JP2020094896A - Road surface state determination device and road surface state determination system - Google Patents

Road surface state determination device and road surface state determination system Download PDF

Info

Publication number
JP2020094896A
JP2020094896A JP2018232558A JP2018232558A JP2020094896A JP 2020094896 A JP2020094896 A JP 2020094896A JP 2018232558 A JP2018232558 A JP 2018232558A JP 2018232558 A JP2018232558 A JP 2018232558A JP 2020094896 A JP2020094896 A JP 2020094896A
Authority
JP
Japan
Prior art keywords
road surface
surface state
infrared light
state determination
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018232558A
Other languages
Japanese (ja)
Other versions
JP7134855B2 (en
Inventor
雄基 鶴田
Yuki Tsuruta
雄基 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2018232558A priority Critical patent/JP7134855B2/en
Publication of JP2020094896A publication Critical patent/JP2020094896A/en
Application granted granted Critical
Publication of JP7134855B2 publication Critical patent/JP7134855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a road surface state determination device and a road surface state determination system which increase the accuracy of determining a road surface state more than before by using only reflection light from a road surface region.SOLUTION: A road surface state determination device includes: a storage unit for storing an image data on the front of a vehicle, which is imaged by an imaging device; a road surface region recognition section for specifying a road surface region in which the vehicle travels based on the image data stored in the storage unit; and a road surface state determination section for determining a road surface state based on absorbance of reflection light of infrared light with which the road surface region specified by the road surface region recognition section is irradiated.SELECTED DRAWING: Figure 6A

Description

本発明は、路面状態(乾燥、濡れ、凍結)を判定する路面判定装置、および、路面判定システムに関する。 The present invention relates to a road surface determination device and a road surface determination system that determine a road surface state (dry, wet, freezing).

車両の走行中に路面状態を検知する装置としては、特許文献1に記載の「路面状態検知装置」が知られている。この要約書には、「車両の走行中でも路面状態(乾燥,濡れ,凍結等)を検知でき、さらに車両の前方の路面状態をも検知できる路面状態検知装置」として、「投光手段は、波長の異なる光源を備え、波長λ1ならびに波長λ2の光を車両前方の路面に向けて投光する。受光手段は、投光した波長に対応する分光器を介し受光素子で各波長の反射光のレベルを検出する。各受光素子の出力をA/D変換器でデジタルデータへ変換し、路面状態判定手段へ供給する。路面状態判定手段は、各種路面状態における反射光レベルデータを備えており、各波長の受光レベルを比較することで路面状態を判定し、判定結果を出力する」ものが開示されている。 As a device for detecting a road surface condition while a vehicle is traveling, a "road surface condition detecting device" described in Patent Document 1 is known. In this abstract, "A road surface condition detector that can detect road surface conditions (dry, wet, freezing, etc.) even while the vehicle is running, and can also detect the road surface condition in front of the vehicle" Of the wavelengths λ1 and λ2 are projected toward the road surface in front of the vehicle. The light receiving means is a light receiving element via a spectroscope corresponding to the projected wavelength and the level of the reflected light of each wavelength. The output of each light receiving element is converted into digital data by an A/D converter and supplied to the road surface condition determining means, which is provided with reflected light level data in various road surface conditions. The road surface condition is determined by comparing the light receiving levels of the wavelengths, and the determination result is output."

また、特許文献1には、路面状態判定に用いる光の波長を、赤外光〜遠赤外光領域の波長とすること(例えば、同文献の請求項2)や、車両前方約20メートルの路面に投光し、そこからの反射光を受光して、車両の進行方向の路面状態を検知すること(例えば、同文献の段落0023)が開示されている。 Further, in Patent Document 1, the wavelength of light used for road surface condition determination is set to a wavelength in the infrared light to far infrared light region (for example, claim 2 of the same document), or about 20 meters in front of the vehicle. It is disclosed that a road surface state in the traveling direction of a vehicle is detected by projecting light on a road surface and receiving reflected light therefrom (for example, paragraph 0023 of the same document).

特開平8−247940号公報JP-A-8-247940

しかしながら、特許文献1には、路面状態の検知時に、路面外からの反射光があったときの扱いは言及されておらず、例えば、赤外光が路面外の街灯や段差などの障害物にも照射され、それらからの反射光が受光手段に入ったときには、路面外からの反射光の影響により路面状態を正確に検知できないという問題がはっせいするものと考えられる。 However, Patent Document 1 does not mention how to handle reflected light from outside the road surface when detecting the road surface state. For example, infrared light may be an obstacle such as a streetlight or a step outside the road surface. It is considered that there is a problem that the road surface condition cannot be accurately detected due to the influence of the reflected light from the outside of the road surface when the light is also irradiated and the reflected light from them enters the light receiving means.

そこで、本発明では、路面領域からの反射光のみを利用することで、路面状態の判定精度をより高めた路面状態判定装置、および、路面状態判定システムを提供することを目的とする。 Therefore, it is an object of the present invention to provide a road surface state determination device and a road surface state determination system in which the accuracy of determination of the road surface state is further improved by using only the reflected light from the road surface area.

上記課題を解決するため、本発明の路面状態判定装置は、撮像装置が撮像した車両前方の画像データを格納する記憶装置と、該記憶装置に格納した前記画像データに基づき車両が走行する路面領域を特定する路面領域認識部と、該路面領域認識部が特定した前記路面領域に照射した赤外光の反射光の吸光度に基づいて、路面状態を判定する路面状態判定部と、を備えるものとした。 In order to solve the above problems, a road surface state determination device of the present invention is a storage device that stores image data of the front of a vehicle captured by an image capturing device, and a road surface region in which a vehicle travels based on the image data stored in the storage device. And a road surface state determination unit that determines the road surface state based on the absorbance of the reflected light of the infrared light applied to the road surface region identified by the road surface region recognition unit. did.

また、本発明の路面状態判定システムは、車両前方の画像データを撮像する撮像装置と、車両前方に赤外光を照射する赤外光照射器と、車両前方で反射した赤外光を受光する赤外光受光器と、前記撮像装置が撮像した画像データと、前記赤外光受光器が受光した反射光量と前記赤外光照射器が照射した照射光量の関係を示す吸光度と、に基づいて、路面状態を判定する路面状態判定装置と、を備えた路面状態判定システムであって、前記路面状態判定装置は、前記撮像装置が撮像した画像データを格納する記憶装置と、該記憶装置に格納した画像データに基づき車両が走行する路面領域を特定する路面領域認識部と、該路面領域認識部が特定した前記路面領域からの反射光の吸光度に基づいて、路面状態を判定する路面状態判定部と、
を有するものとした。
Further, the road surface state determination system of the present invention receives an image pickup device for picking up image data in front of the vehicle, an infrared light irradiator for irradiating infrared light in front of the vehicle, and infrared light reflected in front of the vehicle. Infrared light receiver, based on the image data captured by the imaging device, the absorbance indicating the relationship between the reflected light amount received by the infrared light receiver and the irradiation light amount irradiated by the infrared light irradiator, A road surface state determination system comprising: a road surface state determination device for determining a road surface state, wherein the road surface state determination device is a storage device for storing image data captured by the imaging device; Based on the image data, a road surface area recognition unit that specifies a road surface area on which the vehicle travels, and a road surface condition determination unit that determines the road surface condition based on the absorbance of the reflected light from the road surface area specified by the road surface area recognition unit. When,
To have.

本発明によれば、路面領域からの反射光のみを利用することで、路面状態の判定精度をより高めた路面状態判定装置、および、路面状態判定システムを提供することができる。 According to the present invention, it is possible to provide a road surface state determination device and a road surface state determination system in which the accuracy of determination of the road surface state is further improved by using only the reflected light from the road surface area.

上記した以外の課題、構成及び効果は、以下の実施形態の説明より明らかにされる。 Problems, configurations, and effects other than those described above will be clarified from the following description of the embodiments.

一実施例の路面状態判定システムの概略図である。It is a schematic diagram of a road surface state judging system of one example. 一実施例の路面状態判定システムを搭載した車両の走行中の上面図である。FIG. 1 is a top view of a vehicle equipped with a road surface state determination system according to an embodiment, which is running. 画像データに施す路面領域認識処理の概念図である。It is a conceptual diagram of road surface area recognition processing performed on image data. 水と氷の吸光度を示すグラフである。It is a graph which shows the light absorbency of water and ice. 路面状態判定装置の制御フローチャートである。It is a control flowchart of a road surface state determination device. 路面状態判定部の制御フローチャートである。It is a control flowchart of a road surface state determination part. 路面状態判定部の制御フローチャートである。It is a control flowchart of a road surface state determination part.

以下、図面を用いて、本発明の一実施例に係る路面状態判定システム10について、詳細に説明する。 Hereinafter, a road surface state determination system 10 according to an embodiment of the present invention will be described in detail with reference to the drawings.

まず、図1を用いて、本実施例の路面状態判定システム10の概略を説明する。ここに示すように、路面状態判定システム10は、車両前方を可視光で撮像し、画像データ1aを生成するステレオカメラ等の撮像装置1と、車両前方に赤外光を照射する赤外光照射器2と、車両前方で反射した赤外光を受光し、照射光量と反射光量の関係を示す吸光度3aを生成する赤外光受光器3と、後述する路面状態判定装置4を備えたシステムである。 First, the outline of a road surface state determination system 10 of the present embodiment will be described with reference to FIG. As shown here, the road surface state determination system 10 includes an imaging device 1 such as a stereo camera that images the front of the vehicle with visible light and generates image data 1a, and infrared light irradiation that irradiates the front of the vehicle with infrared light. A device including a device 2, an infrared light receiver 3 that receives infrared light reflected from the front of the vehicle, and generates an absorbance 3a indicating the relationship between the amount of irradiation light and the amount of reflected light, and a road surface condition determination device 4 described later. is there.

路面状態判定装置4は、撮像装置1と赤外光受光器3の出力に基づいて、車両20前方の路面状態を、乾燥、濡れ、凍結の何れに分類し、図示しないECU(Electronic Control Unit)等に出力するものである。これにより、ECU等は路面状態に応じた車両20の自動運転制御等を実現することができる。 The road surface condition determination device 4 classifies the road surface condition in front of the vehicle 20 into one of dry, wet, and frozen, based on the outputs of the image pickup device 1 and the infrared light receiver 3, and an ECU (Electronic Control Unit) not shown. Etc. are output. As a result, the ECU or the like can realize automatic driving control of the vehicle 20 according to the road surface condition.

この路面状態判定装置4は、より詳細には、画像処理部4a、路面領域認識部4b、路面状態判定部4c、および、出力部4dを備えたものである。各部の詳細は後述する。なお、路面状態判定装置4は、実際には、CPU等の演算装置、半導体メモリ等の主記憶装置、ハードディスク等の補助記憶装置、および、通信装置などのハードウェアを備えた計算機(コンピュータ)である。そして、補助記憶装置に記録されたデータベースを参照しながら、主記憶装置にロードされたプログラムを演算装置が実行することで、上述した各機能を実現するが、以下では、このような周知技術を適宜省略しながら説明する。 More specifically, the road surface state determination device 4 includes an image processing unit 4a, a road surface area recognition unit 4b, a road surface state determination unit 4c, and an output unit 4d. Details of each unit will be described later. Note that the road surface condition determination device 4 is actually a computer (computer) including hardware such as an arithmetic unit such as a CPU, a main memory such as a semiconductor memory, an auxiliary memory such as a hard disk, and a communication device. is there. Then, while referring to the database recorded in the auxiliary storage device, the arithmetic device executes the program loaded in the main storage device to realize each of the functions described above. The description will be made while appropriately omitting it.

次に、図2を用いて、車両20が走行する道路環境と、撮像装置1、赤外光照射器2、赤外光受光器3の設置場所を説明する。 Next, the road environment in which the vehicle 20 travels and the installation locations of the imaging device 1, the infrared light irradiator 2, and the infrared light receiver 3 will be described with reference to FIG.

この例では、車両20の左右の路面上に、白色またはオレンジ色の区画線5L、5Rが引かれており、左側の区画線5Lの更に左側には、縁石やガードレール等によって定まる路面の境界である路端6がある。 In this example, white or orange lane markings 5L and 5R are drawn on the left and right road surfaces of the vehicle 20, and on the left side of the left lane marking 5L, there is a boundary of the road surface determined by curbs, guardrails, or the like. There is a roadside 6.

また、撮像装置1、赤外光照射器2、赤外光受光器3は、車両20のフロントガラス内側上部に前方を向けて設置されている。この例では、波長λの赤外光を照射する赤外光照射器2aと、波長λの赤外光を照射する赤外光照射器2bが、照射範囲が重複するように設置されており、波長λまたは波長λの赤外光を車両20の進行方向に向けて同時に、または、排他的に照射することができる。赤外光照射器2は、仕様上の全照射域に赤外光を照射できるものであるが、特定領域(例えば、左右の区画線5に挟まれた、車両20の進行方向)に絞って赤外光を照射することもできる。 Further, the image pickup device 1, the infrared light irradiator 2, and the infrared light receiver 3 are installed with the front facing toward the upper inside of the windshield of the vehicle 20. In this example, an infrared light irradiator 2a that irradiates infrared light having a wavelength λ 1 and an infrared light irradiator 2b that irradiates infrared light having a wavelength λ 2 are installed so that their irradiation ranges overlap. Therefore, the infrared light having the wavelength λ 1 or the wavelength λ 2 can be simultaneously or exclusively emitted toward the traveling direction of the vehicle 20. The infrared light irradiator 2 is capable of irradiating infrared light to the entire irradiation area according to the specifications, but narrows it down to a specific area (for example, the traveling direction of the vehicle 20 sandwiched between the left and right marking lines 5). Irradiation with infrared light is also possible.

なお、赤外光照射器2が照射する赤外光を、変調光とすることが望ましい。変調光を利用すれば、波長λと波長λの赤外光を同時に照射する場合であっても、両波長の反射光を受講する赤外光受光器3では、受光した変調光を周波数フィルタで分類することで、波長毎の吸光度3aを並列して生成することができ、これにより、外乱光の影響を除去することができるからである。 It is desirable that the infrared light emitted by the infrared light irradiator 2 be modulated light. If the modulated light is used, even if the infrared light of the wavelength λ 1 and the wavelength λ 2 are simultaneously irradiated, the infrared light receiver 3 which receives the reflected light of both wavelengths changes the frequency of the received modulated light. This is because by classifying with a filter, the absorbances 3a for each wavelength can be generated in parallel, and thereby the influence of ambient light can be removed.

以下、このような道路を走行中の車両20を前提として、路面状態判定装置4の各部の詳細を順次説明する。
<画像処理部4a>
画像処理部4aは、路面状態判定装置4が内蔵する図示しない記憶装置(半導体メモリ等)に記憶された、撮像装置1からの画像データ1aに画像処理を施すものである。ここで実行される画像処理は、主に、区画線検知、路端検知、凹凸検知、傾斜検知である。なお、これらの画像処理は周知技術であるため詳細説明は省略するが、概説すれば以下のとおりである。
Hereinafter, assuming the vehicle 20 traveling on such a road, the details of each part of the road surface state determination device 4 will be sequentially described.
<Image processing unit 4a>
The image processing unit 4a performs image processing on the image data 1a from the imaging device 1 stored in a storage device (semiconductor memory or the like) (not shown) built in the road surface state determination device 4. The image processing executed here is mainly lane marking detection, road edge detection, unevenness detection, and inclination detection. Since these image processes are well-known techniques, detailed description thereof will be omitted, but the outline is as follows.

区画線検知は、連続する白色部やオレンジ色部を画像データ1aから抽出し、これを区画線5として検知する処理である。路端検知は、縁石やガードレール等を画像データ1aから抽出し、これを車両20の走行が許容される路面の端部(路端6)として検知する処理である。この路端検知は、ステレオカメラの立体視による視差の認識技術を応用することで段差等を検出して実現することもできる。 The marking line detection is a process of extracting a continuous white portion or orange portion from the image data 1a and detecting this as the marking line 5. The roadside detection is a process of extracting a curbstone, a guardrail, or the like from the image data 1a and detecting the curbstone or the guardrail as an end portion (roadside 6) of the road surface on which the vehicle 20 is allowed to travel. This road edge detection can also be realized by detecting a step or the like by applying a parallax recognition technique by stereoscopic vision of a stereo camera.

また、凹凸検知や傾斜検知は、撮像装置1がステレオカメラである場合、撮像された一対の画像データ1aの視差を利用して、路面の凹凸や傾斜の大きさを検知する処理である。なお、厳密に言えば、路面には必ず凹凸や傾斜が存在するので、例えば、凹凸が5mm以上である場合を凹凸有り、5mm未満である場合を凹凸無し、のように予め設定した閾値を基準として凹凸や傾斜の有無を分類するが、この閾値は車両20の走行速度等に応じて適宜変更できるようにしても良い。
<路面領域認識部4b>
路面領域認識部4bは、画像処理部4aで検知した区画線5や路端6を用いて、車両20がこれからに走行する路面領域を特定するものである。図3に例示する画像データ1aが撮像された場合、左右の区画線5L、5Rの延長線の交点を消失点とし、区画線5と画像データ1aの下部、及び、消失点で囲まれる領域を路面領域とする。
Further, the unevenness detection and the inclination detection are processing for detecting the size of the unevenness and the inclination of the road surface by using the parallax of the pair of image data 1a taken when the imaging device 1 is a stereo camera. Strictly speaking, since there are always irregularities and slopes on the road surface, for example, if the irregularities are 5 mm or more, the irregularities are present, and if the irregularities are less than 5 mm, there are no irregularities. Although the presence or absence of unevenness or inclination is classified as, the threshold value may be appropriately changed according to the traveling speed of the vehicle 20 and the like.
<Road surface area recognition unit 4b>
The road surface area recognition unit 4b identifies the road surface area in which the vehicle 20 is about to travel, using the lane markings 5 and road edges 6 detected by the image processing unit 4a. When the image data 1a illustrated in FIG. 3 is imaged, the intersection of the extension lines of the left and right lane markings 5L and 5R is set as the vanishing point, and the lane marking 5 and the lower portion of the image data 1a and the area surrounded by the vanishing points are defined. The road surface area.

区画線5が擦れて薄くなっている場合や、区画線5のない道路では、上述の方法では路面領域を判別できないこともある。その場合は、上述の方法における左右の区画線5の一方または双方に代え、路端6を利用することで路面領域を認識しても良い。
<路面状態判定部4c>
路面状態判定部4cには、路面領域認識部4bが検知した路面領域を示す情報と、赤外光受光器3が受光した赤外光の大きさを示す情報(吸光度3a)が入力される。そして、路面領域で反射した赤外光の吸光度3aに基づいて、路面状態(乾燥、濡れ、凍結)を判定し、判定結果を、出力部4dを介して外部のECU等に送信する。なお、このとき、赤外光照射器2は、照射可能な全域に赤外光を照射していても良いし、路面領域に限定して赤外光を照射していても良いが、何れの場合も、路面状態判定部4cは、路面領域認識部4bが特定した路面領域からの反射光のみを用いて路面状態を判定する。この結果、路面外からの反射光により路面状態の判定精度が劣化することが無いので、全領域の反射光を用いて路面状態を判定する場合に比べ、路面状態の判定精度を高めることができるだけでなく、演算量を抑制できるため演算負荷の軽減も図ることができる。
When the lane marking 5 is rubbed and becomes thin, or on a road without the lane marking 5, the road surface area may not be discriminated by the above method. In that case, the road surface area may be recognized by using the road edge 6 instead of one or both of the left and right lane markings 5 in the above method.
<Road surface condition determination unit 4c>
Information indicating the road surface area detected by the road surface area recognition unit 4b and information indicating the magnitude of infrared light received by the infrared light receiver 3 (absorbance 3a) are input to the road surface state determination unit 4c. Then, the road surface state (dry, wet, freezing) is determined based on the absorbance 3a of the infrared light reflected by the road surface area, and the determination result is transmitted to an external ECU or the like via the output unit 4d. At this time, the infrared light irradiator 2 may irradiate the infrared light to the entire irradiable area, or may irradiate the infrared light only to the road surface area. Also in this case, the road surface state determination unit 4c determines the road surface state using only the reflected light from the road surface region identified by the road surface region recognition unit 4b. As a result, since the accuracy of determining the road surface state does not deteriorate due to the reflected light from the outside of the road surface, it is possible to improve the accuracy of determining the road surface state as compared with the case of determining the road surface state using the reflected light in the entire area. Moreover, since the amount of calculation can be suppressed, the calculation load can be reduced.

ここで、路面状態(乾燥、濡れ、凍結)を判定するための具体的な方法を概説する。図4は、赤外光の吸光度を、水(破線)と氷(実線)の夫々について示したグラフであり、横軸は赤外光の波長、縦軸は吸光度である。 Here, a specific method for determining the road surface condition (dry, wet, freezing) will be outlined. FIG. 4 is a graph showing the absorbance of infrared light for water (broken line) and ice (solid line), respectively, with the horizontal axis representing the wavelength of infrared light and the vertical axis representing the absorbance.

赤外光は、水や氷を通過すると、赤外光の波長依存の吸光度に応じてエネルギーが吸収されるため、乾燥路面からの反射光量に比べ、濡れ路面や凍結路面からの反射光量は大幅に少なくなる。このため、赤外光照射器2が照射した赤外光量と、赤外光受光器3が受光した赤外光量を比べ、後者が大幅に減少する吸光現象が生じているかを判定し、吸光現象が生じていなければ(すなわち、受光量と照射光量の比である吸光度3aが所定の閾値以上であれば)、路面は乾燥状態であると判断することができる。一方、吸光現象が生じている場合は、図4に示す水(破線)と氷(実線)の吸光度のグラフに基づいて、濡れ状態であるか凍結状態であるかを判定することができる。吸光度3aの大小と路面状態の関係は波長に応じて変化するが、例えば、波長が約1300nmの赤外光を用いる場合(図4のλ参照)には、路面領域での吸光度3aが1程度であれば凍結状態と判定することができ、また、吸光度3aが0.7程度であれば濡れ状態であると判定することができる。このように、単一波長の赤外光の吸光度3aに基づいて、路面状態を、乾燥、濡れ、凍結の何れかに分類することができる。 When infrared light passes through water or ice, the energy is absorbed according to the wavelength-dependent absorbance of infrared light, so the amount of reflected light from a wet road surface or a frozen road surface is much larger than the amount of reflected light from a dry road surface. Less. Therefore, the amount of infrared light emitted by the infrared light irradiator 2 and the amount of infrared light received by the infrared light receiver 3 are compared to determine whether or not the latter has a significantly reduced light absorption phenomenon, and the light absorption phenomenon If the light does not occur (that is, if the absorbance 3a, which is the ratio of the amount of received light to the amount of irradiated light, is greater than or equal to a predetermined threshold value), it can be determined that the road surface is dry. On the other hand, when the light absorption phenomenon occurs, it can be determined whether it is in the wet state or the frozen state based on the graph of the absorbance of water (broken line) and ice (solid line) shown in FIG. The relationship between the magnitude of the absorbance 3a and the road surface state changes depending on the wavelength. For example, when infrared light having a wavelength of about 1300 nm is used (see λ 1 in FIG. 4), the absorbance 3a in the road surface region is 1 If the degree of absorption is 3 degrees, it can be determined to be a frozen state, and if the absorbance 3a is about 0.7, it can be determined to be a wet state. In this way, the road surface condition can be classified as dry, wet, or frozen based on the absorbance 3a of infrared light having a single wavelength.

しかしながら、この判定方法では、自動運転を実現できない場合がある。一般的に、自動運転の実現には、20〜30m遠方の路面状態判定が必要とされるが、このような遠方に赤外光を照射すると、路面の凹凸や傾斜が吸光度3aに与える影響が大きくなる。この影響は、図4に例示したグラフ全体が上方または下方に平行移動する形で現れるため、例えば、実際は凍結路面であるにもかかわらず、波長λの吸光度3aが0.7程度となり、濡れ路面と誤判定される惧れもある。 However, this determination method may not be able to realize automatic driving. Generally, in order to realize automatic driving, it is necessary to determine the road surface condition at a distance of 20 to 30 m. However, when infrared light is irradiated to such a distance, the influence of unevenness or inclination of the road surface on the absorbance 3a may occur. growing. This effect appears as the entire graph illustrated in FIG. 4 moves upward or downward in parallel, so that, for example, the absorbance 3a at the wavelength λ 1 is about 0.7, even though the road surface is actually frozen, and the wetness is obtained. There is a fear that it will be misjudged as a road surface.

そこで、本実施例では、複数の波長の赤外光を照射することで、路面の凹凸や傾斜の影響により、図4のグラフ全体が上下に移動した場合であっても、路面状態判定の精度を向上できるようにした。具体的には、波長λ(例えば、1300nm)と波長λ(例えば、1410nm)の赤外光を路面領域に照射し、それぞれの波長における吸光度3aの差分Δ(=λの吸光度−λの吸光度)をとり、差分Δの大きさが、図4に示すΔ(濡れ状態であるときに観測される差分Δ)とΔ(凍結状態であるときに観測される差分Δ)の何れに近いかにより、路面状態が濡れか凍結かの判定を行う。図4のグラフ全体が上下に平行移動した場合であっても、ΔとΔの大小関係は赤外光の波長の組み合わせにより一義的に定まるため、ΔとΔの差が大きくなるような波長の赤外光を組み合わせて用いることで、路面領域に凹凸や傾斜がある場合であっても、路面状態をより正確に判定することができる。
<路面状態判定装置4の制御フローチャート>
以上で説明した路面状態判定装置4による、路面状態判定の制御フローチャートを、図5と図6を用いて説明する。
Therefore, in the present embodiment, by irradiating infrared light having a plurality of wavelengths, even if the entire graph of FIG. 4 moves up and down due to the influence of unevenness and inclination of the road surface, the accuracy of the road surface state determination is high. I was able to improve. Specifically, the road surface region is irradiated with infrared light of wavelength λ 1 (for example, 1300 nm) and wavelength λ 2 (for example, 1410 nm), and a difference Δ (=absorbance of λ 1 −λ 1 of absorbance 3a at each wavelength. 2 ) and the magnitude of the difference Δ is the difference between Δ W (the difference Δ observed in the wet state) and Δ F (the difference Δ observed in the frozen state) shown in FIG. Whether the road surface condition is wet or frozen is determined depending on which one is closer. Even if the entire graph of FIG. 4 moves up and down in parallel, since the magnitude relationship between Δ W and Δ F is uniquely determined by the combination of the wavelengths of infrared light, the difference between Δ W and Δ F becomes large. By using infrared light having such a wavelength in combination, the road surface condition can be more accurately determined even when the road surface region has irregularities or slopes.
<Control Flowchart of Road Surface Condition Determination Device 4>
A control flowchart of the road surface state determination by the road surface state determination device 4 described above will be described with reference to FIGS. 5 and 6.

路面状態判定装置4が路面状態の判定処理を開始すると、画像処理部4aは、撮像装置1が撮像した画像データ1aを記憶媒体に格納する(図5、S1)。次に、画像処理部4aは、記憶媒体に格納された画像データ1aに対し、区画線5や路端6、路面の凹凸や傾斜等の検知処理を実行する(S2)。そして、路面領域認識部4bは、区画線5や路端6を基準として、路面領域を特定する(S3)。なお、S3の処理は、上述した図3の説明に対応するものである。また、路面状態判定装置4は、S1〜S3の処理と並行し、波長の異なる2種類の反射光の吸光度を、赤外光受光器3から取得する。 When the road surface state determination device 4 starts the road surface state determination process, the image processing unit 4a stores the image data 1a captured by the image capturing device 1 in a storage medium (FIG. 5, S1). Next, the image processing unit 4a performs a detection process on the image data 1a stored in the storage medium such as the lane marking 5, the road edge 6, and the unevenness and inclination of the road surface (S2). Then, the road surface area recognizing unit 4b identifies the road surface area based on the lane marking 5 and the road edge 6 (S3). The process of S3 corresponds to the above description of FIG. Further, the road surface state determination device 4 acquires the absorbances of the two types of reflected light having different wavelengths from the infrared light receiver 3 in parallel with the processing of S1 to S3.

路面領域が特定され、また、反射光の吸光度が取得されると、路面状態判定部4cは、その反射光が路面領域からの反射光かを判定する(S5)。そして、路面外からの反射光であれば、図5の処理を完了し、路面領域からの反射光であれば、路面状態判定部4cは、図6Aまたは図6Bに示す路面状態判定処理(S6)を実行する。 When the road surface area is specified and the absorbance of the reflected light is acquired, the road surface state determination unit 4c determines whether the reflected light is the reflected light from the road surface area (S5). Then, if it is the reflected light from the outside of the road surface, the processing of FIG. 5 is completed, and if it is the reflected light from the road surface area, the road surface state determination unit 4c causes the road surface state determination processing (S6 shown in FIG. 6A or 6B). ) Is executed.

なお、S3で路面領域が確定した後は、赤外光照射器2の照射範囲を路面領域に限定することもでき、その場合は路面外からの反射光が発生しないので、S5を省略してもよい。
<路面状態判定部4cの制御フローチャート>
図6Aは、路面状態判定部4cが、路面領域からの反射光の吸光度に基づいて路面状態を判定する処理の詳細を説明するフローチャートの一例である。
After the road surface area is determined in S3, the irradiation range of the infrared light irradiator 2 can be limited to the road surface area. In that case, since reflected light from outside the road surface is not generated, S5 can be omitted. Good.
<Control Flowchart of Road Surface Condition Determination Unit 4c>
FIG. 6A is an example of a flowchart illustrating the details of the process in which the road surface state determination unit 4c determines the road surface state based on the absorbance of the reflected light from the road surface region.

まず、路面状態判定部4cは、路面領域からの反射光の吸光度をそれぞれ取得する(S61)。なお、図1では、赤外光受光器3が出力した吸光度3aが路面状態判定部4cに入力される構成を例示したが、赤外光照射器2が出力した照射光量データと赤外光受光器3が出力した反射光量データが路面状態判定部4cに入力され、路面状態判定部4cが両光量データに基づいて各反射光の吸光度を演算する構成としても良い。 First, the road surface state determination unit 4c acquires the absorbance of the reflected light from the road surface area (S61). Note that, in FIG. 1, the configuration in which the absorbance 3a output by the infrared light receiver 3 is input to the road surface state determination unit 4c is illustrated, but the irradiation light amount data output by the infrared light irradiator 2 and the infrared light reception The reflected light amount data output from the device 3 may be input to the road surface state determination unit 4c, and the road surface state determination unit 4c may calculate the absorbance of each reflected light based on the both light amount data.

次に、路面状態判定部4cは、取得した2つの吸光度の差分Δを算出する(S62)。路面が乾燥している場合には、水や氷にエネルギーが吸収される吸光減少が発生することなく反射光が戻ってくるため、波長に拘わらず吸光度は略同等となり、差分Δは極小さな値となる。従って、差分Δと濡れ判定値Thを比較し(S63)、差分Δの方が小さければ、乾燥路面と判定する(S64)。差分Δが濡れ判定値Th以上である場合は、差分Δと凍結判定値Thを比較し(S65)、差分Δの方が小さければ、濡れ路面と判定する(S66)。一方、差分Δが凍結判定値Th以上である場合は、凍結路面と判定する(S67)。路面状態が、乾燥、濡れ、凍結、のいずれかの状態であると判定されると、路面状態判定部4cは、出力部4dを介して、外部に判定結果を送信する(S58)。 Next, the road surface state determination unit 4c calculates the difference Δ between the two acquired absorbances (S62). When the road surface is dry, the absorbed light is absorbed by water and ice, and the reflected light returns without causing a decrease in absorption, so the absorbance is almost the same regardless of the wavelength, and the difference Δ is a very small value. Becomes Therefore, the difference Δ and the wetting determination value Th W are compared (S63), and if the difference Δ is smaller, it is determined to be a dry road surface (S64). If the difference Δ is greater than or equal to the wetting determination value Th W , the difference Δ and the freezing determination value Th F are compared (S65), and if the difference Δ is smaller, it is determined to be a wet road surface (S66). On the other hand, when the difference Δ is equal to or greater than the freezing determination value Th F , it is determined to be a frozen road surface (S67). When it is determined that the road surface condition is one of dry, wet, and frozen, the road surface condition determination unit 4c transmits the determination result to the outside via the output unit 4d (S58).

なお、以上は、図4に示すΔとΔの関係がΔ>Δとなる波長λ、λの赤外光を組み合わせた場合のフローチャートである。このため、ΔとΔの関係がΔ<Δとなる波長λ、λの赤外光を組み合わせた場合は、図6AのS63とS65を入れ替え、かつ、S66とS67を入れ替えた、図6Bのフローチャートにより路面状態を判定する。言うまでもないが、ΔとΔの関係がΔ≒Δとなる波長λ、λの赤外光を組み合わせた場合には、路面状態を判定することができないので、このような波長λ、λの組み合わせは避ける必要がある。 It should be noted that the above is the flowchart in the case where the infrared lights of the wavelengths λ 1 and λ 2 in which the relationship between Δ F and Δ W shown in FIG. 4 is Δ FW are combined. Therefore, when the infrared light of wavelengths λ 1 and λ 2 where the relationship between Δ F and Δ W is Δ FW is combined, S63 and S65 in FIG. 6A are replaced, and S66 and S67 are replaced. Further, the road surface condition is determined according to the flowchart of FIG. 6B. Needless to say, when the infrared light of wavelengths λ 1 and λ 2 where the relationship between Δ F and Δ W is Δ F ≈Δ W is combined, the road surface condition cannot be determined. It is necessary to avoid the combination of λ 1 and λ 2 .

なお、図5、図6A、図6Bの処理は、路面の凹凸や傾斜に拘わらず、実行する構成としてもよいが、路面の凹凸や傾斜が大きい場合は、取得した吸光度3aが信頼できず、路面状態を正確に判定できない場合も考えられる。そこで、図5のS2で、画像処理部4aが所定以上の凹凸や傾斜を検出した時には、図5の処理を中止し、凹凸や傾斜が小さい場合のみ図5の処理を継続することとしても良い。このように、吸光度3aが信頼できる状況でのみ路面状態を判定することで、判定精度を向上させることができる。 The processes of FIGS. 5, 6A, and 6B may be executed regardless of the unevenness or inclination of the road surface. However, when the unevenness or inclination of the road surface is large, the acquired absorbance 3a is not reliable, It is possible that the road surface condition cannot be accurately determined. Therefore, in S2 of FIG. 5, when the image processing unit 4a detects an unevenness or an inclination of a predetermined value or more, the processing of FIG. 5 may be stopped and the processing of FIG. 5 may be continued only when the unevenness or the inclination is small. .. In this way, the determination accuracy can be improved by determining the road surface state only when the absorbance 3a is reliable.

また、以上では複数の波長の赤外光を併用することで吸光度3aの差分Δを演算し、この差分Δに基づいて路面状態を判定する構成を例示したが、路面の凹凸や傾斜の大小と、図4のグラフの上下への平行移動量の関係が既知であるときには、撮像装置1からの画像データ1aを用いて路面の凹凸や傾斜を検知し、凹凸や傾斜による吸光度への影響(すなわち、図4のグラフの上下への平行移動量)を演算し、演算結果をもとに1波長分の吸光度のみを用いて、路面状態の判定を行うこととしても良い。これにより、照射する赤外光の波長を1つとした簡易な構成でも正確な路面状態判定を実現することが可能となる。 Further, in the above description, the configuration is used in which the difference Δ of the absorbance 3a is calculated by using infrared light of a plurality of wavelengths together and the road surface state is determined based on the difference Δ. When the relationship of the amount of parallel movement in the vertical direction of the graph of FIG. 4 is known, the unevenness or slope of the road surface is detected using the image data 1a from the image pickup device 1 and the influence of the unevenness or slope on the absorbance (that is The amount of parallel movement in the vertical direction of the graph of FIG. 4) is calculated, and the road surface state may be determined using only the absorbance for one wavelength based on the calculation result. As a result, it is possible to realize accurate road surface condition determination with a simple configuration in which the wavelength of infrared light to be emitted is one.

なお、一般に、凍結した路面が融解する際は、タイヤが通過する領域が摩擦熱により融解が早く進むため、融解した路面(濡れ状態の路面上)上を走行することでより安定走行が実現できる。このように、タイヤが通過した領域を車両通過領域とし、車両通過領域の検知手法を下記する。路面凍結手法で測定した複数箇所の路面状態をもとに、車両に対し平行に並んだ測定点の路面凍結判定の結果が、氷から水または乾燥状態に切り替わる点を転換点とする。二対の転換点の距離がある一定の距離(例えば、タイヤの径)であることが確認されたとき、その点を車両通過点とする。上記処理を全測定点に対して行い、確認された二対の車両通過点を結んだ二対の直線と、二対の直線の終端を平行に結んだ領域(四角形)を車両通過領域とする。図5のS3,S5では、路面領域を特定し、この路面領域からの反射光を用いて路面状態を判定したが、路面領域に代え、車両通過領域からの反射光を用いて路面状態を判定することとしても良い。 In general, when a frozen road surface melts, the area through which the tire passes is rapidly melted due to frictional heat, so running on a melted road surface (on a wet road surface) enables more stable running. .. The region through which the tire has passed is defined as the vehicle passage region, and a method for detecting the vehicle passage region will be described below. Based on the road surface condition at multiple points measured by the road surface freezing method, the turning point is the point at which the road surface freezing determination result at the measurement points arranged parallel to the vehicle switches from ice to water or dry condition. When it is confirmed that the distance between the two pairs of turning points is a certain distance (for example, the diameter of the tire), the point is set as the vehicle passing point. The above processing is performed for all the measurement points, and the area (quadrangle) in which the two pairs of straight lines connecting the confirmed two pairs of vehicle passage points and the ends of the two pairs of straight lines are connected in parallel is defined as the vehicle passage area. .. In S3 and S5 of FIG. 5, the road surface area is specified and the road surface state is determined using the reflected light from this road surface area. However, instead of the road surface area, the road surface state is determined using the reflected light from the vehicle passage area. It may be done.

以上で説明した、本実施例の路面状態判定装置4または路面状態判定システム10によれば、路面外からの反射光を利用せず、路面領域からの反射光のみを利用することで、路面外の街頭や段差などからの乱反射の影響により路面状態の判定精度が劣化する状況を回避することができ、判定精度をより高めることができる。 According to the road surface state determination device 4 or the road surface state determination system 10 of the present embodiment described above, the reflected light from the outside of the road surface is not used, and only the reflected light from the road surface area is used to It is possible to avoid a situation in which the determination accuracy of the road surface state deteriorates due to the influence of irregular reflection from the streets or steps, and the determination accuracy can be further improved.

また、路面状態を判定する際に参照する領域を路面領域に限定することで、路面状態判定に要する演算量を抑制し、車両システムの演算負荷を低減することができる。 Further, by limiting the area referred to when determining the road surface condition to the road surface region, it is possible to suppress the calculation amount required for the road surface condition determination and reduce the calculation load of the vehicle system.

1 撮像装置
1a 画像データ
2、2a、2b 赤外光照射器
3 赤外光受光器
4 路面状態判定装置
4a 画像処理部
4b 路面領域認識部
4c 路面状態判定部
4d 出力部
5、5L、5R 区画線
6 路端
10 路面状態判定システム
20 車両
1 Imaging device 1a Image data 2, 2a, 2b Infrared light irradiator 3 Infrared light receiver 4 Road surface condition determination device 4a Image processing unit 4b Road surface region recognition unit 4c Road surface condition determination unit 4d Output unit 5, 5L, 5R Section Line 6 Road edge 10 Road surface condition determination system 20 Vehicle

Claims (6)

撮像装置が撮像した車両前方の画像データを格納する記憶装置と、
該記憶装置に格納した前記画像データに基づき車両が走行する路面領域を特定する路面領域認識部と、
該路面領域認識部が特定した前記路面領域に照射した赤外光の反射光の吸光度に基づいて、路面状態を判定する路面状態判定部と、
を備えることを特徴とする路面状態判定装置。
A storage device that stores image data of the front of the vehicle captured by the imaging device,
A road surface area recognition unit that specifies a road surface area on which the vehicle travels based on the image data stored in the storage device;
Based on the absorbance of the reflected light of the infrared light applied to the road surface area specified by the road surface area recognition unit, a road surface state determination unit that determines the road surface state,
A road surface condition determination device comprising:
請求項1に記載の路面状態判定装置において、
さらに、前記画像データから前記車両の左右の区画線または路端を検知する画像処理部を備えており、
前記路面領域認識部は、
前記車両の左右の区画線または路端を延長した交点を消失点として、
前記車両の左右の区画線または路端のそれぞれと、前記画像データの下部領域と、前記消失点に囲まれた領域を前記路面領域とすることを特徴とする路面状態判定装置。
The road surface condition determination device according to claim 1,
Furthermore, an image processing unit for detecting left and right lane markings or road edges of the vehicle from the image data is provided,
The road surface area recognition unit,
As the vanishing point, the intersection of the left and right lane markings or road edges of the vehicle,
A road surface state determination device, wherein each of the left and right lane markings or road edges of the vehicle, a lower area of the image data, and an area surrounded by the vanishing points are defined as the road surface area.
請求項1または請求項2に記載の路面状態判定装置において、
前記路面状態判定部は、前記路面領域に照射した波長の異なる二種類の赤外光の反射光の吸光度の差分Δの大きさに応じて、前記路面状態を、乾燥状態、濡れ状態、凍結状態、の何れかに分類することを特徴とする路面状態判定装置。
In the road surface state determination device according to claim 1 or 2,
The road surface state determination unit, the road surface state, a dry state, a wet state, a frozen state according to the magnitude of the difference Δ of the absorbance of the reflected light of two types of infrared light with different wavelengths applied to the road surface region. A road surface state determination device characterized by being classified into any of the following.
請求項2に記載の路面状態判定装置において、
前記画像処理部は、前記画像データから路面の凹凸の有無を判定し、
前記路面状態判定部は、路面の凹凸が無いと判定されたときに、路面状態を判定することを特徴とする路面状態判定装置。
The road surface condition determination device according to claim 2,
The image processing unit determines the presence or absence of unevenness on the road surface from the image data,
The road surface state determination device, wherein the road surface state determination unit determines the road surface state when it is determined that there is no unevenness on the road surface.
車両前方の画像データを撮像する撮像装置と、
車両前方に赤外光を照射する赤外光照射器と、
車両前方で反射した赤外光を受光する赤外光受光器と、
前記撮像装置が撮像した画像データと、前記赤外光受光器が受光した反射光量と前記赤外光照射器が照射した照射光量の関係を示す吸光度と、に基づいて、路面状態を判定する路面状態判定装置と、
を備えた路面状態判定システムであって、
前記路面状態判定装置は、
前記撮像装置が撮像した画像データを格納する記憶装置と、
該記憶装置に格納した画像データに基づき車両が走行する路面領域を特定する路面領域認識部と、
該路面領域認識部が特定した前記路面領域からの反射光の吸光度に基づいて、路面状態を判定する路面状態判定部と、
を有することを特徴とする路面状態判定システム。
An image pickup device for picking up image data in front of the vehicle;
An infrared light irradiator that irradiates infrared light in front of the vehicle,
An infrared light receiver that receives infrared light reflected in front of the vehicle,
A road surface that determines a road surface state based on image data captured by the image capturing device and absorbance indicating a relationship between the reflected light amount received by the infrared light receiver and the irradiation light amount irradiated by the infrared light irradiator. A state determination device,
A road surface condition determination system comprising:
The road surface condition determination device,
A storage device that stores image data captured by the imaging device;
A road surface area recognizing unit that specifies a road surface area on which the vehicle travels based on image data stored in the storage device;
Based on the absorbance of the reflected light from the road surface region specified by the road surface region recognition unit, a road surface state determination unit that determines the road surface state,
A road surface condition determination system having:
請求項5に記載の路面状態判定システムにおいて、
前記赤外光照射器は、前記路面領域認識部が認識した前記路面領域に対し赤外光を照射し、
前記路面状態判定装置は、前記路面領域外からの反射光を利用せず、前記路面領域からの反射光のみを利用して、前記路面状態を判定することを特徴とする路面状態判定システム。
The road surface condition determination system according to claim 5,
The infrared light irradiator irradiates the road surface area recognized by the road surface area recognition unit with infrared light,
The road surface state determination system characterized in that the road surface state determination device determines the road surface state using only reflected light from the road surface area without using reflected light from outside the road surface area.
JP2018232558A 2018-12-12 2018-12-12 ROAD CONDITION DETERMINATION DEVICE AND ROAD CONDITION DETERMINATION SYSTEM Active JP7134855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018232558A JP7134855B2 (en) 2018-12-12 2018-12-12 ROAD CONDITION DETERMINATION DEVICE AND ROAD CONDITION DETERMINATION SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018232558A JP7134855B2 (en) 2018-12-12 2018-12-12 ROAD CONDITION DETERMINATION DEVICE AND ROAD CONDITION DETERMINATION SYSTEM

Publications (2)

Publication Number Publication Date
JP2020094896A true JP2020094896A (en) 2020-06-18
JP7134855B2 JP7134855B2 (en) 2022-09-12

Family

ID=71086163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018232558A Active JP7134855B2 (en) 2018-12-12 2018-12-12 ROAD CONDITION DETERMINATION DEVICE AND ROAD CONDITION DETERMINATION SYSTEM

Country Status (1)

Country Link
JP (1) JP7134855B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102189406B1 (en) * 2020-07-30 2020-12-14 마스코리아 주식회사 Detecting system of status of road surface and alram system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189894A (en) * 1995-01-10 1996-07-23 Mitsubishi Electric Corp Road surface state sensing device
JPH1073538A (en) * 1996-08-30 1998-03-17 Nagoya Denki Kogyo Kk Method and apparatus for detection of road-surface state
JPH1095245A (en) * 1996-09-25 1998-04-14 Nagoya Denki Kogyo Kk Safety device for automobile
JP2001357386A (en) * 2000-06-14 2001-12-26 Takuwa Corp Method and device for detecting road surface state
WO2007083741A1 (en) * 2006-01-20 2007-07-26 Sumitomo Electric Industries, Ltd. Infrared imaging system
JP2010052688A (en) * 2008-08-29 2010-03-11 Aisin Aw Co Ltd Drive assisting device, drive assisting method, and drive assisting program
JP2012123495A (en) * 2010-12-07 2012-06-28 Hitachi Automotive Systems Ltd Traveling environment recognition device
US20150367855A1 (en) * 2014-06-24 2015-12-24 Robert Bosch Gmbh Method for detecting a roadway and corresponding detection systems
US20170096144A1 (en) * 2015-10-05 2017-04-06 Ford Global Technologies, Llc System and Method for Inspecting Road Surfaces
JP2017083352A (en) * 2015-10-29 2017-05-18 Smk株式会社 On-vehicle sensor, vehicle lighting fixture, vehicle and road surface state sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08189894A (en) * 1995-01-10 1996-07-23 Mitsubishi Electric Corp Road surface state sensing device
JPH1073538A (en) * 1996-08-30 1998-03-17 Nagoya Denki Kogyo Kk Method and apparatus for detection of road-surface state
JPH1095245A (en) * 1996-09-25 1998-04-14 Nagoya Denki Kogyo Kk Safety device for automobile
JP2001357386A (en) * 2000-06-14 2001-12-26 Takuwa Corp Method and device for detecting road surface state
WO2007083741A1 (en) * 2006-01-20 2007-07-26 Sumitomo Electric Industries, Ltd. Infrared imaging system
JP2010052688A (en) * 2008-08-29 2010-03-11 Aisin Aw Co Ltd Drive assisting device, drive assisting method, and drive assisting program
JP2012123495A (en) * 2010-12-07 2012-06-28 Hitachi Automotive Systems Ltd Traveling environment recognition device
US20150367855A1 (en) * 2014-06-24 2015-12-24 Robert Bosch Gmbh Method for detecting a roadway and corresponding detection systems
US20170096144A1 (en) * 2015-10-05 2017-04-06 Ford Global Technologies, Llc System and Method for Inspecting Road Surfaces
JP2017083352A (en) * 2015-10-29 2017-05-18 Smk株式会社 On-vehicle sensor, vehicle lighting fixture, vehicle and road surface state sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102189406B1 (en) * 2020-07-30 2020-12-14 마스코리아 주식회사 Detecting system of status of road surface and alram system

Also Published As

Publication number Publication date
JP7134855B2 (en) 2022-09-12

Similar Documents

Publication Publication Date Title
KR101395089B1 (en) System and method for detecting obstacle applying to vehicle
EP2118818B1 (en) Video-based road departure warning
US9679204B2 (en) Determining the characteristics of a road surface by means of a 3D camera
JP3639190B2 (en) Object recognition device, recording medium
CN105717514A (en) Road surface reflectivity detection by lidar sensor
CN109031302B (en) Method and device for analysing the environment of a vehicle and vehicle equipped with such a device
JP6140658B2 (en) Traveling lane marking recognition device, traveling lane marking recognition program
JP2006046936A (en) Road surface state measuring method and device
JP4940177B2 (en) Traffic flow measuring device
JP2020094896A (en) Road surface state determination device and road surface state determination system
CN110399664B (en) Driving speed determining method and device
JP4033005B2 (en) Obstacle detection device for vehicle
JP2009025198A (en) Apparatus and method for detecting road surface condition
US20160252613A1 (en) Surface Non-Uniformity Determination with Radio Waves
JP4967603B2 (en) Vehicle rear side monitoring device
KR102529555B1 (en) System and method for Autonomous Emergency Braking
JP7174131B2 (en) Determination device, determination method and determination program
KR102133973B1 (en) Tire abrasion confirmation system and method thereof
Ruiz-Llata et al. LiDAR design for road condition measurement ahead of a moving vehicle
Kutila et al. Road condition monitoring
JP2018084536A (en) Road surface determination method and road surface determination device
WO2019216393A1 (en) Road surface state estimating method, road surface state estimating device, and road surface state estimating system
JP2020197390A (en) Road surface condition estimation device, processing apparatus, and road surface condition estimation system
JP2006317328A (en) On-vehicle object detection device and object detection method
KR101551058B1 (en) Apparatus for controlling vehicle based on driving condition and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220831

R150 Certificate of patent or registration of utility model

Ref document number: 7134855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150