JP2020137423A - Novel sugar chain-binding proteins and polynucleotides encoding same - Google Patents

Novel sugar chain-binding proteins and polynucleotides encoding same Download PDF

Info

Publication number
JP2020137423A
JP2020137423A JP2019033404A JP2019033404A JP2020137423A JP 2020137423 A JP2020137423 A JP 2020137423A JP 2019033404 A JP2019033404 A JP 2019033404A JP 2019033404 A JP2019033404 A JP 2019033404A JP 2020137423 A JP2020137423 A JP 2020137423A
Authority
JP
Japan
Prior art keywords
rbcbry1
sugar chain
seq
bcbry1
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019033404A
Other languages
Japanese (ja)
Other versions
JP7353616B2 (en
Inventor
貫治 堀
Kanji Hori
貫治 堀
真 平山
Makoto Hirayama
真 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2019033404A priority Critical patent/JP7353616B2/en
Publication of JP2020137423A publication Critical patent/JP2020137423A/en
Application granted granted Critical
Publication of JP7353616B2 publication Critical patent/JP7353616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Peptides Or Proteins (AREA)

Abstract

To provide novel sugar chain-binding proteins and polynucleotides encoding them.SOLUTION: The invention provides a polynucleotide encoding a sugar chain-binding protein, preferably comprising a specific nucleotide sequence derived from the genus Bryopsis, a protein having sugar chain-binding property, preferably comprising a specific amino acid sequence derived from the genus Bryopsis, and a pharmaceutical composition comprising the protein for treating or diagnosing cancer.SELECTED DRAWING: None

Description

本発明は、新規タンパク質及びそれをコードするポリヌクレオチドに関し、特に糖鎖結合性のタンパク質及びそれをコードするポリヌクレオチドに関する。 The present invention relates to novel proteins and polynucleotides encoding them, and in particular to sugar chain binding proteins and polynucleotides encoding them.

細胞表面や体液中に存在する糖タンパク質や糖脂質等の複合糖質の糖鎖は、一種の情報素子として機能し、発生、免疫、がん、感染等の重要な生命現象に深く関わっている。一方、糖鎖結合性タンパク質であるレクチンは糖鎖認識分子として機能し、糖鎖と同様に生物学的に重要な役割を担っている。 Glycan chains of complex carbohydrates such as glycoproteins and glycolipids present on the cell surface and body fluids function as a kind of information element and are deeply involved in important biological phenomena such as development, immunity, cancer, and infection. .. On the other hand, lectin, which is a sugar chain-binding protein, functions as a sugar chain recognition molecule and plays an important biological role like sugar chains.

これまでに、海藻類又は藻類(淡水産藍藻)から多くの種類のレクチンが単離され、その生化学的性質が明らかにされている。レクチンの一部は、例えばヒト免疫不全ウイルス(HIV)、インフルエンザウイルス等のウイルスに特異的に結合することが知られている(非特許文献1〜11)。また、糖鎖はウイルスに限らず、上述のようにがんにも関連しており、近年、硫酸化グリコサミノグリカンががん組織における主要ながん免疫抗原であることや(非特許文献12)、がん細胞の発生や転移に深く関与していること(非特許文献13及び14)が報告されている。 So far, many types of lectins have been isolated from seaweeds or algae (freshwater cyanobacteria), and their biochemical properties have been clarified. It is known that a part of lectins specifically binds to viruses such as human immunodeficiency virus (HIV) and influenza virus (Non-Patent Documents 1 to 11). In addition, sugar chains are not limited to viruses, but are also related to cancer as described above. In recent years, sulfated glycosaminoglycans have been a major cancer immune antigen in cancer tissues (non-patent documents). 12) It has been reported that it is deeply involved in the development and metastasis of cancer cells (Non-Patent Documents 13 and 14).

Boyd,M. R. et al., Antimicrob. Agents Chemother.41, 1521-1530, 1997.Boyd, M.R. et al., Antimicrob. Agents Chemother.41, 1521-1530, 1997. O’Keefe, B. R. et al., Antimicrob. AgentsChemother. 47, 2518-2525, 2003.O’Keefe, B.R. et al., Antimicrob. AgentsChemother. 47, 2518-2525, 2003. Helle,F., .et al., J. Biol. Chem. 281, 25177-25183, 2006.Helle, F., .et al., J. Biol. Chem. 281, 25177-25183, 2006. Barrientos,L. G., et al., Antiviral. Res. 58, 47-56, 2003.Barrientos, LG., Et al., Antiviral. Res. 58, 47-56, 2003. Dey,B., et al., J. Virol. 74, 4562-4569, 2000.Dey, B., et al., J. Virol. 74, 4562-4569, 2000. O’Keefe, B. R. et al.,J. Virol. 84, 2511-2521,2010.O’Keefe, B.R. et al., J. Virol. 84, 2511-2521, 2010. Hori,K.et al., Glycobiology, 17, 479-491, 2007.Hori, K. et al., Glycobiology, 17, 479-491, 2007. Sato,Y.,Okuyama, S., and Hori, K., J. Biol. Chem. 282, 11021-11029, 2007.Sato, Y., Okuyama, S., and Hori, K., J. Biol. Chem. 282, 11021-11029, 2007. Sato,Y.,Morimoto,K., Hirayama, M., and Hori, K. Biochem. Biophys. Res. commun. 405,291-296, 2011.Sato, Y., Morimoto, K., Hirayama, M., and Hori, K. Biochem. Biophys. Res. Commun. 405,291-296, 2011. 佐藤雄一郎、平山 真、藤原佳史、森本金治郎、堀 貫治 (2010) 第13回マリンバイオテクノロジー学会大会講演要旨 (2010. 5.29発表)Yuichiro Sato, Makoto Hirayama, Yoshifumi Fujiwara, Kinjiro Morimoto, Kanji Hori (2010) Abstracts of the 13th Annual Meeting of the Marine Biotechnology Society (announced on May 29, 2010) Sato,Y.,Hirayama, M., Morimoto,K., Yamamoto, N., Okuyama, S., and Hori, K. J. Biol.Chem. 286, No.22, 19446-19458, 2011.Sato, Y., Hirayama, M., Morimoto, K., Yamamoto, N., Okuyama, S., and Hori, K.J. Biol.Chem. 286, No.22, 19446-19458, 2011. Hiroto Kato et al., Cell Reports. 20,1073-1087, 2017.Hiroto Kato et al., Cell Reports. 20,1073-1087, 2017. Adam Pudelko et al., The FEBS Journal(First published: 13 January2019, online: https://doi.org/10.1111/febs.14748)Adam Pudelko et al., The FEBS Journal (First published: 13 January2019, online: https://doi.org/10.1111/febs.14748) Shuji Mizumoto et al., J. Biol. Chem.287, 18985-18994, 2012.Shuji Mizumoto et al., J. Biol. Chem.287, 18985-18994, 2012.

しかしながら、現在のところそのような硫酸化グリコサミノグリカン糖鎖を特異的に認識する物質はまだ十分に知られているとは言いがたく、その数は限られているため、上記物質が十分に供給できる状況にはなっていない。そのような物質は、がんの治療や診断に利用できる可能性があるため、新規物質がさらに多く見出され、その特性が明らかにされることが必要である。 However, at present, it is difficult to say that a substance that specifically recognizes such a sulfated glycosaminoglycan sugar chain is sufficiently known, and the number is limited, so that the above substance is sufficient. It is not in a situation where it can be supplied to. Since such substances have the potential to be used in the treatment and diagnosis of cancer, it is necessary that more new substances be found and their properties clarified.

本発明は、前記問題に鑑みてなされたものであり、その目的は、上記のようながんの診断及び治療への利用可能性がある硫酸化糖鎖を認識する新規タンパク質を探索し、提供できるようにすることにある。 The present invention has been made in view of the above problems, and an object of the present invention is to search for and provide a novel protein that recognizes a sulfated sugar chain that may be used for the diagnosis and treatment of cancer as described above. To be able to do it.

前記の目的を達成するために、本発明者らは、鋭意研究の結果、ハネモ属(Bryopsis属)の藻類から得られたRNAからcDNAを合成し、当該cDNAから新規のタンパク質(レクチン)を発現させることに成功した。 In order to achieve the above object, the present inventors have synthesized cDNA from RNA obtained from algae of the genus Bryopsidales as a result of diligent research, and expressed a novel protein (lectin) from the cDNA. I succeeded in making it.

具体的に、本発明に係る新規ポリヌクレオチドは、糖鎖結合性タンパク質をコードし、 配列番号1若しくは2のヌクレオチド配列を含む、又は該配列番号1若しくは2のヌクレオチド配列若しくはそれらと相補的な配列とストリンジェントな条件下でハイブリダイズするヌクレオチド配列を含む、ことを特徴とする。 Specifically, the novel polynucleotide according to the present invention encodes a sugar chain-binding protein and contains the nucleotide sequence of SEQ ID NO: 1 or 2, or the nucleotide sequence of SEQ ID NO: 1 or 2 or a sequence complementary thereto. It is characterized by containing a nucleotide sequence that hybridizes with and stringent conditions.

また、本発明に係るポリヌクレオチドは、ネザシハネモ(Bryopsis corticulans)、ハネモ(Bryopsis plumose)、オオハネモ(Bryopsis maxima)等のハネモ(Bryopsis)属由来であってもよい。 In addition, the polynucleotide according to the present invention may be derived from the genus Bryopsidales such as Bryopsidales (Bryopsis corticulans), Bryopsidales (Bryopsis plumose), and Bryopsidales (Bryopsis maxima).

本発明に係る新規タンパク質は、糖鎖結合性を有し、配列番号3若しくは4に記載のアミノ酸配列、又は該配列番号3若しくは4に記載のアミノ酸配列において1個若しくは数個のアミノ酸が置換、欠失、挿入若しくは付加されたアミノ酸配列、を含むことを特徴とする。 The novel protein according to the present invention has sugar chain binding property, and one or several amino acids are substituted in the amino acid sequence shown in SEQ ID NO: 3 or 4 or the amino acid sequence shown in SEQ ID NO: 3 or 4. It is characterized by containing a deleted, inserted or added amino acid sequence.

また、本発明に係る新規タンパク質は、硫酸基を含む糖鎖を特異的に認識することを特徴とし、ネザシハネモ(Bryopsis corticulans)、ハネモ(Bryopsis plumose)、オオハネモ(Bryopsis maxima)等のハネモ(Bryopsis)属由来であってもよい。 In addition, the novel protein according to the present invention is characterized in that it specifically recognizes a sugar chain containing a sulfate group, and is a Bryopsidales such as Bryopsidales (Bryopsis corticulans), Bryopsidales (Bryopsis plumose), and Bryopsidales (Bryopsis maxima). It may be derived from a genus.

本発明に係るがんの治療用又は診断用医薬組成物は、上記本発明に係る新規タンパク質を含むことを特徴とする。本発明に係る医薬組成物は、がん細胞に発現し、がん抗原となることが知られている硫酸化グリコサミノグリカン等の硫酸基を含む糖鎖を認識できる上記新規タンパク質を含むため、がん治療やがん診断への利用が可能である。 The pharmaceutical composition for treating or diagnosing cancer according to the present invention is characterized by containing the above-mentioned novel protein according to the present invention. Because the pharmaceutical composition according to the present invention contains the above-mentioned novel protein that can recognize a sugar chain containing a sulfate group such as a sulfated glycosaminoglycan that is expressed in cancer cells and is known to be a cancer antigen. , Can be used for cancer treatment and cancer diagnosis.

本発明に係るポリヌクレオチドは糖鎖結合性の新規タンパク質をコードし、当該新規タンパク質は、がん抗原となる硫酸化糖鎖を認識できるため、がんの治療や診断に利用できる可能性があり、極めて有用である。 The polynucleotide according to the present invention encodes a novel sugar chain-binding protein, and since the novel protein can recognize a sulfated sugar chain as a cancer antigen, it may be used for cancer treatment or diagnosis. , Extremely useful.

実施例1で得られたBcBry1−1の全長cDNAのヌクレオチド配列及び演繹アミノ酸配列を示す図である。It is a figure which shows the nucleotide sequence and the deductive amino acid sequence of the full-length cDNA of BcBry1-1 obtained in Example 1. 実施例1で得られたBcBry1−2の全長cDNAのヌクレオチド配列及び演繹アミノ酸配列を示す図である。It is a figure which shows the nucleotide sequence and the deductive amino acid sequence of the full-length cDNA of BcBry1-2 obtained in Example 1. 実施例2におけるHis-rBcBry1-1の発現を確認するためのSDS−PAGEの結果を示す写真である。It is a photograph which shows the result of SDS-PAGE for confirming the expression of His-rBcBry1-1 in Example 2. 実施例2におけるHis-rBcBry1-1に対するFactor Xaによる酵素消化条件を検討するためのSDS−PAGEの結果を示す写真である。It is a photograph which shows the result of SDS-PAGE for examining the enzyme digestion condition by Factor Xa for His-rBcBry1-1 in Example 2. 実施例2におけるHis-rBcBry1-1の抗Hisタグ抗体による検出可能性を検討するためのSDS−PAGE及びウエスタンブロットの結果を示す写真である。6 is a photograph showing the results of SDS-PAGE and Western blotting for examining the detectability of His-rBcBry1-1 by an anti-His tag antibody in Example 2. 実施例4における糖鎖固定化アレイで用いた糖鎖を示す図である。It is a figure which shows the sugar chain used in the sugar chain immobilization array in Example 4. 実施例4におけるAnti-His-tag-Alexa Fluor 647によるHis-rBcBry1-1N及びCの検出可能性を検討するためのSDS−PAGE及びウエスタンブロットの結果を示す写真である。3 is a photograph showing the results of SDS-PAGE and Western blotting for examining the detectability of His-rBcBry1-1N and C by Anti-His-tag-Alexa Fluor 647 in Example 4. 実施例4におけるHis-rBcBry1-1Cの糖鎖固定化アレイの結果を示すグラフである。It is a graph which shows the result of the sugar chain immobilization array of His-rBcBry1-1C in Example 4.

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用方法或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The following description of preferred embodiments is merely exemplary and is not intended to limit the invention, its application methods or its uses.

本発明の一実施形態は、ハネモ属藻類であるネザシハネモ(Bryopsis corticulans)由来の新規タンパク質(BcBry1)である。本発明に係る新規タンパク質は、糖鎖結合性を有し、例えば配列番号1又は2のヌクレオチド配列を含むポリヌクレオチドによりコードされる。配列番号1又は2のヌクレオチド配列により発現されるタンパク質のアミノ酸配列はそれぞれ配列番号3又は4に示される。 One embodiment of the present invention is a novel protein (BcBry1) derived from Bryopsidales (Bryopsis corticulans), which is a Bryopsidales algae. The novel protein according to the present invention has sugar chain binding property and is encoded by, for example, a polynucleotide containing the nucleotide sequence of SEQ ID NO: 1 or 2. The amino acid sequences of the proteins expressed by the nucleotide sequence of SEQ ID NO: 1 or 2 are shown in SEQ ID NO: 3 or 4, respectively.

本明細書中で用いられる用語「タンパク質」は、「ペプチド」又は「ポリペプチド」と交換可能に使用される。また、本発明に係るタンパク質は、天然供給源より単離されても、化学合成されてもよい。 The term "protein" as used herein is used interchangeably with "peptide" or "polypeptide". In addition, the protein according to the present invention may be isolated from a natural source or chemically synthesized.

用語「単離された」ポリペプチド又はタンパク質とは、その天然の環境から取り出されたポリペプチド又はタンパク質が意図される。一方、宿主細胞中で発現された組換え産生されたポリペプチド及びタンパク質の場合においても、任意の適切な技術によって実質的に精製され、宿主細胞から単離されたものが用いられる。 The term "isolated" polypeptide or protein is intended to be a polypeptide or protein taken from its natural environment. On the other hand, even in the case of recombinantly produced polypeptides and proteins expressed in a host cell, those that have been substantially purified by any suitable technique and isolated from the host cell are used.

本発明に係るタンパク質は、天然の精製産物、化学合成手順の産物、及び原核生物宿主又は真核生物宿主(例えば、細菌細胞、酵母細胞、高等植物細胞、昆虫細胞及び哺乳動物細胞を含む)から組換え技術によって産生された産物を含む。組換え産生手順において用いられる宿主に依存して、本発明に係るタンパク質は、グリコシル化され得るか又は非グリコシル化され得る。さらに、本発明に係るタンパク質は、宿主媒介プロセスの結果として、開始の改変メチオニン残基を含み得る。 The proteins according to the invention are from natural purified products, products of chemical synthesis procedures, and prokaryotic or eukaryotic hosts (including, for example, bacterial cells, yeast cells, higher plant cells, insect cells and mammalian cells). Includes products produced by recombinant techniques. Depending on the host used in the recombinant production procedure, the proteins according to the invention can be glycosylated or non-glycosylated. In addition, the proteins according to the invention may contain an initiating modified methionine residue as a result of a host-mediated process.

一実施形態において、本発明に係るタンパク質は、配列番号3若しくは4に示されるアミノ酸配列を含むポリペプチド、又は配列番号3若しくは4に示されるアミノ酸配列を含むポリペプチドの変異体である。本発明に係るタンパク質は、従来公知のレクチンのアミノ酸配列との相同性が非常に低い新規タンパク質であるという特徴を有する。 In one embodiment, the protein according to the invention is a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 3 or 4, or a variant of the polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 3 or 4. The protein according to the present invention is characterized by being a novel protein having very low homology with the amino acid sequence of a conventionally known lectin.

変異体としては、欠失、挿入、逆転、反復、及びタイプ置換(例えば、親水性の残基の別の残基への置換、しかし通常は強く親水性の残基を強く疎水性の残基には置換しない)を含む変異体が挙げられる。特に、ポリペプチドにおける「中性」アミノ酸置換は、一般的にそのポリペプチドの活性にほとんど影響しない。 Variants include deletions, insertions, reversals, repetitions, and type substitutions (eg, substitution of a hydrophilic residue with another, but usually a strongly hydrophilic residue and a strongly hydrophobic residue. Does not replace). In particular, "neutral" amino acid substitutions in a polypeptide generally have little effect on the activity of that polypeptide.

ポリペプチドのアミノ酸配列中のいくつかのアミノ酸が、このポリペプチドの構造又は機能に有意に影響することなく容易に改変され得ることは、当該分野において周知である。さらに、人為的に改変させるだけではく、天然のタンパク質において、当該タンパク質の構造又は機能を有意に変化させない変異体が存在することもまた周知である。 It is well known in the art that some amino acids in the amino acid sequence of a polypeptide can be easily modified without significantly affecting the structure or function of the polypeptide. Furthermore, it is also well known that there are variants of intrinsically disordered proteins that are not only artificially modified but do not significantly alter the structure or function of the protein.

当業者は、周知技術を使用してポリペプチドのアミノ酸配列において1又は数個のアミノ酸を容易に変異させることができる。例えば、公知の点変異導入法に従えば、ポリペプチドをコードするポリヌクレオチドの任意の塩基を変異させることができる。また、ポリペプチドをコードするポリヌクレオチドの任意の部位に対応するプライマーを設計して欠失変異体又は付加変異体を作製することができる。さらに、本明細書中に記載される方法を用いれば、作製した変異体が、糖鎖結合性を有する所望の変異体であるか否かを容易に決定し得る。 One of ordinary skill in the art can easily mutate one or several amino acids in the amino acid sequence of a polypeptide using well-known techniques. For example, any known base of a polynucleotide encoding a polypeptide can be mutated according to a known point mutation introduction method. In addition, a primer corresponding to an arbitrary site of a polynucleotide encoding a polypeptide can be designed to prepare a deletion mutant or an addition mutant. Furthermore, by using the methods described herein, it can be easily determined whether or not the produced mutant is a desired mutant having sugar chain binding property.

上記「1個若しくはそれ以上のアミノ酸が置換、欠失、挿入、若しくは付加された」とは、部位特異的突然変異誘発法等の公知の変異ポリペプチド作製法により置換、欠失、挿入、若しくは付加できる程度の数(好ましくは1から10個、より好ましくは1から7個、さらに好ましくは1個から5個、特に好ましくは1個から3個)のアミノ酸が置換、欠失、挿入若しくは付加されていることを意味する。このような変異ポリペプチドは、上述したように、公知の変異ポリペプチド作製法により人為的に導入された変異を有するポリペプチドに限定されるものではなく、天然に存在するポリペプチドを単離精製したものであってもよい。 The above "one or more amino acids have been substituted, deleted, inserted, or added" means that the term "substitute, deleted, inserted, or added by a known mutagenesis method such as a site-specific mutagenesis method" is used. A sufficient number of amino acids (preferably 1 to 10, more preferably 1 to 7, still more preferably 1 to 5, particularly preferably 1 to 3) can be substituted, deleted, inserted or added. It means that it has been done. As described above, such a mutant polypeptide is not limited to a polypeptide having a mutation artificially introduced by a known mutant polypeptide preparation method, and a naturally occurring polypeptide is isolated and purified. It may be a peptide.

他の実施形態において、本発明に係るポリペプチドは、融合タンパク質のような改変された形態で組換え発現され得る。例えば、本発明に係るポリペプチドの付加的なアミノ酸、特に荷電性アミノ酸の領域が、宿主細胞内での、精製の間又は引き続く操作及び保存の間の安定性及び持続性を改善するために、ポリペプチドのN末端に付加され得る。 In other embodiments, the polypeptides of the invention can be recombinantly expressed in modified forms such as fusion proteins. For example, regions of additional amino acids, especially charged amino acids, of the polypeptides according to the present invention may improve stability and persistence in a host cell during purification or subsequent manipulation and storage. It can be added to the N-terminus of the polypeptide.

組換え生成は、当該分野において周知の方法を使用して行なうことができ、例えば、以下に詳述されるようなベクター及び細胞等を用いて行なうことができる。 Recombinant production can be carried out using methods well known in the art, for example using vectors and cells as detailed below.

本発明者らは、上記本発明に係るタンパク質が、硫酸基を含む糖鎖を認識することを見出した。ここで、「糖鎖」とは、直鎖又は分岐したオリゴ糖又は多糖を意味する。また上記糖鎖は、タンパク質との結合様式によって、アスパラギンと結合するN−グリコシド結合糖鎖(以下、「N型糖鎖」、「N−グリカン」という)及びセリン、スレオニンなどと結合するO−グリコシド結合糖鎖(以下、「O型糖鎖」、「O−グリカン」という)に大別され、他にLewis型、ABO型、グリコサミノグリカン(GAG)やLacシリーズ等が知られている。 The present inventors have found that the protein according to the present invention recognizes a sugar chain containing a sulfate group. Here, the "sugar chain" means a linear or branched oligosaccharide or polysaccharide. In addition, the above sugar chains bind to N-glycosidic bond sugar chains (hereinafter referred to as "N-type sugar chains" and "N-glycans") that bind to asparagine, and O- that binds to serine, threonine, etc., depending on the binding mode to proteins. Glycosidic bond sugar chains (hereinafter referred to as "O-type sugar chains" and "O-glycans") are roughly classified, and Lewis type, ABO type, glycosaminoglycan (GAG), Lac series and the like are also known. ..

なお、オリゴ糖とは、単糖又は単糖の置換誘導体が2〜10個脱水結合して生じたものをいう。さらに多数の単糖が結合している糖質を多糖という。多糖は、構成糖の種類によって異なるが、ウロン酸やエステル硫酸を多く含む糖質を酸性多糖、中性糖のみのものを中性多糖という。多糖のうち、ムコ多糖とよばれる一群の多糖は、ほとんどがタンパク質と結合しており、プロテオグリカンという。単糖とは、糖鎖の構成単位となるもので、加水分解によってそれ以上簡単な分子にならない基本的物質である。 The oligosaccharide refers to a monosaccharide or a monosaccharide substituted derivative formed by dehydration bonding of 2 to 10 monosaccharides. A carbohydrate to which a large number of monosaccharides are bound is called a polysaccharide. Although polysaccharides differ depending on the type of constituent sugars, sugars containing a large amount of uronic acid and ester sulfuric acid are called acidic polysaccharides, and those containing only neutral sugars are called neutral polysaccharides. Of the polysaccharides, most of the group of polysaccharides called mucopolysaccharides are bound to proteins and are called proteoglycans. A monosaccharide is a constituent unit of a sugar chain, and is a basic substance that cannot be made into a simpler molecule by hydrolysis.

さらに、単糖は、カルボキシル基などの酸性側鎖を有する酸性糖、ヒドロキシル基がアミノ基で置換されたアミノ糖、それ以外の中性糖の3つに大別される。生体内に存在する単糖としては、酸性糖はN−アセチルノイラミン酸やN−グリコリルノイラミン酸(以下、「Neu5Gc」という)等のシアル酸や、ウロン酸等があり、アミノ糖としてはN−アセチルグルコサミン(以下、「GlcNAc」という)やN−アセチルガラクトサミン等があり、中性糖としてはグルコース、マンノース、ガラクトース、フコース等が挙げられる。 Further, monosaccharides are roughly classified into three types: acidic sugars having an acidic side chain such as a carboxyl group, amino sugars in which a hydroxyl group is replaced with an amino group, and other neutral sugars. Examples of monosaccharides existing in the living body include sialic acid such as N-acetylneuraminic acid and N-glycolylneuraminic acid (hereinafter referred to as "Neu5Gc"), uronic acid, and the like as amino sugars. Examples include N-acetylglucosamine (hereinafter referred to as "GlcNAc") and N-acetylgalactosamine, and examples of neutral sugars include glucose, mannose, galactose, and fucose.

ポリペプチドが糖鎖と結合するか否かは、下記実施例に示す方法を用いることができるが、他に例えば標的となる糖鎖、又は糖鎖が結合した糖タンパク質等を固定化したカラムに、試験対象であるポリペプチドを通し、当該カラムにポリペプチドが結合したか否かをその通過液に含まれるポリペプチドの量、又は特異的溶出剤でカラムから溶出したポリペプチドの量により評価することができる。また標的となる糖鎖が結合した糖タンパク質をメンブレン等に固定化し、ビオチン、フルオレセインイソチオシアネート、ペルオキシダーゼ等で標識したポリペプチドを用いて検出するウエスタンブロット法(法医学の実際と研究、37, 155, 1994 参照)、ドットブロット法(AnalyticalBiochemistry, 204(1), 198, 1992 参照)等を用いて評価することができる。 Whether or not the polypeptide binds to the sugar chain can be determined by using the method shown in the following Examples, but in addition, for example, a target sugar chain or a column on which a glycoprotein to which the sugar chain is bound is immobilized. , And whether or not the polypeptide is bound to the column through the polypeptide to be tested is evaluated by the amount of the polypeptide contained in the passing solution or the amount of the polypeptide eluted from the column with a specific eluent. be able to. In addition, Western blotting (Practice and Research of Forensic Medicine, 37, 155,) in which a glycoprotein to which a target sugar chain is bound is immobilized on a membrane or the like and detected using a polypeptide labeled with biotin, fluorescein isothiocyanate, peroxidase, etc. (See 1994), dot blotting (see Analytical Biochemistry, 204 (1), 198, 1992), etc. can be used for evaluation.

本発明は、上述したように、本発明に係るポリペプチドをコードするポリヌクレオチドを提供する。本明細書中で使用される場合、用語「ポリヌクレオチド」は「核酸」又は「核酸分子」と交換可能に使用され、ヌクレオチドの重合体が意図される。本明細書中で使用される場合、用語「塩基配列」は、「核酸配列」又は「ヌクレオチド配列」と交換可能に使用され、デオキシリボヌクレオチド(A、G、C及びTと省略される)の配列として示される。 The present invention provides a polynucleotide encoding a polypeptide according to the present invention, as described above. As used herein, the term "polynucleotide" is used interchangeably with "nucleic acid" or "nucleic acid molecule" and is intended to be a polymer of nucleotides. As used herein, the term "base sequence" is used interchangeably with "nucleic acid sequence" or "nucleotide sequence" and is a sequence of deoxyribonucleotides (abbreviated as A, G, C and T). Shown as.

本発明に係るポリヌクレオチドは、RNA(例えば、mRNA)の形態、又はDNAの形態(例えば、cDNA又はゲノムDNA)で存在し得る。DNAは、二本鎖又は一本鎖であり得る。一本鎖DNA又はRNAは、コード鎖(センス鎖としても知られる)であり得、又は、非コード鎖(アンチセンス鎖としても知られる)であり得る。 The polynucleotide according to the invention can be present in the form of RNA (eg, mRNA) or DNA (eg, cDNA or genomic DNA). The DNA can be double-stranded or single-stranded. The single-stranded DNA or RNA can be a coding strand (also known as the sense strand) or a non-coding strand (also known as the antisense strand).

本明細書中で使用される場合、用語「オリゴヌクレオチド」は、ヌクレオチドが数個ないし数十個結合したものが意図され、「ポリヌクレオチド」と交換可能に使用される。オリゴヌクレオチドは、短いものはジヌクレオチド(二量体)、トリヌクレオチド(三量体)といわれ、長いものは30マー又は100マーというように重合しているヌクレオチドの数で表される。オリゴヌクレオチドは、より長いポリヌクレオチドのフラグメントとして生成されても、化学合成されてもよい。 As used herein, the term "oligonucleotide" is intended to be a combination of several to dozens of nucleotides and is used interchangeably with "polynucleotide". The short ones are called dinucleotides (dimers) and trinucleotides (trimers), and the long ones are represented by the number of polymerized nucleotides such as 30 mer or 100 mer. Oligonucleotides may be produced as fragments of longer polynucleotides or chemically synthesized.

また、本発明に係るポリヌクレオチドは、その5’側又は3’側で上述のタグ標識(タグ配列又はマーカー配列)をコードするポリヌクレオチドに融合され得る。 In addition, the polynucleotide according to the present invention can be fused to a polynucleotide encoding the above-mentioned tag label (tag sequence or marker sequence) on the 5'side or 3'side thereof.

本発明はさらに、本発明に係るポリペプチドをコードするポリヌクレオチドの変異体に関する。変異体は、天然の対立遺伝子変異体のように、天然に生じ得る。「対立遺伝子変異体」によって、生物の染色体上の所定の遺伝子座を占める遺伝子のいくつかの交換可能な形態の1つが意図される。天然に存在しない変異体は、例えば当該分野で周知の変異誘発技術を用いて生成され得る。 The present invention further relates to variants of the polynucleotide encoding the polypeptide according to the invention. Mutants can occur naturally, like natural allelic variants. An "allelic variant" is intended as one of several exchangeable forms of a gene that occupies a given locus on an organism's chromosome. Non-naturally occurring variants can be produced, for example, using mutagenesis techniques well known in the art.

このような変異体としては、本発明に係るポリペプチドをコードするポリヌクレオチドの塩基配列において1又は数個の塩基が欠失、置換、又は付加した変異体が挙げられる。変異体は、コード若しくは非コード領域、又はその両方において変異され得る。コード領域における変異は、保存的若しくは非保存的なアミノ酸欠失、置換、又は付加を生成し得る。 Examples of such a mutant include a mutant in which one or several bases are deleted, substituted, or added in the base sequence of the polynucleotide encoding the polypeptide according to the present invention. Mutants can be mutated in the coding and / or non-coding regions. Mutations in the coding region can result in conservative or non-conservative amino acid deletions, substitutions, or additions.

本発明はさらに、ストリンジェントなハイブリダイゼーション条件下で、本発明に係るポリペプチドをコードするポリヌクレオチド又は当該ポリヌクレオチドにハイブリダイズするポリヌクレオチドを含む、単離したポリヌクレオチドを提供する。 The present invention further provides an isolated polynucleotide comprising a polynucleotide encoding a polynucleotide according to the invention or a polynucleotide hybridizing to the polynucleotide under stringent hybridization conditions.

なお、上記「ストリンジェントな条件」とは、少なくとも90%以上の同一性、好ましくは少なくとも95%以上の同一性、最も好ましくは97%以上の同一性が配列間に存在する時にのみハイブリダイゼーションが起こることを意味する。 The above-mentioned "stringent condition" means that hybridization occurs only when at least 90% or more identity, preferably at least 95% or more identity, and most preferably 97% or more identity exists between sequences. Means to happen.

上記ハイブリダイゼーションは、Sambrookら、Molecular Cloning,A Laboratory Manual,2d Ed.,Cold Spring HarborLaboratory(1989)に記載されている方法のような周知の方法で行なうことができる。通常、温度が高いほど、塩濃度が低いほどストリンジェンシーは高くなり(ハイブリダイズし難くなる)、より相同なポリヌクレオチドを取得することができる。 The hybridization can be performed by a well-known method such as that described in Sambrook et al., Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory (1989). Generally, the higher the temperature and the lower the salt concentration, the higher the stringency (difficulty in hybridization), and more homologous polynucleotides can be obtained.

ハイブリダイゼーションの条件としては、従来公知の条件を好適に用いることができ、特に限定しないが、例えば、42℃、6×SSPE、50%ホルムアミド、1%SDS、100μg/ml サケ精子DNA、5×デンハルト液(ただし、1×SSPE;0.18M 塩化ナトリウム、10mMリン酸ナトリウム、pH7.7、1mM EDTA。5×デンハルト液;0.1%牛血清アルブミン、0.1%フィコール、0.1%ポリビニルピロリドン)が挙げられる。 Conventionally known conditions can be preferably used as the hybridization conditions, and the conditions are not particularly limited. For example, 42 ° C., 6 × SSPE, 50% formamide, 1% SDS, 100 μg / ml salmon sperm DNA, 5 × Denhardt's solution (however, 1 x SSPE; 0.18 M sodium chloride, 10 mM sodium phosphate, pH 7.7, 1 mM EDTA. 5 x Denhardt's solution; 0.1% bovine serum albumin, 0.1% ficol, 0.1% Polyvinylpyrrolidone) can be mentioned.

本発明に係るポリヌクレオチド又はオリゴヌクレオチドは、2本鎖DNAのみならず、それを構成するセンス鎖及びアンチセンス鎖といった各1本鎖DNAやRNAを包含する。またDNAには例えばクローニングや化学合成技術又はそれらの組み合わせで得られるようなcDNAやゲノムDNAなどが含まれる。さらに、本発明に係るポリヌクレオチド又はオリゴヌクレオチドは、非翻訳領域(UTR)の配列やベクター配列(発現ベクター配列を含む)などの配列を含むものであってもよい。 The polynucleotide or oligonucleotide according to the present invention includes not only double-stranded DNA but also single-stranded DNA and RNA such as the sense strand and antisense strand constituting the double-stranded DNA. In addition, DNA includes, for example, cDNA and genomic DNA obtained by cloning, chemical synthesis technology, or a combination thereof. Furthermore, the polynucleotide or oligonucleotide according to the present invention may include a sequence such as a sequence of an untranslated region (UTR) or a vector sequence (including an expression vector sequence).

本発明に係るポリヌクレオチド又はオリゴヌクレオチドを取得する方法として、公知の技術により、本発明に係るポリヌクレオチド又はオリゴヌクレオチドを含むDNA断片を単離し、クローニングする方法が挙げられる。例えば、本発明におけるポリヌクレオチドの塩基配列の一部と特異的にハイブリダイズするプローブを調製し、ゲノムDNAライブラリーやcDNAライブラリーをスクリーニングすればよい。このようなプローブとしては、本発明に係るポリヌクレオチドの塩基配列又はその相補配列の少なくとも一部に特異的にハイブリダイズするプローブであれば、いずれの配列及び/又は長さのものを用いてもよい。 Examples of the method for obtaining the polynucleotide or oligonucleotide according to the present invention include a method for isolating and cloning a DNA fragment containing the polynucleotide or oligonucleotide according to the present invention by a known technique. For example, a probe that specifically hybridizes with a part of the nucleotide sequence of the polynucleotide in the present invention may be prepared, and a genomic DNA library or a cDNA library may be screened. As such a probe, any sequence and / or length can be used as long as it is a probe that specifically hybridizes to at least a part of the nucleotide sequence of the polynucleotide according to the present invention or its complementary sequence. Good.

あるいは、本発明に係るポリヌクレオチドを取得する方法として、PCR等の増幅手段を用いる方法を挙げることができる。例えば、本発明におけるポリヌクレオチドのcDNAのうち、5’側及び3’側の配列(又はその相補配列)の中からそれぞれプライマーを調製し、これらプライマーを用いてゲノムDNA(又はcDNA)等を鋳型にしてPCR等を行い、両プライマー間に挟まれるDNA領域を増幅することで、本発明に係るポリヌクレオチドを含むDNA断片を大量に取得できる。 Alternatively, as a method for obtaining the polynucleotide according to the present invention, a method using an amplification means such as PCR can be mentioned. For example, among the cDNAs of the polynucleotide in the present invention, primers are prepared from the 5'side and 3'side sequences (or their complementary sequences), respectively, and genomic DNA (or cDNA) or the like is used as a template using these primers. By performing PCR or the like to amplify the DNA region sandwiched between the two primers, a large amount of DNA fragment containing the polynucleotide according to the present invention can be obtained.

以下に、本発明に係る新規タンパク質及びそれをコードするポリヌクレオチドについて詳細に説明するための実施例を示す。 Hereinafter, examples for explaining in detail the novel protein according to the present invention and the polynucleotide encoding the same are shown.

[実施例1:ネザシハネモ由来BcBry−1のcDNAクローニング]
<方法>
(RNA採取用試料)
RNA採取用試料として、広島県広島市宇品で採集したネザシハネモ(Bryopsis corticulans)藻体をRNAlater(Ambion)中で細断後、使用時まで−30℃で保存していたものを用いた。
[Example 1: cDNA cloning of BcBry-1 derived from Nezashihanemo]
<Method>
(Sample for RNA collection)
As a sample for RNA collection, a sample of Bryopsis corticulans algae collected in Ujina, Hiroshima City, Hiroshima Prefecture, which had been shredded in RNAlater (Ambion) and stored at -30 ° C until use, was used.

(全RNAの抽出、mRNAの精製及びcDNAの合成)
上記サンプルに対してPureLink Plant RNA Reagent(Invitrogen)を用いて全RNAを抽出し、得られた全RNAを試料として、NucleoTrap mRNA(Macherey-Nagel)を用いてmRNAを精製した。さらに、同mRNAを対象に、GeneRacer Kit(Invitrogen)を用いて完全長cDNAを合成した。いずれの操作においても、キット付属のマニュアルに従って行った。
(Extraction of total RNA, purification of mRNA and synthesis of cDNA)
Total RNA was extracted from the above sample using Pure Link Plant RNA Reagent (Invitrogen), and the obtained total RNA was used as a sample to purify mRNA using NucleoTrap mRNA (Macherey-Nagel). Furthermore, full-length cDNA was synthesized from the same mRNA using the GeneRacer Kit (Invitrogen). All operations were performed according to the manual attached to the kit.

(BcBry−1のcDNAクローニング)
ネザシハネモ(Bryopsis corticulans)由来Bry−1(BcBry−1)を対象としたRapidAmplification of cDNA Ends(RACE)法はGeneRacer KitTM(Invitrogen)及びBlend Taq(登録商標)(TOYOBO)を用いてマニュアルに従って行った。まず、既知Bryopsis sp.由来Bry−1のN末端部分アミノ酸配列を参考に縮重プライマーBry1−F1、Bry1−F2を設計し、3’RACEを行った。まず、Bry1−F1(5’− GGIGGITAYGTIATHAA−3’;配列番号5)及びGeneRacer 3’ primerのプライマーペアを用いて増幅されたPCR産物(アニーリング温度52℃)をアガロースゲル電気泳動後に切り出して精製した。ここで、Iはイノシン、YはC又はT、HはA又はC又はTをそれぞれ示すIUBコードである。これを鋳型とし、nestedプライマーとしてBry1−F2(5’− ACITTYGAYGAYGCIACITAYGA−3’;配列番号6)及びGeneRacer 3’ nested primerのプライマーペアを用いて、さらにPCR増幅(アニーリング温度64℃)した。得られたPCR産物につき、pGEM-T Easyベクターに挿入後、BigDye Terminator v3.1Cycle Sequencing kitを用いて常法により塩基配列決定に供した。その結果、明らかに配列が異なる2種類のBcBry−1の3’末端配列及びpolyAテイルを含む配列が得られたことから、一方をBcBry1−1、他方をBcBry1−2とした。これら2遺伝子につき、さらに全長塩基配列の決定を試みるために、BcBry1−1及びBcBry1−2の3’末端配列からそれぞれプライマーBcBry1-1-3’endR(5’− GCCGCACAATGGAGAAAGCGATTAC−3’;配列番号7)及びBcBry1-2-3’endR(5’− CGCACGATGGAGAAACCAGTTAC−3’;配列番号8)、並びに両BcBry1に共通する配列からBcBry1-common-R1(5’−ACTTTGTAAGCCGTGCACTTCTC−3’;配列番号9)を設計した。BcBry1-1-3’endR又はBcBry-1-2-3’endRを1stPCRに、BcBry1-common-R1をnested PCRに用いる5’RACEを行い、得られたPCR産物につき、上述と同様に塩基配列決定に供した。その結果、BcBry1−1及びBcBry1−2それぞれの5’末端配列を決定できた。BcBry1−1及びBcBry1−2の5’末端配列からそれぞれプライマーBcBry1-1-5’endF(5’− ACACACTTTGCGAGCTCGTGTG−3’;配列番号10)及びBcBry1-2-5’endF(5’− ACAGTGTCAACATGAAGCTGACAGCC−3’;配列番号11)を設計し、BcBry1-1-5’endF及びBcBr1-1-3’endRのプライマーペア、並びにBcBry1-1-5’endF及びBcBr1-1-3’endRのプライマーペアを用いて、高正確性DNA polymerase、KOD plus Neo(TOYOBO)によってBryopsis corticulans由来のcDNAを鋳型にPCRを行った。これにより、BcBry1−1及びBcBry1−2のcDNAの全長をコードするDNA断片を得て、常法を用いてそれらの塩基配列を確認した。
(CDNA cloning of BcBry-1)
The Rapid Amplification of cDNA Ends (RACE) method for Bry-1 (BcBry-1) derived from Nezashihanemo (Bryopsis corticulans) was performed according to the manual using GeneRacer KitTM (Invitrogen) and Blend Taq® (TOYOBO). First, degenerate primers Bry1-F1 and Bry1-F2 were designed with reference to the N-terminal partial amino acid sequence of Bry-1 derived from known Bryopsis sp., And 3'RACE was performed. First, a PCR product (annealing temperature 52 ° C.) amplified using a primer pair of Bry1-F1 (5'-GGIGGITAYGTIATHAA-3'; SEQ ID NO: 5) and GeneRacer 3'primer was excised and purified after agarose gel electrophoresis. .. Here, I is an IUB code indicating inosine, Y is C or T, and H is A or C or T, respectively. Using this as a template, PCR amplification (annealing temperature 64 ° C.) was further performed using a primer pair of Bry1-F2 (5'-ACITTYGAYGAYGCIACITAYGA-3'; SEQ ID NO: 6) and GeneRacer 3'nested primer as nested primers. The obtained PCR product was inserted into a pGEM-T Easy vector and then subjected to nucleotide sequencing by a conventional method using a BigDye Terminator v3.1 Cycle Sequencing kit. As a result, a sequence containing the 3'end sequence and polyA tail of two types of BcBry-1 having clearly different sequences was obtained. Therefore, one was designated as BcBry1-1 and the other as BcBry1-2. Primers BcBry1-1-3'endR (5'-GCCGCACAATGGAGAAAGCGATTAC-3'; SEQ ID NO: 7) from the 3'end sequences of BcBry1-1 and BcBry1-2, respectively, in order to further try to determine the full-length nucleotide sequence of these two genes. ) And BcBry1-2-3'endR (5'-CGCACGAGGAAACCAGTTAC-3'; SEQ ID NO: 8), and BcBry1-common-R1 (5'-ACTTTGTATAAGCCGTGCTACTCTC-3'; SEQ ID NO: 9) from the sequence common to both BcBry1. Designed. Perform 5'RACE using BcBry1-1-3'endR or BcBry-1-2-3'endR for 1st PCR and BcBry1-common-R1 for nested PCR, and the obtained PCR product has the same nucleotide sequence as described above. I made a decision. As a result, the 5'terminal sequences of each of BcBry1-1 and BcBry1-2 could be determined. Primers BcBry1-1-5'endF (5'-ACACACTTTGCGAGCTGTGTG-3'; SEQ ID NO: 10) and BcBry1-2-5'endF (5'-ACAGTGTTCAACATGAAGCTGAGACGC-3', respectively, from the 5'end sequences of BcBry1-1 and BcBry1-2. '; SEQ ID NO: 11) was designed and the primer pairs of BcBry1-1-5'endF and BcBr1-1-3'endR and the primer pairs of BcBry1-1-5'endF and BcBr1-1-3'endR were used. Then, PCR was performed using a highly accurate DNA polymerase, KOD plus Neo (TOYOBO), using cDNA derived from Bryopsis corticulans as a template. As a result, DNA fragments encoding the full length of the cDNAs of BcBry1-1 and BcBry1-2 were obtained, and their nucleotide sequences were confirmed using a conventional method.

<結果>
(BcBry−1のcDNA配列及びアミノ酸配列)
得られた全長BcBry1−1及びBcBry1−2のcDNAの配列情報をそれぞれ図1及び2に示す。また、Bryopsis sp.由来Bry−1の既知N末端アミノ酸との比較及びSignalPprogramを用いたシグナルペプチド配列予測結果から、成熟タンパク質領域を推定した。上記BcBry1−1及びBcBry1−2のcDNAから得られるアミノ酸配列もそれぞれ図1及び図2に示す。図1に示すように、BcBry1−1の全長cDNAは、それぞれ575ヌクレオチドの長さを有し(当該全長cDNA配列を配列番号12とする。)、81〜83番目のヌクレオチドが開始コドンとなり、438〜440番目のヌクレオチドが終始コドンとなる。当該cDNAの81〜440番目のヌクレオチド配列を配列番号1とし、このヌクレオチド配列から得られるタンパク質のアミノ酸配列を配列番号3とする。一方、図2に示すように、BcBry1−2の全長cDNAは、それぞれ495ヌクレオチドの長さを有し(当該全長cDNA配列を配列番号13とする。)、12〜15番目のヌクレオチドが開始コドンとなり、369〜371番目のヌクレオチドが終始コドンとなる。当該cDNAの12〜371番目のヌクレオチド配列を配列番号2とし、このヌクレオチド配列から得られるタンパク質のアミノ酸配列を配列番号4とする。
<Result>
(CDNA sequence and amino acid sequence of BcBry-1)
The sequence information of the obtained full-length BcBry1-1 and BcBry1-2 cDNAs is shown in FIGS. 1 and 2, respectively. In addition, the mature protein region was estimated from the comparison with the known N-terminal amino acid of Bry-1 derived from Bryopsis sp. And the signal peptide sequence prediction result using the Signal P program. The amino acid sequences obtained from the cDNAs of BcBry1-1 and BcBry1-2 are also shown in FIGS. 1 and 2, respectively. As shown in FIG. 1, each full-length cDNA of BcBry1-1 has a length of 575 nucleotides (the full-length cDNA sequence is designated as SEQ ID NO: 12), and the 81st to 83rd nucleotides serve as a start codon and 438. Nucleotides ~ 440 are codons from beginning to end. The nucleotide sequence at positions 81 to 440 of the cDNA is designated as SEQ ID NO: 1, and the amino acid sequence of the protein obtained from this nucleotide sequence is designated as SEQ ID NO: 3. On the other hand, as shown in FIG. 2, each of the full-length cDNAs of BcBry1-2 has a length of 495 nucleotides (the full-length cDNA sequence is designated as SEQ ID NO: 13), and the 12th to 15th nucleotides serve as start codons. Nucleotides 369 to 371 serve as codons from beginning to end. The 12th to 371st nucleotide sequences of the cDNA are designated as SEQ ID NO: 2, and the amino acid sequence of the protein obtained from this nucleotide sequence is designated as SEQ ID NO: 4.

図1及び図2に示すように、BcBry1−1及びBcBry1−2の成熟タンパク質領域はともに100アミノ酸残基からなり、これらのアミノ酸同一率は83%であった。BLAST検索の結果、両BcBry1は既知レクチンのみならず、既知タンパク質と相同性を示さなかった。すなわち、極めて新規性の高いタンパク質一次構造を有することが明らかとなった。 As shown in FIGS. 1 and 2, the mature protein regions of BcBry1-1 and BcBry1-2 both consisted of 100 amino acid residues, and their amino acid identity was 83%. As a result of BLAST search, both BcBry1 showed no homology with not only known lectins but also known proteins. That is, it was clarified that it has an extremely novel protein primary structure.

[実施例2:BcBry1−1の大腸菌発現系の構築]
<方法>
(発現用コンストラクトpCold-rBcBry1-1の作製)
大腸菌コドンに最適化したBcBry1−1をコードするDNAを設計・合成し、これを鋳型にHisタグ及びFactor Xa認識配列を付加するように設計したプライマー BcBry1-1_pCold_F(5’−ATCATCATCATCATATCGAAGGTAGGTCCCGCACAATTACTGTGTTC−3’;配列番号14)、及びBcBry1-1_pCold_R(5’−AGATTACCTATCTAGCTAGCATGTGTAGGCCCATG−3’;配列番号15)、並びにDNAポリメラーゼとしてPlatinum Pfx DNA polymerase(Invitrogen)を用いてPCRを行った。得られた増幅産物につき、In-FusionAdvantage PCR Cloning Kit(Clontech)を用い、制限酵素XbaI及びNdeI切断により直鎖化したpCold II DNA(タカラバイオ)に挿入し、塩基配列を確認することで、発現用コンストラクトpCold-rBcBry1-1を構築した。
[Example 2: Construction of Escherichia coli expression system of BcBry1-1]
<Method>
(Preparation of expression construct pCold-rBcBry1-1)
A primer designed to design and synthesize DNA encoding BcBry1-1 optimized for Escherichia coli codons and add a His tag and a Polymer Xa recognition sequence to the template. PCR was performed using SEQ ID NO: 14), BcBry1-1_pCold_R (5'-AGATTACCTATTAGCTAGCATGTGTGGCCCATG-3'; SEQ ID NO: 15), and Platinum Pfx DNA polymerase (Invitrogen) as the DNA polymerase. The obtained amplification product is expressed by inserting it into pCold II DNA (Takarabio) linearized by restriction enzyme XbaI and NdeI cleavage using the In-Fusion Advantage PCR Cloning Kit (Clontech) and confirming the nucleotide sequence. Constructed for pCold-rBcBry1-1.

(His−rBcBry1−1の調製)
上記発現用コンストラクトpCold-rBcBry1-1を用いて大腸菌株SHuffle Expressを形質転換して組換えBcBry1−1発現株(SHuffle Express/pCold-BcBry1-1)とした。同発現株につき3mlのLB/Amp液体培地に1/20容を加え、37℃で対数増殖期中期まで振とう培養した。OD600が0.5に達したところで培養液を15℃で30分静置後、終濃度が0.1mMになるようにIPTGを加え、15℃で24時間振とう培養し、発現誘導した。発現誘導後、培養液を遠心(20400×g、5分、4℃)し、菌体を回収して、培養液に対して1/20容の超音波破砕用緩衝液(50mMトリス塩酸(pH 8.0)、150mM NaCl)に懸濁し、超音波処理した。これを再び遠心(20400×g、20分、4℃)し、上清を可溶性画分、残渣を不溶性画分とした。可溶性画分についてはニッケルキレートビーズ MagExtractor(登録商標)His-tag(Toyobo)を用いてHis-rBcBry1-1を精製し、これをHisタグ精製標品とした。
(Preparation of His-rBcBry1-1)
The Escherichia coli strain SHuffle Express was transformed with the above expression construct pCold-rBcBry1-1 to obtain a recombinant BcBry1-1 expression strain (SHuffle Express / pCold-BcBry1-1). For the same expression strain, 1/20 volume was added to 3 ml of LB / Amp + liquid medium, and the cells were shake-cultured at 37 ° C. until the middle logarithmic growth phase. When the OD 600 reached 0.5, the culture solution was allowed to stand at 15 ° C. for 30 minutes, ipTG was added so that the final concentration became 0.1 mM, and the culture was shaken at 15 ° C. for 24 hours to induce expression. After inducing the expression, the culture solution is centrifuged (20400 × g, 5 minutes, 4 ° C.) to collect the cells, and 1/20 volume of the culture solution is used as a buffer solution for ultrasonic crushing (50 mM Tris-hydrochloric acid (pH)). It was suspended in 8.0), 150 mM NaCl) and sonicated. This was centrifuged again (20400 × g, 20 minutes, 4 ° C.), and the supernatant was used as a soluble fraction and the residue was used as an insoluble fraction. For the soluble fraction, His-rBcBry1-1 was purified using nickel chelate beads MagExtractor (registered trademark) His-tag (Toyobo), and this was used as a His-tag purified standard.

(Factor Xaによる酵素消化条件の検討)
Hisタグ融合タンパク質His-rBcBry1-1からrBcBry1−1を調製するために、Factor Xaによる酵素消化を行った。まず、精製標品His-rBcBry1-1を透析用緩衝液(50mMトリス塩酸(pH 8.0)、100mM NaCl)に対して十分に透析した。この透析内液を遠心(20400×g、20分、4 ℃)し、得られた上清His-rBcBry1-1を回収した。この上清から酵素反応の至適条件を決定するため、酵素添加量及び反応時間を検討した。酵素反応液50μl(10μgのHis-rBcBry1-1、5μlの10×Factor Xa処理用緩衝液、1μlのFactor Xa(0.1、0.2、0.5U)、24μl滅菌水)を調製し、20℃及び37℃で酵素処理し、37℃条件下では 酵素添加量をFactor Xa(0.1U、0.2U)で行った。また、両温度条件下でFactor Xa未添加のものを調製して同様の処理を行いネガティブコントロールとした。この反応液から経時的(2、4、8、16時間)に10μlずつ回収し、SDS−PAGEに供した。
(Examination of enzyme digestion conditions by Factor Xa)
In order to prepare rBcBry1-1 from the His-tag fusion protein His-rBcBry1-1, enzymatic digestion with Factor Xa was performed. First, the purified sample His-rBcBry1-1 was sufficiently dialyzed against a dialysis buffer (50 mM Tris-hydrochloric acid (pH 8.0), 100 mM NaCl). The dialysis solution was centrifuged (20400 × g, 20 minutes, 4 ° C.), and the obtained supernatant His-rBcBry1-1 was collected. In order to determine the optimum conditions for the enzyme reaction from this supernatant, the amount of enzyme added and the reaction time were examined. Prepare 50 μl of the enzyme reaction solution (10 μg His-rBcBry1-1, 5 μl of 10 × Factor Xa treatment buffer, 1 μl of Factor Xa (0.1, 0.2, 0.5 U), 24 μl of sterile water). Enzyme treatment was performed at 20 ° C. and 37 ° C., and the amount of enzyme added was Factor Xa (0.1 U, 0.2 U) under 37 ° C. conditions. Further, a product to which Factor Xa was not added was prepared under both temperature conditions and subjected to the same treatment to obtain a negative control. 10 μl each was recovered from this reaction solution over time (2, 4, 8, 16 hours) and subjected to SDS-PAGE.

(抗Hisタグ抗体を用いたウェスタンブロッティングによるHis-rBcBry1-1の検出)
調製したHis-rBcBry1-1を糖鎖固定化アレイに供し糖鎖との結合を包括的に調べるため、同組換え体の検出に用いる標識抗体として抗Hisタグ抗体Anti-His-tag-Alexa Fluor(登録商標)647(医学生物学研究所)を用いることが出来るかウェスタンブロッティングにより試験した。すなわち、精製His-rBcBry1-1及びポジティブコントロールとして当研究室で保存されていたN末端側にHisタグを有する組換えKappaphycus alvarezii agglutinin 1(His−rKAA1)、ネガティブコントロールとしてHis−rKAA1からHisタグを除いたrKAAを用い、各試料を5μg相当となるように調製し非還元下でSDS−PAGEに供した。CBB染色したものとは異なる泳動ゲルを、ウェット式トランスファー装置Mini Trans-Brot Cell Module(Bio-Rad)を用いPVDF膜にタンパク質を転写した。転写後メンブレンに対し5%ブロッキング緩衝液(5%スキムミルク、TBS−T(20mM Tris−HCl(pH8.0)、0.15M NaCl、0.05% Tween20))に浸し室温にて1時間緩やかに振とうした。次いでTBS−Tで2回リンスし、またTBS−Tにて15分間振とうする操作を1回、5分間振とうする操作を2回繰り返し洗浄した。洗浄後、2.5%ブロッキング緩衝液(2.5%スキムミルク、TBS−T)で1μg/mlに希釈したAnti-His-tag-Alexa Fluor 647を3ml加え、室温にて1時間振とうし、抗体を反応させた。反応完了後、TBS−Tにて10分間振とうする操作を3回繰り返し洗浄した。メンブレンを風乾後、検出器Typhoon FLA 7000(GEヘルスケア)を用い633nmの励起波長で抗Hisタグ抗体による検出の有無を調べた。
(Detection of His-rBcBry1-1 by Western blotting using anti-His tag antibody)
The prepared His-rBcBry1-1 was subjected to a sugar chain-immobilized array to comprehensively investigate the binding to the sugar chain. Therefore, the anti-His tag antibody Anti-His-tag-Alexa Fluor was used as a labeling antibody for detecting the recombinant. It was tested by Western blotting to see if 647 (Research Institute for Medical Biology) could be used. That is, purified His-rBcBry1-1 and recombinant Kappaphycus alvarezii agglutinin 1 (His-rKAA1) having a His tag on the N-terminal side stored in our laboratory as a positive control, and His-rKAA1 to His tag as a negative control. Using the removed rKAA, each sample was prepared to correspond to 5 μg and subjected to SDS-PAGE under non-reduction. The protein was transferred to the PVDF membrane using a migration gel different from the one stained with CBB using a wet transfer device Mini Trans-Brot Cell Module (Bio-Rad). After transfer, soak the membrane in 5% blocking buffer (5% skim milk, TBS-T (20 mM Tris-HCl (pH 8.0), 0.15 M NaCl, 0.05% Tween 20)) and gently soak at room temperature for 1 hour. I shook it. Then, it was rinsed twice with TBS-T, and the operation of shaking with TBS-T for 15 minutes was repeated once, and the operation of shaking for 5 minutes was repeated twice. After washing, add 3 ml of Anti-His-tag-Alexa Fluor 647 diluted to 1 μg / ml with 2.5% blocking buffer (2.5% skim milk, TBS-T), and shake at room temperature for 1 hour. The antibody was reacted. After the reaction was completed, the operation of shaking with TBS-T for 10 minutes was repeated 3 times for washing. After air-drying the membrane, the presence or absence of detection by an anti-His tag antibody was examined using a detector Typhoon FLA 7000 (GE Healthcare) at an excitation wavelength of 633 nm.

<結果>
(His-rBcBry1-1の発現及び調製)
大腸菌株の可溶性画分につき約450μl、精製標品につき約200μlの液量が得られ、可溶性画分及びHisタグ精製標品につき明瞭な赤血球凝集活性を検出した。なお、赤血球凝集活性の評価は、96ウェルプレートの各ウェルに対して25μLずつ生理食塩水による系列2倍希釈でそれぞれの画分を分注し、それらに等量の2%赤血球懸濁液を加えた後、混合液を緩やかに振とうし、室温で60分間インキュベートし、赤血球凝集活性を肉眼で観察することで行った。また、Hisタグ精製標品は非還元及び還元下SDS−PAGEにおいて予想した分子量の位置に単一のバンドを与え、His-rBcBry1-1の発現を確認した(図3)。なお、図3において、レーンMは分子量マーカー、レーン1は発現誘導前菌体破砕液、レーン2は発現誘導後菌体破砕液、レーン3は可溶性画分、レーン4は不溶性画分、レーン5は非吸着画分、レーン6及びレーン7は洗浄液、レーン8はHisタグ精製標品(還元)、レーン9はHisタグ精製標品(非還元)である。また、His-rBcBry1-1の収量は培地9ml当たり40μgで、最小凝集濃度は1.55μg/mlであった。また、別途、スケールアップして発現誘導を行ったところ、培養液200mlあたりHis-rBcBry1-1は240μg得られた。
<Result>
(Expression and preparation of His-rBcBry1-1)
A liquid volume of about 450 μl per soluble fraction of the E. coli strain and about 200 μl per purified sample was obtained, and clear hemagglutination activity was detected for the soluble fraction and the His tag purified sample. To evaluate the hemagglutination activity, 25 μL of each well of the 96-well plate was dispensed with a 2-fold dilution of the series with physiological saline, and an equal amount of 2% erythrocyte suspension was applied to them. After the addition, the mixed solution was gently shaken, incubated at room temperature for 60 minutes, and the hemagglutination activity was observed with the naked eye. In addition, the His-tag purified preparation gave a single band at the position of the predicted molecular weight in non-reduced and reduced SDS-PAGE, and the expression of His-rBcBry1-1 was confirmed (Fig. 3). In FIG. 3, lane M is a molecular weight marker, lane 1 is a cell disruption solution before expression induction, lane 2 is a cell disruption solution after expression induction, lane 3 is a soluble fraction, lane 4 is an insoluble fraction, and lane 5 is Is a non-adsorbed fraction, lanes 6 and 7 are cleaning liquids, lane 8 is a His-tag purified sample (reduction), and lane 9 is a His-tag purified sample (non-reduction). The yield of His-rBcBry1-1 was 40 μg per 9 ml of the medium, and the minimum aggregation concentration was 1.55 μg / ml. Further, when the expression was induced by scaling up separately, 240 μg of His-rBcBry1-1 was obtained per 200 ml of the culture solution.

(Factor Xaによる酵素消化条件の検討)
His-rBcBry1-1のHisタグ部分を除去するため、Factor Xa処理を試みたところ、20℃ではどの条件でも全く切断されなかった(図4の(a)〜(d))。なお、図4において、(a)は20℃でFactor Xaを未処理、(b)は20℃で0.1U/50μlのFactor Xaを処理、(c)は20℃で0.2U/50μlのFactor Xaを処理、(d)は20℃で0.5U/50μlのFactor Xaを処理、(e)は37℃で0.2U/50μlのFactor Xaを処理、(f)は37℃で0.5U/50μlのFactor Xaを処理した条件の結果である。さらに、反応温度条件を37℃で酵素処理を行ったが、20℃と同様に融合タンパク質部分は切断されないことがわかった(図4の(e)、(f))。融合タンパク質部分が切断されなかった原因として、His-rBcBry1-1に存在するFactor Xa認識配列が立体干渉により認識・接触できない状態にある可能性が考えられた。
(Examination of enzyme digestion conditions by Factor Xa)
When Factor Xa treatment was attempted to remove the His-rBcBry1-1 His-tag portion, no cutting was performed at 20 ° C. under any conditions ((a) to (d) in FIG. 4). In FIG. 4, (a) is untreated Factor Xa at 20 ° C., (b) is treated with 0.1 U / 50 μl Factor Xa at 20 ° C., and (c) is 0.2 U / 50 μl at 20 ° C. Factor Xa is treated, (d) is treated with 0.5 U / 50 μl Factor Xa at 20 ° C., (e) is treated with 0.2 U / 50 μl Factor Xa at 37 ° C., (f) is treated with 0.2 U / 50 μl Factor Xa at 37 ° C. It is the result of the condition treated with 5U / 50μl Factor Xa. Further, it was found that the fusion protein moiety was not cleaved as in the case of 20 ° C. when the enzyme treatment was performed under the reaction temperature condition of 37 ° C. ((e) and (f) in FIGS. 4). It was considered that the reason why the fusion protein portion was not cleaved was that the Factor Xa recognition sequence present in His-rBcBry1-1 could not be recognized or contacted due to steric interference.

(抗Hisタグ抗体を用いたウェスタンブロッティングによるHis-rBcBry1-1の検出)
His-rBcBry1-1はレクチンコード領域のN末端にFactor Xa認識配列、さらに上流にHisタグが融合されていることから、蛍光標識抗Hisタグ抗体を用いて同組換え体を検出可能と予想された。そこでウェスタンブロッティングによりHis-rBry1-1と抗Hisタグ抗体との反応性を調べたが、ポジティブコントロールとして用いたHis−rKAA1で明瞭なシグナルが得られたものの、ネガティブコントロールとして用いたrKAA1と同様、His-rBcBry1-1においてはシグナルが得られなかった(図5)。なお、図5において、レーンMは分子量マーカー、レーン1はHis-rBcBry1-1、レーン2はrKAA1、レーン3はHis−rKAA1である。前述のFactor Xaによるタグ切断が不可であった結果と合わせて、酵素・抗体がそれぞれの認識部位との接触に難がある可能性が考えられた。
(Detection of His-rBcBry1-1 by Western blotting using anti-His tag antibody)
Since His-rBcBry1-1 has a Factor Xa recognition sequence fused to the N-terminal of the lectin coding region and a His tag further upstream, it is expected that the recombinant can be detected using a fluorescently labeled anti-His tag antibody. It was. Therefore, the reactivity of His-rBry1-1 with the anti-His tag antibody was examined by Western blotting. Although a clear signal was obtained with His-rKAA1 used as a positive control, it was similar to rKAA1 used as a negative control. No signal was obtained with His-rBcBry1-1 (Fig. 5). In FIG. 5, lane M is a molecular weight marker, lane 1 is His-rBcBry1-1, lane 2 is rKAA1, and lane 3 is His-rKAA1. In addition to the result that the tag could not be cleaved by Factor Xa described above, it was considered that there is a possibility that the enzyme / antibody has difficulty in contacting each recognition site.

[実施例3:Hisタグ融合位置の異なるBcBry1−1の大腸菌発現系構築]
<方法>
(発現用コンストラクトpET28a-rBcBry1-1N及びpET28a-rBcBry1-1Cの作製)
上述の結果を踏まえ、タグ切断酵素及びタグ認識抗体がそれぞれの認識部位と接触可能となるよう、N末端のHisタグとレクチン領域間にリンカーを挿入したHis-rBcBry1-1N、及びHisタグ融合位置をC末端側にしたHis-rBcBry1-1Cの調製を試みた。まず、前述の大腸菌用コドンに最適化したBcBry1−1のコード合成DNAを鋳型に、下記プライマーペアを用いてrBcBry1−1のコード領域を増幅した。すなわち、His−rBcBry1−1N発現用にはpET_rBcBry1-1_F(5’− CGCGCGGCAGCCATATGAGCCGTACCATTACCGTGTT −3’;配列番号16)及びpET_rBcBry1-1_R(5’−GGTGGTGGTGCTCGATTAGCAGGTATATGCCCACG−3’;配列番号17)を、His-rBcBry1-1C発現用には、pET_rBcBry1-1_CF(5’−AGGAGATATACCATGAGCCGTACCATTACCGTGTT−3’;配列番号18)及びpET_rBcBry1−1_CR(5’−GGTGGTGGTGCTCCAGGCTGCCGCGCGGCACCAGACCACCACCACCGCTGCAGGTATATGCCCACGGAT −3’;配列番号19)を用いPCRにより増幅を行った。次に、発現ベクターpET28a(Novagen)を対象に、His-rBcBry1-1N発現コンストラクト用に制限酵素NdeI及びXhoIで処理、またHis-rBcBry1-1C発現コンストラクト用に制限酵素NcoI及びXhoIで処理し、これら直鎖化pET28a及び上述の各BcBry1−1のコード領域を含むPCR増幅産物を用いてIn-Fusion(登録商標) HD Cloning Kit(タカラバイオ)を用いて、発現用コンストラクトpET28a-rBcBry1-1N及びpET28a-rBcBry1-1Cを作製した。
[Example 3: Construction of E. coli expression system of BcBry1-1 having different His tag fusion positions]
<Method>
(Preparation of expression constructs pET28a-rBcBry1-1N and pET28a-rBcBry1-1C)
Based on the above results, His-rBcBry1-1N with a linker inserted between the N-terminal His tag and the lectin region, and the His tag fusion position so that the tag-cleaving enzyme and the tag-recognizing antibody can contact each recognition site. Was tried to prepare His-rBcBry1-1C with the C-terminal side. First, the coding region of rBcBry1-1 was amplified using the following primer pair using the BcBry1-1 coding synthetic DNA optimized for the codon for Escherichia coli as a template. That is, for the expression of His-rBcBry1-1N, pET_rBcBry1-1_F (5'-CGCGCGGGCAGGCCATATGCCGTACCATTACGTGTTT-3'; SEQ ID NO: 16) and pET_rBcBry1-1_R (5'-GGTGGTGGTGCGTCCGTA For 1C expression, pET_rBcBry1-1_CF (5'-AGGAGATATACCATGAGCCGTACCATTACGTGTTT-3'; SEQ ID NO: 18) and pET_rBcBry1-1_CR (5'-GGTGGGTGGTGCTACGACGCTGGCCGGCGCGTACCGACTGCACTGCCGGCCGCATGCACTGCACTGCCGACTGACTGCACTGCCGACTGACTGCCGCAT Next, the expression vector pET28a (Novagen) was treated with the restriction enzymes NdeI and XhoI for the His-rBcBry1-1N expression construct, and with the restriction enzymes NcoI and XhoI for the His-rBcBry1-1C expression construct. Expression constructs pET28a-rBcBry1-1N and pET28a using In-Fusion® HD Cloning Kit (Takara Bio) with linearized pET28a and PCR amplification products containing the coding regions for each of the BcBry1-1s described above. -rBcBry1-1C was prepared.

(His-rBcBry1-1N及びHis-rBcBry1-1Cの発現大腸菌株の調製)
構築した発現用コンストラクトを用いて大腸菌株SHuffle T7 Expressを形質転換した。形質転換体をLB/Kan寒天培地に適量塗布し、37℃で一晩培養した。得られたコロニーを対象にインサートチェック及びシーケンシングによりインサートが正しく挿入されていることを確認した。該当クローンをLB/Kan液体培地で培養しHis-rBcBry1-1発現株SHuffle T7Express/pET28a-rBcBry1-1N及びSHuffle T7 Express/pET28a-rBcBry1-1Cとし、1/2容の40%グリセロールを加え(終濃度20%)、使用するまで−80℃で保存した。
(Preparation of Escherichia coli strains expressing His-rBcBry1-1N and His-rBcBry1-1C)
The Escherichia coli strain SHuffle T7 Express was transformed with the constructed expression construct. An appropriate amount of the transformant was applied to LB / Kan + agar medium and cultured at 37 ° C. overnight. It was confirmed that the inserts were correctly inserted in the obtained colonies by insert check and sequencing. The clone was cultured in LB / Kan + liquid medium to make His-rBcBry1-1 expression strains SHuffle T7 Express / pET28a-rBcBry1-1N and SHuffle T7 Express / pET28a-rBcBry1-1C, and 1/2 volume of 40% glycerol was added ( The final concentration was 20%), and the mixture was stored at −80 ° C. until use.

(His-rBcBry1-1N及びHis-rBcBry1-1Cの大量発現)
上述のSHuffle T7 Express/pET28a-rBcBry1-1N及びSHuffleT7 Express/pET28a-rBcBry1-1C発現株をLB/Kan液体培地1Lに植菌し37℃で対数増殖期中期になるまで振とう培養した。OD600が0.5から0.8の間に入るまで培養し、終濃度が0.5mMとなるようにIPTGを添加することで発現誘導を開始し、20℃で12時間振とう培養した。培養後、遠心(10000×g、4℃、10分)により集菌し、培養液に対し1/20容の超音波破砕用緩衝液(20mMリン酸緩衝液(pH7.4)、500mM NaCl、20mMイミダゾール)に懸濁した後、超音波破砕を行った。超音波処理後、遠心(10000×g、4℃、30分)し上清を可溶性画分、残渣を不溶性画分として回収した。
(Large expression of His-rBcBry1-1N and His-rBcBry1-1C)
The above-mentioned SHuffle T7 Express / pET28a-rBcBry1-1N and SHuffle T7 Express / pET28a-rBcBry1-1C expression strains were inoculated into LB / Kan + 1 L of liquid medium and cultured at 37 ° C. with shaking until the middle logarithmic growth phase. The cells were cultured until the OD 600 was between 0.5 and 0.8, expression induction was started by adding ipTG so that the final concentration was 0.5 mM, and the cells were shake-cultured at 20 ° C. for 12 hours. After culturing, the cells were collected by centrifugation (10000 × g, 4 ° C., 10 minutes), and 1/20 volume of the culture solution was used as an ultrasonic crushing buffer (20 mM phosphate buffer (pH 7.4), 500 mM NaCl, After suspending in 20 mM imidazole), ultrasonic crushing was performed. After sonication, the mixture was centrifuged (10000 × g, 4 ° C., 30 minutes) to recover the supernatant as a soluble fraction and the residue as an insoluble fraction.

(ニッケルキレートカラムによる精製)
先に調製した可溶性画分に含まれるHisタグ融合組換え体を、ニッケルキレートカラムHis Gravi Trap(GE ヘルスケア バイオサイエンス)により精製した。カラムを平衡化緩衝液(20mMリン酸緩衝液(pH7.4)、500mM NaCl、20mMイミダゾール)にて十分平衡化後、可溶性画分を添加し、カラム担体とHis-rBcBry1-1N及びHis-rBcBry1-1Cを結合させた。カラムを平衡化緩衝液で十分に洗浄後、溶出用緩衝液(20mMリン酸緩衝液(pH7.4)、500mM NaCl、500mMイミダゾール)を添加し組換え体を溶出した。溶出画分に対し緩衝液(300mMアルギニン塩酸塩、50mMトリス(pH8.0)、100mM NaCl)で十分透析し、精製標品とした。
(Purification with nickel chelate column)
The His-tag fusion recombinant contained in the previously prepared soluble fraction was purified by a nickel chelate column His Gravi Trap (GE Healthcare Bioscience). After sufficiently equilibrating the column with an equilibration buffer (20 mM phosphate buffer (pH 7.4), 500 mM NaCl, 20 mM imidazole), a soluble fraction is added, and the column carrier and His-rBcBry1-1N and His-rBcBry1 are added. -1C was combined. After thoroughly washing the column with an equilibration buffer, an elution buffer (20 mM phosphate buffer (pH 7.4), 500 mM NaCl, 500 mM imidazole) was added to elute the recombinant. The eluted fraction was sufficiently dialyzed against a buffer solution (300 mM arginine hydrochloride, 50 mM Tris (pH 8.0), 100 mM NaCl) to prepare a purified sample.

<結果>
(精製漂品の収量及びその赤血球凝集活性)
SHuffleT7 Express/pET28a-rBcBry1-1N及びSHuffle T7Express/pET28a-rBcBry1-1Cをそれぞれ1LのLB/Kanで発現誘導を行い、超音波破砕後、可溶性画分についてニッケルキレートカラムに供し精製後透析を行うことで精製標品を獲得した。精製標品のタンパク質収量及び赤血球凝集活性を測定したところ、rBcBry1-1Nでは0.96mg、512のHA活性が確認されrBcBry1-1Cでは2.52mg、128のHA活性が確認された(表1)。なお、タンパク質収量は、UV280nmに対する吸光度を測定することにより決定した。具体的に、280nmの吸光度が1.0の場合にタンパク質濃度が1mg/mLと推定し、又はウシ血清アルブミン(BSA)を標品として用いて、Pierce BCA Protein Assay Kit(Thermo FisherScientific, IL, USA)により測定し、赤血球凝集活性は、上記と同様に測定した。当結果を、前述のSHuffle Express/pCold-rBcBry1-1株を発現させ獲得したHis-rBcBry1-1の収量(培養液200mlあたり240μg)と比較した時、pETシステム及び大腸菌株SHuffle T7 Expressを用いたことによる劇的な収量の増大は認められなかった。
<Result>
(Yield of purified drift and its hemagglutination activity)
Induce the expression of SHuffleT7 Express / pET28a-rBcBry1-1N and SHuffle T7Express / pET28a-rBcBry1-1C with 1 L of LB / Kan + , respectively, ultrasonically crush, and then subject the soluble fraction to a nickel chelate column for purification and then dialysis. As a result, we obtained a refined standard. When the protein yield and hemagglutination activity of the purified preparation were measured, 0.96 mg and 512 HA activities were confirmed for rBcBry1-1N, and 2.52 mg and 128 HA activities were confirmed for rBcBry1-1C (Table 1). .. The protein yield was determined by measuring the absorbance at UV 280 nm. Specifically, when the absorbance at 280 nm is 1.0, the protein concentration is estimated to be 1 mg / mL, or bovine serum albumin (BSA) is used as a standard, and the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, IL, USA). ), And the hemagglutination activity was measured in the same manner as above. When this result was compared with the yield of His-rBcBry1-1 obtained by expressing the above-mentioned SHuffle Express / pCold-rBcBry1-1 strain (240 μg per 200 ml of culture medium), the pET system and the Escherichia coli strain SHuffle T7 Express were used. No dramatic increase in yield was observed.

[実施例4:糖鎖固定化アレイによるBcBry1−1の糖鎖結合特異性解析]
<方法>
(抗Hisタグ抗体を用いたウェスタンブロッティングによる検出)
調製したHis-rBcBry1-1N又はHis-rBry1-1Cを糖鎖固定化アレイに供し糖鎖との結合を包括的に調べるため、同組換え体の検出に用いる標識抗体として抗Hisタグ抗体Anti-His-tag-Alexa Fluor 647(医学生物学研究所)を用いることが出来るかウェスタンブロッティングにより試験した。すなわち、His-rBcBry1-1N及びHis-rBcBry1-1Cを対象とし、ポジティブコントロールとしてHis−rKAA、ネガティブコントロールとしてrKAAを用いた。各試料を5μg相当となるように調製し非還元下でSDS−PAGEに供した。ウェスタンブロッティングは上述の方法と同様にして行った。
[Example 4: Sugar chain binding specificity analysis of BcBry1-1 by sugar chain immobilization array]
<Method>
(Detection by Western blotting using anti-His tag antibody)
The prepared His-rBcBry1-1N or His-rBry1-1C was subjected to a sugar chain-immobilized array to comprehensively investigate the binding to the sugar chain. Therefore, the anti-His tag antibody Anti- was used as a labeling antibody for detecting the recombinant. Whether His-tag-Alexa Fluor 647 (Institute of Medical Biology) could be used was tested by Western blotting. That is, His-rBcBry1-1N and His-rBcBry1-1C were targeted, and His-rKAA was used as a positive control and rKAA was used as a negative control. Each sample was prepared to correspond to 5 μg and subjected to SDS-PAGE under non-reduction. Western blotting was performed in the same manner as described above.

(糖鎖固定化アレイ)
His-rBcBry1-1CにつきN−glycanを7種、O−glycanを2 種、グリコサミノグリカン(GAG)を5種、ルイス型を4種、Lacを7種及びABO型を3種、計28種類を固定化した糖鎖固定化アレイ(図6、住友ベークライト)に供し、検出試薬として抗Hisタグ抗体Anti-His-tag-Alexa Fluor 647(医学生物学研究所)を用いた。すなわちrBcBry1-1Cを反応バッファー(50mM Tris−HCl(pH7.5)、100mM NaCl、1mM CaCl、1mM MnCl、1mM MgCl、0.05%(v/v)Tween20)で希釈し(終濃度83.9μg/ml)、検出プレートに適量滴下した。カバーを被せ室温にて2時間インキュベートした後、超純水中にてカバーを振り落とし、次いで洗浄用バッファー(50mM Tris−HCl(pH7.5)、100mM NaCl、1mM CaCl、1mM MnCl、1mM MgCl)中で1分間緩やかに洗浄した。さらに超純水にて1分間緩やかに洗浄する操作を2回繰り返した後、エアーブローでアレイスライドを乾燥させた。Anti-His-tag-Alexa Fluor 647を1μg/mlとなるように反応用バッファーで希釈し、検出プレートに適量滴下し室温にて1時間インキュベートし抗体を反応させた。反応完了後、超純水中にてカバーを振り落とし、次いで洗浄用バッファー中で1分間緩やかに洗浄した。さらに超純水にて1分間緩やかに洗浄する操作を2回繰り返した後、エアーブローでアレイスライドを乾燥させた。蛍光検出及びデータ解析は住友ベークライトに委託した。
(Glycan-immobilized array)
For His-rBcBry1-1C, 7 types of N-glycan, 2 types of O-glycan, 5 types of glycosaminoglycan (GAG), 4 types of Lewis type, 7 types of Lac and 3 types of ABO type, total 28 An anti-His-tag antibody Anti-His-tag-Alexa Fluor 647 (Institute of Medical Biology) was used as a detection reagent in a sugar chain-immobilized array (Fig. 6, Sumitomo Bakelite) in which the type was immobilized. That is, rBcBry1-1C was diluted with a reaction buffer (50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1 mM CaCl 2 , 1 mM MnCl 2 , 1 mM MgCl 2 , 0.05% (v / v) Tween 20) (final concentration). 83.9 μg / ml), an appropriate amount was added dropwise to the detection plate. Cover and incubate at room temperature for 2 hours, then shake off the cover in ultrapure water, then wash buffer (50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1 mM CaCl 2 , 1 mM MnCl 2 , 1 mM). It was gently washed in MgCl 2 ) for 1 minute. Further, the operation of gently washing with ultrapure water for 1 minute was repeated twice, and then the array slide was dried by air blowing. Anti-His-tag-Alexa Fluor 647 was diluted with reaction buffer to 1 μg / ml, an appropriate amount was added dropwise to a detection plate, and the mixture was incubated at room temperature for 1 hour to react the antibody. After the reaction was completed, the cover was shaken off in ultrapure water, and then gently washed in a washing buffer for 1 minute. Further, the operation of gently washing with ultrapure water for 1 minute was repeated twice, and then the array slide was dried by air blowing. Fluorescence detection and data analysis were outsourced to Sumitomo Bakelite.

<結果>
(抗Hisタグ抗体を用いたウェスタンブロッティングによるHis-rBcBry1-1N及びCの検出)
<Result>
(Detection of His-rBcBry1-1N and C by Western blotting using anti-His tag antibody)

His-rBcBry1-1N又はCを糖鎖固定化アレイに供した際、検出抗体としてAnti-His-tag-AlexaFluor 647を用いることが出来るか、ウェスタンブロッティングにより確認した。検出結果を図7に示す。なお、図7において、レーンMは分子量マーカー、レーン1はHis-rBcBry1-1N、レーン2はHis-rBcBry1-1C、レーン3はHis−rKAA、レーン4はrKAAである。図7に示すように、ネガティブコントロールとして用いたrKAAの検出は確認されず、ポジティブコントロールとして用いたHis−rKAA、His-rBcBry1-1N及びHis-rBcBry1-1Cからの検出が確認出来た。したがってHis-rBcBry1-1N及びCの検出にAnti-His-tag-Alexa Fluor 647を用いることが可能であることが示された。また、等量のタンパク質を添加しているもののHis-rBcBry1-1Nに比べHis-rBcBry1-1Cの方が強く検出されており、N末端側にHisタグを融合したHis-rBcBry1-1(pColdベクターを用いて発現)で検出出来なかったことを考慮し、糖鎖固定化アレイ試験にはHis-rBcBry1-1Cを採用することとした。 When His-rBcBry1-1N or C was subjected to a sugar chain-immobilized array, it was confirmed by Western blotting whether Anti-His-tag-AlexaFluor 647 could be used as a detection antibody. The detection result is shown in FIG. In FIG. 7, lane M is a molecular weight marker, lane 1 is His-rBcBry1-1N, lane 2 is His-rBcBry1-1C, lane 3 is His-rKAA, and lane 4 is rKAA. As shown in FIG. 7, the detection of rKAA used as a negative control was not confirmed, and the detection from His-rKAA, His-rBcBry1-1N and His-rBcBry1-1C used as a positive control was confirmed. Therefore, it was shown that Anti-His-tag-Alexa Fluor 647 can be used for the detection of His-rBcBry1-1N and C. In addition, His-rBcBry1-1C was detected more strongly than His-rBcBry1-1N even though an equal amount of protein was added, and His-rBcBry1-1 (pCold vector) with a His tag fused to the N-terminal side was detected. In consideration of the fact that it could not be detected by (expression using), His-rBcBry1-1C was decided to be used for the sugar chain immobilization array test.

(糖鎖固定化アレイ試験)
検出試薬としてAnti-His-tag-Alexa Fluor 647を用いHis-rBcBry1-1Cを糖鎖固定化アレイ(住友ベークライト)に供した。結果を図8に示す。図8に示すようにヘパリンにおいて有意なシグナルが認められ、De2S Hep、De6S Hep、DeNS/AcHepにおいても弱いシグナルが観測された。すなわちGAGにおいてのみ結合がみられ、特に硫酸基脱離によりシグナルが減退する傾向を示したことから、rBcBry1−1はGAGの硫酸基部分を認識することが示唆された。
(Glycan-immobilized array test)
His-rBcBry1-1C was subjected to a sugar chain-immobilized array (Sumitomo Bakelite) using Anti-His-tag-Alexa Fluor 647 as a detection reagent. The results are shown in FIG. As shown in FIG. 8, a significant signal was observed in heparin, and a weak signal was also observed in De2S Hep, De6S Hep, and DeNS / AcHep. That is, the binding was observed only in GAG, and the signal tended to decrease due to the elimination of the sulfate group, suggesting that rBcBry1-1 recognizes the sulfate group portion of GAG.

Claims (8)

糖鎖結合性タンパク質をコードし、
配列番号1若しくは2のヌクレオチド配列を含む、又は該配列番号1若しくは2のヌクレオチド配列若しくはそれらと相補的な配列とストリンジェントな条件下でハイブリダイズするヌクレオチド配列を含む、ことを特徴とするポリヌクレオチド。
Encodes a glycan-binding protein
A polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or 2, or comprising a nucleotide sequence that hybridizes with the nucleotide sequence of SEQ ID NO: 1 or 2 or a sequence complementary thereto under stringent conditions. ..
ハネモ(Bryopsis)属由来であることを特徴とする請求項1に記載のポリヌクレオチド。 The polynucleotide according to claim 1, which is derived from the genus Bryopsidales. ネザシハネモ(Bryopsis corticulans)由来であることを特徴とする請求項2に記載のポリヌクレオチド。 The polynucleotide according to claim 2, which is derived from Nezashihanemo (Bryopsis corticulans). 糖鎖結合性を有し、
配列番号3若しくは4に記載のアミノ酸配列、又は該配列番号3若しくは4に記載のアミノ酸配列において1個若しくは数個のアミノ酸が置換、欠失、挿入若しくは付加されたアミノ酸配列、を含むことを特徴とする新規タンパク質。
Has sugar chain binding properties
It is characterized by containing the amino acid sequence set forth in SEQ ID NO: 3 or 4, or an amino acid sequence in which one or several amino acids are substituted, deleted, inserted or added in the amino acid sequence set forth in SEQ ID NO: 3 or 4. New protein to be.
硫酸基を含む糖鎖を特異的に認識することを特徴とする請求項4に記載の新規タンパク質。 The novel protein according to claim 4, wherein a sugar chain containing a sulfate group is specifically recognized. ハネモ(Bryopsis)属由来であることを特徴とする請求項4又は5に記載の新規タンパク質。 The novel protein according to claim 4 or 5, characterized in that it is derived from the genus Bryopsidales. ネザシハネモ(Bryopsis corticulans)由来であることを特徴とする請求項6に記載の新規タンパク質。 The novel protein according to claim 6, which is derived from Nezashihanemo (Bryopsis corticulans). 請求項4〜7のいずれか1項に記載の新規タンパク質を含むことを特徴とするがんの治療用又は診断用医薬組成物。

A pharmaceutical composition for treating or diagnosing cancer, which comprises the novel protein according to any one of claims 4 to 7.

JP2019033404A 2019-02-26 2019-02-26 Novel carbohydrate-binding protein and polynucleotide encoding it Active JP7353616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019033404A JP7353616B2 (en) 2019-02-26 2019-02-26 Novel carbohydrate-binding protein and polynucleotide encoding it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019033404A JP7353616B2 (en) 2019-02-26 2019-02-26 Novel carbohydrate-binding protein and polynucleotide encoding it

Publications (2)

Publication Number Publication Date
JP2020137423A true JP2020137423A (en) 2020-09-03
JP7353616B2 JP7353616B2 (en) 2023-10-02

Family

ID=72263915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019033404A Active JP7353616B2 (en) 2019-02-26 2019-02-26 Novel carbohydrate-binding protein and polynucleotide encoding it

Country Status (1)

Country Link
JP (1) JP7353616B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006093088A1 (en) * 2005-03-01 2008-08-07 国立大学法人広島大学 Novel polypeptide and polynucleotide encoding the polypeptide, and use thereof
JP2016141678A (en) * 2015-02-05 2016-08-08 国立大学法人広島大学 Human hmgb1 binder, human hmgb1 removal device and novel polypeptide
JP2016147839A (en) * 2015-02-13 2016-08-18 国立大学法人広島大学 Protein isolation device, protein isolation method, and method for determining high mannose type sugar chain structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614393B1 (en) 2004-09-24 2006-08-21 삼성에스디아이 주식회사 Battery pack having function of heat alarm

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006093088A1 (en) * 2005-03-01 2008-08-07 国立大学法人広島大学 Novel polypeptide and polynucleotide encoding the polypeptide, and use thereof
JP2016141678A (en) * 2015-02-05 2016-08-08 国立大学法人広島大学 Human hmgb1 binder, human hmgb1 removal device and novel polypeptide
JP2016147839A (en) * 2015-02-13 2016-08-18 国立大学法人広島大学 Protein isolation device, protein isolation method, and method for determining high mannose type sugar chain structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN. J. PHYCOL. (SORUI), vol. 55, JPN6018041729, 2007, pages 33 - 38, ISSN: 0005021311 *

Also Published As

Publication number Publication date
JP7353616B2 (en) 2023-10-02

Similar Documents

Publication Publication Date Title
Mistry et al. Structure, properties and enhanced expression of galactose-binding C-type lectins in mucous cells of gills from freshwater Japanese eels (Anguilla japonica)
CN107922958A (en) For producing the glucosyltransferase aa sequence motifs of linear poly- 1,3 glucans of α
EP0610408B1 (en) Heparinase gene from flavobacterium heparinum
CN114466934A (en) Production of fucosyllactose in host cells
JP6814043B2 (en) Carbohydrate binding protein
US20070243562A1 (en) Lectins for Analyzing Sugar Chains and Method of Using the Same
JP7353616B2 (en) Novel carbohydrate-binding protein and polynucleotide encoding it
US7410786B2 (en) Sulfated fucogalactan digesting enzyme gene
KR20200002887A (en) Allergens and their epitopes
JP5892489B2 (en) Novel polypeptide, polynucleotide encoding the polypeptide, and use thereof
JP6262345B2 (en) Recombinant lectin derived from Amanita mushrooms specific for sialic acid binding
EP1147196A1 (en) Polymorphic loci that differentiate escherichia coli 0157:h7 from other strains
KR101842226B1 (en) Mushroom Hericium erinaceus lectin specifically binding to core 1 O-linked glycan and uses thereof
JP6624542B2 (en) Human HMGB1 binding agent and human HMGB1 removal device
KR101457514B1 (en) Sialyltransferase of Halocynthia rorentzi and a method for synthesis of sialoglycoconjugates using it
WO2002000889A1 (en) Sulfate transferase and dna encoding this enzyme
JP2021013375A (en) Sugar chain-binding polypeptide, polynucleotide encoding the same and pharmaceutical composition containing the same
Niu et al. Characterization of a new lectin involved in the protoplast regeneration of Bryopsis hypnoides
KR101871802B1 (en) Mushroom Stereum hirsutum lectin specifically binding to polyfucosylated N-linked glycan and uses thereof
JP5846599B2 (en) Galactose 6 sulfate binding protein
JP2021177713A (en) Nucleic acid encoding protein having deaminoneuraminic acid-specific sialidase activity and use thereof
JP2023183863A (en) Method for concentration of sars-cov-2 and kit therefor
JP2007014245A (en) GENES OF beta-1,6-GLUCANASE DERIVED FROM ASPERGILLUS ORYZAE AND NEW LECTIN, AND METHOD FOR PRODUCING THE ENZYME OR THE LECTIN
Lim Synthesis of O-Linked glycopeptides using enzymatic catalysis.
CN1986807A (en) Japanese blood fluke epidermal antigen gene and protein and their application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230912

R150 Certificate of patent or registration of utility model

Ref document number: 7353616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150