsu KK, Mitsubishi Hitachi Power Systems Ltd, West Japan Engineering Consultants Inc filed Critical Chinetsu Gijutsu Kaihatsu KK
Priority to JP2019081002A priority Critical patent/JP2020176590A/en
Publication of JP2020176590A publication Critical patent/JP2020176590A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

To provide a well characteristic estimation system of a geothermal power generation plant, its well characteristic estimation method and well characteristic estimation program, and a geothermal power generation plant capable of making an appropriate flow rate of a geothermal fluid undergoing air jetting from a well by accurately grasping a change in a well characteristic.SOLUTION: A well characteristic estimation system includes an acquisition part for acquiring information on a steam flow rate of a geothermal fluid and a hot water flow rate of the geothermal fluid to pressure when the pressure undergoing air jetting from a well 2 fluctuates in the case that a geothermal power generation plant 1 for performing power generation by using the geothermal fluid undergoing air jetting from at least one well 2 operates, and an estimation part for estimating a well characteristic showing relations of the pressure undergoing air jetting from the well, the steam flow rate, and the hot water flow rate on the basis of the information acquired by the acquisition part.SELECTED DRAWING: Figure 1

Description

本発明は、地熱発電プラントの坑井特性推定システム、及びその坑井特性推定方法並びに坑井特性推定プログラム、地熱発電プラントに関するものである。 The present invention relates to a well characteristic estimation system for a geothermal power plant, a well characteristic estimation method thereof, a well characteristic estimation program, and a geothermal power plant.

地熱発電プラントでは、坑井から噴気する地熱流体(主として蒸気及び熱水の混合流体)から分離した蒸気を蒸気タービンに導入して発電を行っている。このため、複数の坑井から抽出した地熱流体を合流して利用するにあたり、各坑井における坑井特性(噴気流体の圧力と流量の特性)に基づいて噴気される地熱流体の流量等を制御し、発電電力の最大化等を図る坑井管理が行われている(例えば、特許文献1)。 In a geothermal power plant, steam separated from a geothermal fluid (mainly a mixed fluid of steam and hot water) ejected from a well is introduced into a steam turbine to generate electricity. Therefore, when the geothermal fluids extracted from a plurality of wells are merged and used, the flow rate of the geothermal fluid to be blown is controlled based on the well characteristics (pressure and flow rate characteristics of the fumes fluid) in each well. However, well management is being carried out to maximize the generated power (for example, Patent Document 1).

特開平2−232495号公報Japanese Unexamined Patent Publication No. 2-232495

しかしながら、坑井の運用にあたり、例えば竣工時に行われる噴気試験(初期に行われる試験等)により初期の坑井特性(噴気圧力(坑口圧力)に対して蒸気流量と熱水流量とを関係付けた特性)を取得する。初期の坑井特性が取得された後は、継続して運用されるために途中で坑井特性の計測を行わないことが多い。坑井が発電設備系統に併入された後(発電プラントの稼働後)では、坑井特性を取得するために坑井を発電設備系統から解列等しなければならず、坑井の解列により発電電力の低下等を招く恐れがあるため、特別な事情が無い限り坑井特性を取得することは容易ではなかった。すなわち、運用に伴う坑井特性の変化を把握することはなかった。 However, in the operation of the well, for example, the steam flow rate and the hot water flow rate were related to the initial well characteristics (fumarole pressure (wellhead pressure)) by the fumarole test (test conducted at the initial stage, etc.) performed at the time of completion. Characteristic) is acquired. After the initial well characteristics are acquired, the well characteristics are often not measured in the middle of operation for continuous operation. After the well is integrated into the power generation facility system (after the power plant is in operation), the well must be disconnected from the power generation facility system in order to acquire the characteristics of the well, and the well is disconnected. It was not easy to acquire the well characteristics unless there were special circumstances, because there is a risk that the generated power will decrease. In other words, it was not possible to grasp the changes in well characteristics associated with operation.

一方、坑井は、地熱蒸気の抽出流量を増加しすぎると坑井の減衰が大きくなる場合があり、地熱蒸気の抽出流量を絞って圧力を上げすぎると流量が急に低下する場合がある。このため、坑井特性が変化しているにも関わらず、過去に取得した坑井特性に基づいて坑井管理を行った場合には、坑井の制御が不適切となる場合があり、坑井の減衰(短寿命化)を促進させる可能性があった。特定の坑井が減衰してしまうと、発電電力の低下等を避けるために減衰した坑井に代わる新たな坑井の掘削が必要となり、コストの増加を招く可能性もある。このため、坑井管理は、熟練者の勘と経験のもとで運用されることが多く、坑井の噴気圧力と蒸気流量の適正な調整と、坑井の長寿命化が課題となっている。 On the other hand, in a well, if the extraction flow rate of geothermal steam is increased too much, the attenuation of the well may become large, and if the extraction flow rate of geothermal steam is reduced and the pressure is raised too much, the flow rate may suddenly decrease. For this reason, if well management is performed based on the well characteristics acquired in the past even though the well characteristics have changed, well control may become inappropriate, and the wells may become inappropriate. There was a possibility of promoting the attenuation (shortening of life) of the well. If a specific well is attenuated, it is necessary to excavate a new well in place of the attenuated well in order to avoid a decrease in generated power, which may lead to an increase in cost. For this reason, well management is often operated based on the intuition and experience of experts, and the issues are proper adjustment of fumarolic pressure and steam flow rate in the well and extension of the life of the well. There is.

本発明は、このような事情に鑑みてなされたものであって、坑井特性の変化を正確に把握して、坑井から噴気する地熱流体の流量を適正にすることのできる地熱発電プラントの坑井特性推定システム、及びその坑井特性推定方法並びに坑井特性推定プログラム、地熱発電プラントを提供することを目的とする。 The present invention has been made in view of such circumstances, and is a geothermal power plant capable of accurately grasping changes in well characteristics and optimizing the flow rate of geothermal fluid ejected from the well. It is an object of the present invention to provide a well characteristic estimation system, a well characteristic estimation method thereof, a well characteristic estimation program, and a geothermal power plant.

本発明の第1態様は、少なくとも1つの坑井から噴気された地熱流体を用いて発電を行う地熱発電プラントが稼働している場合において、前記坑井から噴気する圧力が変動した際に、前記圧力に対する前記地熱流体の蒸気流量及び前記地熱流体の熱水流量に係る情報を取得する取得部と、前記取得部において取得した前記情報に基づいて、前記坑井から噴気する前記圧力、前記蒸気流量、及び前記熱水流量の関係を示す坑井特性を推定する推定部と、を備える地熱発電プラントの坑井特性推定システムである。 A first aspect of the present invention is the above, when a geothermal power plant that generates power using a geothermal fluid ejected from at least one well is in operation and the pressure ejected from the well fluctuates. An acquisition unit that acquires information on the steam flow rate of the geothermal fluid and the hot water flow rate of the geothermal fluid with respect to the pressure, and the pressure and the steam flow rate that are ejected from the well based on the information acquired by the acquisition unit. , And an estimation unit for estimating well characteristics indicating the relationship between the hot and cold water flow rates, and a well characteristic estimation system for a geothermal power plant.

上記のような構成によれば、坑井特性は運用に従って変化するものの、地熱発電プラントの稼働中は坑井特性を取得することが困難であったが、運用中に取得した複数の情報により坑井特性を容易に推定することが可能となる。すなわち、坑井の坑井特性をより正確に把握して、坑井から噴気する地熱流体の流量を適正にすることができ、より効率的に坑井管理を行うことが可能となる。より正確に坑井管理を行うことによって、坑井の長寿命化等を図ることが可能となる。 According to the above configuration, although the well characteristics change according to the operation, it was difficult to acquire the well characteristics during the operation of the geothermal power plant, but the well characteristics were obtained based on multiple information acquired during the operation. Well characteristics can be easily estimated. That is, the well characteristics of the well can be grasped more accurately, the flow rate of the geothermal fluid fumarole from the well can be adjusted appropriately, and the well management can be performed more efficiently. By managing the wells more accurately, it is possible to extend the life of the wells.

また、発電プラントが稼働中に取得可能な坑井における噴気圧力、地熱流体の蒸気流量、及び地熱流体の熱水流量の複数の情報に基づいて坑井特性を推定するため、例えば、坑井を発電設備系統に併入したままであっても坑井特性を把握することが可能となる。 In addition, in order to estimate the well characteristics based on a plurality of information of the jet pressure in the well, the steam flow rate of the geothermal fluid, and the hydrothermal flow rate of the geothermal fluid, which can be obtained while the power plant is in operation, for example, a well is used. It is possible to grasp the characteristics of wells even if they are still installed in the power generation equipment system.

上記坑井特性推定システムにおいて、前記推定部は、複数の前記坑井の各々に対して、前記坑井特性を推定することとしてもよい。 In the well characteristic estimation system, the estimation unit may estimate the well characteristics for each of the plurality of wells.

上記のような構成によれば、複数の坑井に対して、各々の坑井における坑井特性を推定するため、各々の坑井特性をより正確に把握して、各々の坑井から噴気する地熱流体の流量を適正にすることができ、各坑井の管理を効果的に行うことが可能となる。 According to the above configuration, in order to estimate the well characteristics of each well for a plurality of wells, the characteristics of each well are grasped more accurately and the wells are blown from each well. The flow rate of the geothermal fluid can be adjusted appropriately, and each well can be effectively managed.

上記坑井特性推定システムにおいて、前記取得部は、前記蒸気流量に係る前記情報として、各前記坑井から噴気された前記地熱流体における蒸気の合計流量を取得し、前記熱水流量に係る前記情報として、各前記坑井から噴気された前記地熱流体における熱水の合計流量を取得し、前記推定部は、蒸気の合計流量と熱水の合計流量に基づいて、回帰分析により、各前記坑井に対する前記坑井特性を推定することとしてもよい。 In the well characteristic estimation system, the acquisition unit acquires the total flow rate of steam in the geothermal fluid ejected from each well as the information related to the steam flow rate, and the information related to the hot water flow rate. As a result, the total flow rate of hot water in the geothermal fluid ejected from each of the wells is acquired, and the estimation unit performs regression analysis based on the total flow rate of steam and the total flow rate of hot water. The well characteristics may be estimated.

上記のような構成によれば、坑井特性を推定するための情報として、各坑井から噴気された地熱流体における蒸気の合計流量及び各坑井から噴気された地熱流体における熱水の合計流量を取得して、回帰分析等により、各坑井の圧力と、蒸気流量と熱水流量の関係を示す坑井特性を推定することとしたため、流量計等の計測器を最小限に抑制しつつ、坑井特性を推定することが可能となる。 According to the above configuration, as information for estimating the well characteristics, the total flow rate of steam in the geothermal fluid ejected from each well and the total flow rate of hot water in the geothermal fluid ejected from each well. Since it was decided to estimate the well characteristics that indicate the relationship between the pressure of each well and the steam flow rate and the hot water flow rate by regression analysis, etc., while minimizing the number of measuring instruments such as flow meters. , Well characteristics can be estimated.

上記坑井特性推定システムにおいて、前記取得部は、前記蒸気流量に係る前記情報として、各前記坑井から噴気された前記地熱流体における蒸気の一部合計流量を取得し、前記熱水流量に係る前記情報として、各前記坑井から噴気された前記地熱流体における熱水の一部合計流量を取得し、前記推定部は、蒸気の一部合計流量と熱水の一部合計流量に基づいて、回帰分析により、各前記坑井に対する前記坑井特性を推定することとしてもよい。 In the well characteristic estimation system, the acquisition unit acquires a partial total flow rate of steam in the geothermal fluid ejected from each well as the information related to the steam flow rate, and relates to the hot water flow rate. As the information, a partial total flow rate of hot water in the geothermal fluid ejected from each of the wells is acquired, and the estimation unit is based on a partial total flow rate of steam and a partial total flow rate of hot water. The well characteristics for each well may be estimated by regression analysis.

上記のような構成によれば、坑井特性を推定するための情報として、例えば、複数の坑井のうちの少なくとも一部の坑井から噴気された地熱流体を1つの気水分離器に集めるシステムなど、一部の坑井に対して、各坑井から噴気された地熱流体における蒸気の一部合計流量及び各坑井から噴気された地熱流体における熱水の一部合計流量を取得して、回帰分析等により、各坑井の圧力と、蒸気流量と熱水流量の関係を示す坑井特性を推定することとした。このため、例えば、各坑井から噴気された地熱流体における蒸気の合計流量を取得する場合と比較して、各坑井の坑井特性の推定精度を向上させることができる。 According to the above configuration, as information for estimating the well characteristics, for example, the geothermal fluid ejected from at least a part of the wells is collected in one gas-water separator. For some wells such as systems, obtain the partial total flow rate of steam in the geothermal fluid ejected from each well and the partial total flow rate of hot water in the geothermal fluid ejected from each well. , It was decided to estimate the well characteristics showing the relationship between the pressure of each well and the steam flow rate and hot water flow rate by regression analysis and the like. Therefore, for example, it is possible to improve the estimation accuracy of the well characteristics of each well as compared with the case of acquiring the total flow rate of steam in the geothermal fluid fumarole from each well.

上記坑井特性推定システムにおいて、前記取得部は、前記蒸気流量に係る前記情報として、各前記坑井から噴気された前記地熱流体における蒸気の流量を取得し、前記熱水流量に係る前記情報として、各前記坑井から噴気された前記地熱流体における熱水の流量を取得し、前記推定部は、蒸気の流量と熱水の流量に基づいて、各前記坑井に対する前記坑井特性を推定することとしてもよい。 In the well characteristic estimation system, the acquisition unit acquires the flow rate of steam in the geothermal fluid ejected from each well as the information related to the steam flow rate, and uses the information related to the hot water flow rate. , The flow rate of hot water in the geothermal fluid ejected from each of the wells is acquired, and the estimation unit estimates the well characteristics for each of the wells based on the flow rate of steam and the flow rate of hot water. It may be that.

上記のような構成によれば、坑井特性を推定するための情報として、各坑井から噴気された地熱流体における蒸気の流量及び各坑井から噴気された地熱流体における熱水の流量を取得することとしたため、各坑井の坑井特性を精度よく推定することが可能となる。 According to the above configuration, as information for estimating the well characteristics, the flow rate of steam in the geothermal fluid ejected from each well and the flow rate of hot water in the geothermal fluid ejected from each well are acquired. Therefore, it is possible to accurately estimate the well characteristics of each well.

上記坑井特性推定システムにおいて、特定の前記坑井に対して設けられた前記地熱流体の流量調整弁の開度を所定量だけ調整すると共に、前記調整による発電量変動分を抑制するように他の前記坑井に対して設けられた前記地熱流体の流量調整弁を制御する弁制御部を備え、前記取得部は、前記弁制御部によって各流量調整弁の制御が実行された後に前記情報を取得することとしてもよい。 In the well characteristic estimation system, the opening degree of the flow rate adjusting valve for the geothermal fluid provided for the specific well is adjusted by a predetermined amount, and the fluctuation in the amount of power generated due to the adjustment is suppressed. A valve control unit for controlling the flow rate adjusting valve of the geothermal fluid provided for the well is provided, and the acquisition unit obtains the information after the control of each flow rate adjusting valve is executed by the valve control unit. It may be acquired.

上記のような構成によれば、特定の坑井の流量調整弁を所定量だけ変化させた場合に、他の坑井の流量調整弁を制御して、地熱発電プラントの発電量の変動を抑制することとしたため、発電量をほとんど変動させることなく、特定の坑井の流量調整弁の調整に伴う噴気圧力、蒸気流量や熱水流量の変動量を取得することが可能となる。すなわち、発電量をほとんど変動させることなく、取得した情報に基づいて坑井特性を推定することが可能となる。 According to the above configuration, when the flow rate control valve of a specific well is changed by a predetermined amount, the flow rate control valves of other wells are controlled to suppress fluctuations in the amount of power generated by the geothermal power plant. Therefore, it is possible to obtain the fluctuation amount of the jet pressure, the steam flow rate, and the hot water flow rate due to the adjustment of the flow rate adjusting valve of a specific well with almost no fluctuation in the power generation amount. That is, it is possible to estimate the well characteristics based on the acquired information with almost no fluctuation in the amount of power generation.

上記坑井特性推定システムにおいて、過去所定期間において推定された各前記坑井の前記坑井特性に基づいて、各前記坑井の相関関係を演算する相関演算部を備えることとしてもよい。 The well characteristic estimation system may include a correlation calculation unit that calculates the correlation of each well based on the well characteristics of each well estimated in the past predetermined period.

上記のような構成によれば、各坑井は、地下貯留層において導通している場合など独立でないことがあり、各坑井の相関関係を発見することは困難であったが、過去所定期間において推定した各坑井の坑井特性を参照することによって各坑井の相関関係を発見することが期待できる。例えば、発見した相関関係を用いて地熱流体の貯留層モデル等を修正することで、地熱流体の地下での貯留層の状態をより正確に把握して、各坑井の相関関係を考慮しながら、各坑井から噴気する地熱流体の流量を適正にすることも可能となる。 According to the above configuration, each well may not be independent, such as when it is conducting in the underground reservoir, and it was difficult to find the correlation between each well, but in the past predetermined period. It can be expected that the correlation of each well will be discovered by referring to the well characteristics of each well estimated in. For example, by modifying the geothermal fluid reservoir model using the discovered correlation, the state of the geothermal fluid reservoir beneath the ground can be grasped more accurately, while considering the correlation of each well. It is also possible to optimize the flow rate of the geothermal fluid that erupts from each well.

上記坑井特性推定システムにおいて、推定した各前記坑井の前記坑井特性を用いて、各前記坑井から噴気された蒸気の合計流量を一定とした場合に、各前記坑井から噴気された熱水の合計流量が最小値を含む所定範囲内となるように各前記坑井の噴気圧力の組合せを決定する最適化部を備えたこととしてもよい。 In the well characteristic estimation system, when the total flow rate of steam ejected from each well was made constant by using the estimated well characteristics of each well, fumarole was ejected from each well. An optimization unit that determines the combination of fumarolic pressures in each well so that the total flow rate of hot water is within a predetermined range including the minimum value may be provided.

上記のような構成によれば、坑井特性を用いることで各坑井の特性を正確に把握して、各坑井から噴気する地熱流体の流量を適正にすることが可能となるため、蒸気の合計流量を一定とした場合に、各坑井から噴気された熱水の合計流量が最小値を含む所定の範囲内で最小値に近づくような各坑井の熱水の流量値の組合せを推定することが可能となる。各坑井から噴気された熱水の合計流量が最小値を含む所定の範囲内で最小値に近づくように各坑井からの熱水の流量値を選定して設定する。これにより、各坑井の短寿命化を抑制することが可能となる。 According to the above configuration, by using the well characteristics, it is possible to accurately grasp the characteristics of each well and optimize the flow rate of the geothermal fluid ejected from each well. A combination of hot water flow rates in each well such that the total flow rate of hot water ejected from each well approaches the minimum value within a predetermined range including the minimum value when the total flow rate of the well is constant. It becomes possible to estimate. The flow rate value of hot water from each well is selected and set so that the total flow rate of hot water fumarole from each well approaches the minimum value within a predetermined range including the minimum value. This makes it possible to suppress the shortening of the life of each well.

本発明の第2態様は、坑井から噴気された地熱流体を蒸気と熱水に分離する分離器と、前記分離器により分離された蒸気により回転駆動する蒸気タービンと、前記蒸気タービンと回転連結された発電機と、上記の地熱発電プラントの坑井特性推定システムと、を備えた地熱発電プラントである。 A second aspect of the present invention is a separator that separates the geothermal fluid ejected from the well into steam and hot water, a steam turbine that is rotationally driven by the steam separated by the separator, and a rotary connection with the steam turbine. It is a geothermal power plant equipped with the above-mentioned generator and the well characteristic estimation system of the above geothermal power plant.

本発明の第3態様は、少なくとも1つの坑井から噴気された地熱流体を用いて発電を行う地熱発電プラントが稼働している場合において、前記坑井から噴気する圧力が変動した際に、前記圧力に対する前記地熱流体の蒸気流量及び前記地熱流体の熱水流量に係る情報を取得する取得工程と、前記取得工程において取得した前記情報に基づいて、前記坑井から噴気する前記圧力、前記蒸気流量、及び前記熱水流量の関係を示す坑井特性を推定する推定工程と、を含む地熱発電プラントの坑井特性推定方法である。 A third aspect of the present invention is the above, when a geothermal power plant that generates power using a geothermal fluid ejected from at least one well is operating and the pressure of the vapor ejected from the well fluctuates. The acquisition step of acquiring information on the steam flow rate of the geothermal fluid and the hot water flow rate of the geothermal fluid with respect to the pressure, and the pressure and the steam flow rate of jetting from the well based on the information acquired in the acquisition step. This is a method for estimating well characteristics of a geothermal power plant, which includes an estimation step for estimating well characteristics indicating the relationship between the hot water flow rate and the above.

本発明の第4態様は、少なくとも1つの坑井から噴気された地熱流体を用いて発電を行う地熱発電プラントが稼働している場合において、前記坑井から噴気する圧力が変動した際に、前記圧力に対する前記地熱流体の蒸気流量及び前記地熱流体の熱水流量に係る情報を取得する取得処理と、前記取得処理において取得した前記情報に基づいて、前記坑井から噴気する前記圧力、前記蒸気流量、及び前記熱水流量の関係を示す坑井特性を推定する推定処理と、をコンピュータに実行させるための地熱発電プラントの坑井特性推定プログラムである。 A fourth aspect of the present invention is the above, when a geothermal power plant that generates power using a geothermal fluid ejected from at least one well is operating and the pressure of the vapor ejected from the well fluctuates. An acquisition process for acquiring information on the steam flow rate of the geothermal fluid and the hot water flow rate of the geothermal fluid with respect to the pressure, and the pressure and the steam flow rate to be ejected from the well based on the information acquired in the acquisition process. , And an estimation process for estimating the well characteristics indicating the relationship between the hot and cold water flow rates, and a well characteristic estimation program for a geothermal power plant for causing a computer to execute.

本発明によれば、坑井特性の変化を正確に把握して、坑井から噴気する地熱流体の流量を適正にすることができるという効果を奏する。 According to the present invention, it is possible to accurately grasp the change in the characteristics of the well and to make the flow rate of the geothermal fluid fumarole from the well appropriate.

本発明の第1実施形態に係る坑井特性推定システムを備えた地熱発電プラントの概略構成を示す図である。It is a figure which shows the schematic structure of the geothermal power generation plant provided with the well characteristic estimation system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る坑井特性推定装置が備える機能を示した機能ブロック図である。It is a functional block diagram which showed the function which the well characteristic estimation apparatus which concerns on 1st Embodiment of this invention has. 本発明の第1実施形態に係る坑井特性の一例を示した図である。It is a figure which showed an example of the well characteristic which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る坑井特性の変動例を示した図である。It is a figure which showed the variation example of the well characteristic which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る坑井特性推定装置により推定した坑井特性の例を示した図である。It is a figure which showed the example of the well characteristic estimated by the well characteristic estimation apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る坑井特性推定装置における得点付けの例を示した図である。It is a figure which showed the example of scoring in the well characteristic estimation apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る坑井特性推定装置の処理のフローチャートを示す図である。It is a figure which shows the flowchart of the process of the well characteristic estimation apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る坑井特性推定装置が備える機能を示した機能ブロック図である。It is a functional block diagram which showed the function which the well characteristic estimation apparatus which concerns on 2nd Embodiment of this invention has. 本発明の第3実施形態に係る坑井特性推定装置が備える機能を示した機能ブロック図である。It is a functional block diagram which showed the function which the well characteristic estimation apparatus which concerns on 3rd Embodiment of this invention has.

〔第1実施形態〕
以下に、本発明に係る地熱発電プラントの坑井特性推定システム、及びその坑井特性推定方法並びに坑井特性推定プログラム、地熱発電プラントの第1実施形態について、図面を参照して説明する。坑井特性推定システムは、坑井2から噴気される地熱流体によって発電を行う地熱発電プラントであれば幅広く適用できるものであって、以下に説明する構成の地熱発電プラントのみに適用を限定されるものではない。また、坑井特性推定システム(坑井特性推定装置20)は、少なくとも取得部21と推定部22とを備えて構成されていればよい。
[First Embodiment]
Hereinafter, the well characteristic estimation system of the geothermal power plant according to the present invention, the well characteristic estimation method thereof, the well characteristic estimation program, and the first embodiment of the geothermal power plant will be described with reference to the drawings. The well characteristic estimation system can be widely applied to any geothermal power generation plant that generates power by the geothermal fluid ejected from the well 2, and is limited to the geothermal power generation plants having the configurations described below. It's not a thing. Further, the well characteristic estimation system (well characteristic estimation device 20) may be configured to include at least an acquisition unit 21 and an estimation unit 22.

図1は、本発明の第1実施形態に係る坑井特性推定システムを備えた地熱発電プラント1の概略構成を示す図である。本実施形態では、例えば坑井2を3つ設ける場合について説明する。なお、図1に示す地熱発電プラント1は、例えばフラッシュサイクル型の地熱発電プラントであるが、坑井特性推定システムは、バイナリサイクル型など他の構成の地熱発電プラントであっても同様に適用することが可能である。また、図1では、例えば坑井2を3つ設け、気水分離器5を3つ設け、還元井19を1つ設けることとしているが、坑井2は少なくとも1つ設けられれば、上記の構成に限らず本発明を適宜適用することが可能である。 FIG. 1 is a diagram showing a schematic configuration of a geothermal power generation plant 1 provided with a well characteristic estimation system according to a first embodiment of the present invention. In this embodiment, for example, a case where three wells 2 are provided will be described. The geothermal power generation plant 1 shown in FIG. 1 is, for example, a flash cycle type geothermal power generation plant, but the well characteristic estimation system is similarly applied to a geothermal power generation plant having another configuration such as a binary cycle type. It is possible. Further, in FIG. 1, for example, three wells 2 are provided, three brackish water separators 5 are provided, and one reduction well 19 is provided. However, if at least one well 2 is provided, the above The present invention can be appropriately applied regardless of the configuration.

本実施形態に係る地熱発電プラント1は、図1に示すように、地熱流体輸送管(二相流体輸送管)3と、噴気流量調整弁(以下、単に「流量調整弁4」という。)と、気水分離器5と、熱水管6と、蒸気管7と、蒸気タービン8と、復水器10と、冷却塔11とを主な構成として備えている。また、地熱発電プラント1には、図2に示すような坑井特性推定装置(坑井特性推定システム)20が適用される。 As shown in FIG. 1, the geothermal power generation plant 1 according to the present embodiment includes a geothermal fluid transport pipe (two-phase fluid transport pipe) 3 and a jet air flow rate adjusting valve (hereinafter, simply referred to as “flow rate adjusting valve 4”). , A gas-water separator 5, a hot water pipe 6, a steam pipe 7, a steam turbine 8, a water recovery device 10, and a cooling tower 11 are mainly provided. Further, a well characteristic estimation device (well characteristic estimation system) 20 as shown in FIG. 2 is applied to the geothermal power generation plant 1.

地熱流体輸送管3は、坑井(地熱坑井)2から噴気された地熱流体を気水分離器5へ導く管である。地下にはマグマ溜りが形成されており、この熱によって地下に浸透した雨水や流入した地下水等が加熱され地熱貯留層が形成される。地熱貯留層には、地熱流体が溜まっており、坑井2によって地上へ取り出される。地熱流体輸送管3は、坑井2を介して地熱貯留層から気水分離器5へ地熱流体を輸送している。なお、地熱流体とは、主として蒸気と熱水からなる二相混合流体である。 The geothermal fluid transport pipe 3 is a pipe that guides the geothermal fluid ejected from the well (geothermal well) 2 to the gas-water separator 5. A magma chamber is formed underground, and this heat heats rainwater that has permeated underground, groundwater that has flowed in, and the like to form a geothermal reservoir. Geothermal fluid is accumulated in the geothermal reservoir and is taken out to the ground by the well 2. The geothermal fluid transport pipe 3 transports the geothermal fluid from the geothermal reservoir to the air-water separator 5 via the well 2. The geothermal fluid is a two-phase mixed fluid mainly composed of steam and hot water.

流量調整弁(噴気流量調整弁)4は、地熱流体輸送管3上に設けられており、坑井2から気水分離器5へ流入する地熱流体の流量(噴気量)を調整している。なお、流量調整弁4の調整により坑井2の噴気圧力を調整することもできる。 The flow rate adjusting valve (injection flow rate adjusting valve) 4 is provided on the geothermal fluid transport pipe 3, and adjusts the flow rate (injection amount) of the geothermal fluid flowing from the well 2 into the air-water separator 5. The fumarolic pressure in the well 2 can also be adjusted by adjusting the flow rate adjusting valve 4.

また、地熱流体輸送管3上には、流量調整弁4の地熱流体流れの上流側に、噴気圧力(坑口圧力)を計測する圧力計16が設けられている。圧力計16では、坑井2から噴気される地熱流体の圧力を計測している。なお、地熱流体輸送管3上における地熱流体流れの最も上流側(坑井2出口付近)に、開閉弁13を設け、地熱流体の導通状態(導通状態または非導通状態)を制御することとしてもよい。 Further, on the geothermal fluid transport pipe 3, a pressure gauge 16 for measuring the jet pressure (wellhead pressure) is provided on the upstream side of the geothermal fluid flow of the flow rate adjusting valve 4. The pressure gauge 16 measures the pressure of the geothermal fluid fumarole from the well 2. It should be noted that an on-off valve 13 may be provided on the most upstream side of the geothermal fluid flow on the geothermal fluid transport pipe 3 (near the outlet of the well 2) to control the conduction state (conduction state or non-conduction state) of the geothermal fluid. Good.

気水分離器5は、地熱流体輸送管3により供給された二相混合流体である地熱流体を、蒸気と熱水に分離する装置(セパレータ)である。気水分離器5によって分離された熱水は熱水管6に導かれ、気水分離器5によって分離された蒸気は蒸気管7へ導かれる。 The gas-water separator 5 is a device (separator) that separates a geothermal fluid, which is a two-phase mixed fluid supplied by a geothermal fluid transport pipe 3, into steam and hot water. The hot water separated by the steam separator 5 is guided to the hot water pipe 6, and the steam separated by the steam separator 5 is guided to the steam pipe 7.

熱水管6は、気水分離器5によって分離された熱水を還元井19へ導く管である。還元井19を介して地下の地熱貯留層に熱水を還すことで、地下の地熱貯留層における地熱流体の枯渇を抑制する。各気水分離器5によって分離された熱水は熱水管6で合流し、ポンプ14を介して還元井19へ圧送される。なお、自圧によって還元井19へ圧送可能な場合には、ポンプ14を用いなくてもよい。また、還元井19に送られる熱水の流量は、熱水管6上に設けた流量計17によって計測される。なお、本実施形態では、各気水分離器5によって分離された熱水が合流した後の熱水の流量(合計流量)を計測して回帰分析等により、各坑井の熱水流量を推定する場合について説明するが、各気水分離器5によって分離された熱水の流量をそれぞれ計測することとしてもよい。また、還元井19が複数設けられることとしてもよい。 The hot water pipe 6 is a pipe that guides the hot water separated by the steam separator 5 to the reduction well 19. By returning hot water to the underground geothermal reservoir via the reduction well 19, depletion of the geothermal fluid in the underground geothermal reservoir is suppressed. The hot water separated by each brackish water separator 5 merges at the hot water pipe 6 and is pumped to the reduction well 19 via the pump 14. If the reduction well 19 can be pumped by its own pressure, the pump 14 may not be used. Further, the flow rate of the hot water sent to the reduction well 19 is measured by a flow meter 17 provided on the hot water pipe 6. In this embodiment, the hot water flow rate (total flow rate) after the hot water separated by each brackish water separator 5 is merged is measured, and the hot water flow rate of each well is estimated by regression analysis or the like. Although the case of this is described, the flow rate of the hot water separated by each brackish water separator 5 may be measured. Further, a plurality of reduction wells 19 may be provided.

蒸気管7は、気水分離器5によって分離された蒸気を蒸気タービン8へ導く管である。各気水分離器5によって分離された蒸気は、蒸気管7で合流して蒸気タービン8へ供給される。また、蒸気タービン8に送られる蒸気の流量は、蒸気管7上に設けた流量計18によって計測される。なお、本実施形態では、各気水分離器5によって分離された蒸気が合流した後の蒸気の流量(合計流量)を計測して回帰分析等により、各坑井の蒸気流量を推定する場合について説明するが、各気水分離器5によって分離された蒸気の流量をそれぞれ計測することとしてもよい。また、蒸気管7には、各気水分離器5によって分離された蒸気が合流した後の蒸気に対して流量調整弁15を設け、蒸気タービン8への蒸気の供給流量を制御することとしてもよい。 The steam pipe 7 is a pipe that guides the steam separated by the steam separator 5 to the steam turbine 8. The steam separated by each steam separator 5 merges at the steam pipe 7 and is supplied to the steam turbine 8. The flow rate of steam sent to the steam turbine 8 is measured by a flow meter 18 provided on the steam pipe 7. In this embodiment, the steam flow rate of each well is estimated by measuring the flow rate (total flow rate) of the steam after the steam separated by each steam separator 5 merges and performing regression analysis or the like. As will be described, the flow rate of the steam separated by each air-water separator 5 may be measured. Further, the steam pipe 7 is provided with a flow rate adjusting valve 15 for the steam after the steam separated by each steam separator 5 is merged to control the supply flow rate of the steam to the steam turbine 8. Good.

蒸気タービン8は、蒸気管7により供給された蒸気のエネルギーによってタービン翼を回転駆動させ、タービン翼の回転軸に接続された発電機9を回転駆動して発電を行う。 The steam turbine 8 rotationally drives the turbine blades with the energy of the steam supplied by the steam pipe 7, and rotationally drives the generator 9 connected to the rotating shaft of the turbine blades to generate power.

復水器10は、蒸気タービン8において仕事をし終えた蒸気を冷却水で冷却することで凝縮して復水する装置である。凝縮された復水(温水)は、冷却塔11へ供給される。 The condenser 10 is a device that condenses and condenses the steam that has finished its work in the steam turbine 8 by cooling it with cooling water. The condensed condensate (warm water) is supplied to the cooling tower 11.

冷却塔11は、復水器10において凝縮された温水を蒸発冷却する装置である。具体的には、冷却塔11に供給された温水は冷却塔11上部の散布部から散布される。散布された温水は、冷却塔11の送風機によって流通する空気と接触することで一部が蒸発し、この蒸発に伴う潜熱によって他の温水が冷やされて水になる。冷やされた水は、冷却塔水として冷却塔11の水槽に貯水される。水槽に貯水されている冷却塔水は、ポンプ12を介して冷却水として復水器10へ供給される。 The cooling tower 11 is a device that evaporatively cools the hot water condensed in the condenser 10. Specifically, the hot water supplied to the cooling tower 11 is sprayed from the spraying portion on the upper part of the cooling tower 11. A part of the sprayed hot water evaporates when it comes into contact with the air circulated by the blower of the cooling tower 11, and the latent heat accompanying the evaporation cools the other hot water to become water. The chilled water is stored in the water tank of the cooling tower 11 as cooling tower water. The cooling tower water stored in the water tank is supplied to the condenser 10 as cooling water via the pump 12.

坑井特性推定装置20は、地熱発電プラント1に設けられた各坑井2に対して坑井特性を推定する。特に、坑井特性推定装置20は、地熱発電プラント1が稼働している場合にあっても、坑井特性を推定することが可能な装置である。なお、地熱発電プラント1が稼働している場合とは、地熱発電プラント1が竣工後、各坑井2が併入されている状態である。また、地熱発電プラント1が稼働している場合とは、坑井から噴気された地熱流体が地熱発電プラント1内へ流通している状態であり、例えば少なくとも圧力計16や流量計17、18によって計測が可能な状態であればよい。 The well characteristic estimation device 20 estimates the well characteristics for each well 2 provided in the geothermal power generation plant 1. In particular, the well characteristic estimation device 20 is a device capable of estimating well characteristics even when the geothermal power generation plant 1 is in operation. The case where the geothermal power generation plant 1 is in operation means that the wells 2 are installed together after the geothermal power generation plant 1 is completed. Further, the case where the geothermal power generation plant 1 is in operation means that the geothermal fluid ejected from the well is circulated into the geothermal power generation plant 1, for example, by at least the pressure gauge 16 and the flow meters 17 and 18. It suffices as long as it can be measured.

坑井特性推定装置20は、例えば、図示しないCPU(中央演算装置)、RAM(Random Access Memory)等のメモリ、及びコンピュータ読み取り可能な記録媒体等から構成されている。後述の各種機能を実現するための一連の処理の過程は、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、後述の各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等である。 The well characteristic estimation device 20 is composed of, for example, a CPU (central processing unit) (not shown), a memory such as a RAM (Random Access Memory), a computer-readable recording medium, and the like. A series of processing processes for realizing various functions described later is recorded in a recording medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions described later are realized. The program is installed in a ROM or other storage medium in advance, is provided in a state of being stored in a computer-readable storage medium, or is distributed via a wired or wireless communication means. Etc. may be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.

図2は、坑井特性推定装置20が備える機能を示した機能ブロック図である。図2に示されるように、坑井特性推定装置20は、取得部21と、推定部22と、最適化部23とを備えている。 FIG. 2 is a functional block diagram showing the functions of the well characteristic estimation device 20. As shown in FIG. 2, the well characteristic estimation device 20 includes an acquisition unit 21, an estimation unit 22, and an optimization unit 23.

取得部21は、少なくとも1つの坑井2から噴気された地熱流体を用いて発電を行う地熱発電プラント1が稼働している場合にあって、坑井2から噴気する圧力(噴気圧力)が変動した際に、該圧力に対する地熱流体の蒸気流量及び地熱流体の熱水流量に係る情報を取得する。例えば特定の坑井2に対して、何等かの目的で流量調整弁4の操作が行われた場合には、噴気圧力が変動し、蒸気流量や熱水流量が変動する。取得部21は、このような噴気圧力の変動の機会に、噴気圧力の値に対する蒸気流量の値や熱水流量の値を情報として取得する。
図1に示すように、本実施形態では、例えば坑井2を3つ設けることとし、各坑井2の噴気圧力を計測する圧力計16、熱水の合計流量を計測する流量計17、及び蒸気の合計流量を計測する流量計18を設けることとしている。このため、取得部21は、坑井2における噴気圧力に係る情報として、圧力計16から各坑井2の噴気圧力を取得する。また、取得部21は、蒸気流量に係る情報として、流量計18から、各坑井2から噴気された地熱流体における蒸気の合計流量を取得し、熱水流量に係る情報として、流量計17から、各坑井2から噴気された地熱流体における熱水の合計流量を取得する。取得された各種情報は推定部22へ出力される。推定部22では、回帰分析等により、坑井2ごとでの噴気圧力、蒸気流量と熱水流量を推定する。
In the acquisition unit 21, the pressure (injection pressure) ejected from the well 2 fluctuates when the geothermal power generation plant 1 that generates power using the geothermal fluid ejected from at least one well 2 is operating. At that time, information on the steam flow rate of the geothermal fluid and the hot water flow rate of the geothermal fluid with respect to the pressure is acquired. For example, when the flow rate adjusting valve 4 is operated for some purpose in a specific well 2, the fumarole pressure fluctuates, and the steam flow rate and the hot water flow rate fluctuate. The acquisition unit 21 acquires the value of the steam flow rate and the value of the hot water flow rate with respect to the value of the fumarole pressure as information at the opportunity of such a fluctuation of the fumarole pressure.
As shown in FIG. 1, in the present embodiment, for example, three wells 2 are provided, a pressure gauge 16 for measuring the fumes pressure of each well 2, a flowmeter 17 for measuring the total flow rate of hot water, and a flowmeter 17. A flow meter 18 for measuring the total flow rate of steam is provided. Therefore, the acquisition unit 21 acquires the fumarole pressure of each well 2 from the pressure gauge 16 as information related to the fumarole pressure in the well 2. In addition, the acquisition unit 21 acquires the total flow rate of steam in the geothermal fluid ejected from each well 2 from the flow meter 18 as information related to the steam flow rate, and from the flow meter 17 as information related to the hot water flow rate. , Obtain the total flow rate of hot water in the geothermal fluid ejected from each well 2. The various acquired information is output to the estimation unit 22. The estimation unit 22 estimates the fumarole pressure, steam flow rate, and hot water flow rate for each well 2 by regression analysis or the like.

なお、取得部21において取得する地熱流体の蒸気流量に係る情報及び地熱流体の熱水流量に係る情報については、合計流量の取得に限定されず適宜変更可能である。例えば、蒸気の流量計及び熱水の流量計を坑井2ごとに設けることとしてもよい。この場合には、取得部21は、蒸気流量に係る情報として、各坑井2から噴気された地熱流体における蒸気の流量を取得し、熱水流量に係る情報として、各坑井2から噴気された地熱流体における熱水の流量を取得する。なお、坑井2ごとの各流量が計測できれば、気水分離器5の上流側及び下流側のどちらでも計測器を設けることが可能である。また、気水分離器5の上流側に流量計を設ける場合には、計測対象が二相混合流体であるため、二相流量計を設けることとしてもよい。二相流量計とは、二相混合流体を計測対象として、二相混合流体における液相流体(熱水)の流量と気相流体(蒸気)の流量を計測可能な計測器である。 The information regarding the steam flow rate of the geothermal fluid and the information regarding the hot water flow rate of the geothermal fluid acquired by the acquisition unit 21 are not limited to the acquisition of the total flow rate and can be changed as appropriate. For example, a steam flow meter and a hot water flow meter may be provided for each well 2. In this case, the acquisition unit 21 acquires the flow rate of steam in the geothermal fluid ejected from each well 2 as information related to the steam flow rate, and is ejected from each well 2 as information related to the hot water flow rate. Obtain the flow rate of hot water in the geothermal fluid. If each flow rate of each well 2 can be measured, it is possible to provide a measuring instrument on either the upstream side or the downstream side of the brackish water separator 5. Further, when a flow meter is provided on the upstream side of the steam separator 5, a two-phase flow meter may be provided because the measurement target is a two-phase mixed fluid. The two-phase flow meter is a measuring instrument capable of measuring the flow rate of the liquid phase fluid (hot water) and the flow rate of the gas phase fluid (steam) in the two-phase mixed fluid with the two-phase mixed fluid as the measurement target.

また、例えば、複数の坑井2に対して1つの気水分離器5が設けられる場合や、1つの坑井2に対して複数の気水分離器5が設けられる場合等には、蒸気の流量計及び熱水の流量計を気水分離器5ごとに設けることとしてもよい。この場合、複数の坑井2のうちの少なくとも一部からなる一部の坑井2を対象として、取得部21では、蒸気流量に係る情報として、各坑井2から噴気された地熱流体における蒸気の一部合計流量を取得し、熱水流量に係る情報として、各坑井2から噴気された地熱流体における熱水の一部合計流量を取得する。 Further, for example, when one steam separator 5 is provided for a plurality of wells 2, or when a plurality of steam separators 5 are provided for one well 2, steam A flow meter and a hot water flow meter may be provided for each brackish water separator 5. In this case, targeting a part of the wells 2 composed of at least a part of the plurality of wells 2, the acquisition unit 21 uses the steam in the geothermal fluid ejected from each well 2 as information on the steam flow rate. As information on the hot water flow rate, the partial total flow rate of hot water in the geothermal fluid ejected from each well 2 is acquired.

すなわち、取得部21において取得される坑井2における噴気圧力に係る情報、地熱流体の蒸気流量に係る情報、及び地熱流体の熱水流量に係る情報については、後述するように、各坑井2に対応した噴気圧力、蒸気流量、及び熱水流量を特定可能な情報であれば、上記に限られず適用することができる。 That is, as will be described later, each well 2 has information on the jet pressure in the well 2 acquired by the acquisition unit 21, information on the steam flow rate of the geothermal fluid, and information on the hot water flow rate of the geothermal fluid. The information is not limited to the above, and can be applied as long as the information can identify the jet pressure, steam flow rate, and hot water flow rate corresponding to the above.

推定部22は、取得部21において取得した情報に基づいて、坑井2から噴気する圧力、蒸気流量、及び熱水流量の関係を示す坑井特性を推定する。本実施形態において、推定部22は、複数の坑井2に対して最近の指定期間(過去所定期間)で、推定部22で取得した蒸気流量に係る情報及び熱水流量に係る情報を用いて、坑井特性を推定する。最近の指定期間とは、例えば最近の1ヶ月から6ヶ月や最近の1年間などである。坑井特性とは、各坑井2特有の噴気特性であって、例えば、図3に示すように、噴気圧力(坑口圧力)に対して、蒸気の流量及び熱水の流量を関係づけた特性である。実線が蒸気流量を、破線が熱水流量を示している。地熱流体を噴気する坑井2では、運用によって坑井特性が経時的に変化する場合がある。坑井2の運用にあたり、例えば竣工時に行われる噴気試験により初期の坑井特性を計測する。例えば、図3に示す坑井特性を初期特性とすると、坑井2が地熱発電プラント1に併入された後の運用に伴って図4のように坑井特性は変化する。しかしながら坑井2が地熱発電プラント1に併入された後では、坑井特性を取得するためには坑井2を地熱発電プラント1から解列等しなければならず、坑井の解列により発電電力の低下等を招く恐れがあり、特別な事情が無い限り坑井特性を取得することはないため、変化後の坑井特性を正確に把握することが困難である。 Based on the information acquired by the acquisition unit 21, the estimation unit 22 estimates the well characteristics showing the relationship between the pressure, steam flow rate, and hot water flow rate of fumaroles from the well 2. In the present embodiment, the estimation unit 22 uses the information related to the steam flow rate and the information related to the hot water flow rate acquired by the estimation unit 22 in the latest designated period (past predetermined period) for the plurality of wells 2. , Estimate well characteristics. The latest designated period is, for example, the latest 1 to 6 months or the latest 1 year. The well characteristic is a fumarole characteristic peculiar to each well 2. For example, as shown in FIG. 3, a characteristic in which the flow rate of steam and the flow rate of hot water are related to the fumarole pressure (wellhead pressure). Is. The solid line shows the steam flow rate, and the broken line shows the hot water flow rate. In the well 2 that fumaroles the geothermal fluid, the well characteristics may change over time depending on the operation. In the operation of the well 2, for example, the initial well characteristics are measured by a fumarole test conducted at the time of completion. For example, assuming that the well characteristics shown in FIG. 3 are the initial characteristics, the well characteristics change as shown in FIG. 4 as the well 2 is operated after being incorporated into the geothermal power generation plant 1. However, after the well 2 is incorporated into the geothermal power generation plant 1, the well 2 must be disconnected from the geothermal power generation plant 1 in order to acquire the characteristics of the well. Since there is a risk of reducing the generated power and the well characteristics are not acquired unless there are special circumstances, it is difficult to accurately grasp the well characteristics after the change.

一方、坑井2は、地熱蒸気の抽出流量を増加しすぎると坑井の減衰が大きくなる場合があり、地熱蒸気の抽出流量を絞って圧力を上げすぎると流量が急に低下する場合がある。このため、坑井特性が変化しているにも関わらず、過去に取得した坑井特性に基づいて坑井管理を行った場合には、正しい坑井管理ができず坑井2の減衰(短寿命化)の促進を招く恐れがあった。そこで、推定部22は、坑井2が地熱発電プラント1に併入された状態であっても取得可能な情報に基づいて、最近の指定期間での(運用に伴う変化後の)坑井特性を推定する。 On the other hand, in the well 2, if the extraction flow rate of the geothermal steam is increased too much, the attenuation of the well may become large, and if the extraction flow rate of the geothermal steam is reduced and the pressure is raised too much, the flow rate may suddenly decrease. .. For this reason, if well management is performed based on the well characteristics acquired in the past even though the well characteristics have changed, correct well management cannot be performed and the well 2 is attenuated (short). There was a risk of accelerating the lifespan. Therefore, the estimation unit 22 determines the characteristics of the well (after the change due to the operation) in the latest designated period based on the information that can be acquired even when the well 2 is installed in the geothermal power generation plant 1. To estimate.

推定部22で取得する噴気圧力に対する蒸気流量に係る情報、熱水流量に係る情報は、次のような場合に取得される。例えば特定の坑井2に対する流量調整弁4の操作が行われた場合、噴気圧力や、蒸気流量、熱水流量は変動する。このため、取得部21は、何等かの目的で坑井2に対する流量調整弁4の操作が行われた場合に、各計測器から計測値を取得し、推定部22へ出力する。本実施形態では、各坑井2に設けた圧力計16、蒸気の合計流量を計測する流量計18、熱水の合計流量を計測する流量計17を設けているため、推定部22には、流量調整弁4の操作によって変化した各坑井2の噴気圧力、蒸気の合計流量、及び熱水の合計流量がセットとして入力される。なお、該セットには、取得した日時や、操作された流量調整弁4に対応する坑井2の識別情報も合わせて入力されることが好ましい。また、推定部22には、流量調整弁4の操作による変化前と変化後の各坑井2の噴気圧力、蒸気の合計流量、及び熱水の合計流量がセットとして入力されることとしてもよい。 The information related to the steam flow rate and the information related to the hot water flow rate with respect to the fumarole pressure acquired by the estimation unit 22 are acquired in the following cases. For example, when the flow rate adjusting valve 4 is operated for a specific well 2, the fumarole pressure, steam flow rate, and hot water flow rate fluctuate. Therefore, when the flow rate adjusting valve 4 is operated for the well 2 for some purpose, the acquisition unit 21 acquires the measured value from each measuring instrument and outputs it to the estimation unit 22. In the present embodiment, since the pressure gauge 16 provided in each well 2, the flow meter 18 for measuring the total flow rate of steam, and the flow meter 17 for measuring the total flow rate of hot water are provided, the estimation unit 22 is provided with. The jet pressure of each well 2, the total flow rate of steam, and the total flow rate of hot water changed by the operation of the flow rate adjusting valve 4 are input as a set. It is preferable that the acquired date and time and the identification information of the well 2 corresponding to the operated flow rate adjusting valve 4 are also input to the set. Further, the fumarolic pressure of each well 2 before and after the change due to the operation of the flow rate adjusting valve 4, the total flow rate of steam, and the total flow rate of hot water may be input to the estimation unit 22 as a set. ..

そして、推定部22では、蒸気の合計流量及び熱水の合計流量に基づいて、回帰分析等により、坑井2ごとでの各坑井2における噴気圧力、蒸気流量及び熱水流量を推定する。具体的には、操作された流量調整弁4に対応する坑井2の識別情報に基づくことで、どの流量調整弁4(坑井2)の影響によって合計流量が変動したかを把握することができる。このため、変化した合計流量に対して回帰分析等を行うことにより各坑井2に対する蒸気の流量と熱水の流量を推定することができる。 Then, the estimation unit 22 estimates the fumes pressure, steam flow rate, and hot water flow rate in each well 2 for each well 2 by regression analysis or the like based on the total flow rate of steam and the total flow rate of hot water. Specifically, based on the identification information of the well 2 corresponding to the operated flow rate adjusting valve 4, it is possible to grasp which flow rate adjusting valve 4 (well 2) has caused the total flow rate to fluctuate. it can. Therefore, the flow rate of steam and the flow rate of hot water for each well 2 can be estimated by performing regression analysis or the like on the changed total flow rate.

このように、推定部22では、特定の坑井2に対する流量調整弁4の操作が行われるなどで噴気圧力に変化を生じた場合に、各坑井2の噴気圧力と、蒸気流量と、熱水流量とをセットで収集して蓄積する。そして、推定部22では、最近の指定期間(例えば1ヶ月から6ヶ月、1年間など)において収集して蓄積した情報(各坑井2の噴気圧力と、蒸気流量と、熱水流量との関係に係る情報)に基づいて、各坑井2の坑井特性を推定する。推定部22は、最近の指定期間において、各坑井2の噴気圧力と蒸気流量と熱水流量との関係に係る情報を複数取得し、各坑井2の坑井特性を推定する。 In this way, in the estimation unit 22, when the fumarole pressure changes due to the operation of the flow rate adjusting valve 4 for the specific well 2, the fumarole pressure, the steam flow rate, and the heat of each well 2 occur. The water flow rate is collected and accumulated as a set. Then, the estimation unit 22 collects and accumulates information (for example, 1 month to 6 months, 1 year, etc.) in the latest designated period (for example, the relationship between the fumarolic pressure of each well 2, the steam flow rate, and the hot water flow rate). The well characteristics of each well 2 are estimated based on the information related to). The estimation unit 22 acquires a plurality of information related to the relationship between the fumarolic pressure, the steam flow rate, and the hot water flow rate of each well 2 in the latest designated period, and estimates the well characteristics of each well 2.

任意の坑井2に対して、最近の指定期間において取得した噴気圧力と、蒸気流量と、熱水流量との関係(実測)をプロットした図を図5に示す。図5に示すように、最近の指定期間における各坑井2の噴気圧力と、蒸気流量と、熱水流量との関係(実測)を用いることによって、任意の坑井2における最近の指定期間での坑井特性の傾向を得ることができる。このため、推定部22は、最近の指定期間内において取得した噴気圧力と蒸気流量と熱水流量との関係に対して解析(統計分析等)を行うことによって、各坑井2の最近の指定期間での坑井特性を推定する。なお、解析については、最小二乗法や最尤推定法等のフィッティング手法を用いることとしてもよいし、機械学習を行った学習済みモデルを用いて各坑井2の最近の指定期間での坑井特性を推定することも可能である。解析に用いる複数の情報は、取得した噴気圧力と蒸気流量と熱水流量との関係に加えて、例えば竣工時に行われる噴気試験による初期の特性で得られた特性の特徴(例えば上が凸状の二次曲線等)を考慮してもよい。 FIG. 5 shows a plot of the relationship (actual measurement) between the fumarole pressure, the steam flow rate, and the hot water flow rate acquired in the latest designated period for an arbitrary well 2. As shown in FIG. 5, by using the relationship (actual measurement) between the fumarolic pressure of each well 2 in the recent designated period, the steam flow rate, and the hot water flow rate, in the latest designated period in any well 2. The tendency of well characteristics can be obtained. Therefore, the estimation unit 22 analyzes (statistical analysis, etc.) the relationship between the fumarole pressure, the steam flow rate, and the hot water flow rate acquired within the recent designated period, thereby recently designating each well 2. Estimate well characteristics over time. For the analysis, a fitting method such as the least squares method or the maximum likelihood estimation method may be used, or a well in the latest designated period of each well 2 using a trained model obtained by machine learning. It is also possible to estimate the characteristics. The multiple pieces of information used in the analysis include the relationship between the acquired fumarole pressure, steam flow rate, and hot water flow rate, as well as the characteristics of the characteristics obtained in the initial characteristics of the fumarole test conducted at the time of completion (for example, the upper part is convex). The quadratic curve of) may be considered.

推定部22では、上記のような処理を行うことで各坑井2の坑井特性を推定する。推定された各坑井2の坑井特性は、坑井管理のために最適化部23で使用される。 The estimation unit 22 estimates the well characteristics of each well 2 by performing the above processing. The estimated well characteristics of each well 2 are used by the optimization unit 23 for well management.

最適化部23は、推定した各坑井2の坑井特性を用いて、各坑井2の運用状態の最適化を行う。具体的には、最適化部23は、推定した各坑井2の坑井特性を用いて、各坑井2から噴気された蒸気の合計流量を一定とした場合に、各坑井2から噴気された熱水の合計流量が最小値を含む所定の範囲内で最小値に近づくように各坑井2の噴気圧力の組合せを決定する。噴気された蒸気の合計流量を一定とすることで、地熱発電プラント1の発電量は一定に維持され、噴気された熱水の合計流量を少なくすることで、坑井2の減衰を抑制して坑井2を長寿命化できる効果がある。一方、熱水の合計流量が小さくするために噴気圧力を大きくしすぎると坑井2の噴気が停止する場合があるので、熱水の合計流量の最小値は合計流量が小さすぎる範囲を含まないものである。
最適化部23は、各坑井2の坑井特性を参照することによって、各坑井2における噴気圧力と蒸気流量と熱水流量との関係を把握することができる。このため、最適化部23は、各坑井2の坑井特性に基づいて、最適条件(各坑井2から噴気された蒸気の合計流量を一定とした場合に、各坑井2から噴気された熱水の合計流量が最小値を含む所定の範囲以内となる状態)となる各坑井2の噴気圧力の組合せを推定する。なお、最小値を含む所定の範囲以内とは、下限値が熱水流量の低下による坑井噴気の停止を含まない値であり、所定の範囲は、上限値が坑井2の減衰が大きくなり坑井2が短寿命化するものを含まない範囲で、両条件を満たし最小値に近くとなるように設定される。
The optimization unit 23 optimizes the operating state of each well 2 by using the estimated well characteristics of each well 2. Specifically, the optimization unit 23 uses the estimated well characteristics of each well 2 to make the total flow rate of steam fumaroles from each well 2 constant, and fumaroles from each well 2. The combination of fumarolic pressures in each well 2 is determined so that the total flow rate of the generated hot water approaches the minimum value within a predetermined range including the minimum value. By keeping the total flow rate of fumaroles constant, the amount of power generated by the geothermal power generation plant 1 is kept constant, and by reducing the total flow rate of the fumaroled hot water, the attenuation of the well 2 is suppressed. It has the effect of extending the life of the well 2. On the other hand, if the fumarole pressure is increased too much to reduce the total flow rate of hot water, the fumarole in the well 2 may stop, so the minimum value of the total flow rate of hot water does not include the range where the total flow rate is too small. It is a thing.
By referring to the well characteristics of each well 2, the optimization unit 23 can grasp the relationship between the fumarolic pressure, the steam flow rate, and the hot water flow rate in each well 2. Therefore, the optimization unit 23 is fumarinated from each well 2 based on the well characteristics of each well 2 under the optimum conditions (when the total flow rate of steam fumarole from each well 2 is constant). The combination of fumarolic pressures in each well 2 is estimated so that the total flow rate of hot water is within a predetermined range including the minimum value). In addition, within a predetermined range including the minimum value, the lower limit value is a value that does not include the stop of the well eruption due to a decrease in the hot water flow rate, and in the predetermined range, the upper limit value is a large attenuation of the well 2 It is set so that both conditions are satisfied and the value is close to the minimum value as long as the well 2 does not include the one that shortens the life.

そして、推定された各坑井2の噴気圧力の組合せに基づいて各坑井2の流量調整弁4を制御することによって、地熱発電プラント1の各坑井2の運用状態の組合せを最適化することが可能となる。すなわち、各坑井2から噴気された蒸気の合計流量を一定として地熱発電プラント1の発電量は一定に維持される場合に、各坑井2から噴気された熱水の合計流量が最小値となるように坑井管理が行われることで、必要な蒸気流量を保ちつつ、熱水流量過多による坑井2の減衰を抑制して坑井2を長寿命化することが可能となる。 Then, the combination of the operating states of each well 2 of the geothermal power generation plant 1 is optimized by controlling the flow rate adjusting valve 4 of each well 2 based on the estimated combination of the jet pressures of each well 2. It becomes possible. That is, when the total flow rate of steam ejected from each well 2 is constant and the amount of power generated by the geothermal power generation plant 1 is kept constant, the total flow rate of hot water ejected from each well 2 is the minimum value. By managing the wells in such a manner, it is possible to extend the life of the well 2 by suppressing the attenuation of the well 2 due to the excessive hot water flow rate while maintaining the required steam flow rate.

ここで、この各坑井2の噴気圧力の組合せの適正化のために、最適化部23は、各坑井2の熱水の流量に対して得点付けを行うことで、選択を容易にする。坑井2から噴気される熱水の流量は、少なすぎると圧力が急低下して噴気が停止してしまう可能性があり、一方で、多すぎると坑井2の減衰が促進されてしまう可能性がある(不適理由)。このため、該不適理由を考慮し、各坑井2に対応して図6に示すような得点重み関数を設定する。図6に示す得点重み関数は、縦軸を重み(得点)、横軸を熱水流量の最大値に対する熱水流量の比(熱水流量比)として、不適理由を考慮して上に凸の関数となっている。すなわち、熱水流量が少なすぎる領域及び熱水流量が多すぎる領域では、重み(得点)が低く設定される。なお、坑井2の運用において、熱水の流量が過度に少なすぎると噴気が停止する可能性があるものの、坑井2の減衰を抑制して長期運用を図るためにはなるべく熱水流量を抑える方が好ましい。このため、得点重み関数は、上に凸となっているものの、熱水流量がより少ない領域に極大値が設定されることが好ましい。最適化部23では、得点重み関数によって各坑井2の熱水流量を得点化する。 Here, in order to optimize the combination of fumarole pressures in each well 2, the optimization unit 23 facilitates selection by scoring the flow rate of hot water in each well 2. .. If the flow rate of hot water ejected from the well 2 is too small, the pressure may drop sharply and the fumarole may stop, while if it is too large, the attenuation of the well 2 may be promoted. There is sex (reason for inadequacy). Therefore, in consideration of the unsuitable reason, a score weighting function as shown in FIG. 6 is set corresponding to each well 2. In the score weighting function shown in FIG. 6, the vertical axis is the weight (score) and the horizontal axis is the ratio of the hot water flow rate to the maximum value of the hot water flow rate (hot water flow rate ratio), and is convex upward in consideration of the unsuitable reason. It is a function. That is, the weight (score) is set low in the region where the hot water flow rate is too small and the region where the hot water flow rate is too large. In the operation of the well 2, if the flow rate of hot water is too small, the fumarole may stop, but in order to suppress the attenuation of the well 2 and plan long-term operation, the flow rate of hot water should be increased as much as possible. It is preferable to suppress it. Therefore, although the score weighting function is convex upward, it is preferable that the maximum value is set in the region where the hot water flow rate is smaller. In the optimization unit 23, the hot water flow rate of each well 2 is scored by the score weighting function.

なお、各坑井2では特性が異なるため、図6のような得点重み関数は坑井2ごとに設定され、坑井2ごとに評価されることが好ましいが、各坑井2に対して統一的に得点重み関数を設定することとしてもよい。 Since the characteristics of each well 2 are different, it is preferable that the score weighting function as shown in FIG. 6 is set for each well 2 and evaluated for each well 2, but it is unified for each well 2. The score weight function may be set.

そして、最適化部23は、発電要求に応じて、複数の坑井2を構成する各坑井2から噴気された蒸気の合計流量(蒸気タービン8に供給される蒸気の流量)を設定し、設定した蒸気の合計流量を一定とした場合に、重み得点の合計が最も高くなる各坑井2の噴気圧力の組合せを特定する。具体的には、最適化部23は、複数の坑井2に対して、蒸気の合計流量が一定の条件のもとで各坑井2に対して蒸気流量を割り当てる。そして、各坑井2では、推定した坑井特性に基づいて、割り当てられた蒸気流量に対応する噴気圧力及び熱水流量を特定し、特定した熱水流量を得点化する。そして、各坑井2の噴気圧力の組合せ条件に対して、各坑井2において評価した得点を合計する。 Then, the optimization unit 23 sets the total flow rate of steam fumaroles (flow rate of steam supplied to the steam turbine 8) from each well 2 constituting the plurality of wells 2 in response to the power generation request. When the set total flow rate of steam is constant, the combination of fumarolic pressures of each well 2 having the highest total weight score is specified. Specifically, the optimization unit 23 allocates the steam flow rate to each of the wells 2 under the condition that the total flow rate of steam is constant. Then, in each well 2, the fumarole pressure and the hot water flow rate corresponding to the assigned steam flow rate are specified based on the estimated well characteristics, and the specified hot water flow rate is scored. Then, the scores evaluated in each well 2 are totaled with respect to the combination condition of the fumarole pressure of each well 2.

このように、最適化部23は、各坑井2に対する蒸気流量の割り当てパターンを複数通り設定し、同様に熱水流量を得点化して合計を算出して、各坑井2の噴気圧力の組合せ条件での得点の合計値とする。上記の演算から、各坑井2の噴気圧力の組合せ条件の複数のパターンにおいて得点の合計値が算出されるため、算出した合計得点の最も高いパターンを特定し、特定したパターンにおける各坑井2の噴気圧力の組合せを特定する。このようにすることで、最適条件(各坑井2から噴気された蒸気の合計流量を一定とした場合に、各坑井2から噴気された熱水の合計流量が最小値を含む所定の範囲以内となる状態)となる各坑井2の噴気圧力の組合せを推定することが可能となる。 In this way, the optimization unit 23 sets a plurality of patterns for allocating the steam flow rate to each well 2, similarly scores the hot water flow rate to calculate the total, and combines the fumarolic pressures of each well 2. It is the total value of the points under the conditions. From the above calculation, the total value of the scores is calculated in a plurality of patterns of the combination condition of the fumarole pressure of each well 2. Therefore, the pattern with the highest total score calculated is specified, and each well 2 in the specified pattern is specified. Identify the combination of fumarolic pressures. By doing so, the optimum condition (when the total flow rate of steam fumaroles from each well 2 is constant, the total flow rate of hot water fumaroles from each well 2 is within a predetermined range including the minimum value. It is possible to estimate the combination of fumarolic pressures in each well 2 that is within the range).

推定した各坑井2の噴気圧力の組合せとなるように各坑井2の流量調整弁4が制御され、各坑井2の運用状態が最適化される。なお、各坑井2の流量調整弁4の制御は、自動的に実行されてもよいし、運転員等によって手動で実行されてもよい。 The flow rate adjusting valve 4 of each well 2 is controlled so as to be a combination of the estimated fumarole pressures of each well 2, and the operating state of each well 2 is optimized. The control of the flow rate adjusting valve 4 of each well 2 may be automatically executed or may be manually executed by an operator or the like.

次に、上述の坑井特性推定装置20による処理について図7を参照して説明する。図7に示すフローは、坑井特性の推定開始指示が例えば地熱発電プラント1の運転員等によって指示された場合に実行される。なお、坑井特性の推定開始指示は、地熱発電プラント1に組み込まれたシステムより自動的に指示されてもよい。 Next, the processing by the well characteristic estimation device 20 described above will be described with reference to FIG. 7. The flow shown in FIG. 7 is executed when the estimation start instruction of the well characteristics is instructed by, for example, an operator of the geothermal power generation plant 1. The instruction to start estimating the well characteristics may be automatically instructed by the system incorporated in the geothermal power generation plant 1.

まず、坑井2における噴気圧力、地熱流体の蒸気流量、及び地熱流体の熱水流量に係る情報を取得する(S101)。具体的には、各坑井2の噴気圧力、各坑井2から噴気された地熱流体における蒸気の合計流量、各坑井2から噴気された地熱流体における熱水の合計流量を取得する。 First, information on the jet pressure in the well 2, the steam flow rate of the geothermal fluid, and the hydrothermal flow rate of the geothermal fluid is acquired (S101). Specifically, the fumarolic pressure of each well 2, the total flow rate of steam in the geothermal fluid ejected from each well 2, and the total flow rate of hot water in the geothermal fluid ejected from each well 2 are acquired.

そして、取得した各坑井2から噴気された地熱流体における噴気圧力、蒸気の合計流量、及び各坑井2から噴気された地熱流体における熱水の合計流量に基づいて、各坑井2における噴気圧力、蒸気流量及び熱水流量を推定する(S102)。なお、S102は、各坑井2における蒸気流量及び熱水流量を計測器により計測する場合には省略することが可能である。 Then, based on the fountain pressure in the geothermal fluid ejected from each well 2 and the total flow rate of steam, and the total flow rate of hot water in the geothermal fluid ejected from each well 2, the jet air in each well 2 The pressure, steam flow rate and hot water flow rate are estimated (S102). Note that S102 can be omitted when measuring the steam flow rate and the hot water flow rate in each well 2 with a measuring instrument.

そして、各坑井2の噴気圧力、蒸気流量、及び熱水流量に基づいて、各坑井2の坑井特性を推定する(S103)。 Then, the well characteristics of each well 2 are estimated based on the fumarole pressure, steam flow rate, and hot water flow rate of each well 2 (S103).

そして、推定した各坑井特性に基づいて、最適条件(各坑井2から噴気された蒸気の合計流量を一定とした場合に、各坑井2から噴気された熱水の合計流量が最小値を含む所定の範囲以内となる状態)となる各坑井2の噴気圧力の組合せを推定する(S104)。 Then, based on the estimated characteristics of each well, the optimum condition (when the total flow rate of steam fumaroles from each well 2 is constant, the total flow rate of hot water fumaroles from each well 2 is the minimum value. It is estimated that the combination of fumarolic pressures of each well 2 is within a predetermined range including (S104).

なお、推定された各坑井2の噴気圧力の組合せを用いて自動的に各坑井2の流量調整弁4を制御することしてもよいし、各坑井2の噴気圧力の組合せを運転員等に通知して人為的に各坑井2の流量調整弁4を調整することとしてもよい。 The flow rate adjusting valve 4 of each well 2 may be automatically controlled by using the estimated combination of the jet pressures of each well 2, or the combination of the jet pressures of each well 2 may be used by the operator. Etc. may be notified to artificially adjust the flow rate adjusting valve 4 of each well 2.

以上説明したように、本実施形態に係る地熱発電プラントの坑井特性推定システム、及びその坑井特性推定方法並びに坑井特性推定プログラム、地熱発電プラントによれば、坑井特性は、従来は坑井2の運用に従って経時的に変化するものの地熱発電プラント1の稼働中は取得することが困難であったが、本実施形態の坑井特性推定装置20の推定部22により坑井特性を容易に推定することが可能となる。すなわち、坑井2の坑井特性をより正確に把握して、坑井2から噴気する地熱流体の流量を適正にすることができ、より効率的に坑井管理を行うことが可能となる。より正確に坑井管理を行うことによって、坑井2の長寿命化等を図ることが可能となる。また、地熱発電プラント1が稼働中に取得可能な坑井2における噴気圧力、地熱流体の蒸気流量、及び地熱流体の熱水流量に係る複数の情報に基づいて坑井特性を推定するため、例えば、坑井2を地熱発電プラント1に併入したままであっても坑井特性を把握することが可能となる。 As described above, according to the well characteristic estimation system of the geothermal power plant according to the present embodiment, the well characteristic estimation method thereof, the well characteristic estimation program, and the geothermal power plant, the well characteristics have been conventionally set to the well. Although it changes over time according to the operation of the well 2, it was difficult to acquire it during the operation of the geothermal power plant 1. However, the well characteristics can be easily obtained by the estimation unit 22 of the well characteristic estimation device 20 of the present embodiment. It becomes possible to estimate. That is, the well characteristics of the well 2 can be grasped more accurately, the flow rate of the geothermal fluid fumarole from the well 2 can be made appropriate, and the well management can be performed more efficiently. By managing the wells more accurately, it is possible to extend the life of the wells 2. Further, in order to estimate the well characteristics based on a plurality of information related to the jet pressure in the well 2 that can be acquired while the geothermal power plant 1 is in operation, the steam flow rate of the geothermal fluid, and the hydrothermal flow rate of the geothermal fluid, for example. , It is possible to grasp the characteristics of the well even if the well 2 is still inserted in the geothermal power plant 1.

また、坑井特性を推定するための情報として、各坑井2から噴気された地熱流体における蒸気の合計流量及び各坑井2から噴気された地熱流体における熱水の合計流量を取得して、回帰分析等により、坑井2ごとでの噴気圧力、蒸気流量と熱水流量を推定することとしたため、流量計等の計測器を最小限に抑制しつつ、坑井特性を推定することが可能となる。 In addition, as information for estimating the well characteristics, the total flow rate of steam in the geothermal fluid ejected from each well 2 and the total flow rate of hot water in the geothermal fluid ejected from each well 2 are acquired. Since it was decided to estimate the well pressure, steam flow rate, and hot water flow rate for each well 2 by regression analysis, etc., it is possible to estimate well characteristics while minimizing the number of measuring instruments such as flow meters. It becomes.

また、坑井特性を用いることで各坑井2の特性を正確に把握することが可能となるため、蒸気の合計流量を一定とした場合に、各坑井2から噴気された熱水の合計流量が最小値を含む所定の範囲内で最小値に近づくような各坑井2の噴気圧力の組合せ、もしくは熱水の流量値の組合せを推定することが可能となる。各坑井2から噴気された熱水の合計流量が最小値を含む所定の範囲内で最小値に近づくように各坑井2の熱水の流量値を設定することで、坑井2の短寿命化を抑制することが可能となる。 In addition, since it is possible to accurately grasp the characteristics of each well 2 by using the characteristics of the wells, the total amount of hot water fumaroles from each well 2 is assumed to be constant when the total flow rate of steam is constant. It is possible to estimate the combination of fumarolic pressures of each well 2 or the combination of hot water flow rates so that the flow rate approaches the minimum value within a predetermined range including the minimum value. By setting the flow rate value of hot water in each well 2 so that the total flow rate of hot water fumarole from each well 2 approaches the minimum value within a predetermined range including the minimum value, the shortness of the well 2 It is possible to suppress the life extension.

〔第2実施形態〕
次に、本発明の第2実施形態に係る地熱発電プラントの坑井特性推定システム、及びその坑井特性推定方法並びに坑井特性推定プログラム、地熱発電プラントについて説明する。
上述した第1実施形態において、取得部21は何等かの目的で坑井2に対する流量調整弁4の操作が行われた場合に各計測器から計測値を取得していたが、本実施形態では、意図的に流量調整弁4を制御して各計測器から計測値を取得する場合について説明する。以下、本実施形態に係る地熱発電プラント1の坑井特性推定システム、及びその坑井特性推定方法並びに坑井特性推定プログラム、地熱発電プラント1について、第1実施形態と異なる点について主に説明する。
[Second Embodiment]
Next, a well characteristic estimation system for a geothermal power plant according to a second embodiment of the present invention, a well characteristic estimation method thereof, a well characteristic estimation program, and a geothermal power plant will be described.
In the first embodiment described above, the acquisition unit 21 acquires the measured value from each measuring instrument when the flow rate adjusting valve 4 is operated for the well 2 for some purpose, but in the present embodiment A case where the flow rate adjusting valve 4 is intentionally controlled to acquire the measured value from each measuring instrument will be described. Hereinafter, the well characteristic estimation system of the geothermal power generation plant 1 according to the present embodiment, the well characteristic estimation method thereof, the well characteristic estimation program, and the geothermal power generation plant 1 will be mainly described with respect to the differences from the first embodiment. ..

本実施形態における坑井特性推定装置20では、図8に示すように、弁制御部24を備える。 As shown in FIG. 8, the well characteristic estimation device 20 in the present embodiment includes a valve control unit 24.

弁制御部24は、特定の坑井2に対して設けられた地熱流体の流量調整弁4の開度を所定量だけ調整すると共に、該調整による発電量変動分を抑制するように他の坑井2に対して設けられた地熱流体の流量調整弁4を制御する。すなわち、弁制御部24は、意図的に特定の坑井2の流量調整弁4を制御して噴気圧力等を変動させ、積極的に取得部21による情報取得を実行させるものである。 The valve control unit 24 adjusts the opening degree of the geothermal fluid flow rate adjusting valve 4 provided for the specific well 2 by a predetermined amount, and suppresses the fluctuation of the amount of power generation due to the adjustment. The flow rate adjusting valve 4 of the geothermal fluid provided for the well 2 is controlled. That is, the valve control unit 24 intentionally controls the flow rate adjusting valve 4 of the specific well 2 to fluctuate the fumarole pressure and the like, and actively causes the acquisition unit 21 to acquire information.

このために、弁制御部24は、まず、流量調整弁4を制御する坑井2を決定する。なお、坑井2の決定については、特に坑井特性を取得したい坑井2としてもよいし、全ての坑井2に対して例えば地熱流体流量の大きく流量調整弁4の開度の変化可能量が大きいものから順番に行うなど、適宜決定した順番に処理を行うこととしてもよい。そして、弁制御部24は、特定の坑井2の流量調整弁4の開度を所定量分調整する。所定量については、流量調整弁4の調整によって噴気圧力等の変化が十分に確認できる開度変動量に設定される。また、地熱発電プラント1の運転員等によって所定量が設定されてもよい。 For this purpose, the valve control unit 24 first determines the well 2 that controls the flow rate adjusting valve 4. Regarding the determination of the well 2, the well 2 may be particularly desired to acquire the characteristics of the well, and for all the wells 2, for example, the amount of changeable opening degree of the flow rate adjusting valve 4 having a large geothermal fluid flow rate. The processing may be performed in an appropriately determined order, such as in order from the one with the largest value. Then, the valve control unit 24 adjusts the opening degree of the flow rate adjusting valve 4 of the specific well 2 by a predetermined amount. The predetermined amount is set to an opening fluctuation amount at which changes in fumarole pressure and the like can be sufficiently confirmed by adjusting the flow rate adjusting valve 4. Further, a predetermined amount may be set by an operator or the like of the geothermal power generation plant 1.

特定の流量調整弁4を制御することにより、蒸気量が大きく変動し地熱発電プラント1の発電量が変動してしまう可能性があるため、弁制御部24は、特定の坑井2の流量調整弁4を調整する場合に、該調整によって発生する発電量変動分を抑制するように、他の坑井2の流量調整弁4の制御量を決定する。例えば、弁制御部24は、特定の坑井2の流量調整弁4を調整した場合に発生した蒸気流量の変動量を打ち消すように、他の坑井2で必要な蒸気流量の変動量を坑井特性を用いて算出し、これらの他の坑井2の流量調整弁4の制御量を決定する。 By controlling the specific flow rate adjusting valve 4, the amount of steam may fluctuate greatly and the amount of power generated by the geothermal power generation plant 1 may fluctuate. Therefore, the valve control unit 24 adjusts the flow rate of the specific well 2. When adjusting the valve 4, the control amount of the flow rate adjusting valve 4 of the other well 2 is determined so as to suppress the fluctuation amount of the power generation amount generated by the adjustment. For example, the valve control unit 24 sets the fluctuation amount of the steam flow rate required in another well 2 so as to cancel the fluctuation amount of the steam flow rate generated when the flow rate adjusting valve 4 of the specific well 2 is adjusted. It is calculated using the well characteristics, and the control amount of the flow rate adjusting valve 4 of these other wells 2 is determined.

このようにすることで、特定の坑井2の流量調整弁4を調整したとしても、他の坑井2の流量調整弁4の制御によって発電量変動量を抑制することができるため、地熱発電プラント1の発電量をほとんど変動させることなく、特定の坑井2の流量調整弁4の調整に伴う噴気圧力や蒸気流量、熱水流量を取得することが可能となる。また、他の坑井2の流量調整弁4の制御によって発電量変動を抑制するため、特定の坑井2については大きく開度を調整することが可能となり、特定の坑井2の流量調整弁4の調整に伴う噴気圧力や蒸気流量、熱水流量をより幅広く取得することが可能となる。すなわち、実運用における動作点から離れた動作条件の位置での坑井特性に関する情報を取得することが可能となる。 By doing so, even if the flow rate adjusting valve 4 of the specific well 2 is adjusted, the fluctuation amount of the power generation amount can be suppressed by controlling the flow rate adjusting valve 4 of the other well 2, so that the geothermal power generation can be performed. It is possible to obtain the jet pressure, the steam flow rate, and the hot water flow rate associated with the adjustment of the flow rate adjusting valve 4 of the specific well 2 with almost no change in the power generation amount of the plant 1. Further, since the fluctuation of the amount of power generation is suppressed by controlling the flow rate adjusting valve 4 of the other well 2, the opening degree of the specific well 2 can be greatly adjusted, and the flow rate adjusting valve of the specific well 2 can be adjusted. It is possible to obtain a wider range of well pressure, steam flow rate, and hot water flow rate associated with the adjustment of 4. That is, it is possible to acquire information on well characteristics at a position of operating conditions away from the operating point in actual operation.

そして、取得部21は、弁制御部24によって各流量調整弁4の制御が実行された後に情報を取得する。すなわち、取得部21では、弁制御部24による流量調整弁4の制御後の噴気圧力や蒸気流量、熱水流量を取得して蓄積する。 Then, the acquisition unit 21 acquires information after the control of each flow rate adjusting valve 4 is executed by the valve control unit 24. That is, the acquisition unit 21 acquires and accumulates the fumarole pressure, the steam flow rate, and the hot water flow rate after the flow rate adjusting valve 4 is controlled by the valve control unit 24.

以上説明したように、本実施形態に係る地熱発電プラントの坑井特性推定システム、及びその坑井特性推定方法並びに坑井特性推定プログラム、地熱発電プラントによれば、特定の坑井2の流量調整弁4を所定量だけ変化させた場合に、他の坑井2の流量調整弁4を制御して発電量変動を抑制することとしたため、地熱発電プラント1の発電量をほとんど変動させることなく、特定の坑井2の流量調整弁4の調整に伴う噴気圧力や蒸気流量、熱水流量の変動した情報を取得することが可能となる。すなわち、地熱発電プラント1の発電量をほとんど変動させることなく、取得した情報に基づいて坑井特性を推定することが可能となる。 As described above, according to the well characteristic estimation system of the geothermal power plant according to the present embodiment, the well characteristic estimation method thereof, the well characteristic estimation program, and the geothermal power plant, the flow rate adjustment of the specific well 2 is performed. When the valve 4 is changed by a predetermined amount, the flow control valve 4 of the other well 2 is controlled to suppress the fluctuation of the power generation amount, so that the power generation amount of the geothermal power generation plant 1 is hardly changed. It is possible to acquire information on fluctuations in the jet pressure, steam flow rate, and hydrothermal flow rate due to the adjustment of the flow rate adjusting valve 4 of the specific well 2. That is, it is possible to estimate the well characteristics based on the acquired information without changing the amount of power generated by the geothermal power generation plant 1.

〔第3実施形態〕
次に、本発明の第3実施形態に係る地熱発電プラントの坑井特性推定システム、及びその坑井特性推定方法並びに坑井特性推定プログラム、地熱発電プラントについて説明する。
各坑井2は、地下の貯留層において互いに関係しており、特性が独立していない場合がある。このため、本実施形態では、各坑井2の相関関係を演算する。以下、本実施形態に係る地熱発電プラント1の坑井特性推定システム、及びその坑井特性推定方法並びに坑井特性推定プログラム、地熱発電プラント1について、第1実施形態及び第2実施形態と異なる点について主に説明する。
[Third Embodiment]
Next, a well characteristic estimation system for a geothermal power plant according to a third embodiment of the present invention, a well characteristic estimation method thereof, a well characteristic estimation program, and a geothermal power plant will be described.
The wells 2 are related to each other in the underground reservoir and may not have independent characteristics. Therefore, in the present embodiment, the correlation of each well 2 is calculated. Hereinafter, the well characteristic estimation system of the geothermal power generation plant 1 according to the present embodiment, the well characteristic estimation method thereof, the well characteristic estimation program, and the geothermal power generation plant 1 are different from the first embodiment and the second embodiment. Will be mainly explained.

本実施形態における坑井特性推定装置20では、図9に示すように、相関演算部25を備える。なお、坑井特性推定装置20は、上記の弁制御部24を備えることとしてもよい。 As shown in FIG. 9, the well characteristic estimation device 20 in the present embodiment includes a correlation calculation unit 25. The well characteristic estimation device 20 may include the valve control unit 24 described above.

相関演算部25は、過去所定期間において推定された各坑井2の坑井特性に基づいて、各坑井2の相関関係を演算する。地下貯留層において、同じ地層を水源としている場合には、例えば一方の坑井2の噴気量を上げると他方の坑井2の噴気量が下がるような相関関係のある現象が発生する場合がある。上述の坑井特性推定装置20では、各坑井2を地熱発電プラント1に併入した状態(例えば、各坑井2で噴気が行われている状態)における各坑井2の特性を取得可能なため、各坑井2の相関関係に係る情報が推定した坑井特性に含まれている可能性がある。 The correlation calculation unit 25 calculates the correlation of each well 2 based on the well characteristics of each well 2 estimated in the past predetermined period. In the underground reservoir, when the same stratum is used as the water source, a correlated phenomenon may occur, for example, when the fumarole amount of one well 2 is increased, the fumarole amount of the other well 2 is decreased. .. In the well characteristic estimation device 20 described above, it is possible to acquire the characteristics of each well 2 in a state where each well 2 is inserted into the geothermal power generation plant 1 (for example, a state in which fumaroles are being performed in each well 2). Therefore, there is a possibility that the information related to the correlation of each well 2 is included in the estimated well characteristics.

そこで、相関演算部25では、過去所定期間(例えば、1年間、2年間など)において推定された各坑井2の坑井特性を互いに比較することによって、坑井2間における相関関係を演算する。 Therefore, the correlation calculation unit 25 calculates the correlation between the wells 2 by comparing the well characteristics of the wells 2 estimated in the past predetermined period (for example, one year, two years, etc.) with each other. ..

具体的には、相関演算部25は、坑井特性の経時変化(変化の傾向)が似ている坑井2を特定する。坑井特性は、地下貯留層の状態に依存するため、坑井特性の経時変化が似ている坑井2同士は、互いに関連している可能性が高い。このため、発見した相関関係に基づいて地下貯留層の構造を解析することも可能となる。 Specifically, the correlation calculation unit 25 identifies wells 2 having similar changes over time (tendencies of change) in well characteristics. Since the well characteristics depend on the state of the underground reservoir, it is highly possible that the wells 2 having similar changes over time in the well characteristics are related to each other. Therefore, it is possible to analyze the structure of the underground reservoir based on the found correlation.

例えば発見した相関関係を用いて地熱流体の貯留層モデル等を修正することで、地熱流体の地下での貯留層の状態をより正確に把握して、各坑井2の相関関係を考慮しながら、各坑井2から噴気する地熱流体の流量を適正にすることも可能となる。 For example, by modifying the geothermal fluid reservoir model using the discovered correlation, the state of the geothermal fluid reservoir beneath the ground can be grasped more accurately, while considering the correlation of each well 2. It is also possible to optimize the flow rate of the geothermal fluid ejected from each well 2.

以上説明したように、本実施形態に係る地熱発電プラントの坑井特性推定システム、及びその坑井特性推定方法並びに坑井特性推定プログラム、地熱発電プラントによれば、各坑井2は、地熱流体の地下貯留層において他の坑井2と導通している場合など独立でないことがあり、各坑井2の相関関係を発見することは困難であったが、過去所定期間において推定した各坑井2の坑井特性を参照することによって各坑井2の相関関係を発見することが期待できる。例えば、発見した相関関係を用いて地熱流体の貯留層モデル等を修正することで、地熱流体の地下での貯留層の状態をより正確に把握して、各坑井2の相関関係を考慮しながら、各坑井2から噴気する地熱流体の流量を適正にすることも可能となる。このため、坑井管理の精度の向上が期待できる。 As described above, according to the well characteristic estimation system of the geothermal power plant according to the present embodiment, the well characteristic estimation method thereof, the well characteristic estimation program, and the geothermal power plant, each well 2 is a geothermal fluid. It was difficult to find the correlation between each well 2 because it may not be independent, such as when it is conducting with other wells 2 in the underground reservoir of the above, but each well estimated in the past predetermined period. It can be expected that the correlation of each well 2 will be discovered by referring to the characteristics of the well 2. For example, by modifying the geothermal fluid reservoir model using the discovered correlation, the state of the geothermal fluid reservoir beneath the ground can be grasped more accurately, and the correlation of each well 2 is considered. However, it is also possible to optimize the flow rate of the geothermal fluid ejected from each well 2. Therefore, improvement in the accuracy of well management can be expected.

本発明は、上述の実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲において、種々変形実施が可能である。なお、各実施形態を組み合わせることも可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the invention. It is also possible to combine each embodiment.

1 :地熱発電プラント
2 :坑井
3 :地熱流体輸送管
4 :流量調整弁
5 :気水分離器
6 :熱水管
7 :蒸気管
8 :蒸気タービン
9 :発電機
10 :復水器
11 :冷却塔
12 :ポンプ
13 :開閉弁
14 :ポンプ
15 :流量調整弁
16 :圧力計
17 :流量計
18 :流量計
19 :還元井
20 :坑井特性推定装置
21 :取得部
22 :推定部
23 :最適化部
24 :弁制御部
25 :相関演算部
1: Geothermal power plant 2: Well 3: Geothermal fluid transport pipe 4: Flow control valve 5: Gas-water separator 6: Hot water pipe 7: Steam pipe 8: Steam turbine 9: Generator 10: Condenser 11: Cooling Tower 12: Pump 13: On-off valve 14: Pump 15: Flow control valve 16: Pressure gauge 17: Flow meter 18: Flow meter 19: Condenser 20: Well characteristic estimation device 21: Acquisition unit 22: Estimator 23: Optimal Chemical unit 24: Valve control unit 25: Correlation calculation unit

Claims (11)

少なくとも1つの坑井から噴気された地熱流体を用いて発電を行う地熱発電プラントが稼働している場合において、前記坑井から噴気する圧力が変動した際に、前記圧力に対する前記地熱流体の蒸気流量及び前記地熱流体の熱水流量に係る情報を取得する取得部と、
前記取得部において取得した前記情報に基づいて、前記坑井から噴気する前記圧力、前記蒸気流量、及び前記熱水流量の関係を示す坑井特性を推定する推定部と、
を備える地熱発電プラントの坑井特性推定システム。
When a geothermal power plant that generates power using the geothermal fluid ejected from at least one well is in operation and the pressure ejected from the well fluctuates, the steam flow rate of the geothermal fluid with respect to the pressure. And the acquisition unit that acquires information related to the hot water flow rate of the geothermal fluid, and
Based on the information acquired by the acquisition unit, an estimation unit that estimates well characteristics indicating the relationship between the pressure, the steam flow rate, and the hot water flow rate of fumaroles from the well, and an estimation unit.
Well characteristic estimation system for geothermal power plants.
前記推定部は、複数の前記坑井の各々に対して、前記坑井特性を推定する請求項1に記載の地熱発電プラントの坑井特性推定システム。 The well characteristic estimation system for a geothermal power plant according to claim 1, wherein the estimation unit estimates the well characteristics for each of the plurality of wells. 前記取得部は、前記蒸気流量に係る前記情報として、各前記坑井から噴気された前記地熱流体における蒸気の合計流量を取得し、前記熱水流量に係る前記情報として、各前記坑井から噴気された前記地熱流体における熱水の合計流量を取得し、
前記推定部は、蒸気の合計流量と熱水の合計流量に基づいて、回帰分析により、各前記坑井に対する前記坑井特性を推定する請求項2に記載の地熱発電プラントの坑井特性推定システム。
The acquisition unit acquires the total flow rate of steam in the geothermal fluid ejected from each well as the information related to the steam flow rate, and the jet air from each well as the information related to the hot water flow rate. Obtain the total flow rate of hot water in the geothermal fluid
The well characteristic estimation system for a geothermal power plant according to claim 2, wherein the estimation unit estimates the well characteristics for each well by regression analysis based on the total flow rate of steam and the total flow rate of hot water. ..
前記取得部は、前記蒸気流量に係る前記情報として、各前記坑井から噴気された前記地熱流体における蒸気の一部合計流量を取得し、前記熱水流量に係る前記情報として、各前記坑井から噴気された前記地熱流体における熱水の一部合計流量を取得し、
前記推定部は、蒸気の一部合計流量と熱水の一部合計流量に基づいて、回帰分析により、各前記坑井に対する前記坑井特性を推定する請求項2に記載の地熱発電プラントの坑井特性推定システム。
The acquisition unit acquires a part of the total flow rate of steam in the geothermal fluid ejected from each of the wells as the information related to the steam flow rate, and obtains the total flow rate of a part of the steam in the geothermal fluid as the information related to the hot water flow rate. Obtain the partial total flow rate of hot water in the geothermal fluid ejected from
The well of the geothermal power plant according to claim 2, wherein the estimation unit estimates the well characteristics for each well by regression analysis based on the partial total flow rate of steam and the partial total flow rate of hot water. Well characteristic estimation system.
前記取得部は、前記蒸気流量に係る前記情報として、各前記坑井から噴気された前記地熱流体における蒸気の流量を取得し、前記熱水流量に係る前記情報として、各前記坑井から噴気された前記地熱流体における熱水の流量を取得し、
前記推定部は、蒸気の流量と熱水の流量に基づいて、各前記坑井に対する前記坑井特性を推定する請求項2に記載の地熱発電プラントの坑井特性推定システム。
The acquisition unit acquires the flow rate of steam in the geothermal fluid ejected from each well as the information related to the steam flow rate, and is ejected from each well as the information related to the hot water flow rate. Obtain the flow rate of hot water in the geothermal fluid
The well characteristic estimation system for a geothermal power plant according to claim 2, wherein the estimation unit estimates the well characteristics for each well based on the flow rate of steam and the flow rate of hot water.
特定の前記坑井に対して設けられた前記地熱流体の流量調整弁の開度を所定量だけ調整すると共に、前記調整による発電量変動分を抑制するように他の前記坑井に対して設けられた前記地熱流体の流量調整弁を制御する弁制御部を備え、
前記取得部は、前記弁制御部によって各流量調整弁の制御が実行された後に前記情報を取得する請求項2から5のいずれか1項に記載の地熱発電プラントの坑井特性推定システム。
The opening degree of the flow rate adjusting valve for the geothermal fluid provided for the specific well is adjusted by a predetermined amount, and is provided for the other well so as to suppress the fluctuation of the amount of power generation due to the adjustment. A valve control unit for controlling the flow rate adjusting valve of the geothermal fluid is provided.
The well characteristic estimation system for a geothermal power plant according to any one of claims 2 to 5, wherein the acquisition unit acquires the information after the valve control unit controls each flow rate control valve.
過去所定期間において推定された各前記坑井の前記坑井特性に基づいて、各前記坑井の相関関係を演算する相関演算部を備える請求項2から6のいずれか1項に記載の地熱発電プラントの坑井特性推定システム。 The geothermal power generation according to any one of claims 2 to 6, further comprising a correlation calculation unit for calculating the correlation of each well based on the well characteristics of each well estimated in the past predetermined period. Well characteristic estimation system for plants. 推定した各前記坑井の前記坑井特性を用いて、各前記坑井から噴気された蒸気の合計流量を一定とした場合に、各前記坑井から噴気された熱水の合計流量が最小値を含む所定範囲内となるように各前記坑井の噴気圧力の組合せを決定する最適化部を備えた請求項2から7のいずれか1項に記載の地熱発電プラントの坑井特性推定システム。 When the total flow rate of steam fumarole from each well is constant using the well characteristics of each of the estimated wells, the total flow rate of hot water fumarole from each well is the minimum value. The well characteristic estimation system for a geothermal power plant according to any one of claims 2 to 7, further comprising an optimization unit for determining a combination of fumarolic pressures in each well so as to be within a predetermined range including. 坑井から噴気された地熱流体を蒸気と熱水に分離する分離器と、
分離器により分離された蒸気により回転駆動する蒸気タービンと、
前記蒸気タービンと回転連結された発電機と、
請求項1から8のいずれか1項に記載の地熱発電プラントの坑井特性推定システムと、
を備えた地熱発電プラント。
A separator that separates the geothermal fluid fumaroles into steam and hot water,
A steam turbine that is rotationally driven by steam separated by a separator,
A generator that is rotationally connected to the steam turbine,
The well characteristic estimation system for a geothermal power plant according to any one of claims 1 to 8.
Geothermal power plant equipped with.
少なくとも1つの坑井から噴気された地熱流体を用いて発電を行う地熱発電プラントが稼働している場合において、前記坑井から噴気する圧力が変動した際に、前記圧力に対する前記地熱流体の蒸気流量及び前記地熱流体の熱水流量に係る情報を取得する取得工程と、
前記取得工程において取得した前記情報に基づいて、前記坑井から噴気する前記圧力、前記蒸気流量、及び前記熱水流量の関係を示す坑井特性を推定する推定工程と、
を含む地熱発電プラントの坑井特性推定方法。
When a geothermal power plant that generates power using the geothermal fluid ejected from at least one well is in operation and the pressure ejected from the well fluctuates, the steam flow rate of the geothermal fluid with respect to the pressure. And the acquisition process to acquire information on the hot water flow rate of the geothermal fluid, and
Based on the information acquired in the acquisition step, an estimation step of estimating the well characteristics showing the relationship between the pressure, the steam flow rate, and the hot water flow rate of fumaroles from the well, and an estimation step.
Well characteristics estimation method for geothermal power plants including.
少なくとも1つの坑井から噴気された地熱流体を用いて発電を行う地熱発電プラントが稼働している場合において、前記坑井から噴気する圧力が変動した際に、前記圧力に対する前記地熱流体の蒸気流量及び前記地熱流体の熱水流量に係る情報を取得する取得処理と、
前記取得処理において取得した前記情報に基づいて、前記坑井から噴気する前記圧力、前記蒸気流量、及び前記熱水流量の関係を示す坑井特性を推定する推定処理と、
をコンピュータに実行させるための地熱発電プラントの坑井特性推定プログラム。
When a geothermal power plant that generates power using the geothermal fluid ejected from at least one well is operating, when the pressure ejected from the well fluctuates, the steam flow rate of the geothermal fluid with respect to the pressure. And the acquisition process to acquire information related to the hot water flow rate of the geothermal fluid, and
Based on the information acquired in the acquisition process, an estimation process for estimating the well characteristics indicating the relationship between the pressure, the steam flow rate, and the hot water flow rate of fumaroles from the well, and
A well characteristic estimation program for a geothermal power plant to run a computer.
JP2019081002A 2019-04-22 2019-04-22 Well characteristic estimation system of geothermal power generation plant, well characteristic estimation method and well characteristic estimation program therefor, and geothermal power generation plant Pending JP2020176590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019081002A JP2020176590A (en) 2019-04-22 2019-04-22 Well characteristic estimation system of geothermal power generation plant, well characteristic estimation method and well characteristic estimation program therefor, and geothermal power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019081002A JP2020176590A (en) 2019-04-22 2019-04-22 Well characteristic estimation system of geothermal power generation plant, well characteristic estimation method and well characteristic estimation program therefor, and geothermal power generation plant

Publications (1)

Publication Number Publication Date
JP2020176590A true JP2020176590A (en) 2020-10-29

Family

ID=72935851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019081002A Pending JP2020176590A (en) 2019-04-22 2019-04-22 Well characteristic estimation system of geothermal power generation plant, well characteristic estimation method and well characteristic estimation program therefor, and geothermal power generation plant

Country Status (1)

Country Link
JP (1) JP2020176590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737889A (en) * 2021-09-30 2021-12-03 河南省中能联建地热工程有限公司 Device for layered water taking and gradient utilization of thermal reservoir and use method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737889A (en) * 2021-09-30 2021-12-03 河南省中能联建地热工程有限公司 Device for layered water taking and gradient utilization of thermal reservoir and use method

Similar Documents

Publication Publication Date Title
CN105276654B (en) The abnormal Notification Method of hot water apparatus and hot water apparatus
CA2714466C (en) Optimized control of power plants having air cooled condensers
JP4575176B2 (en) Method for estimating generated steam of exhaust heat recovery boiler and maintenance plan support method for power generation equipment
JP6505589B2 (en) Heat source control system and control method
AU2015334312B2 (en) Fluid system
EA027469B1 (en) Method and apparatus for optimizing refrigeration systems
JP2023505766A (en) Heat Exchanger System with Machine Learning Based Optimization
CN110925037B (en) Method for evaluating actual peak regulation capacity of heating heat supply unit by considering operation safety margin
JP2012202269A (en) Binary generator and control method for the same
CN110930050B (en) Peak regulating capacity improvement evaluation method for heat supply unit after technical flexibility improvement of heat storage tank
CN105074356B (en) Heat source system and its control device and control method
JP6416610B2 (en) Plant equipment maintenance planning system and method
JP2020176590A (en) Well characteristic estimation system of geothermal power generation plant, well characteristic estimation method and well characteristic estimation program therefor, and geothermal power generation plant
CN105144014A (en) Method for adaptation of a desired value for air conditioning of an IT environment
CN107916990B (en) System and method for higher power plant efficiency
CN105435587A (en) Carbon dioxide separation and capture apparatus and method of controlling operation of carbon dioxide separation and capture apparatus
CN104713071A (en) Control method for non-circulating-pump type steam pressurization Rankine cycle power generation system
JP2016170753A (en) Data processing unit for plant control, plant including data processing unit for plant control, and automatic adjustment method of control parameter of plant
JP7014686B2 (en) Performance evaluation device, performance evaluation method and performance impact output method
CN103913023B (en) The circular flow control method of earth-source hot-pump system
US11506036B2 (en) Method, apparatus, and system for enhanced oil and gas recovery with super focused heat
WO2023171244A1 (en) Power generation plant, steam cooling system, device for controlling same, and method for controlling same
JP2007107761A (en) Condenser cooling water flow adjustment device
JP6581350B2 (en) Distributed heat source plant operation planning device and distributed heat source plant operation planning method
JP6961475B2 (en) State evaluation device, state evaluation system, state evaluation method, and program

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220121