JP2020071562A - Health check reception probability calculation method and health check recommendation notification support system - Google Patents

Health check reception probability calculation method and health check recommendation notification support system Download PDF

Info

Publication number
JP2020071562A
JP2020071562A JP2018203585A JP2018203585A JP2020071562A JP 2020071562 A JP2020071562 A JP 2020071562A JP 2018203585 A JP2018203585 A JP 2018203585A JP 2018203585 A JP2018203585 A JP 2018203585A JP 2020071562 A JP2020071562 A JP 2020071562A
Authority
JP
Japan
Prior art keywords
data
medical examination
insured
probability
health
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018203585A
Other languages
Japanese (ja)
Other versions
JP6548243B1 (en
Inventor
米倉章夫
Akio YONEKURA
三澤大太郎
Daitaro MISAWA
松谷拓弥
Takuya Matsutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cancer Scan Co Ltd
Original Assignee
Cancer Scan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cancer Scan Co Ltd filed Critical Cancer Scan Co Ltd
Priority to JP2018203585A priority Critical patent/JP6548243B1/en
Application granted granted Critical
Publication of JP6548243B1 publication Critical patent/JP6548243B1/en
Publication of JP2020071562A publication Critical patent/JP2020071562A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

To improve efficiency of a recommendation notification work by calculating a probability that an insured person receives a health check.SOLUTION: Parent population to be basic data of probability calculation is specified as health check data of a health check that an insured person receives during past n (n is an integer of 3 or more) years owned by a single or a plurality of autonomous bodies or a single or a plurality of health insurance organizations. A processing program extracts data of past m (m is an integer of 3 or more, m≤n) years from all the health check data to process data of (m-1) years excluding the last one year into data having x explanatory variables as a first step, performs learning using the health check data of the (m-1) years and presence or absence of health check reception of the last one year as teacher data as a second step, and calculates reception probability of an individual insured person who subscribes to a specific single autonomous body or a specific single health insurance organization by a learned model as a third step.SELECTED DRAWING: Figure 2

Description

本発明は、医療保険機関が実施する健康診断の受診を促す被保険者への勧奨通知の効率化を支援するための健康診断受診確率計算方法及び健診勧奨通知支援システムに関する。   The present invention relates to a health checkup probability calculation method and a health checkup recommendation notification support system for supporting efficiency improvement of recommendation notification to an insured person who encourages a health insurance organization to receive a health checkup.

我が国における医療費は毎年増加し続け、既に40兆円を突破し、高齢化の進展に伴って今後も増え続けることが予想されている。中でも、国民の多数が加入する国民健康保険は、主として地方自治体(都道府県及び市区町村)が運営する公的保険であり、医療費の増加は、自治体の財政及び国家財政に対して大きな負担となっている。   The medical expenses in Japan continue to increase every year, already exceeding 40 trillion yen, and it is expected to continue to increase with the progress of aging. Among them, national health insurance, which is enrolled by the majority of the people, is public insurance that is mainly operated by local governments (prefectures and municipalities), and the increase in medical costs is a heavy burden on local governments and national finances. Has become.

増え続ける医療費の削減に向けて、各自治体は被保険者である住民の健康維持、病気の早期発見・早期治療を目的とした特定健診、特定保健指導を毎年実施しているものの、告知や通知によっても受診しない住民が多数存在する。   In order to reduce the ever-increasing medical expenses, each municipality implements health maintenance of insured residents, specific medical examinations for the purpose of early detection and early treatment of illness, and specific health guidance every year. There are many residents who do not receive medical examination even when notified.

こうした状況を踏まえ、各自治体は、受診を促す勧奨通知を郵送しているが、予算や人員の制約があるため、全ての被保険者に通知する余裕が無く、限られた予算及び人員の中で、最も効果的な勧奨通知を行うことが求められている。   In light of this situation, each municipality has sent a recommendation notice to encourage consultation, but due to budget and personnel restrictions, we cannot afford to notify all insured persons. Is required to provide the most effective recommendation notifications.

従来、被保険者の健康状態に基づいて実施した保健事業の評価を支援するシステム(特許文献1)、複数の対象者の所定期間における健康診断の測定値又は受診履歴に基づいて対象者の新たな健診情報に基づく値とモデルとを用いてリスクの評価値を算出するシステム(特許文献2)、ある健康診断を受診可能な複数の団体に含まれるそれぞれの団体の検診の過去の受診率情報に応じて団体の組み合わせを決定し、該決定した組合せに含まれる団体を前記ある健康診断を受診する対象の団体として抽出するシステム(特許文献3)等が知られているが、効果的な健診勧奨通知を支援するシステムは存在しなかった。   Conventionally, a system (patent document 1) that supports the evaluation of health services carried out based on the health status of the insured person, a new target person based on the measured values of medical examinations or medical examination history of a plurality of target persons in a predetermined period. A system for calculating an evaluation value of risk using a value based on various health checkup information and a model (Patent Document 2), a past checkup rate of a checkup of each group included in a plurality of groups that can receive a certain health checkup A system (Patent Document 3) and the like is known in which a combination of groups is determined according to information, and a group included in the determined combination is extracted as a group to be subjected to the certain medical examination, but it is effective. There was no system to support notification of medical examination recommendations.

特開2016−177644号公報JP, 2016-177644, A 特開2017−117469号公報JP, 2017-117469, A 特開2014−102797号公報JP, 2014-102797, A

本発明は、上記した課題を解決するため、過去の健診データを基にして、特定の国民健康保険又は特定の健保組合等に加入する被保険者の受診確率を計算し、勧奨通知をしなくても健康診断を受診する可能性の高い者、又は勧奨通知をしても健康診断を受診する可能性の低い者を特定して排除し、残った被保険者、即ち、勧奨通知をすることによって受診する可能性がある者を確度高く選定し、勧奨通知業務を効率化することを目的とする。   In order to solve the above problems, the present invention calculates the consultation probability of an insured who joins a specific national health insurance or a specific health insurance association, etc., based on past medical examination data, and gives a recommendation notice. Identify and exclude those who are not likely to receive the medical examination even if they do not have the medical examination, or those who are unlikely to receive the medical examination even if the notification of recommendation is made, and the remaining insured, that is, the notification of recommendation The purpose of this is to select those who may receive medical examination with high accuracy and to make the recommendation notification work more efficient.

上記目的を達成するため、本願の第一の発明は、被保険者の健康診断受診確率の計算方法であって、確率計算の基礎データとなる母集団を、複数又は単独の自治体、或いは複数又は単独の健保組合等が保有する過去n年(nは3以上の整数)間において被保険者が受診した健康診断の健診データとし、前記健診データを基に被保険者の受診行動を予測する処理プログラムを含み、前記処理プログラムは、第一ステップとして、全ての前記健診データから過去m年(mは3以上の整数、m≦n)分のデータを抽出し、直近の1年分を除いたm−1年分のデータを、x個の説明変数を持つデータに加工し、第二ステップとして、 当該m−1年分の前記健診データ及び直近1年での健診受診の有無を教師データとして用いて学習し、第三ステップとして、前記学習済みモデルによって、特定の単独自治体又は特定の単独健保組合に加入する個々の被保険者の受診確率を算出する、ことを特徴とする。 In order to achieve the above-mentioned object, the first invention of the present application is a method for calculating a health examination consultation probability of an insured person, wherein a population serving as basic data for probability calculation is a plurality or a single municipality, or a plurality of or The health checkup data of the health checkup that the insured has received in the past n years (n is an integer of 3 or more) held by a single health insurance association, etc., and predicts the checkup behavior of the insured based on the health checkup data. As a first step, the processing program includes a processing program for extracting the data for the past m years (m is an integer of 3 or more, m ≦ n) from all the medical examination data, and for the most recent one year. The data for m-1 year excluding is processed into data having x explanatory variables, and as the second step, the medical examination data for the m-1 year and the medical examination for the most recent year are taken. Learning by using presence / absence as teacher data, the third step And, wherein the learned model, to calculate a consultation probabilities of individual insured to subscribe to a particular single municipality or specific single health insurance, it is characterized.

また本願の第二の発明は、被保険者の健康診断受診確率の計算方法であって、 確率計算の基礎データとなる母集団を、複数の自治体又は複数の健保組合等が保有する過去n年(nは3以上の整数)間において被保険者が受診した健康診断の健診データとし、前記健診データを基に被保険者の受診行動を予測する処理プログラムを含み、前記処理プログラムは、第一ステップとして、全ての前記健診データから過去m年(mは3以上の整数、m≦n)分のデータを抽出し、 直近の1年分を除いたm−1年分のデータの中からx個の説明変数を持つデータに加工し、アルゴリズムはディープラーニングであり、誤差関数に交差エントロピーを用い、最適化学習にAdamを用い、当該m−1年分のデータ及び直近1年分の健診受診の有無を教師データとして用いることで、複数のレイヤーに対応する複数の重みWiを学習し、第二ステップとして、特定の単独自治体又は特定の単独健保組合等の前記健診データのみを抽出し、アルゴリズムにトランスファーラーニングを用いて前記第一ステップで作成した前記重みWiの一部を調整した第二特徴量を作成し、第三ステップとして、前記第二特徴量に基づいたモデルによって、前記特定の単独自治体又は前記特定の単独健保組合等に加入する個々の被保険者の受診確率を算出する、ことを特徴とする。   A second invention of the present application is a method for calculating a probability of receiving a health checkup of an insured person, wherein a population serving as basic data for probability calculation is owned by a plurality of local governments or a plurality of health insurance associations in the past n years. (N is an integer equal to or greater than 3), including the medical examination data of the medical examination that the insured has taken, and including a processing program that predicts the medical examination behavior of the insured based on the medical examination data. As a first step, data for the past m years (m is an integer of 3 or more, m ≦ n) is extracted from all the medical examination data, and data for m-1 years excluding the most recent one year is extracted. The data is processed to have x explanatory variables from the inside, the algorithm is deep learning, cross entropy is used for the error function, and Adam is used for optimization learning. Teachers with or without medical examination By using as data, a plurality of weights Wi corresponding to a plurality of layers are learned, and as a second step, only the medical examination data of a specific single municipality or a specific single health insurance association is extracted, and transfer learning is performed by an algorithm. Is used to create a second feature amount in which a part of the weight Wi created in the first step is adjusted, and as a third step, the specific single municipality or the It is characterized by calculating the consultation probability of each insured who joins a specific independent health insurance association.

また本願の第三の発明は、自治体又は健保組合等が実施する健康診断の受診を促す被保険者への勧奨通知の効率化を支援するための健診勧奨通知支援システムであって、複数又は単独の自治体、或いは複数又は単独の健保組合等が保有する被保険者が受診した過去n年(nは3以上の整数)の健康診断の結果が蓄積された健診データベースと、前記健診データベースに蓄積されているデータを基に被保険者の受診行動を予測する処理プログラムが記録されているサーバーと、を備え、前記処理プログラムは、第一ステップとして、前記健診データベースから複数又は単独の自治体、或いは複数又は単独の健保組合等の過去m年(mは3以上の整数、m≦n)分のデータを抽出し、直近の1年分を除いたm−1年分のデータを、x個の説明変数を持つデータに加工し、第二ステップとして、当該m−1年分のデータ及び直近1年での健診受診の有無を教師データとして用いて学習し、第三ステップとして、前記学習済みモデルによって、特定の自治体又は特定の健保組合等に加入する個々の被保険者の受診確率を算出し、第四ステップとして、前記特定の自治体又は前記特定の健保組合等が定めた所定の高確率値以上及び所定の低確率値以下を除く中間確率値の被保険者に対してのみ、又は予め定めた所定数の中間確率値の被保険者に対してのみ、勧奨通知対象リストを作成する、ことを特徴とする。   A third invention of the present application is a health checkup recommendation notification support system for supporting the efficiency of the recommendation notification to the insured for promoting the health checkup conducted by the local government or the health insurance association, and is provided with a plurality of or A health checkup database in which the results of health checkups for the past n years (n is an integer of 3 or more) received by an insured person owned by a single municipality or a plurality of or single health insurance associations, and the health checkup database And a server in which a processing program for predicting a medical examination behavior of the insured person based on the data accumulated in the above is recorded, and the processing program includes, as a first step, a plurality of or a single processing from the medical examination database. Data for the past m years (m is an integer of 3 or more, m ≤ n) extracted by the local government, or a single or multiple health insurance associations, and data for m-1 years excluding the most recent one year, x explanatory variables It is processed into data that has, and as a second step, learning is performed using the data for the m-1 year and the presence or absence of a medical examination in the most recent year as teacher data, and as a third step, by the learned model, Calculating the probability of individual insured who join a specific municipality or a specific health insurance association, etc., and as a fourth step, a predetermined high probability value or more determined by the specific municipality or the specific health insurance association, etc. The recommendation notification target list is created only for insured persons with intermediate probability values other than a predetermined low probability value or for insured persons with a predetermined number of intermediate probability values. And

また本願の第四の発明は、自治体又は健保組合等が実施する健康診断の受診を促す被保険者への勧奨通知の効率化を支援するための健診勧奨通知支援システムであって、複数の自治体又は複数の健保組合等が保有する被保険者が受診した過去n年(nは3以上の整数)の健康診断の結果が蓄積された健診データベースと、前記健診データベースに蓄積されているデータを基に被保険者の受診行動を予測する処理プログラムが記録されているサーバーと、を備え、前記処理プログラムは、第一ステップとして、前記健診データベースから過去m年(mは3以上の整数、m≦n)分のデータを抽出し、直近の1年分を除いたm−1年分のデータの中からx個の説明変数を持つデータに加工し、アルゴリズムはディープラーニングであり、誤差関数に交差エントロピーを用い、最適化学習にAdamを用い、当該m−1年分のデータ及び直近1年での健診受診の有無を教師データとして用いることで、複数のレイヤーに対応する複数の重みWiを学習して第一特徴量を作成し、第二ステップとして、特定の自治体又は特定の健保組合等のデータのみを抽出し、アルゴリズムにトランスファーラーニングを用いて前記第一ステップで作成した前記重みWiの一部を調整した第二特徴量を作成し、第三ステップとして、前記第二特徴量に基づいたモデルによって、前記特定の自治体又は前記特定の健保組合等に加入する個々の被保険者の受診確率を算出し、第四ステップとして、前記特定の自治体又は前記特定の健保組合等が定めた所定の高確率値以上及び所定の低確率値以下を除く中間確率値の被保険者に対してのみ、又は予め定めた所定数の中間確率値の被保険者に対してのみ、勧奨通知対象リストを作成する、ことを特徴とする。   Further, a fourth invention of the present application is a health checkup recommendation notification support system for supporting the efficiency improvement of a recommendation notification to an insured person who encourages a health checkup conducted by a local government or a health insurance association. The health checkup database in which the results of health checkups for the past n years (n is an integer of 3 or more) received by the insured held by the local government or a plurality of health insurance associations and the like are stored in the health checkup database. And a server in which a processing program for predicting a medical examination behavior of the insured person based on the data is recorded, the processing program, as a first step, from the medical examination database for the past m years (m is 3 or more). An integer, m ≦ n) of data is extracted and processed into data having x explanatory variables from the data of m−1 years excluding the most recent one year, and the algorithm is deep learning, Error function By using cross entropy, using Adam for the optimization learning, and using the data for the m-1 year and the presence or absence of the medical examination in the most recent year as the teacher data, a plurality of weights Wi corresponding to a plurality of layers To create a first feature amount, and as a second step, only data of a specific municipality or a specific health insurance association is extracted, and the weight Wi created in the first step using transfer learning as an algorithm. Create a second feature amount that adjusts a part of the above, and as a third step, by a model based on the second feature amount, of the individual insured persons who join the specific municipality or the specific health insurance association, etc. Calculating the consultation probability, and as the fourth step, an intermediate probability excluding a value higher than a predetermined high probability value and a value lower than a predetermined low probability value set by the specific municipality or the specific health insurance association, etc. Only the insured, or only for a predetermined insured of a predetermined number of intermediate probability values, creating a encouraged notified list, characterized in that.

本願の第一発明、及び第三発明によれば、被保険者が健康診断を受診する確率計算の基礎データとなる母集団を、複数又は単独の自治体、或いは複数又は単独の健保組合等が保有する過去n年(nは3以上の整数)間において被保険者が受診した健康診断の健診データとし、高い性能の受診確率計算モデルを作成するのに十分な健診データ数を有する大都市(又は大きな健保組合等)は、地方小都市(又は小さな健保組合等)のデータがノイズとならないように当該大都市(又は大きな健保組合等)のみのデータを用いて確率モデルを作成し、高い性能の受診確率計算モデルを作成するのに十分な健診データ数が無い地方小都市(又は小さな健保組合等)は、全国各地の複数の自治体(又は健保組合)のデータを用いて確率計算モデルを作成することにより、特定の単独自治体又は特定の単独健保組合等に加入する個々の被保険者の受診確率を精度よく計算(推測)することができる。その結果、勧奨通知を発送しても健康診断を受診しない可能性の高い者の被保険者グループと、勧奨通知を発送しなくても健康診断を受診する可能性の高い者の被保険者グループを高い確度で特定することができ、これらの2つのグループ以外に属する被保険者グループ、即ち、勧奨通知を発送することによって受診可能性が高くなる被保険者グループを特定することで、勧奨通知に係る事務作業を効率化し、予算及び人員の適正化を図ることができる。また、結果として健康診断を受診する被保険者が増えることで、医療費の削減にも繋げることができる。   According to the first invention and the third invention of the present application, the population serving as the basic data for the probability calculation that the insured undergoes the medical examination is owned by a plurality or a single municipality, or a plurality or a single health insurance association. A large city with sufficient number of health checkup data to create a high-performance health checkup probability calculation model as health checkup data of health checkups received by the insured during the past n years (n is an integer of 3 or more) (Or a large health insurance association, etc.) creates a probabilistic model using the data of only that large city (or a large health insurance association, etc.) so that the data of a local small city (or a small health insurance association, etc.) does not become noise. For small local cities (or small health insurance associations, etc.) that do not have enough medical examination data to create a performance consultation probability calculation model, a probability calculation model is created using data from multiple local governments (or health insurance associations) across the country. Create Rukoto, it is possible to identify a single municipality or specific single health insurance such visits probability of individual insured that subscribe to accurately calculate (guess). As a result, the insured group of those who are likely not to undergo the medical examination even if the recommendation notice is sent, and the insured group of those who are likely to receive the medical examination even if the recommendation notice is not sent. Can be identified with high accuracy, and the insured group that belongs to a group other than these two groups, that is, the insured group that is more likely to be examined by sending out the recommended notice, can receive the recommended notice. It is possible to improve the efficiency of office work related to and to optimize the budget and personnel. Further, as a result, the number of insured persons who take a medical examination increases, which can lead to a reduction in medical expenses.

また本願の第二発明、及び第四発明によれば、被保険者が健康診断を受診する確率計算の基礎データとなる母集団を、複数の自治体又は複数の健保組合等が保有する過去n年(nは3以上の整数)間において被保険者が受診した健康診断の健診データとし、第一ステップとして、複数の自治体又は複数の健保組合等が有する全てのデータを用いて第一特徴量を作成し、第二ステップとして、特定の単独自治体又は特定の単独健保組合等の前記健診データのみを用いて第一ステップで作成した特徴量の一部を調整した第二特徴量を作成し、第三ステップとして、当該第二特徴量に基づいた確率計算モデルによって、特定の単独自治体又は特定の単独健保組合等に加入する個々の被保険者の受診確率を計算することにより、複数の自治体又は複数の健保組合等の大量なデータに基づいて基本形となる第一特徴量を作成する一方、計算対象となる特定の単独自治体又は特定の単独健保組合等の被保険者に特有な行動パターンを加味することができる。その結果、勧奨通知を発送しても健康診断を受診しない可能性の高い者の被保険者グループと、勧奨通知を発送しなくても健康診断を受診する可能性の高い者の被保険者グループを高い確度で特定することができ、これらの2つのグループ以外に属する被保険者グループ、即ち、勧奨通知を発送することによって受診可能性が高くなる被保険者グループを特定することで、勧奨通知に係る事務作業を効率化し、予算及び人員の適正化を図ることができる。   According to the second invention and the fourth invention of the present application, a population serving as basic data for calculating the probability that the insured receives a medical examination is owned by a plurality of local governments or a plurality of health insurance associations in the past n years. (N is an integer of 3 or more), the health checkup data of the health checkup received by the insured person is used, and as the first step, the first feature amount is obtained by using all data held by a plurality of local governments or a plurality of health insurance associations. As a second step, a second feature amount is created by adjusting a part of the feature amount created in the first step using only the medical examination data of a specific single municipality or a specific single health insurance association. As the third step, the probability of the individual insured who joins a specific independent municipality or a specific independent health insurance association is calculated by a probability calculation model based on the second feature quantity, and thus the multiple municipalities are examined. Or multiple While creating the first feature amount, which is the basic form, based on a large amount of data from the health insurance association, etc., consider the behavior pattern peculiar to the insured person such as the specific single municipality to be calculated or the specific single health insurance association. You can As a result, the insured group of those who are likely not to undergo the medical examination even if the recommendation notice is sent, and the insured group of those who are likely to receive the medical examination even if the recommendation notice is not sent. Can be identified with high accuracy, and the insured group that belongs to a group other than these two groups, that is, the insured group that is more likely to be examined by sending out the recommended notice, can receive the recommended notice. It is possible to improve the efficiency of office work related to and to optimize the budget and personnel.

上記のとおり本願の各発明は、勧奨通知をしなくても健康診断を受診する可能性の高い被保険者、又は勧奨通知をしても健康診断を受診する可能性の低い被保険者を特定して排除し、残った被保険者、即ち、勧奨通知をすることによって受診する可能性がある者を、確度高く抽出するものであるが、実際のデータを用いて分析すると、各自治体の特徴又は各健保組合等の特徴によって実測値との乖離が異なるため、それぞれの自治体や健保組合等の特徴を生かす形で、どの手法を用いるかを適宜に選択することができる。   As described above, each invention of the present application identifies an insured person who is likely to receive a medical examination without giving a recommendation notice, or an insured person who is unlikely to receive a medical examination even if a notice is given. The remaining insured persons, that is, those who may be examined by giving a recommendation notice are extracted with high accuracy, but when analyzed using actual data, the characteristics of each municipality Alternatively, since the difference from the actual measurement value differs depending on the characteristics of each health insurance association, it is possible to appropriately select which method is used while making the best use of the characteristics of each local government or health insurance association.

なお、本発明で言う「健保組合等」とは、自治体が運営する国民健康保険以外の各種健康保険組合(各企業の健康保険組合、全国健康保険協会管掌健康保険(いわゆる協会けんぽ)、共済組合など)を意味するものである。   The “health insurance association, etc.” referred to in the present invention means various health insurance associations other than national health insurance operated by local governments (health insurance associations of companies, health insurance managed by the National Health Insurance Association (so-called association Kenpo), mutual aid associations). Etc.) is meant.

本願発明の基本システム構成図Basic system configuration diagram of the present invention 第一実施形態に係る処理プログラムのアルゴリズムAlgorithm of processing program according to first embodiment クリーニングされたデータ形式を示す図Diagram showing the data format that has been cleaned 説明変数リストExplanatory variable list 教師データセットを示す図Diagram showing the teacher dataset ランダムフォレストの構造を示す図Diagram showing the structure of a random forest 第二実施形態に係る処理プログラムのアルゴリズムAlgorithm of processing program according to second embodiment ディープラーニングの構造を示す図Diagram showing the structure of deep learning 転移学習の構造を示す図Diagram showing the structure of transfer learning 小規模自治体での実験結果を示す図Figure showing the experimental results in a small municipality 大規模自治体での実験結果を示す図Diagram showing experimental results in a large-scale municipality 受診予測値と受診勧奨効果の関係を示す図Diagram showing the relationship between the predicted value of consultation and the effect of recommendation for consultation

図1〜12を用いて、本発明の実施形態について詳細に説明する。なお各実施形態は本願発明の範囲を限定的に解釈するためのものではなく、特許請求の範囲に記載された内容と発明の趣旨に基づいて、適宜に実施して良いことは言うまでもない。以下説明する本実施形態は、一例として特定の自治体向けにサービスを行うことを想定したシステムとして説明する。   Embodiments of the present invention will be described in detail with reference to FIGS. It is needless to say that each embodiment is not intended to limit the scope of the invention of the present application, and may be appropriately implemented based on the contents described in the claims and the spirit of the invention. The present embodiment described below will be described as a system assuming that a service is provided to a specific local government as an example.

図1は、本願発明の基本となるシステム構成図である。本発明に係るシステムは、第一実施形態、第二実施形態ともに共通であり、複数の自治体が有する過去の健康診断受診結果を蓄積した健診データベース1と、当該健診データベース1に蓄積されているデータを基に被保険者の受診行動を予測する処理プログラム2が記録されているサーバー3とからなる。健診データベース1は、サーバー3内に構築しても良い。以下説明する各実施形態は、処理プログラム2の処理方法が相違することで、被保険者の受診確率の計算方法が異なっている。   FIG. 1 is a system configuration diagram that is the basis of the present invention. The system according to the present invention is common to both the first embodiment and the second embodiment, and is stored in the medical examination database 1 in which past medical examination consultation results of a plurality of local governments are accumulated and in the medical examination database 1. And a server 3 in which a processing program 2 for predicting the medical examination behavior of the insured person based on the stored data is recorded. The medical examination database 1 may be built in the server 3. In each of the embodiments described below, the processing method of the processing program 2 is different, and thus the method of calculating the examination probability of the insured is different.

まず、本発明の第一実施形態に係る処理プログラム2について説明する。
処理プログラム2は、データ数の多い大都市の自治体(都道府県単位であっても良い)とデータ数の少ない小都市の自治体(都道府県単位であっても良い)とで、確率計算の基礎となるデータの抽出方法が異なる。まず小都市の被保険者の受診確率を求める方法について説明する。
First, the processing program 2 according to the first embodiment of the present invention will be described.
The processing program 2 is used as a basis for probability calculation between a municipality in a large city with a large amount of data (may be a prefecture unit) and a municipality in a small city with a small amount of data (may be a prefecture unit). The method of extracting data is different. First, a method of obtaining the examination probability of the insured in a small city will be described.

小都市の場合、データ数が少なく、高い性能の受診確率計算モデルを構築することが難しいため、健診データベース1に蓄積されている大都市を含む他の自治体のデータを合わせて活用する。   In the case of a small city, since the number of data is small and it is difficult to construct a high-performance consultation probability calculation model, the data of other local governments including the large city accumulated in the medical examination database 1 are used together.

図2は、処理プログラムによる処理フローの概要を示す説明図である。
処理プログラム2は、第一ステップとして、健診データベース1に蓄積されている複数自治体のデータを対象として、この中から過去6年分のデータを、教師データセットを作成する目的で抽出し、直近の1年分のデータを、健診受診の有無(正解ラベルデータ)に加工し、正解ラベルデータ以外の5年分のデータを、図4に示すような44個の説明変数を持つデータに加工する。
FIG. 2 is an explanatory diagram showing an outline of a processing flow by the processing program.
As a first step, the processing program 2 targets the data of a plurality of local governments accumulated in the medical examination database 1 and extracts the data for the past 6 years from the data for the purpose of creating a teacher data set, and the latest data. The data for 1 year is processed into the presence / absence of medical checkup (correct answer label data), and the data for 5 years other than the correct answer label data is processed into data with 44 explanatory variables as shown in Fig. 4. To do.

図4は、説明変数のリストであり、過去に健診を受診した被保険者個人の年齢、性別、身長、体重、BMI、腹囲、収縮期血圧、拡張期血圧、中性脂肪等の44項目から構成される。図5は、教師データの構成を示す図である。   FIG. 4 is a list of explanatory variables, and 44 items such as age, sex, height, weight, BMI, abdominal girth, systolic blood pressure, diastolic blood pressure, and neutral fat of the insured individual who has previously undergone a medical examination. Composed of. FIG. 5 is a diagram showing the structure of teacher data.

処理プログラム2は、第二ステップとして、当該44個の項目を説明変数とし、受診確率を目的変数とするモデルを作成する。本実施形態では、図6に示すとおりランダムフォレストを用いてモデルを構築する。複数の自治体の健診データの中から、1500個のサンプルをランダムに抽出し、44個の説明変数から6個の説明変数をランダムに抽出して100個の決定木を作成する。当該5年分の健診データ及び直近1年での健診受診の有無を教師データに用いて学習し、モデルとなる決定木を確定する。   As a second step, the processing program 2 creates a model in which the 44 items are used as explanatory variables and the consultation probability is used as an objective variable. In this embodiment, a model is constructed using a random forest as shown in FIG. From the medical examination data of a plurality of local governments, 1500 samples are randomly extracted, 6 explanatory variables are randomly extracted from 44 explanatory variables, and 100 decision trees are created. The decision tree to be a model is determined by learning by using the health checkup data for the five years and the presence or absence of the health checkup in the most recent year as teacher data.

処理プログラム2は、第三ステップとして、確定した決定木を用いて、特定小都市の住人である全ての被保険者の受診確率を計算する。全ての被保険者とは、実態上の住人全員ではなく、過去に健康診断を受診した記録が健診データベース1に存在する者の全員を意味する。   As a third step, the processing program 2 calculates the examination probabilities of all insured persons who are residents of the specific small city, using the decided decision tree. All insured persons do not mean all the residents actually, but all the persons whose records of medical examinations in the past exist in the medical examination database 1.

処理プログラム2は、第四ステップとして、算定された個々の被保険者の受診確率をアウトプットとしてリスト化する。算定した個々の被保険者の受診確率が、例えば80%を超えていた場合には、当該者は高い確度で健康診断を受診する可能性があり、逆に20%より低い者は、高い確度で健康診断を受診しない可能性がある。即ち、20%以上80%以下の者は、勧奨通知を行うことで、健康診断を受診する可能性が高くなることが分かる。   As the fourth step, the processing program 2 lists the calculated consultation probability of each insured person as an output. If the calculated consultation rate of individual insured persons exceeds, for example, 80%, there is a possibility that the person will undergo a medical examination with a high degree of accuracy, and conversely, a person with a rate lower than 20% will have a high degree of accuracy. There is a possibility that you will not receive a medical examination at. That is, it can be seen that 20% or more and 80% or less of the persons are more likely to receive the health examination by making the recommendation notice.

上記結果を基に、特定小都市は、例えば全被保険者の中から確率20%以上80%以下の者のみを特定し、特定した者に対して勧奨通知を行うことで、限られた予算、限られた人員の中で、効率よく勧奨通知業務を実施することができる。   Based on the above results, the specific small city, for example, identifies only those who have a probability of 20% or more and 80% or less out of all insured persons, and gives a recommendation notice to the identified persons, thus limiting the budget. , With a limited number of personnel, it is possible to efficiently carry out the recommendation notification work.

また勧奨通知の発送数が予め予算化されている場合、発送数に合うように発送対象とする確率閾値を、適宜に調整変更すれば良い。或いは、発送数を予め1000通としている場合、高確率値・低確率値の人数を均等に排除した中間の人数が1000人となるように選択すれば良い。   In addition, when the number of shipments of recommendation notifications is budgeted in advance, the probability threshold for shipment may be adjusted and changed as appropriate so as to match the number of shipments. Alternatively, when the number of shipments is set to 1,000 in advance, it is sufficient to select so that the number of intermediate persons, which excludes the persons with high and low probability values, is 1,000.

第四ステップは、最終的に特定の自治体が定めた所定の高確率値以上及び所定の低確率値以下を除く中間確率値の被保険者に対してのみ、又は予め定めた所定数の中間確率値の被保険者に対してのみ、勧奨通知対象リストを作成することとなる。   The fourth step is only for the insured with an intermediate probability value that is higher than a predetermined high probability value and lower than a predetermined low probability value finally determined by a specific municipality, or a predetermined number of intermediate probability values. Only for the insured of the value, the recommendation notification target list will be created.

次に、大都市自治体の被保険者の受診確率を求める方法について説明する。大都市の場合、小都市とは逆にデータ数が多く、性能の高いモデルを構築するのに十分なサンプルを有しており、かつ特に地方の小都市住民の行動パターンがノイズとなる可能性がある。そのため、大都市自治体の被保険者の受診確率を求める際の基礎データは、当該自治体のみのデータとする。   Next, a method for obtaining the examination probability of the insured in the metropolitan government will be described. Contrary to small cities, large cities have a large amount of data, have enough samples to build a high-performance model, and the behavior patterns of rural small cities in particular can be noise. There is. Therefore, the basic data for obtaining the medical examination probability of the insured of a large city municipality should be the data of that municipality only.

処理プログラム2は、第一ステップとして、健診データベース1に蓄積されている当該大都市自治体のデータのみを対象として、上記小都市の場合と同様に、この中から過去6年分のデータを、教師データセットを作成する目的で抽出し、直近の1年分のデータを、健診受診の有無(正解ラベルデータ)に加工し、正解ラベルデータ以外の5年分のデータを、図4に示すような44個の説明変数を持つデータに加工する。その後の処理は、上記小都市の場合と同じであるため、説明は省略する。   As a first step, the processing program 2 targets only the data of the large city municipality accumulated in the medical examination database 1 and, as in the case of the small city, the data for the past 6 years, Extracted for the purpose of creating a teacher data set, the data for the most recent year is processed into the presence / absence of health checkup (correct answer label data), and the data for 5 years other than the correct answer label data is shown in FIG. Such data is processed into data having 44 explanatory variables. Subsequent processing is the same as in the case of the small city, so description will be omitted.

なお、上記した第一実施形態では、過去6年分の健診データを用いて計算したが、3年以上のデータがあれば十分予測可能である。また、ランダムフォレストのデータ抽出数、決定木数等の各種パラメータは、確度を高める目的の範囲内で適宜に決定しても良い。   In the above-described first embodiment, the medical checkup data for the past 6 years is used for calculation, but it is sufficiently predictable if there is data for 3 years or more. Further, various parameters such as the number of extracted data of the random forest and the number of decision trees may be appropriately determined within the range of the purpose of increasing the accuracy.

さらに、上記した第一実施形態では、モデルを作成するアルゴリズムとしてランダムフォレストを利用した例を示したが、これに限らずディープラーニングであっても良い。その場合、誤差関数に交差エントロピーを用い、最適化学習にAdamを用いて個々の被保険者の受診確率を算出するのが好ましいが、交差エントロピー以外の損失関数(例えば、二乗誤差やヒンジ損失関数等)、Adam以外の他の勾配降下法等の最適化アルゴリズム(例えば、Nesterov accelerated gradient、AdagradやAdadelta等)を用いても良く、特に限定されない。   Furthermore, in the above-described first embodiment, an example in which a random forest is used as an algorithm for creating a model is shown, but the present invention is not limited to this, and deep learning may be used. In that case, it is preferable to use the cross entropy as the error function and use Adam as the optimization learning to calculate the consultation probability of each insured person. However, loss functions other than the cross entropy (for example, square error and hinge loss function) are used. Etc.) and other optimization algorithms such as gradient descent method other than Adam (for example, Nestov accelerated gradient, Adagrad, Adadelta, etc.) may be used without any particular limitation.

次に、本発明の第二実施形態に係る処理プログラム2について説明する。
処理プログラム2は、データ数の多い大都市の自治体もデータ数の少ない小都市の自治体も、同じ方法で被保険者の受診確率を求めるものである。
Next, the processing program 2 according to the second embodiment of the present invention will be described.
The processing program 2 obtains the examination probability of the insured by the same method for the municipalities in large cities with a large amount of data and the municipalities in small cities with a small amount of data.

図7は、その処理フローの概要を示す説明図である。全体の概略構成は、まず複数自治体のデータを用いたモデルを作成し、確率計算を必要とする特定の自治体のデータを用いて当該モデルの一部を修正して、特定自治体の被保険者全ての計算に用いる最終モデルを確定するものである。   FIG. 7 is an explanatory diagram showing an outline of the processing flow. The overall schematic structure is as follows: first create a model using data from multiple local governments, modify a part of the model using data from specific local governments that require probability calculation, and The final model used in the calculation of

処理プログラム2は、第一ステップとして、健診データベース1に蓄積されている複数自治体のデータを対象として、この中から過去6年分のデータを、教師データセットを作成する目的で抽出し、直近の1年分のデータを、健診受診の有無(正解ラベルデータ)に加工し、正解ラベルデータ以外の5年分のデータを、図4に示すような44個の説明変数を持つデータに加工する。   As a first step, the processing program 2 targets the data of a plurality of local governments accumulated in the medical examination database 1 and extracts the data for the past 6 years from the data for the purpose of creating a teacher data set, and the latest data. The data for 1 year is processed into the presence / absence of medical checkup (correct answer label data), and the data for 5 years other than the correct answer label data is processed into data with 44 explanatory variables as shown in Fig. 4. To do.

図8に示すとおり、第一ステップでのアルゴリズムはディープラーニングであり、誤差関数に交差エントロピーを、最適化学習にAdamを用い、教師データセットに基づいて、複数のレイヤーに対応する複数の重みW1、W2、W3を学習させて第一特徴量を作成する。   As shown in FIG. 8, the algorithm in the first step is deep learning, and the cross entropy is used for the error function and the Adam is used for the optimization learning, and a plurality of weights W1 corresponding to the plurality of layers are generated based on the teacher data set. , W2, W3 are learned to create the first feature amount.

図9に示すとおり、処理プログラム2は、第二ステップとして、確率計算する特定の自治体のデータのみを抽出し、アルゴリズムにトランスファーラーニング(転移学習)を用いて第一ステップで作成した重みW1、W2はそのままとし、W3のみを調整した第二特徴量を作成する。トランスファーラーニングは、誤差関数に交差エントロピーを用い、最適化学習にAdagradを用いている。なお、ディープラーニングやトランスファーラーニングにおいて、交差エントロピー以外の損失関数(例えば、二乗誤差やヒンジ損失関数等)、Adam、Adagrad以外の他の勾配降下法等の最適化アルゴリズム(例えば、Nesterov accelerated gradientやAdadelta等)を用いても良く、特に限定されない。   As shown in FIG. 9, as a second step, the processing program 2 extracts only the data of a specific municipality whose probability is calculated, and uses the weights W1 and W2 created in the first step by using transfer learning as an algorithm. Is left as it is, and the second feature amount in which only W3 is adjusted is created. In transfer learning, cross entropy is used for the error function and Adagrad is used for optimization learning. In deep learning and transfer learning, optimization functions such as loss functions other than cross entropy (for example, squared error and hinge loss function), and gradient descent methods other than Adam and Adagrad (for example, Nestov accelerated gradient and Adelatta). Etc.) may be used and is not particularly limited.

処理プログラム2は、第三ステップとして、上記の第二特徴量に基づいたモデルに基づいて、確率計算する特定の自治体の被保険者全員の受診確率を計算する。   As the third step, the processing program 2 calculates the consultation probability of all insured persons of the specific municipality whose probability is calculated based on the model based on the above-mentioned second characteristic amount.

処理プログラム2は、第四ステップとして、第一実施形態と同様の方法により、特定の自治体が定めた所定の高確率値以上及び所定の低確率値以下を除く中間確率値の被保険者に対してのみ、又は予め定めた所定数の中間確率値の被保険者に対してのみ、勧奨通知対象リストを作成する。   As a fourth step, the processing program 2 uses a method similar to that of the first embodiment to provide the insured with an intermediate probability value excluding a predetermined high probability value and a predetermined low probability value set by a specific municipality. The recommended notification target list only for the insured with a predetermined number of intermediate probability values.

なお、上記した第二実施形態では、過去6年分の健診データを用いて計算したが、3年以上のデータがあれば十分予測可能である。また、ディープラーニングにおけるレイヤー数等の各種パラメータは、確度を高める目的の範囲内で適宜に決定しても良い。 In the second embodiment described above, the medical checkup data for the past 6 years is used for calculation, but it is possible to sufficiently predict if there is data for 3 years or more. Further, various parameters such as the number of layers in deep learning may be appropriately determined within the range of the purpose of increasing the accuracy.

以上、本願発明の各実施形態について説明したが、出願人による多くの自治体及び健保組合等を対象にした実証実験によれば、予測値と実測値との乖離は、データ数の多い大都市又は規模の大きい健保組合等では、第二実施形態のシステム≒第一実施形態のシステム(単独自治体、単独健保組合等のデータを使用)≧第一実施形態のシステム(全ての自治体、又は全ての健保組合等のデータを使用)の傾向が強く、データ数の少ない小都市又は規模の小さい健保組合等では、第二実施形態のシステム≧第一実施形態のシステム(全ての自治体、又は全ての健保組合等のデータを使用)>第一実施形態のシステム(単独自治体、単独健保組合等のデータを使用)となる傾向が強かった。   Although the respective embodiments of the invention of the present application have been described above, according to the proof experiment conducted by the applicant for many local governments and health insurance associations, the difference between the predicted value and the actual measured value is a large city with a large number of data or In a large-scale health insurance association, etc., the system of the second embodiment ≒ the system of the first embodiment (using data of a single local government, a single health insurance association, etc.) ≧ the system of the first embodiment (all local governments or all health insurance (The data of unions, etc.) has a strong tendency, and in a small city with a small amount of data or a small health insurance union, the system of the second embodiment ≧ the system of the first embodiment (all municipalities or all health insurance unions) Etc.)> There was a strong tendency to use the system of the first embodiment (using data of independent municipalities, independent health insurance associations, etc.).

上記した実証結果は、あくまで全体としての傾向であって、それぞれの自治体やそれぞれの健保組合が有する特異性に基づき、実証実験の積重ねにより、いずれのシステムを利用するかを適宜に選択決定すれば良い。   The above demonstration results are only overall trends, and based on the peculiarities of each local government and each health insurance union, it is possible to appropriately select and decide which system to use by accumulating demonstration experiments. good.

図10は、都道府県ベースで実施した実証実験の結果を示す図であり、データ数が数百レベルの保険者(自治体A、自治体B、自治体C、自治体D、自治体E)について実施した結果である。   FIG. 10 is a diagram showing the results of the verification experiment carried out on a prefecture basis, and shows the results of the tests carried out for insurers (local government A, local government B, local government C, local government D, local government E) having data of several hundred levels. is there.

各県それぞれ3つの棒グラフで示されている受診率は、左の棒グラフが勧奨通知を行った者の実際の受診率であり、中央の棒グラフが当該県のデータのみを用いたモデルで確率計算した予測値であり、右の棒グラフが複数保険者のデータを用いたモデルに更に当該保険者のデータを用いて転移学習させたモデルで確率計算した予測値である。   The consultation rates shown in three bar graphs for each prefecture are the actual consultation rates of those who gave the recommendation notice in the left bar graph, and the bar graph in the center is the probability calculation using the model using only the data of the prefecture. It is a predicted value, and the bar graph on the right is a predicted value calculated by probability using a model in which data of a plurality of insurers is used and transfer learning is performed using data of the insurer.

図10から明らかなとおり、データ数の少ない5つの保険者全てにおいて、転移学習したモデルで確率計算した予測値の方が実測値に近い値となっていることから、当該方法によって選定した被保険者に対してのみ勧奨通知を行えばよく、自治体の予算削減、人員削減に貢献することができる。   As is clear from FIG. 10, in all five insurers with a small number of data, the predicted value calculated by the probability with the transfer learning model is closer to the actual measured value, and thus the insured selected by the method is selected. It is sufficient to give a recommendation notice only to the person who contributes to the budget reduction and personnel reduction of the local government.

図11は、データ数が数万レベルの3つの保険者(自治体X、自治体Y、自治体Z)について実施した結果である。各保険者それぞれ3つの棒グラフで示されている受診率は、図10と同じである。   FIG. 11 shows the results of implementation for three insurers (local government X, local government Y, local government Z) having tens of thousands of levels of data. The consultation rate shown by three bar graphs for each insurer is the same as in FIG.

図11から明らかなとおり、データ数の多い3つの保険者においても転移学習したモデルで確率計算した予測値の方が実測値に近い値となっているが、X保険者及びY保険者では、単独データを用いた場合と大きな差はないことが理解できる。   As is clear from FIG. 11, even in the three insurers with a large amount of data, the predicted value calculated by the probability with the transfer learning model is closer to the actual measured value, but in the X insurer and the Y insurer, It can be understood that there is no great difference from the case of using the independent data.

図12は、ある保険者における予測対象者の受診率予測値と、受診勧奨後の実際の受診率の差を示す図である。当該図より明らかなとおり、受診率予測値が30〜70%の対象者に対する勧奨効果は明らかに高くなり、予測対象者の平均勧奨効果は12.6%であった。   FIG. 12 is a diagram showing the difference between the predicted value of the consultation rate of a person to be predicted by an insurer and the actual consultation rate after the recommendation for consultation. As is clear from the figure, the recommended effect for the subjects having the predicted consultation rate of 30 to 70% was obviously high, and the average recommended effect for the predicted subjects was 12.6%.

上記した各実施形態は、国民健康保険の運営主体である自治体に対するサービスとして実施するものを説明したが、健康保険組合等に対するサービスとしても同様に実施可能である。その場合、複数の健保組合のデータを健診データベース1に蓄積し、データ数の多い大規模健保組合とデータ数の少ない小規模健保組合にそれぞれ応じた処理を行えば良い。   Although each of the above-described embodiments has been described as being performed as a service for a local government that is the operator of national health insurance, it can be similarly performed as a service for a health insurance association and the like. In that case, the data of a plurality of health insurance associations may be accumulated in the health checkup database 1, and processing may be performed according to the large-scale health insurance association with a large amount of data and the small-scale health insurance association with a small amount of data.

以上のとおり、本願発明によれば、勧奨通知を発送しても健康診断を受診しない可能性の高い者の被保険者グループと、勧奨通知を発送しなくても健康診断を受診する可能性の高い者の被保険者グループを高い確度で特定することができ、これらの2つのグループ以外に属する者、即ち、勧奨通知を発送することによって受診可能性が高くなる被保険者グループを特定することで、勧奨通知に係る事務作業を効率化し、予算及び人員の適正化を図ることができる。また、結果として健康診断を受診する被保険者が増えることで、医療費の削減にも繋げることができる。   As described above, according to the present invention, the insured group of persons who are not likely to receive the medical examination even if the recommendation notification is sent, and the possibility of receiving the medical examination even if the recommendation notification is not sent. It is possible to identify a high insured group with high accuracy, and to identify a person who belongs to a group other than these two groups, that is, an insured group that is likely to be examined by sending a recommendation notice. Therefore, the clerical work related to the recommendation notice can be streamlined and the budget and personnel can be optimized. Further, as a result, the number of insured persons who take a medical examination increases, which can lead to a reduction in medical expenses.

1 健診データベース
2 処理プログラム
3 サーバー

1 Medical examination database 2 Processing program 3 Server

上記目的を達成するため、本願の第一の発明は、被保険者の健康診断受診確率の計算方法であって、確率計算の基礎データとなる母集団を、複数又は単独の自治体、或いは複数又は単独の健保組合等が保有する過去n年(nは3以上の整数)間において被保険者が受診した健康診断の健診データとし、前記健診データを基に、コンピューターが被保険者の受診行動を予測する処理プログラムを含み、前記コンピューターは、前記処理プログラムに従い、第一ステップとして、全ての前記健診データから過去m年(mは3以上の整数、m≦n)分のデータを抽出し、直近の1年分を除いたm−1年分のデータを、x個の説明変数を持つデータに加工し、第二ステップとして、当該m−1年分の前記健診データ及び直近1年分の健診受診の有無を教師データとして用いて学習を行い、第三ステップとして、前記学習により構築したモデルによって、特定の単独自治体又は特定の単独健保組合に加入する個々の被保険者の受診確率を算出する、ことを特徴とする。 In order to achieve the above-mentioned object, the first invention of the present application is a method for calculating a health examination consultation probability of an insured person, wherein a population serving as basic data for probability calculation is a plurality or a single municipality, or a plurality of or The health checkup data of the health checkup conducted by the insured in the past n years (n is an integer of 3 or more) held by a single health insurance association, etc., and the computer examines the insured based on the health checkup data. According to the processing program, the computer includes a processing program for predicting behavior, and as a first step, extracts data for the past m years (m is an integer of 3 or more, m ≦ n) from all the medical examination data. Then, the data for m-1 years excluding the latest one year is processed into data having x explanatory variables, and as a second step, the medical examination data for the m-1 year and the latest 1 Existence of health checkup for a year Perform learning using as teacher data, wherein the third step, the by model constructed by learning, and calculates the consultation probabilities of individual insured to subscribe to a particular single municipality or specific single health insurance, that And

また本願の第二の発明は、被保険者の健康診断受診確率の計算方法であって、確率計算の基礎データとなる母集団を、複数の自治体又は複数の健保組合等が保有する過去n年(nは3以上の整数)間において被保険者が受診した健康診断の健診データとし、前記健診データを基に、コンピューターが被保険者の受診行動を予測する処理プログラムを含み、前記コンピューターは、前記処理プログラムに従い、第一ステップとして、複数の保険者の前記健診データから過去m年(mは3以上の整数、m≦n)分のデータを抽出し、直近の1年分を除いたm−1年分のデータをx個の説明変数を持つデータに加工し、アルゴリズムはディープラーニングであり、当該m−1年分のデータ及び直近1年での健診受診の有無を教師データとして用いることで、複数のレイヤーに対応する複数の重みWiを学習して第一特徴量を作成し、第二ステップとして、特定の単独自治体又は特定の単独健保組合等の前記健診データのみを抽出し、アルゴリズムにトランスファーラーニングを用いて前記第一ステップで作成した前記重みWiの一部を調整した第二特徴量を作成し、第三ステップとして、前記第二特徴量に基づいたモデルによって、前記特定の単独自治体又は前記特定の単独健保組合等に加入する個々の被保険者の受診確率を算出する、ことを特徴とする。 A second invention of the present application is a method of calculating a probability of receiving a health examination of an insured person, wherein a population serving as basic data for probability calculation is owned by a plurality of local governments or a plurality of health insurance associations in the past n years. (n is an integer of 3 or more) and medical examination of medical examination data insured was admitted between, on the basis of the medical examination data comprises a processing program computer to predict the visit behavior of the insured, the computer According to the processing program, as a first step, data for the past m years (m is an integer of 3 or more, m ≦ n) is extracted from the medical examination data of a plurality of insurers, and the latest one year is extracted. The data for m-1 years that has been removed is processed into data having x explanatory variables, and the algorithm is deep learning, and the data for the m-1 years and the presence / absence of a medical examination in the most recent year are taught. Use as data With, a plurality of weights Wi corresponding to a plurality of layers are learned to create a first feature amount, and as a second step, only the medical examination data of a specific single local government or a specific single health insurance association is extracted. , A second feature amount in which a part of the weight Wi created in the first step is adjusted by using transfer learning as an algorithm, and as a third step, the identification is performed by a model based on the second feature amount. The medical examination probability of each insured person who joins the independent municipality or the specific independent health insurance association is calculated.

また本願の第三の発明は、自治体又は健保組合等が実施する健康診断の受診を促す被保険者への勧奨通知を、受診確率計算に基づいて効率的に行う健診勧奨通知支援システムであって、複数又は単独の自治体、或いは複数又は単独の健保組合等が保有する被保険者が受診した過去n年(nは3以上の整数)の健康診断の結果が蓄積された健診データベースと、前記健診データベースに蓄積されているデータを基に被保険者の受診行動を予測する処理プログラムが記録されているサーバーと、を備え、前記サーバーは、前記処理プログラムに従い、第一ステップとして、前記健診データベースから複数又は単独の自治体、或いは複数又は単独の健保組合等の過去m年(mは3以上の整数、m≦n)分のデータを抽出し、直近の1年分を除いたm−1年分のデータを、x個の説明変数を持つデータに加工し、第二ステップとして、当該m−1年分のデータ及び直近1年での健診受診の有無を教師データとして用いて学習を行い、第三ステップとして、前記学習により構築したモデルによって、特定の自治体又は特定の健保組合等に加入する個々の被保険者の受診確率を算出し、第四ステップとして、前記特定の自治体又は前記特定の健保組合等が定めた所定の高確率値以上及び所定の低確率値以下を除く中間確率値の被保険者に対してのみ、又は予め定めた所定数の中間確率値の被保険者に対してのみ、勧奨通知対象リストを作成する、ことを特徴とする。 A third invention of the present application is a health checkup recommendation notification support system for efficiently giving a recommendation notice to an insured to encourage a health checkup conducted by a local government or a health insurance association based on the calculation of the examination probability. A health checkup database in which the results of health examinations for the past n years (n is an integer of 3 or more) that have been examined by insured persons held by multiple or independent municipalities or multiple or independent health insurance associations; And a server in which a processing program for predicting the medical examination behavior of the insured based on the data accumulated in the medical examination database is recorded, wherein the server follows the processing program and, as a first step, Data for the past m years (m is an integer greater than or equal to 3, m ≦ n) of multiple or independent local governments or multiple or independent health insurance associations was extracted from the medical examination database, and the last one year was excluded. The data for one year, and processed into data having x number of explanatory variables, using as a second step, a medical examination whether visits in the m-1_Nenbun'nodetaoyobichokkin 1 year as teacher data learning As a third step, the model constructed by the learning is used to calculate the consultation probability of each insured who joins a specific municipality or a specific health insurance association, and as a fourth step, the specific municipality or Only for those insured with an intermediate probability value excluding a predetermined high probability value or more and a predetermined low probability value or less specified by the specific health insurance association, etc., or an insured person with a predetermined number of intermediate probability values. It is characterized in that a list of recommended notification targets is created only for.

また本願の第四の発明は、自治体又は健保組合等が実施する健康診断の受診を促す被保険者への勧奨通知を、受診確率計算に基づいて効率的に行う健診勧奨通知支援システムであって、複数の自治体又は複数の健保組合等が保有する被保険者が受診した過去n年(nは3以上の整数)の健康診断の結果が蓄積された健診データベースと、前記健診データベースに蓄積されているデータを基に被保険者の受診行動を予測する処理プログラムが記録されているサーバーと、を備え、前記サーバーは、前記処理プログラムに従い、第一ステップとして、前記健診データベースから過去m年(mは3以上の整数、m≦n)分のデータを抽出し、直近の1年分を除いたm−1年分のデータの中からx個の説明変数を持つデータに加工し、アルゴリズムはディープラーニングであり、当該m−1年分のデータ及び直近1年での健診受診の有無を教師データとして用いることで、複数のレイヤーに対応する複数の重みWiを学習して第一特徴量を作成し、第二ステップとして、特定の自治体又は特定の健保組合等のデータのみを抽出し、アルゴリズムにトランスファーラーニングを用いて前記第一ステップで作成した前記重みWiの一部を調整した第二特徴量を作成し、第三ステップとして、前記第二特徴量に基づいたモデルによって、前記特定の自治体又は前記特定の健保組合等に加入する個々の被保険者の受診確率を算出し、第四ステップとして、前記特定の自治体又は前記特定の健保組合等が定めた所定の高確率値以上及び所定の低確率値以下を除く中間確率値の被保険者に対してのみ、又は予め定めた所定数の中間確率値の被保険者に対してのみ、勧奨通知対象リストを作成する、ことを特徴とする。
A fourth invention of the present application is a health checkup recommendation notification support system for efficiently giving a recommendation notice to an insured to encourage a health checkup conducted by a local government or a health insurance association, etc. based on a consultation probability calculation. The medical checkup database in which the results of the medical examinations of the past n years (n is an integer of 3 or more) received by the insured held by a plurality of local governments or a plurality of health insurance associations and the medical examination database are accumulated. And a server in which a processing program for predicting a medical examination behavior of the insured person based on the accumulated data is recorded, the server according to the processing program, and as a first step , the past from the medical examination database. Data for m years (m is an integer greater than or equal to 3, m ≦ n) is extracted and processed into data having x explanatory variables from the data for m-1 years excluding the most recent one year. , The algorithm is This is the sweep learning, and by using the data for the m-1 year and the presence / absence of the medical examination consultation in the most recent year as the teacher data, the plurality of weights Wi corresponding to the plurality of layers are learned to determine the first feature amount. A second feature in which, as a second step, only data of a specific municipality or a specific health insurance association is extracted and a part of the weight Wi created in the first step is adjusted by using transfer learning as an algorithm. Create a quantity, as a third step, by the model based on the second characteristic amount, calculate the consultation probability of each insured to join the specific municipality or the specific health insurance association, the fourth step As for the insured with an intermediate probability value excluding a predetermined high probability value or more and a predetermined low probability value or less defined by the specific municipality or the specific health insurance association, etc., or Only for a predetermined insured of a predetermined number of intermediate probability values, creating a encouraged notified list, characterized in that.

Claims (14)

被保険者の健康診断受診確率の計算方法であって、
確率計算の基礎データとなる母集団を、複数又は単独の自治体、或いは複数又は単独の健保組合等が保有する過去n年(nは3以上の整数)間において被保険者が受診した健康診断の健診データとし、
前記健診データを基に被保険者の受診行動を予測する処理プログラムを含み、
前記処理プログラムは、
第一ステップとして、
全ての前記健診データから過去m年(mは3以上の整数、m≦n)分のデータを抽出し、
直近の1年分を除いたm−1年分のデータを、x個の説明変数を持つデータに加工し、
第二ステップとして、
当該m−1年分の前記健診データ及び直近1年分の健診受診の有無を教師データとして用いて学習し、
第三ステップとして、
前記学習済みモデルによって、特定の単独自治体又は特定の単独健保組合に加入する個々の被保険者の受診確率を算出する、
ことを特徴とする被保険者の健康診断受診確率計算方法。
A method of calculating the probability of receiving a health checkup of the insured,
The population that is the basic data for probability calculation is held by multiple or independent municipalities, or multiple or independent health insurance associations, etc. for the past n years (n is an integer of 3 or more) As medical examination data,
Including a processing program for predicting the examination behavior of the insured based on the medical examination data,
The processing program is
As the first step,
Data for the past m years (m is an integer of 3 or more, m ≦ n) is extracted from all the medical examination data,
The data for m-1 years excluding the latest one year is processed into data with x explanatory variables,
As a second step,
Learning using the medical examination data for the m-1 year and the presence or absence of the medical examination for the most recent year as teacher data,
As the third step,
By the learned model, calculate the consultation probability of individual insured persons who join a specific single municipality or a specific single health insurance association,
A method for calculating a probability of receiving a medical examination of an insured person, which is characterized by the following.
前記処理プログラムのアルゴリズムはランダムフォレストであり、複数又は単独の自治体、或いは複数又は単独の健保組合等の前記健診データの中から、a個のサンプルをランダムに抽出し、x個の説明変数からb個の説明変数をランダムに抽出してy個の決定木を作成し、y個全ての前記決定木のアンサンブルにより、前記個々の被保険者の受診確率を算出する、
ことを特徴とする請求項1に記載の被保険者の健康診断受診確率計算方法。
The algorithm of the processing program is a random forest, and a samples are randomly extracted from the medical examination data of a plurality of or a single municipality, or a plurality of or a single health insurance association, and from x explanatory variables. b extracted variables are randomly extracted to create y decision trees, and the ensemble of all y decision trees is used to calculate the consultation probability of each individual insured person,
The method for calculating the health checkup probability of an insured person according to claim 1, wherein.
前記処理プログラムのアルゴリズムはディープラーニングであり、複数又は単独の自治体、或いは複数又は単独の健保組合等の前記健診データを基にし、誤差関数に交差エントロピーを用い、最適化学習にAdamを用いて、前記個々の被保険者の受診確率を算出する、
ことを特徴とする請求項1に記載の被保険者の健康診断受診確率計算方法。
The algorithm of the processing program is deep learning, and based on the medical examination data of a plurality of or a single municipality, or a plurality of or a single health insurance association, cross entropy is used as an error function, and Adam is used for optimization learning. , Calculating the consultation probability of the individual insured,
The method for calculating the health checkup probability of an insured person according to claim 1, wherein.
x個の前記説明変数は、生年月日、性別、身長、体重、各種問診結果、各種検査値等を加工して作成した、43個以上の項目である、
ことを特徴とする請求項1ないし3のいずれか1項に記載の被保険者の健康診断受診確率計算方法。
The x explanatory variables are 43 or more items created by processing the date of birth, sex, height, weight, various inquiry results, various test values, and the like.
The method for calculating a health checkup probability of an insured person according to any one of claims 1 to 3, wherein:
被保険者の健康診断受診確率の計算方法であって、
確率計算の基礎データとなる母集団を、複数の自治体又は複数の健保組合等が保有する過去n年(nは3以上の整数)間において被保険者が受診した健康診断の健診データとし、
前記健診データを基に被保険者の受診行動を予測する処理プログラムを含み、
前記処理プログラムは、
第一ステップとして、
複数の保険者の前記健診データから過去m年(mは3以上の整数、m≦n)分のデータを抽出し、
直近の1年分を除いたm−1年分のデータをx個の説明変数を持つデータに加工し、
アルゴリズムはディープラーニングであり、
当該m−1年分のデータ及び直近1年での健診受診の有無を教師データとして用いることで、複数のレイヤーに対応する複数の重みWiを学習して第一特徴量を作成し、
第二ステップとして、
特定の単独自治体又は特定の単独健保組合等の前記健診データのみを抽出し、アルゴリズムにトランスファーラーニングを用いて前記第一ステップで作成した前記重みWiの一部を調整した第二特徴量を作成し、
第三ステップとして、
前記第二特徴量に基づいたモデルによって、前記特定の単独自治体又は前記特定の単独健保組合等に加入する個々の被保険者の受診確率を算出する、
ことを特徴とすることを特徴とする被保険者の健康診断受診確率計算方法。
A method of calculating the probability of receiving a health checkup of the insured,
The population, which is the basic data for the probability calculation, is used as the health checkup data of the health checkup conducted by the insured in the past n years (n is an integer of 3 or more) held by a plurality of local governments or health insurance associations,
Including a processing program for predicting the examination behavior of the insured based on the medical examination data,
The processing program is
As the first step,
Data for the past m years (m is an integer of 3 or more, m ≦ n) is extracted from the medical examination data of a plurality of insurers,
The data for m-1 years excluding the latest one year is processed into data with x explanatory variables,
The algorithm is deep learning,
By using the data for the m-1 year and the presence / absence of a medical examination in the most recent year as teacher data, a plurality of weights Wi corresponding to a plurality of layers are learned to create a first feature amount,
As a second step,
Extracting only the medical examination data of a specific single municipality or a specific single health insurance association, and using transfer learning as an algorithm to create a second feature amount by adjusting a part of the weight Wi created in the first step. Then
As the third step,
By the model based on the second characteristic amount, calculate the examination probability of each insured person who joins the specific single municipality or the specific single health insurance association, etc.
A method for calculating a probability of receiving a medical examination for an insured person, which is characterized by the following.
前記ディープラーニングは、誤差関数に交差エントロピーを用い、最適化学習にAdamを用い、
前記トランスファーラーニングは、誤差関数に交差エントロピーを用い、最適化学習にAdagradを用いている、
ことを特徴とする請求項5に記載の被保険者の健康診断受診確率計算方法。
The deep learning uses cross entropy for the error function, and Adam for the optimization learning,
In the transfer learning, cross entropy is used for the error function, and Adagrad is used for the optimization learning.
The method for calculating a health checkup probability of an insured person according to claim 5, wherein.
x個の前記説明変数は、生年月日、性別、身長、体重、各種問診結果、各種検査値等を加工して作成した、43個以上の項目である、
ことを特徴とする請求項5又は6に記載の被保険者の健康診断受診確率計算方法。
The x explanatory variables are 43 or more items created by processing the date of birth, sex, height, weight, various inquiry results, various test values, and the like.
7. The method for calculating the health checkup probability of an insured person according to claim 5 or 6.
自治体又は健保組合等が実施する健康診断の受診を促す被保険者への勧奨通知の効率化を支援するための健診勧奨通知支援システムであって、
複数又は単独の自治体、或いは複数又は単独の健保組合等が保有する被保険者が受診した過去n年(nは3以上の整数)の健康診断の結果が蓄積された健診データベースと、
前記健診データベースに蓄積されているデータを基に被保険者の受診行動を予測する処理プログラムが記録されているサーバーと、を備え、
前記処理プログラムは、 第一ステップとして、
前記健診データベースから複数又は単独の自治体、或いは複数又は単独の健保組合等の過去m年(mは3以上の整数、m≦n)分のデータを抽出し、
直近の1年分を除いたm−1年分のデータを、x個の説明変数を持つデータに加工し、
第二ステップとして、
当該m−1年分のデータ及び直近1年での健診受診の有無を教師データとして用いて学習し、
第三ステップとして、
前記学習済みモデルによって、特定の自治体又は特定の健保組合等に加入する個々の被保険者の受診確率を算出し、
第四ステップとして、
前記特定の自治体又は前記特定の健保組合等が定めた所定の高確率値以上及び所定の低確率値以下を除く中間確率値の被保険者に対してのみ、又は予め定めた所定数の中間確率値の被保険者に対してのみ、勧奨通知対象リストを作成する、
ことを特徴とする健診勧奨通知支援システム。
A medical checkup recommendation notification support system for supporting the efficiency improvement of the recommendation notification to the insured who encourages the health examination conducted by the local government or the health insurance association,
A medical examination database in which the results of medical examinations for the past n years (n is an integer of 3 or more), which have been examined by insured persons held by multiple or independent municipalities or multiple or independent health insurance associations,
A server in which a processing program for predicting the medical examination behavior of the insured person based on the data accumulated in the medical examination database is recorded;
The processing program, as a first step,
Data of the past m years (m is an integer of 3 or more, m ≦ n) of a plurality or a single municipality, or a plurality or a single health insurance association is extracted from the medical examination database,
The data for m-1 years excluding the latest one year is processed into data with x explanatory variables,
As a second step,
Learned by using the data for the m-1 year and the presence or absence of medical examination in the most recent year as teacher data,
As the third step,
By the learned model, calculate the consultation probability of each insured who joins a specific municipality or a specific health insurance association,
As the fourth step,
Only for the insured with an intermediate probability value excluding a predetermined high probability value or more and a predetermined low probability value or less set by the specific municipality or the specific health insurance association, or a predetermined number of intermediate probabilities Create a list of recommended notifications only for insured with value,
A medical examination recommendation notification support system characterized by the following.
前記処理プログラムのアルゴリズムはランダムフォレストであり、複数又は単独の自治体、或いは複数又は単独の健保組合等の中から、a個のサンプルをランダムに抽出し、x個の説明変数からb個の説明変数をランダムに抽出してy個の決定木を作成し、y個全ての前記決定木のアンサンブルにより、前記個々の被保険者の受診確率を算出する、
ことを特徴とする請求項8に記載の健診勧奨通知支援システム。
The algorithm of the processing program is a random forest, a samples are randomly extracted from a plurality of or a single municipality, or a plurality or a single health insurance association, and b explanatory variables are selected from x explanatory variables. To randomly generate y decision trees, and calculate an examination probability of each individual insured by an ensemble of all y decision trees.
The medical examination recommendation notification support system according to claim 8.
前記処理プログラムのアルゴリズムはディープラーニングであり、前記健診データベースに蓄積されている複数又は単独の自治体、或いは複数又は単独の健保組合等の前記健診データを基にして、誤差関数に交差エントロピーを用い、最適化学習にAdamを用いて、前記個々の被保険者の受診確率を算出する、
ことを特徴とする請求項8に記載の健診勧奨通知支援システム。
The algorithm of the processing program is deep learning, based on the medical examination data such as a plurality of or a single municipality, or a plurality of or a single health insurance association accumulated in the medical examination database, and a cross entropy in an error function. And using Adam for optimization learning, calculate the consultation probability of the individual insured,
The medical examination recommendation notification support system according to claim 8.
x個の前記説明変数は、生年月日、性別、身長、体重、各種問診結果、各種検査値等を加工して作成した、43個以上の項目である、
ことを特徴とする請求項8ないし10のいずれか1項に記載の健診勧奨通知支援システム。
The x explanatory variables are 43 or more items created by processing the date of birth, sex, height, weight, various inquiry results, various test values, and the like.
The medical examination recommendation notification support system according to any one of claims 8 to 10, wherein:
自治体又は健保組合等が実施する健康診断の受診を促す被保険者への勧奨通知の効率化を支援するための健診勧奨通知支援システムであって、
複数の自治体又は複数の健保組合等が保有する被保険者が受診した過去n年(nは3以上の整数)の健康診断の結果が蓄積された健診データベースと、
前記健診データベースに蓄積されているデータを基に被保険者の受診行動を予測する処理プログラムが記録されているサーバーと、を備え、
前記処理プログラムは、
第一ステップとして、
前記健診データベースから過去m年(mは3以上の整数、m≦n)分のデータを抽出し、
直近の1年分を除いたm−1年分のデータの中からx個の説明変数を持つデータに加工し、
アルゴリズムはディープラーニングであり、
当該m−1年分のデータ及び直近1年での健診受診の有無を教師データとして用いることで、複数のレイヤーに対応する複数の重みWiを学習して第一特徴量を作成し、
第二ステップとして、
特定の自治体又は特定の健保組合等のデータのみを抽出し、アルゴリズムにトランスファーラーニングを用いて前記第一ステップで作成した前記重みWiの一部を調整した第二特徴量を作成し、
第三ステップとして、
前記第二特徴量に基づいたモデルによって、前記特定の自治体又は前記特定の健保組合等に加入する個々の被保険者の受診確率を算出し、
第四ステップとして、
前記特定の自治体又は前記特定の健保組合等が定めた所定の高確率値以上及び所定の低確率値以下を除く中間確率値の被保険者に対してのみ、又は予め定めた所定数の中間確率値の被保険者に対してのみ、勧奨通知対象リストを作成する、
ことを特徴とする健診勧奨通知支援システム。
A medical checkup recommendation notification support system for supporting the efficiency improvement of the recommendation notification to the insured who encourages the health examination conducted by the local government or the health insurance association,
A medical examination database in which the results of the medical examinations of the past n years (n is an integer of 3 or more) received by the insured held by a plurality of local governments or a plurality of health insurance associations are accumulated,
A server in which a processing program for predicting the medical examination behavior of the insured person based on the data accumulated in the medical examination database is recorded;
The processing program is
As the first step,
Data for the past m years (m is an integer of 3 or more, m ≦ n) is extracted from the medical examination database,
From the data for m-1 years excluding the latest one year, process into data with x explanatory variables,
The algorithm is deep learning,
By using the data for the m-1 year and the presence / absence of a medical examination in the most recent year as teacher data, a plurality of weights Wi corresponding to a plurality of layers are learned to create a first feature amount,
As a second step,
Only data of a specific municipality or a specific health insurance association is extracted, and a second feature amount is created by adjusting a part of the weight Wi created in the first step by using transfer learning as an algorithm,
As the third step,
By the model based on the second feature amount, calculate the consultation probability of each insured person who joins the specific municipality or the specific health insurance association,
As the fourth step,
Only for the insured with an intermediate probability value excluding a predetermined high probability value or more and a predetermined low probability value or less set by the specific municipality or the specific health insurance association, or a predetermined number of intermediate probabilities Create a list of recommended notifications only for insured with value,
A medical examination recommendation notification support system characterized by the following.
前記ディープラーニングは、誤差関数に交差エントロピーを用い、最適化学習にAdamを用い、
前記トランスファーラーニングは、誤差関数に交差エントロピーを用い、最適化学習にAdagradを用いている、
ことを特徴とする請求項12に記載の健診勧奨通知支援システム。
The deep learning uses cross entropy for the error function, and Adam for the optimization learning,
In the transfer learning, cross entropy is used for the error function, and Adagrad is used for the optimization learning.
The medical examination recommendation notification support system according to claim 12.
x個の前記説明変数は、生年月日、性別、身長、体重、各種問診結果、各種検査値等を加工して作成した、43個以上の項目である、
ことを特徴とする請求項12又は13に記載の健診勧奨通知支援システム。

The x explanatory variables are 43 or more items created by processing the date of birth, sex, height, weight, various inquiry results, various test values, and the like.
14. The medical examination recommendation notification support system according to claim 12 or 13.

JP2018203585A 2018-10-30 2018-10-30 Health checkup examination probability calculation method and medical checkup recommendation notice support system Active JP6548243B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018203585A JP6548243B1 (en) 2018-10-30 2018-10-30 Health checkup examination probability calculation method and medical checkup recommendation notice support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018203585A JP6548243B1 (en) 2018-10-30 2018-10-30 Health checkup examination probability calculation method and medical checkup recommendation notice support system

Publications (2)

Publication Number Publication Date
JP6548243B1 JP6548243B1 (en) 2019-07-24
JP2020071562A true JP2020071562A (en) 2020-05-07

Family

ID=67390351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018203585A Active JP6548243B1 (en) 2018-10-30 2018-10-30 Health checkup examination probability calculation method and medical checkup recommendation notice support system

Country Status (1)

Country Link
JP (1) JP6548243B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7053557B2 (en) * 2019-11-19 2022-04-12 株式会社日立製作所 Information processing equipment, information processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130159023A1 (en) * 2011-12-16 2013-06-20 Neela SRINIVAS System and method for evidence based differential analysis and incentives based heal thcare policy
JP2013206337A (en) * 2012-03-29 2013-10-07 Nec Corp Health care guidance target person selection support device
WO2013161191A1 (en) * 2012-04-26 2013-10-31 日本電気株式会社 Assistance device for generating condition for selecting people to whom public health advice is given
JP2016519807A (en) * 2013-03-15 2016-07-07 ザ クリーブランド クリニック ファウンデーションThe Cleveland ClinicFoundation Self-evolving prediction model
WO2016207862A1 (en) * 2015-06-25 2016-12-29 Timothy Burton Methods and systems using mathematical analysis and machine learning to diagnose disease
WO2017183587A1 (en) * 2016-04-18 2017-10-26 日本電信電話株式会社 Learning device, learning method, and learning program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130159023A1 (en) * 2011-12-16 2013-06-20 Neela SRINIVAS System and method for evidence based differential analysis and incentives based heal thcare policy
JP2013206337A (en) * 2012-03-29 2013-10-07 Nec Corp Health care guidance target person selection support device
WO2013161191A1 (en) * 2012-04-26 2013-10-31 日本電気株式会社 Assistance device for generating condition for selecting people to whom public health advice is given
JP2016519807A (en) * 2013-03-15 2016-07-07 ザ クリーブランド クリニック ファウンデーションThe Cleveland ClinicFoundation Self-evolving prediction model
WO2016207862A1 (en) * 2015-06-25 2016-12-29 Timothy Burton Methods and systems using mathematical analysis and machine learning to diagnose disease
WO2017183587A1 (en) * 2016-04-18 2017-10-26 日本電信電話株式会社 Learning device, learning method, and learning program

Also Published As

Publication number Publication date
JP6548243B1 (en) 2019-07-24

Similar Documents

Publication Publication Date Title
Loey et al. Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data
Kulkarni et al. Assessing risk of hospital readmissions for improving medical practice
Irmanita et al. Classification of Malaria Complication Using CART (Classification and Regression Tree) and Naïve Bayes
Chand et al. Learning from machines to close the gap between funding and expenditure in the Australian National Disability Insurance Scheme
Nirmaladevi et al. Deep convolutional neural network mechanism assessment of COVID-19 severity
JP2020071562A (en) Health check reception probability calculation method and health check recommendation notification support system
Boz et al. Reassessment and monitoring of loan applications with machine learning
Sudharson et al. Performance analysis of enhanced adaboost framework in multifacet medical dataset
Nalluri et al. An insight into application of big data analytics in healthcare
Siddiqa et al. Robust Length of Stay Prediction Model for Indoor Patients.
Farooq et al. A novel cardiovascular decision support framework for effective clinical risk assessment
Fowler et al. Predicting patient revisits at the University of Virginia health system emergency department
Avati et al. Predicting inpatient discharge prioritization with electronic health records
Saraswathi et al. Designing the Prediction Protocol based on Sparrow Search Optimization Algorithm with Vibrational Auto Encoder in E-Healthcare
Ramadhan et al. Prediction of Diabetes Mellitus in the Upcoming Year using SMOTE and Random Forest
Fatma et al. Outpatient Diversion using Real-time Length-of-Stay Predictions
Alshammari et al. The prediction of outpatient no-show visits by using deep neural network from large data
Shabbeer et al. Prediction of Sudden Health Crises Owing to Congestive Heart Failure with Deep Learning Models.
Rabbah et al. A New Classification Model Based on Transfer Learning of DCNN and Stacknet for Fast Classification of Pneumonia Through X-Ray Images
Kale Application of data mining techniques to discover cause of underfive children admission to pediatric ward: the case of Nigist Eleni
Al-Sagheer et al. Data Mining and RBF Neural Networks to Analyze Data from COVID-19 Patients and Predict New Cases Based on Symptoms
Karthikeyan et al. Smart COVIDNet: designing an IoT-based COVID-19 disease prediction framework using attentive and adaptive-derived ensemble deep learning
Kim Chi et al. Clinical data-driven approach to identifying COVID-19 and influenza from a gradient-boosting model
Miškuf et al. Healthcare data classification—Cloud-based architecture concept
Kapoor et al. Machine Learning Based Classification Algorithm for Classification of Dengue (Dengue Fever-DF, Dengue Harmonic Fever-DHF, Serve Dengue-SD)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181030

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181030

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190619

R150 Certificate of patent or registration of utility model

Ref document number: 6548243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250