JP2020062906A - Estimated power generation and charging control method for range extender vehicle - Google Patents

Estimated power generation and charging control method for range extender vehicle Download PDF

Info

Publication number
JP2020062906A
JP2020062906A JP2018194138A JP2018194138A JP2020062906A JP 2020062906 A JP2020062906 A JP 2020062906A JP 2018194138 A JP2018194138 A JP 2018194138A JP 2018194138 A JP2018194138 A JP 2018194138A JP 2020062906 A JP2020062906 A JP 2020062906A
Authority
JP
Japan
Prior art keywords
power generation
generator
charging
traveling
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018194138A
Other languages
Japanese (ja)
Other versions
JP7408063B2 (en
JP2020062906A5 (en
Inventor
吉用茂
Shigeru Yoshimochi
清水庄一
Shoichi Shimizu
稲葉均
Hitoshi Inaba
茅野圭三
Keizo Kayano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AC TECHNOLOGIES KK
Toshiba Development and Engineering Corp
Toshiba IT and Control Systems Corp
Original Assignee
AC TECHNOLOGIES KK
Toshiba Development and Engineering Corp
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AC TECHNOLOGIES KK, Toshiba Development and Engineering Corp, Toshiba IT and Control Systems Corp filed Critical AC TECHNOLOGIES KK
Priority to JP2018194138A priority Critical patent/JP7408063B2/en
Publication of JP2020062906A publication Critical patent/JP2020062906A/en
Publication of JP2020062906A5 publication Critical patent/JP2020062906A5/ja
Application granted granted Critical
Publication of JP7408063B2 publication Critical patent/JP7408063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To provide an estimated power generation and charging control method for a range extender vehicle, which makes a driving plan before driving by obtaining information on driving routes with ICT technologies such as GIS or GNSS and utilizing a variety of consolidated data required for driving on temperatures outside the vehicle or outside conditions in silent sections in the middle of driving, and appropriately incorporates driving section and time of the generator into the driving plan.SOLUTION: In an estimated power generation and charging control method proposed by the present invention, a driving plan is made before driving, and thus driving and stopping of a generator is appropriately controlled during driving. Consequently, the generator and a secondary cell can be reduced in size, and exhaust gas can be reduced; therefore, low carbonization can be promoted.SELECTED DRAWING: Figure 7

Description

本発明は、エンジン発電機で二次電池を充電し、その二次電池によってモーターを駆動して走行するレンジエクステンダーEV(Range Extended-Electrical Vehicle)車両に搭載する予測発電充電制御方式に関してである。   The present invention relates to a predictive power generation charging control system mounted on a range extended-electric vehicle (EV) vehicle in which a secondary battery is charged by an engine generator and a motor is driven by the secondary battery to run.

二次電池駆動によるEV車両は二酸化炭素(CO2)の排出がないクリーン交通機関として注目されている。第一の理由は内燃機関で走行する車両と異なり、二次電池に蓄積された電力でモーターを駆動して走行するので、CO2排出がなく静かであり乗り心地も優れてことによる。第二の理由として燃料代を含む維持費はディーゼルエンジン等の車両に比べて安いことから導入する利点は大きいと考えられている。 EV vehicles driven by secondary batteries are attracting attention as a clean transportation system that emits no carbon dioxide (CO2). The first reason is that, unlike a vehicle that runs on an internal combustion engine, it runs on a motor driven by the electric power stored in a secondary battery, so it emits no CO2, is quiet, and has excellent riding comfort. The second reason is that maintenance costs including fuel costs are cheaper than vehicles such as diesel engines, so it is considered to have a great advantage.

しかし、現状のEV車両の一種であるEVバスの価格は、ディーゼルエンジン搭載のバスの改造に頼っているので高価な二次電池を大量に搭載する必要があるために、同席数のディーゼルエンジンのバスと比較して初期投資が数倍と高価となり、なかなかその導入が進んでいない。また、EVトラックにおいては、大量の二次電池のスペースがトラックの搭載積載量を減少させてしまう等、使い勝手が悪い等の理由により普及が遅れている。   However, the price of an EV bus, which is a type of current EV vehicle, depends on the modification of a bus equipped with a diesel engine, so it is necessary to mount a large amount of expensive secondary batteries, so The initial investment is several times more expensive than the bus, and its introduction has not progressed easily. Further, in EV trucks, their widespread use has been delayed due to reasons such as inconvenience in that a large amount of secondary battery space reduces the loading capacity of the truck.

また、現在の二次電池技術では走行距離が十分でなく、充電時間が長いなどの使い勝手が悪い。充電時間の問題を改良した超急速充電技術の採用も実証はされているが、充電設備を路線上に設置するのが困難なためバス事業者やトラック事業者がメンテナンス可能な場所などに置くしかなく、充電するためにそこに立ち寄るまでの運行が無駄になるなどの問題がある。また、バスやトラック事業者の経費の中で、運転手の賃金が大きな比率を占めるため、充電時間や充電に向かうための時間は無駄な時間であり経費増加となる。一方で充電容量が大きく充電時間が短い次世代の二次電池の開発が進めてられるが、現時点で決定打と呼べるものはなく技術開発の加速に期待するところである。   In addition, the current secondary battery technology is not easy to use, because the driving distance is insufficient and the charging time is long. Although the adoption of ultra-quick charging technology that has improved the problem of charging time has been demonstrated, it is difficult to install charging equipment on the route, so it must be placed in a place where bus operators and truck operators can perform maintenance. However, there is a problem that the operation until stopping there for charging is wasted. In addition, the driver's wage accounts for a large proportion of the cost of bus and truck operators, so that the charging time and the time for heading to the charging are wasted time and increase in cost. On the other hand, next-generation rechargeable batteries with large charging capacity and short charging time are being developed, but there is nothing that can be called a decisive hit at this point, and we hope to accelerate technological development.

先行技術文献として、”電気バスおよび充電システム(特開2016−181965)”等が提案されている。しかし本提案では2次電池への充電タイミングを、搭乗員の昇降の時間を利用して行うとしているが一般的に昇降時間は短いので十分な充電を行えない恐れがある。 As prior art documents, "electric bus and charging system (JP-A-2016-181965)" and the like have been proposed. However, in this proposal, the charging timing of the secondary battery is performed by using the time for the passenger to move up and down. However, since the time for raising and lowering is generally short, sufficient charging may not be possible.

EVは走行距離を確保するため大容量の電池が必要で、充電時間が長くなるという課題がある事はすでに述べたが、この解決策としてシリーズハイブリッド方式が乗用車に適用されている。一般的にはこの技術は既存のエンジンを発電機として使用し、小容量の二次電池を搭載し、ほとんど常にエンジンを駆動して二次電池に充電し、その二次電池の電力でモーターを駆動させて車両を動かすものである。しかし、バスやトラック等の商用車に適用しようとすると、急な上り坂等で要する過大な瞬時電力を供給する必要があるため、大型発電機と大量の二次電池が必要となる。その結果スペースが取られ、バスでは座席数の削減、トラックでは貨物積載量が制限されるため、商用車のシリーズハイブリッド化は極めて困難である。 It has already been mentioned that EV requires a large capacity battery in order to secure the mileage, and the charging time becomes long, but as a solution to this, the series hybrid system has been applied to passenger cars. In general, this technology uses an existing engine as a generator, mounts a small capacity secondary battery, almost always drives the engine to charge the secondary battery, and uses the power of the secondary battery to drive the motor. It is driven to move the vehicle. However, when it is applied to a commercial vehicle such as a bus or a truck, it is necessary to supply an excessive amount of instantaneous electric power required for a steep uphill or the like, and thus a large generator and a large amount of secondary batteries are required. As a result, space is taken up, the number of seats is reduced in buses, and the cargo loading capacity is limited in trucks, so it is extremely difficult to make a commercial vehicle series hybrid.

それに対して、本技術のレンジエクステンダーEV(RE_EV)車両は地理情報システム(GIS)とGNSS(Global Navigation Satellite System/全地球測位衛星システム)を活用する事で走行ルート上の位置情報や高度差等の路面情報を収集している。さらにこれまでの走行時に蓄積した走行データを用いる事で、走行前に発電計画(走行計画)の策定を行う。このように走行前にその日の走行計画に立てる事で、必要な発電量を事前に計算出来るので、適切な発電及び充電が行える事から発電機と二次電池の小型化が可能となる。そして、走行開始後は、走行途中で逐次得られる走行データに基づいて走行計画を修正しながら走行する事で計画に沿った走行を行える。また、走行途中での外部充電を行う事が出来ればさらに燃費を向上させる事が可能である。 On the other hand, the range extender EV (RE_EV) vehicle of this technology utilizes geographical information system (GIS) and GNSS (Global Navigation Satellite System) to obtain position information and altitude difference on the driving route. Is collecting road surface information. Furthermore, by using the driving data accumulated during the driving so far, a power generation plan (driving plan) is formulated before driving. In this way, by planning a travel plan for the day before traveling, the required amount of power generation can be calculated in advance, so that appropriate power generation and charging can be performed, and therefore the generator and the secondary battery can be downsized. After the start of the traveling, the traveling can be performed according to the plan by traveling while correcting the traveling plan based on the traveling data that is sequentially obtained during traveling. In addition, it is possible to further improve fuel efficiency if external charging can be performed during traveling.

このように本レンジエクステンダー車両は、二次電池の充電量が少なくなった場合にのみエンジンを駆動させて二次電池に充電する。通常はエンジンを駆動せずに二次電池のみでモーター駆動を行うので、EV車両の様に走行中での電欠の心配がなく、EV車両の課題であった走行距離の制限を撤廃する事が可能となり、非常に使い勝手の良い車両となり得る。さらに本レンジエクステンダーEV車両は走行時間の多くの割合は二次電池によるモーターで走るので、通常のエンジン駆動車両に比較して二酸化炭素の排出が大幅に少ないクリーンな交通機関であり、さらに内燃機関からのエンジン音は限定的であり、その結果、かなりの走行時間において静かで乗り心地も優れている。そして燃料代を含む維持費はディーゼルエンジンの車両に比べて安いことから導入する利点は大きいと考えられて来た。 As described above, in the range extender vehicle, the engine is driven to charge the secondary battery only when the amount of charge in the secondary battery becomes small. Normally, the motor is driven only by the secondary battery without driving the engine, so there is no concern about running out of electricity during running like EV vehicles, and the limitation of mileage, which was a problem for EV vehicles, should be eliminated. This makes it possible for the vehicle to be extremely convenient. In addition, since this Range Extender EV vehicle runs on a motor with a secondary battery for most of its running time, it is a clean transportation system that emits significantly less carbon dioxide than ordinary engine-powered vehicles. The engine sound from the car is limited, resulting in a quiet and comfortable ride for a considerable amount of travel time. And maintenance costs including fuel costs are cheaper than diesel engine vehicles, so it has been considered to be a great advantage.

提案者は以前にこのようなレンジエクステンダー技術を公共交通システムの主要車両の1つであるバスに応用した特許提案を行っている(特願2017−204209)。今回の提案は、バスのような予定された周回ルートを走行しないトラック等においても、走行ルート上の位置情報や高度差等の路面情報を用いる事で走行前に発電計画を策定出来るので、本レンジエクステンダー技術を商用車にも適用可能とするものである。   The proposer has previously made a patent proposal in which such a range extender technology is applied to a bus, which is one of the main vehicles of a public transportation system (Japanese Patent Application No. 2017-204209). The proposal is that even for trucks that do not travel on a planned circular route, such as buses, it is possible to formulate a power generation plan before traveling by using position information on the traveling route and road surface information such as altitude difference. The range extender technology can be applied to commercial vehicles.

本提案と同様な先行技術として、地図情報やGPS情報、及び電池の残容量を検知して車両に搭載した発電機の駆動を制御するとした“電気自動車ナビゲーションシステム(特開平8-240435)がある。この提案はそれまでのハイブリッド自動車は電池容量が少なくなった時点で車両に搭載した発電機を駆動させることで無公害地域でも排気ガスを出してしまう課題に対して、無公害地域に近接してかつ電池残量が少ない場合には発電機を駆動して充電をしておき、無公害地域では発電機を停止して排気ガスを出さないようにできるナビゲーションシステムを活用した技術である。これにより無公害地域では出来るだけ排気ガスを防止できるということを主張している。しかし、本提案の予測発電充電制御技術を用いたエクステンダーEV車両は、発電量を抑制するためのモデリングや制御方法を駆使する事で発電機の小型化と小容量の二次電池の使用が可能となり積載量に影響を与えないので、商用車においても所謂シリーズハイブリッド技術を活用可能にするものである。   As a prior art similar to this proposal, there is an "electric vehicle navigation system (Japanese Patent Laid-Open No. 8-240435)" that controls driving of a generator mounted on a vehicle by detecting map information, GPS information, and remaining battery capacity. This proposal suggests that hybrid vehicles, up to that point, are close to pollution-free areas in response to the problem that exhaust gas is emitted even in pollution-free areas by driving the generator installed in the vehicles when the battery capacity becomes low. In addition, when the battery level is low, the generator is driven to charge the battery, and in a pollution-free area, the generator is stopped to prevent emission of exhaust gas. Therefore, it is claimed that the exhaust gas can be prevented as much as possible in the pollution-free area. By making full use of modeling and control methods to suppress power consumption, it is possible to downsize the generator and use a small-capacity secondary battery, which does not affect the loading capacity, so so-called series hybrid technology is also used in commercial vehicles. It makes it possible.

なお、エンジンは以下の記述では小型のディーゼルエンジンを想定しているが、それに限ったものではなく、ガソリンエンジンでも燃料発電機(所謂燃料電池)等でも構わない。 The engine is assumed to be a small diesel engine in the following description, but the engine is not limited to this, and may be a gasoline engine, a fuel generator (so-called fuel cell), or the like.

特開2016−181965JP, 2016-181965, A 特開平8−240435JP-A-8-240435

本発明によって解決しようとする課題は、これまでのシリーズハイブリッド車両では長い急な坂道を走行する場合に備えて、搭載する大量の二次電池と大型発電機のためにバスでは座席数が、トラックでは貨物搭載容量を犠牲にしてしまう課題があった。さらに、大型発電機用のエンジンは燃料消費量とそれに比例するCO2削減に課題があった。 The problem to be solved by the present invention is that the series hybrid vehicles so far have a large number of secondary batteries and a large-sized generator to be installed in the bus in order to prepare for traveling on a steep slope, and the number of seats on the bus may be large. Then, there was a problem that the cargo loading capacity was sacrificed. Furthermore, the engine for large generators had a problem in fuel consumption and CO2 reduction proportional to it.

本提案は、走行前にGISやGNSSなどのICTを活用する事により、走行ルート上の様々な情報を得る事で走行前に発電計画を策定する事から、最適なタイミングで二次電池への充電開始及び停止が行える結果、より小型のエンジン発電機と小容量の二次電池の搭載を可能としたレンジエクステンダー車両に活用した予測発電充電制御技術について述べている。
先の先行技術である特開平8−240435では走行中にある無公害地域での排気ガス削減のために、その区間だけエンジンを止める事に主眼をおいているので、本提案の様に走行ルート全体の走行条件(例えば坂道、渋滞情報、静音区間等)を考慮しているわけでない。
In this proposal, by utilizing ICT such as GIS and GNSS before traveling, a power generation plan is prepared before traveling by obtaining various information on the traveling route, so that the rechargeable battery can be selected at an optimal timing. This article describes the predictive power generation and charging control technology used in range extender vehicles that can be equipped with smaller engine generators and smaller capacity secondary batteries as a result of starting and stopping charging.
In the prior art, Japanese Patent Laid-Open No. 8-240435, the focus is on stopping the engine only in that section in order to reduce exhaust gas in the pollution-free area while driving, so the driving route is as proposed. It does not take into consideration the overall driving conditions (for example, slopes, traffic jam information, silent sections, etc.).

また、先の提案(特開2016−181965)においては、定期運行バスの場合に走行ルートが決まっている事を利用することによって、走行状態、走行環境に合わせて発電機の駆動と停止制御を最適となるように制御を行っていた。しかし、配送トラックの様にその日毎に目的地が変わる場合であっても、走行前に目的地までの走行ルート情報及び走行上の様々な条件を抽出する事により、定期運行バスと同様な計画的な走行が可能となる。その結果、燃料消費の削減(CO2排出の削減)と共に、地域の住環境に配慮した走行が可能となり、バス事業者及びトラック配送業者ともにレンジエクステンダー車両を導入し易くなる。   Further, in the previous proposal (Japanese Patent Laid-Open No. 2016-181965), by utilizing the fact that the traveling route is determined in the case of the regular service bus, the drive and stop control of the generator are controlled according to the traveling state and the traveling environment. It was controlled so that it would be optimal. However, even if the destination changes every day like a delivery truck, by extracting the driving route information to the destination and various driving conditions before driving, the same plan as the regular service bus Driving is possible. As a result, it is possible to reduce fuel consumption (reduce CO2 emissions) and to drive in consideration of the local living environment, making it easy for bus operators and truck distributors to introduce range extender vehicles.

近年、GIS等の地図情報は水平位置のデータに加えて標高データも利用可能である。これらはインターネット経由で容易に入手可能であり、国内では国土地理院が5m毎の標高データを提供しており、民間でこのデータを使いやすく加工して使用している。海外でもこのようなサービスが今後拡大すると期待される。本提案ではこれらのデータを使用した次に示すエネルギーモデルを作り、発電機を制御することによりシステムを小型化した結果、商用車へのレンジエクステンダー技術の適用を実現している。 In recent years, map information such as GIS can use elevation data in addition to horizontal position data. These are easily available via the Internet, and the Geographical Survey Institute of Japan provides elevation data every 5 m, and the private sector uses this data after processing it for ease of use. It is expected that such services will expand overseas in the future. In this proposal, the energy model shown below is created using these data, and the system is downsized by controlling the generator. As a result, the range extender technology is applied to commercial vehicles.

走行ルートを微小な区間nの集合とみなし、これらの微小な区間を単位区間とする。単位区間の移動に必要な電力を、水平方向の移動に必要な電力Ph(n)と垂直方向の移動に必要な電力Pv(n)に分けると、走行に必要な総電力Pnは以下となる。
目的地
Pn = Σ(Ph(n)+Pv(n))=ΣPh(n) +Σm(i)*g*h(i)−Σk(j)*m(j)*g*h(j)
出発地 上り坂区間i 下り坂区間j
ここで、m(i)とm(j)はその区間の車両重量、h(i)とh(j)はその区間での垂直方向の距離である。また、水平方向移動の単位区間の平均電費をC(n)、距離をL(n)とすれば水平方向の移動に必要な単位区間毎の電力は以下となる。

Ph(n)=C(n)*L(n)

また、垂直方向の移動に必要な電力は以下で求める事が出来る。

Pv(n)=K(n)*m(n)*g*h(n)

ここで、Kは区間が上り坂ならK(n)=+1、下り坂ではKは回生係数を表しk(n)は負となる。また、gは重力加速度 9.8m2/s2である。以上により、走行に必要な総電力Pnを求めることができる。
The travel route is regarded as a set of minute sections n, and these minute sections are set as unit sections. Dividing the electric power required for unit travel into the electric power Ph (n) required for horizontal movement and the electric power Pv (n) required for vertical movement, the total electric power Pn required for traveling is as follows. .
Destination
Pn = Σ (Ph (n) + Pv (n)) = ΣPh (n) + Σm (i) * g * h (i) −Σk (j) * m (j) * g * h (j)
Departure ground slope section i Downhill section j
Here, m (i) and m (j) are vehicle weights in the section, and h (i) and h (j) are vertical distances in the section. Further, if the average electricity cost in the unit section of horizontal movement is C (n) and the distance is L (n), the electric power for each unit section required for horizontal movement is as follows.

Ph (n) = C (n) * L (n)

Also, the electric power required to move in the vertical direction can be obtained by the following.

Pv (n) = K (n) * m (n) * g * h (n)

Here, K is K (n) = + 1 if the section is an uphill, and K is a regeneration coefficient on a downhill, and k (n) is negative. Also, g is the acceleration of gravity of 9.8 m 2 / s 2 . From the above, the total electric power Pn required for traveling can be obtained.

一方、走行中において車両の走行モーターや補機類の消費を賄う為の電力Psは、走行前の外部充電での電力量Piと走行中の発電区間の発電電力量の総和ΣPg(n)となる。

Ps=Pi+ΣPg(n)

ここで、単位区間nの発電電力Pg(n)は、その区間の平均速度をSPD(n)、発電機出力をG(kW/h)、区間距離をL(n)とすれば以下で表される。

Pg(n)=G*L(n)/SPD(n)

これらにより、走行中に使用可能な電力Psを求めることができる。以上から走行可能な条件はPs>Pnであり、この条件が成り立つように外部充電での電力量Piを考慮した発電計画を作成すればよいことになる。
On the other hand, the electric power Ps to cover the consumption of the traveling motor and auxiliary equipment of the vehicle while traveling is the sum of the electric energy Pi from the external charging before traveling and the total electric energy ΣPg (n) of the power generation section during traveling. Become.

Ps = Pi + ΣPg (n)

Here, the generated power Pg (n) in the unit section n is expressed as follows if the average speed of the section is SPD (n), the generator output is G (kW / h), and the section distance is L (n). To be done.

Pg (n) = G * L (n) / SPD (n)

From these, the electric power Ps that can be used during traveling can be obtained. From the above, the travelable condition is Ps> Pn, and it is only necessary to create a power generation plan that considers the amount of power Pi in external charging so that this condition holds.

発電電力の総和ΣPg(n)をどのようなタイミングで発電するかの発電計画の作成は次の様に行う。GISを活用して、単位区間の標高差データを取得し、単位区間毎の距離L(n) 、水平移動の区間平均電費C(n)、車速SPD(n)、車重m(n)、標高差h(n)、回生係数k(n)を使って次のように作成する。走行中に必要な総発電電力量ΣPg(n)はこれまでに示した式から以下のように求められる。

ΣPg(n)=Ps−Pi

この総発電電力量ΣPg(n)は、静音区間、回生電力回収区間を考慮して、どの区間でどの程度発電するべきかの発電量(発電力x発電区間)を走行ルート中に適切に配分する。
A power generation plan is created as follows at what timing the total sum ΣPg (n) of generated power is generated. Utilizing GIS, the altitude difference data of the unit section is acquired, and the distance L (n) for each unit section, section average electricity cost C (n) for horizontal movement, vehicle speed SPD (n), vehicle weight m (n), The altitude difference h (n) and the regeneration coefficient k (n) are used to make the following. The total amount of generated electric power ΣPg (n) required during traveling is calculated from the equations shown so far as follows.

ΣPg (n) = Ps−Pi

This total power generation amount ΣPg (n) is appropriately distributed in the travel route by considering the silent section and the regenerative power recovery section, and the amount of power generation in which section (power generation x power generation section). To do.

適切な配分の仕方として、二次電池のSOC(State of Charge)が下限値に達したら発電を開始し、上限値に達したら発電機を停止する。基本的には下限値は二次電池の充電に必要な最低値(例として10%)であり、上限値は満充電状態の最高値(例として90%)である。二次電池のSOCの値に対応する電力量をScとすると以下の式で表される。
現在値 現在値 現在値 現在値
Sc = Pi+ΣPg(n)−(ΣPh(n) +Σm(i)*g*h(i)−Σk(j)*m(j)*g*h(j) )
出発地 出発地 上り坂区間i 下り坂区間j
基本的な走行計画ではScが二次電池の最小値と最高値を往復するように設定されるが、走行先に急な長い坂道が存在する場合は大きな電力量が必要となるので、下限値になる前に発電機を駆動し充電を開始する。また、走行先に急な長い下り坂があり、大きな回生電力が見込める場合は、充電器の充電可能な上限に達する前に発電機を停止して回生電力を無駄なく回収出来るように制御を行う。
As an appropriate distribution method, power generation is started when the SOC (State of Charge) of the secondary battery reaches the lower limit value, and stopped when the upper limit value is reached. Basically, the lower limit value is the minimum value required for charging the secondary battery (10% as an example), and the upper limit value is the maximum value in a fully charged state (90% as an example). When the electric energy corresponding to the SOC value of the secondary battery is Sc, it is expressed by the following formula.
Current value Current value Current value Current value Current value
Sc = Pi + ΣPg (n)-(ΣPh (n) + Σm (i) * g * h (i) -Σk (j) * m (j) * g * h (j))
Departure point Departure Ground uphill section i Downhill section j
In the basic driving plan, Sc is set to reciprocate between the minimum value and the maximum value of the secondary battery, but if a steep long slope exists at the destination, a large amount of electric power is required, so the lower limit value is set. Drive the generator before charging. Also, if there is a steep long downhill ahead and a large amount of regenerative power can be expected, control is performed so that the regenerative power can be collected without waste by stopping the generator before reaching the chargeable upper limit of the charger. .

図1に走行計画で作成した二次電池の充電状態を示すSOCの走行距離に対する変化の一例を示す。縦軸はSOC、横軸は走行距離である。走行前に二次電池を満充電にしてから走行開始する場合を示している。走り始めのA区間は発電機を停止した状態のEV走行を行う。このまま下限値まで走行する事も考えられるが、走行前方に発電機を駆動出来ない領域(例えば病院エリアなどの静音区間)がある事が分かっているので、Bの区間で発電機を駆動して二次電池の充電を行う。Cは静音区域であるため発電機は停止している。Dは静音区間を超えたので充電を行うがFの区間に長い急な下り坂があり、大きな回生電力の回収が見込まれるため上限値に行く前に発電機を停止する。EはEV走行区間であり、Fは長い下り坂で回生電力による二次電池への充電状態を示している。回生電力により上限値まで充電出来たのでGではEV走行を行っているが前方に急な登り坂(I領域)があるのでHの区間は発電を行う。Iは急な登り坂であるためSOCの減少率が大きくなっている。目的地ではSOC(State of Charge)を下限値になるように計画されているのでJ区間で再度発電を行い、その後EV走行を行いながら終点に到達する。 Fig. 1 shows an example of changes in SOC indicating the state of charge of the secondary battery created by the travel plan with respect to the travel distance. The vertical axis represents SOC and the horizontal axis represents mileage. It shows a case where the secondary battery is fully charged before traveling and then traveling is started. In section A when the vehicle starts running, EV traveling is performed with the generator stopped. Although it is possible to drive to the lower limit as it is, it is known that there is a region in front of the drive where the generator cannot be driven (for example, a quiet area such as a hospital area), so drive the generator in section B. Charge the secondary battery. Since C is a quiet area, the generator has stopped. D is charged because it exceeds the silent section, but there is a long steep downhill in section F, and a large amount of regenerative power is expected to be collected, so the generator is stopped before reaching the upper limit. E is the EV traveling section, and F is the long downhill and shows the charging state of the secondary battery by the regenerative power. Since it was possible to charge to the upper limit value with regenerative power, EV is running in G, but there is a steep uphill (I area) ahead, so power is generated in section H. Since I is a steep climb, the rate of decrease in SOC is large. At the destination, the SOC (State of Charge) is planned to be at the lower limit, so power will be generated again in Section J, and then the EV will be reached while reaching the end point.

以上の様に発電機の起動及び停止の時期と区間は走行前に走行計画として作成し、これに沿って車両は走行を開始する。そして、実際の走行中に走行計画とのずれ(エラー)が生じるので、GISとGNSSによる情報等を用いて逐次修正を行いながら走行をする。実際の商用運行させる場合は、配送計画に基づいて出発地点と目的地点の位置情報、並びに、ナビを使ったルート設定と、到着予定時刻、そしてルート走行時の各区間での速度が加味して走行計画が作成する。 As described above, the start and stop timings and sections of the generator are created as a travel plan before traveling, and the vehicle starts traveling along this. Then, because a deviation from the travel plan (error) occurs during the actual travel, travel is performed while sequentially correcting it using information from GIS and GNSS. In the case of actual commercial operation, the location information of the departure point and the destination point based on the delivery plan, the route setting using the navigation, the estimated arrival time, and the speed of each section during route operation are taken into consideration. A travel plan is created.

図2は走行計画に従って、車両の走行予定のルートを単位区間毎にGIS及びGNSSから位置データ及び標高データを入手し、同時に単位区間の距離L(n)と速度SPD(n)から通過する時刻Tps(n)を算出することで、単位距離毎に必要となる水平方向と垂直方向の移動エネルギーを求めるイメージを示している。左図は車両の水平方向の移動エネルギーの算出イメージである。カーブでは半径rに比例した回転エネルギーが発生する。また右図は垂直方向の移動エネルギーを求めるイメージである。
当初の計画には予期出来ない不測の渋滞等による影響で大きなズレがないかを検証する為にこの移動エネルギーの算出は走行中にも実施する。
Fig. 2 shows the time when the vehicle travels along the planned route according to the travel plan, obtaining position data and elevation data from GIS and GNSS for each unit section, and at the same time, passing the unit section distance L (n) and speed SPD (n). It shows an image of calculating the horizontal and vertical movement energies required for each unit distance by calculating Tps (n). The left figure is an image of the calculation of the horizontal movement energy of the vehicle. Rotational energy proportional to the radius r is generated in the curve. In addition, the right figure is an image of calculating the vertical movement energy.
This movement energy is calculated even while driving in order to verify whether there is a large deviation in the original plan due to the unexpected unexpected traffic congestion.

図3に本システムの制御方法を遷移図として示す。出発地点からスタートし、左側の発電機停止のサークルに入る。ここで発電起動条件の中で成立する項目があれば右側に移動して発電機を駆動させる。その後、発電停止条件に合致すれば発電機を停止して左側の領域に移動する。このように発電機の停止状態と駆動状態を繰り返し、目的地の終点に達したら発電器停止のサークルから抜ける。   FIG. 3 shows a control method of this system as a transition diagram. Start from the starting point and enter the generator stop circle on the left. If there is an item that is satisfied in the power generation start condition, move to the right and drive the generator. After that, if the power generation stop condition is met, the generator is stopped and moved to the left area. In this way, the generator is stopped and driven repeatedly, and when it reaches the end point of the destination, it exits from the generator stop circle.

図4には本システムの制御の簡潔化したフローチャートを示す。走行前にGIS及びGNSSから現在位置から目的地までの走行ルート上の情報を取得し、これまでの走行実績で得られた車両の走行データ(車速、電費等)を考慮して走行計画を作成する。その後はフローチャートに沿って制御を開始する。まず発電機が起動状態か停止状態を判断する(通常は走行開始時では停止状態)。    FIG. 4 shows a simplified flowchart of the control of this system. Before travelling, information on the travel route from the current position to the destination is acquired from GIS and GNSS, and a travel plan is created in consideration of the travel data (vehicle speed, electricity cost, etc.) of the vehicle obtained from the past travel records. To do. After that, control is started according to the flowchart. First, it is determined whether the generator is in a start state or a stop state (usually a stop state at the start of traveling).

もし、停止状態であれば左側のフローに従う。充電器のSOCの電力量を示す数値(Sc)と、SOCの電力量の下限値(ScL)+その区間での坂道を登るに必要なエネルギー(α)+静音区域を通過するに必要なエネルギー(q)を比較して、もしScの方が多ければ発電機は停止したまま走行し、終点に達したか否かを判断する。しかし終点に達していなければフローの最初に戻り、その時までの走行時に得られた車速、電費、SOC情報、電池残量等を用いて走行計画からのずれを修正して走行計画を更新する。再びScと必要エネルギーを比較し、もし電池残量が不足していると判断すれば、フローの右側に移行して発電機による充電を開始する。 If stopped, follow the flow on the left. Numerical value (Sc) that indicates the SOC power amount of the charger and the lower limit value (ScL) of the SOC power amount + energy required to climb a hill in that section (α) + energy required to pass through a silent area When (c) is compared, if Sc is greater, the generator runs with the generator stopped, and it is determined whether or not the end point has been reached. However, if it has not reached the end point, the process returns to the beginning of the flow, and the deviation from the travel plan is corrected using the vehicle speed, electricity cost, SOC information, battery level, etc. obtained during the travel up to that time to update the travel plan. Again, Sc is compared with the required energy, and if it is determined that the remaining battery level is insufficient, the flow moves to the right side of the flow and charging by the generator is started.

一方、フローの最初のところの判断において、発電機が起動している場合は、右側のフローに移行する。ここで電池の残り電力量(Sc)が、SOCの電力量の上限値(ScH)−その区間の回生エネルギー、よりも大きい場合は発電機を停止して左側のフローに移る。しかし、Scが少ない場合はそのまま発電機を駆動して走行するが、静音区間に到達した時は発電機を停止して左側のフローに移る。そして静音区間でない場合はフローに従い、終点(目的地)でScが設定した電池残量よりも大きい場合はそのままフローに従い、終点地点でScが設定値に収束する地点まで発電機を駆動させ、その地点以後は発電機を停止して終点に向かう。 On the other hand, in the judgment at the beginning of the flow, if the generator is activated, the flow moves to the right. Here, if the remaining power amount (Sc) of the battery is larger than the upper limit value (ScH) of the SOC power amount-the regenerative energy of the section, the generator is stopped and the flow proceeds to the left side. However, when Sc is low, the generator is driven as it is, but when the silent section is reached, the generator is stopped and the flow moves to the left side. If it is not in the silent section, follow the flow. If Sc is greater than the battery level set at the end point (destination), follow the flow as it is, and drive the generator to the point where Sc converges to the set value at the end point. After the point, stop the generator and head towards the end point.

しかし、もし発電機を駆動させても終点で設定値に達しないと判明した場合は、発電機の出力を増加させてフローの上方に戻る。当初の計画発電に沿った走行を行う限りは、Scが目的地の終点で設定値に収束する設定だが、例えば走行中に補器(エアコン等)を予定以上に使用したため電池残量が予定値よりも低下した場合等ではSOCが予想以上に低下する場合が考えられる。  However, if it is found that the set value is not reached at the end point even if the generator is driven, the output of the generator is increased and the flow returns to the upper side. As long as the vehicle travels according to the initially planned power generation, Sc is set to converge to the set value at the end point of the destination, but for example, the auxiliary battery (air conditioner, etc.) was used more than planned during traveling, and the remaining battery level reached When it is lower than expected, SOC may be lower than expected.

図5a、図5bは図4の(2)の状況を示したものである。Scの下限値ScLと設定値ScT1に対しては発電機を走行途中のXL又はXT1で停止すればそれぞれの設定値に近づける事が出来る。しかし、設定値がScT2の場合は発電機を駆動させたままでもその値に近づける事が出来ないため(2)のように発電機の出力を増加させている。どの地点で発電器を停止するかは図5bに示す。また、図中の(3)は走行前の初期充電で目的地まで走行可能な状況を示している。 5a and 5b show the situation of (2) in FIG. With respect to the lower limit value ScL of Sc and the set value ScT1, it is possible to approach the respective set values by stopping the generator at XL or XT1 while the vehicle is running. However, when the set value is ScT2, it is not possible to approach that value even with the generator running, so the output of the generator is increased as in (2). Figure 5b shows where to stop the generator. Further, (3) in the figure shows a situation where the vehicle can travel to the destination by initial charging before traveling.

図6はITを活用した予測発電充電制御の入力情報、処理アルゴリズム、出力情報を表している。初期情報として、車両クラスの情報は本予測発電充電制御システム装置がその車両に最初に搭載した時にのみに、その車両の大きさ、タイプ等の情報を入力する事で行う。その後、その日の走行目的地とルートが決定されていれば走行ルートを入力するが、もし走行ルートが決まっていない場合は本システムが最適なルート並びにその他の候補ルートを提示し、管理者若しくは運転者が選択する事が出来る。あるいは最適ルートを自動的にシステムが決定する事も可能である。 FIG. 6 shows the input information, the processing algorithm, and the output information of the predictive power generation charging control using IT. As the initial information, the vehicle class information is input by inputting the information such as the size and type of the vehicle only when the predicted power generation and charging control system device is first installed in the vehicle. After that, if the travel destination and route for the day have been determined, enter the travel route.If the travel route has not been determined, this system presents the optimum route and other candidate routes, and the administrator or driver Can be selected by the person. Alternatively, the system can automatically determine the optimum route.

走行中は自動的に現在位置、SOC、車速、エアコンなどの使用動作状態が入力される。また車重も燃費に影響を与える。車体自体の重量は一定と考えられるが、トラックでは貨物の積載や荷卸しによって総重量が変化し、バスでは乗客の乗車や降車によって総重量が変動する。このため走行中の総重量の変動を求める必要が生じる。例えばトラックでは駆動モーターの消費電力をモニターし、平地の一定区間で消費する電力と高低差がある一定区間の消費電力の差から、位置エネルギーの変化が得られるので位置エネルギーの式(m x g x h)から重量mが求まる。または貨物の搭載や乗客のいない車両の自重が分かっている場合は、貨物や乗客を乗せた時の燃費の劣化度合いから総重量が割り出せる。さらにバスであれば、乗客の乗車及び降車から人数が分かるので、平均体重を仮定すれば許容出来る誤差内での重量変化が求められる。   While driving, the current position, SOC, vehicle speed, air conditioner and other operating conditions are automatically entered. Vehicle weight also affects fuel efficiency. Although it is considered that the weight of the car body itself is constant, the total weight of trucks changes due to loading and unloading of cargo, and the total weight of buses changes depending on passengers getting on and off. For this reason, it becomes necessary to determine the change in the total weight during traveling. For example, in a truck, the power consumption of the drive motor is monitored, and since the potential energy change can be obtained from the difference between the power consumed in a certain section of the level ground and the power consumption in a certain section where there is a difference in height, the potential energy equation (mxgxh) Weight m can be obtained. Alternatively, if the load of the cargo and the weight of the vehicle without passengers are known, the total weight can be calculated from the degree of deterioration in fuel consumption when carrying the cargo or passengers. Further, in the case of a bus, the number of passengers can be known from the loading and unloading of passengers. Therefore, assuming an average weight, a weight change within an allowable error can be obtained.

次に処理アルゴリズム部ではルートの把握や目的地までに必要な電力量の計算等から発電及び充電の計画策定を行う。さらに、出力情報としては発電機の開始及び停止指示情報、さらに運転者及び車両本部(コントロールセンター等)に対しては各車両の走行情報として、走行位置、速度、SOC、エンジンの動作状況、目的地までの走行状況予測情報、車内温度、総量車重の変化などの情報が提供される。   Next, the processing algorithm section formulates a plan for power generation and charging by grasping the route and calculating the amount of electric power required to reach the destination. Furthermore, the output information includes start / stop instruction information for the generator, and the driving information for each vehicle for the driver and vehicle headquarters (control center, etc.), such as running position, speed, SOC, engine operating status, and purpose. Information such as driving situation prediction information to the ground, vehicle interior temperature, and changes in total vehicle weight are provided.

図7は予測発電充電制御システムを搭載した車両と、各車両の見守りや問題時の対処を指示するなどを行う地上側システムである車両本部(バスであればバスセンター、トラックであればコントロール施設等)の主要概略図である。さらに走行ルートの適切な場所に設置された充電システム(CHAdeMO急速充電器等)を示している。 Figure 7 shows a vehicle equipped with a predictive power generation charging control system, and a vehicle headquarters (a bus center for buses, a control facility for trucks, etc.) that is a ground-side system that monitors each vehicle and gives instructions for coping with problems. ) Is a main schematic view of FIG. It also shows a charging system (CHAdeMO quick charger, etc.) installed at an appropriate location along the driving route.

図中、100はレンジエクステンダー(RE-EV)車両の全体構成を示し、101は電気駆動部のみのブロックであり、主に車両を駆動させるEVモータインバータブロック102とEV駆動用電池103、及びEV制御装置104等から構成される。さらに105は地上システムとの交信を行う通信装置であり、106はGNSS(Global Navigation Satellite System)位置情報装置である。そして、107は予測発電充電制御装置そのものでありGISとGNSSからの位置情報等を得て108の発電ユニットに発電開始及び停止の指示を出力する役目を負う。なお、109は走行ルートに設置された充電システム(CHAdeMO急速充電器等)であり、休憩時間等の有る程度長い時間が取れる場合は外部からの充電も行えるために、より発電機の動作時間を削減出来る事になり、それだけ燃料消費削減とCO2排出を抑制する事が可能となる。  In the figure, reference numeral 100 denotes the entire configuration of a range extender (RE-EV) vehicle, 101 is a block of only an electric drive unit, and mainly an EV motor inverter block 102 for driving the vehicle, an EV drive battery 103, and an EV. The control device 104 and the like are included. Further, 105 is a communication device that communicates with the ground system, and 106 is a GNSS (Global Navigation Satellite System) position information device. Numeral 107 is a predictive power generation and charging control device itself, and has a role of outputting position information and the like from GIS and GNSS and outputting power generation start and stop instructions to the power generation unit 108. In addition, 109 is a charging system (CHAdeMO quick charger, etc.) installed on the driving route, and if the battery can be charged from outside when a long time such as a break can be taken, the operating time of the generator can be increased. As a result, fuel consumption can be reduced and CO2 emissions can be suppressed accordingly.

図8は予測発電充電制御技術のアルゴリズム(200)を示している。本システムは201のGNSS位置情報と202のGISからの地図情報を用いて、車両の走行ルート上の現在位置を取得する。さらに203の車両本体から204の車両走行状態であるSOC、車速、空調に必要な電力、外気温、車重の変化等の情報を取得する。202及び203での情報から205において目的地までの水平移動に必要な電力量を計算する。また、206において坂道等で車両を垂直方向に持ち上げるための位置エネルギーから換算した電力量と坂の下り道で回収される回収電力を計算し、207において二次電池の残量を計算する。これらの205、206、207での3つの情報から208において目的地までに必要な電力量をリアルタイムに抽出する(具体的には計画発電量及び発電開始及び停止のタイミング計算を行う)。その情報を受けて209のRE発電ユニット制御信号発生装置は210のRE発電ユニットに発電及び停止指示を行う。211はこれらのアルゴリズムを実装した車載コンピュータを示している。   FIG. 8 shows an algorithm (200) of the predictive power generation charge control technique. This system uses the GNSS position information 201 and the map information from the GIS 202 to acquire the current position of the vehicle on the travel route. Further, from the vehicle body 203, information such as SOC of the vehicle running state 204, vehicle speed, electric power required for air conditioning, outside air temperature, change in vehicle weight, etc. is acquired. At 205, the amount of electric power required for horizontal movement to the destination is calculated from the information at 202 and 203. Further, at 206, the amount of electric power converted from the potential energy for lifting the vehicle in the vertical direction on a slope or the like and the recovered power recovered on the slope down are calculated, and at 207, the remaining amount of the secondary battery is calculated. At 208, the amount of electric power required to reach the destination is extracted in real time from these three pieces of information 205, 206, and 207 (specifically, the planned amount of power generation and the timing of power generation start and stop are calculated). Upon receiving the information, the RE power generation unit control signal generator 209 instructs the RE power generation unit 210 to generate power and stop. Reference numeral 211 denotes an in-vehicle computer that implements these algorithms.

次に図9a、図9b、図9cを用いて予測発電充電制御技術の動作の概要を示す。各図の左側の番号はそれぞれ右の図の番号である。10は走行路(routeA)の断面図を示し、縦軸は標高を横軸は距離を示している。11は平坦路、12は登り坂、13は短い平坦路、14は下り坂、15は終点までの平坦路である。ここで車両はどの走行路でも一定の速度を保つと仮定する。20は縦軸に消費電力(kW)、走行路のどこでも車両の速度は一定と仮定すると横軸は時間に変換出来る。なお12と14は坂道のため平坦路に比べて距離が長い事を配慮した図となっている。ここで平坦路11、13、15の消費電力はa、登りの坂道12での消費電力はb、下りの坂道14での回生電力をcとすると、波線以下の四角の面積はそれぞれの走行路での消費電力量(kWh)となる。それと同じ面積の各々の三角形で表される21, 22, 23, 25の面積も消費電力量となる。なお、下り坂は電力を回生するので発電電力量は24となる。   Next, the outline of the operation of the predictive power generation charging control technique will be described with reference to FIGS. 9a, 9b, and 9c. The numbers on the left side of each figure are the numbers on the right side. Reference numeral 10 shows a cross-sectional view of the travel route (route A), in which the vertical axis represents elevation and the horizontal axis represents distance. 11 is a flat road, 12 is an uphill road, 13 is a short flat road, 14 is a downhill road, and 15 is a flat road to the end point. Here, it is assumed that the vehicle maintains a constant speed on any road. 20, the vertical axis represents power consumption (kW), and the horizontal axis can be converted into time assuming that the vehicle speed is constant anywhere on the road. Note that 12 and 14 are sloped roads, so the distance is longer than on flat roads. Here, assuming that the power consumption of the flat roads 11, 13, 15 is a, the power consumption of the uphill road 12 is b, and the regenerative power of the downhill road 14 is c, the square areas below the wavy line are the respective roadways. Power consumption (kWh). The area of 21, 22, 23, 25 represented by each triangle of the same area is also the power consumption. Since the downhill regenerates power, the amount of power generated is 24.

30は電池の電力残量(SOC)の変化の推移を示している。最初にSOCはAであったが、走行によって電力を消費し徐々にSOCは減少する。AからBまでの走行で描ける三角形(21)は上図20の同じ走行路の消費電力量21と相似となるので簡単化のため同じ面積で表す。同様に上図20の他の走行路の三角形で示す各消費電力量をSOCのグラフに転写すると22は(22)に、23は(23)に、25は(25)となり、回生電力量24は(24)となるので結果的にSOCの変化のグラフが描ける。30の例ではSOCが終点ではFとなりSOCの下限の値となり初期充電量だけで走行出来るので最も効率のよい走行をした例となる。   Reference numeral 30 shows the transition of the remaining amount of power (SOC) of the battery. Initially the SOC was A, but as the vehicle traveled, it consumed power and gradually decreased. The triangle (21) that can be drawn from A to B is similar to the power consumption 21 of the same road in Fig. 20 above, so it is represented by the same area for simplification. Similarly, when each power consumption shown by the triangles of the other running paths in the above FIG. 20 is transferred to the SOC graph, 22 becomes (22), 23 becomes (23), and 25 becomes (25). Becomes (24), so that a graph of SOC change can be drawn as a result. In the example of 30, the SOC becomes F at the end point and becomes the lower limit value of SOC, and the vehicle can travel with only the initial charge amount, which is an example of the most efficient driving.

図9bの40は走行前の充電量が上図30の場合より少ないA’の例である。SOCの変化は30の場合と同様であるが、走行中のB’からC’の間でSOCがSOC下限を下回る事になるのでこのままでは電欠を起こし走行出来ない事が予想される。そこでF‘をF’’となるようにするにはB’をB’’となるようにすれば良く(B’’-B’= F’’-F’)、不足する電力量はSOC下限以下の各三角形の面積の総和なので、不足電力量P4はP1、P2とP3を加えた値からPgを引いた式のP1+P2+P3-Pgとなる。なお、Pgは回生電力量である。その不足電力量と等しい電力量P4を前もって発電する事で電欠を起こさずに走行が可能となる。   Reference numeral 40 in FIG. 9b is an example of A'where the charge amount before traveling is smaller than that in the case of FIG. 30 above. The change in SOC is similar to the case of 30, but since SOC falls below the SOC lower limit between B'and C'during running, it is expected that there will be an electrical shortage and driving will not be possible. Therefore, to make F'become F '', B'can be made B '' (B ''-B '= F' '-F'), and the insufficient amount of power is the SOC lower limit. Since it is the sum of the areas of the following triangles, the amount of deficit P4 is P1 + P2 + P3-Pg in the expression obtained by subtracting Pg from the value obtained by adding P1, P2 and P3. Note that Pg is the regenerative electric energy. By generating the electric power P4 equal to the insufficient electric power in advance, it becomes possible to drive without causing a power failure.

50は発電機の発電出力がdの場合を示していてP5=P4となるようにT1から発電を開始している。60は発電機の出力eが50の例よりも強力なため発電開始はT1よりも遅いT2となっている。   50 shows the case where the power generation output of the generator is d, and power generation is started from T1 so that P5 = P4. The generator output of 60 is stronger than that of the case where the output e of the generator is 50.

70は走行路11の途中に病院等がありその区間は静音区間として発電機を停止する必要があるために、P7とP8に分けて発電を行っている場合を示している(P7+P8=P6)。80は発電機の出力が強く、P1のSOCの減少比率R1よりもP9の増加比率R2が大きい場合は、発電開始はSOCがSOC下限を下回らないT5よりも前に開始すれば良いので発電開始の自由度が広がる。本例ではP9の場合に発電開始がSOC下限を下回る直前のT5となっているが、P10又はP11の様にT5以前であっても発電を開始する事が出来る事を表している。   70 indicates a case where there is a hospital or the like in the middle of the runway 11 and the section is a silent section and the generator needs to be stopped, so power is generated separately in P7 and P8 (P7 + P8 = P6). If the generator output of 80 is strong and the increase ratio R2 of P9 is larger than the decrease ratio R1 of SOC of P1, the power generation can be started before T5 when SOC does not fall below the SOC lower limit. The degree of freedom of In this example, in the case of P9, the power generation start is T5 immediately before it falls below the SOC lower limit, but it shows that power generation can be started even before T5 as in P10 or P11.

また図9cの90は10の走行途中で走行ルートの変更(routeB)が生じた場合の例を示している。もしXの地点で走行ルートが変更となり走行路が11’,12’,13’に変わってしまった場合は直ちに新走行ルートでのSOCの変化を再予測する必要がある。平坦路は10から11‘と変更になったが、100に示すように消費電力aは変わらないので21の消費電力量は31の三角形の面積に変更となる。12’は急な登り坂のため消費電力は大きく増加してcとなる。そのため消費電力量は32の三角の面積となる。登り坂を過ぎると終点までは平坦な走行路なので消費電力量は33となる。   Further, 90 in FIG. 9C shows an example in the case where the traveling route is changed (routeB) during traveling of 10. If the driving route changes at point X and the driving route changes to 11 ', 12', 13 ', it is necessary to immediately re-estimate the change in SOC on the new driving route. The flat road is changed from 10 to 11 ', but as shown by 100, the power consumption a does not change, so the power consumption of 21 is changed to the area of a triangle of 31. 12 'is a steep climb, so the power consumption increases significantly to c. Therefore, the power consumption is 32 triangular areas. After passing the uphill, the power consumption is 33 because it is a flat road to the end point.

一方、110に示すようにSOCの変化は走行ルートの変更前までは(21)であったが、ルート変更のため(31)に切り替わる。その後は急な登り坂のためSOCは急激に下降し、IからJの途中でSOC下限を下回ってしまう。この事態を回避するために、車両が走行ルートの変更を認識した時点のXですぐに発電計画を修正する必要が生じる。不足する消費電力量はSOC下限以下の消費電力量の総和のP12+P13となり、その合計のP14が計算出来る。   On the other hand, as shown at 110, the SOC change was (21) before the change of the traveling route, but it is switched to (31) because of the change of the route. After that, the SOC suddenly drops due to a steep climb, and falls below the SOC lower limit on the way from I to J. In order to avoid this situation, it is necessary to modify the power generation plan immediately at X when the vehicle recognizes the change of the traveling route. The insufficient power consumption is P12 + P13, which is the sum of the power consumption below the SOC lower limit, and the total P14 can be calculated.

120は発電機出力がfの場合であり、Xよりも時間的に後のT6で発電開始をしても発電電力量P15は不足電力量P14と等しく出来るので走行可能である。しかし、130の場合は発電機出力gが低いため、不足電力量P14と等しい発電電力量P16を得るためには、すでに時間的に過ぎてしまったT7で発電開始をする必要があった。そのためこの後の電欠を回避するためには発電機の出力を上げるか、充電ステーションに立ち寄って充電するか、別の走行ルートを選択する必要がある事が分かる。   120 is the case where the generator output is f, and even if power generation is started at T6, which is later than X in time, the generated power amount P15 can be made equal to the insufficient power amount P14, and thus the vehicle can travel. However, in the case of 130, since the generator output g is low, it was necessary to start power generation at T7, which has already passed in time, in order to obtain the generated power amount P16 equal to the insufficient power amount P14. Therefore, it can be seen that it is necessary to increase the output of the generator, stop by the charging station to charge the battery, or select another travel route in order to avoid a power shortage after this.

このように予測発電充電制御とは、出発前に走行ルートの情報をICT技術の1つであるとGNSSとGISを活用する事で事前に走行計画(発電計画)を立てる事が出来る技術である。さらに走行中においても常にGNSSとGISから最新の情報を元に発電計画を更新し続ける事で効率的な走行を可能とする技術である。次により詳細な予測発電制御技術の動作について記述する。 In this way, the predictive power generation charging control is a technology that allows one to make a travel plan (power generation plan) in advance by utilizing GNSS and GIS that the information on the travel route before departure is one of the ICT technologies. . Furthermore, it is a technology that enables efficient driving by constantly updating the power generation plan based on the latest information from GNSS and GIS even while driving. Next, the operation of the predictive power generation control technology will be described in more detail.

図10は走行中での予測発電充電制御の様子をより具体的に示したものである。本例では平坦路と坂道での車両の速度を変えている。また、坂道が平坦路に対して水平距離よりも斜度分だけ距離が延びる分は、実路での斜度は本図面によりも非常に小さいと考えられるので考慮していない。ここで上図は地形図を表し、下図は電力図である。また上図の横軸は距離を示しているが、走行中の速度を考慮する事で下図での横軸は時間軸に変換出来る。下図での各ラインは以下を表している。Aは走行前のSOC値が走行中での発電によって増加する様子を表し、Bは走行中のSOCの推移を表し、Cは走行による消費電力量の増加を表しており終点においては走行時に消費した総消費電力量を示している。   FIG. 10 shows more specifically the state of the predictive power generation charging control during traveling. In this example, the speed of the vehicle is changed on a flat road and a slope. In addition, since the slope on the actual road is considered to be much smaller than the horizontal distance on the flat road, it is considered that the slope on the actual road is very small. Here, the upper figure shows a topographic map, and the lower figure is a power map. The horizontal axis in the above figure shows distance, but the horizontal axis in the following figure can be converted to the time axis by considering the speed during running. Each line in the figure below represents the following. A shows how the SOC value before running increases due to power generation during running, B shows the transition of SOC during running, C shows the increase in power consumption due to running, and at the end point it is consumed during running. The total power consumption is shown.

ここでAからCを引いた値がBのSOCの変化と表されている。またCの走行中の消費電力量は、平坦路11では単位時間当たり1消費と考え、登り坂12では単位時間当たり2としている。さらに本例では下り坂14でも単位時間当たり1消費をするとして回生電力は組み入れていない。SOCが走行による電力消費で下がってきて、予め決められた値(この例では4kW)になった時に発電機を駆動させて二次電池に充電を開始している。この時の発電量は単位時間当たり3発電とすると、登り坂12での単位時間当たり2消費よりも多いのでSOCは増加していて、発電を停止するタイミングはSOCが上限値となった時である。しかし、発電量が少なく上り坂でのSOCが回復できないと判断した場合は、発電機の発電開始時期をさらに前倒して二次電池の電力量を増加させる。   Here, the value obtained by subtracting C from A is expressed as the change in SOC of B. The power consumption of C during traveling is considered to be 1 per unit time on the flat road 11 and 2 per unit time on the uphill 12. Further, in this example, regenerative electric power is not incorporated because the downhill 14 also consumes 1 per unit time. When SOC decreases due to power consumption due to running and reaches a predetermined value (4 kW in this example), the generator is driven to start charging the secondary battery. If the power generation amount at this time is 3 power generation per unit time, it is more than 2 consumption per unit time on the uphill 12, so the SOC is increasing, and the timing to stop power generation is when the SOC reaches the upper limit value. is there. However, when it is determined that the amount of power generation is small and the SOC on the uphill cannot be recovered, the power generation start time of the generator is further advanced and the amount of power of the secondary battery is increased.

このように走行路を各小区間単位に分割し、その分割地点での走行路情報をGISとGNSSから得る事で、事前に走行計画(発電計画)が立てられ、走行中においてリアルタイムに標高情報をGISからと車両の位置情報をGNSSから得る事で発電充電制御を最適に行う事が可能となる。   In this way, the travel route is divided into small sections, and the travel route information at the division points is obtained from GIS and GNSS, so that a travel plan (power generation plan) can be made in advance, and elevation information can be obtained in real time during travel. It is possible to optimally control power generation and charging by obtaining the GIS and the vehicle position information from the GNSS.

図11aは東京から箱根峠を越えて沼図に至るルートについて、予測発電充電制御を用いて走行した場合と、用いないで走行した場合についてのSOCシミュレーションを行うために使用した走行ルートの断面図であり、横軸に走行距離を縦軸に標高を示している。また、図11bは横軸に図11a上の各走行地点の場所(a,b等)を示し、縦軸はSOCを示している。東京からスタートして暫くはほぼ平坦な区域をEV走行するが箱根に入り、箱根峠に差し掛かると標高が一気に増すので電池の充電量が大きく減少する。その様子は図11bのeからfの部分であり、急激にSOCが減少している。しかし、予測発電充電制御を用いた場合は、走行前の発電計画策定時に峠を越えるために必要な電力量が計算出来るので、SOCが下限(本例では10%)に到達する手前のaの地点で発電を開始する事で電池に十分な電力を充電出来て箱根峠を問題なく走行が出来る。しかし、もし予測発電充電制御を用いない場合は、発電を開始するのはSOCが下限に達したところから開始するので電池に十分な電力を貯める事が出来ず、箱根峠の登坂走行途中(eとfの間)で電欠となってしまう事が分かる。 Fig. 11a is a cross-sectional view of the travel route used to perform SOC simulations for the route from Tokyo to the Numazu, over Hakone Pass, with and without predictive power generation charging control. The horizontal axis shows the traveling distance and the vertical axis shows the altitude. Further, in FIG. 11b, the horizontal axis indicates the location (a, b, etc.) of each traveling point on FIG. 11a, and the vertical axis indicates the SOC. After starting from Tokyo, I traveled on an EV in a flat area for a while, but when I entered Hakone and approached Hakone Pass, the altitude increased at a stretch, so the amount of battery charge decreased significantly. The state is the part from e to f in FIG. 11b, and the SOC is rapidly decreasing. However, when the predictive power generation charge control is used, the amount of electric power required to cross the pass can be calculated when the power generation plan before traveling is calculated, so that SOC of a before reaching the lower limit (10% in this example) can be calculated. By starting power generation at the point, you can charge the battery with sufficient power and run on Hakone Pass without problems. However, if the predictive power generation charge control is not used, the power generation will start when the SOC reaches the lower limit, so sufficient power cannot be stored in the battery, and the vehicle will be running uphill on the Hakone Pass (e You can see that there is a shortage of electricity between (between f and f).

もちろん、十分な電池量を充電できる電池と強力な発電機を搭載していれば予測発電充電制御技術を使用しなくても走行可能であるが、その場合はこれまで述べたように多くの問題が起こり得る。第一に大量の電池と大型の発電機はスペースと重量がかさむ為にバスでは室内空間に影響を与え、トラックでは搭載容量を減じてしまう。さらに、重量増加のために燃費の悪化が懸念され、レンジエクステンダーEV車両としての長所であった低燃費とそれに伴う低CO2排出の特徴をスポイルする事になり、魅力のない車両となる懸念がある。 Of course, if you have a battery that can charge a sufficient amount of battery and a powerful generator, you can run without using predictive power generation charge control technology, but in that case there are many problems as described above. Can happen. First, a large number of batteries and a large generator occupy a large amount of space and weight, which affects the indoor space on the bus and reduces the installed capacity on the truck. Furthermore, due to the increased weight, there is a concern that fuel efficiency will deteriorate, and it will spoil the advantages of low fuel consumption, which was an advantage of Range Extender EV vehicles, and the low CO2 emissions that accompany it. .

本発明は、電池でモーターを駆動させて走行するEV車両に、必要に応じて電池の充電を行うために発電機を搭載した所謂レンジエクステンダーEV車両に、予測発電充電制御技術を組み込んだ装置を搭載する事で、小型の電池と小型の発電機の搭載を可能となり、バスの乗車スペースやトラックの積載貨物スペースを犠牲にすることなく、燃料消費の削減が図れて結果的にCO2削減が可能となる環境改善に役立つ技術である。さらに、公共交通手段と社会インフラを支える流通システムに応用すれば燃料消費の削減が図れ、同時にCO2の排出削減が図れる事から低炭素社会への実現に大きな効果をもたらす事が出来る。 The present invention provides an EV vehicle that drives a motor driven by a battery, a so-called range extender EV vehicle that is equipped with a generator for charging the battery as needed, and a device that incorporates predictive power generation and charging control technology. By installing it, it becomes possible to install a small battery and a small generator, and it is possible to reduce fuel consumption without sacrificing the boarding space for buses or the cargo space for trucks, resulting in CO2 reduction. This technology is useful for improving the environment. Furthermore, if applied to a distribution system that supports public transportation and social infrastructure, fuel consumption can be reduced, and at the same time CO2 emissions can be reduced, which can have a great effect on realizing a low-carbon society.

二次電池の充電状態(SOC)の走行距離により変化の一例An example of changes in the state of charge (SOC) of the secondary battery depending on the mileage 単位区間毎に位置データと標高データを取得し移動に必要なエネルギーを算出するイメージ図Image diagram that calculates the energy required for movement by acquiring position data and elevation data for each unit section 予測発電充電制御の遷移図Transition diagram of predictive power generation charging control 予測発電充電制御のフローチャートFlowchart of predictive power generation charging control 発電機が起動中に終点に近づく状態State where the generator approaches the end point during startup 終点時にSOCがScTになる時点で発電機をオフする地点(X)Point to turn off the generator when SOC becomes ScT at the end point (X) 予測発電充電制御システムの入出力情報と処理アルゴリズムInput / output information and processing algorithm of predictive power generation charging control system 予測発電充電制御と主要ブロックの関係Relationship between predictive power generation charge control and main blocks 予測発電充電制御のアルゴリズムの処理概要Predictive power generation charge control algorithm processing outline 予測発電充電制御の概要説明図(1)Schematic explanatory diagram of predictive power generation charging control (1) 予測発電充電制御の概要説明図(2)Schematic explanatory diagram of predictive power generation charging control (2) 予測発電充電制御の概要説明図(3)Schematic explanatory diagram of predictive power generation charging control (3) 予測発電充電制御の詳細説明図Detailed explanatory diagram of predictive power generation charging control 東京から沼図までの走行ルートDriving route from Tokyo to Numazu 予測発電充電制御技術を用いた時と用いない時のSOC状況SOC status with and without predictive power generation charging control technology

Claims (12)

走行前に目的地または走行ルートあるいは両方を設定する事により、走行中における発電機の充電開始及び充電停止の地点または時間あるいは両者を予め設定する事を特徴とした、発電機で二次電池を充電しその電池でモーターを駆動するレンジエクステンダー車両の予測発電充電制御技術。 By setting the destination and / or the traveling route before traveling, the charging start and charging stop points and / or time of the generator during traveling can be set in advance. Predictive power generation and charging control technology for range extender vehicles that charge and drive the motor with the battery. 請求項1に係わり、目的地と走行ルートの情報は、地理情報システム(GIS)と全地球測位衛星システム(GNSS)を活用する事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。 The predictive power generation and charging control technology for a range extender vehicle according to claim 1, wherein the information on the destination and the traveling route utilizes a geographic information system (GIS) and a global positioning satellite system (GNSS). 請求項1に係わり、発電機の充電開始は二次電池の充電下限値に達した時に行い、充電停止は充電上限値に達した時に行う制御を特徴としたレンジエクステンダー車両の予測発電充電制御技術。 A predictive power generation and charging control technique for a range extender vehicle according to claim 1, characterized in that control is performed when a generator starts charging when a secondary battery charge lower limit value is reached, and when charging stops when a secondary battery charge upper limit value is reached. . 請求項3に係わり、走行先に電池消費が多く見積もられる走行状況を余め予測して発電機の充電開始は二次電池の下限値に達する前に充電の開始を行い、また走行先に回生電力が多量に発生する事を余め予測して発電機の充電停止は二次電池の上限値に達する前に行う事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。 According to claim 3, when the traveling condition where the battery consumption is estimated to be high is overestimated, the charging of the generator is started before the lower limit value of the secondary battery is reached, and the battery is regenerated at the traveling destination. Predictive power generation and charging control technology for range extender vehicles, which is characterized by stopping the charging of the generator before reaching the upper limit of the secondary battery by predicting that a large amount of power will be generated. 請求項3に係わり、目的地までに必要な電池の電力残量は、目的地までの水平方向に移動するに必要なエネルギーと垂直方向に移動するに必要なエネルギーに分解した結果に基づいて見積もられた電力量から決定する事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。 According to claim 3, the remaining battery power required to reach the destination is estimated based on the result of decomposition into energy required to move horizontally to the destination and energy required to move vertically to the destination. Predictive power generation and charging control technology for range extender vehicles, which is characterized by determining from the amount of power lost. 請求項3に係わり、走行前及び走行中においてもGISとGNSSから得た情報を基に、単位距離毎又は単位時間毎に、あるいは単位距離と単位時間を組合せた単位毎に走行地点での走行速度、電池の電力残量、補機の動作状態、搭載積載量の変化を組み入れて、発電機の充電開始又は停止をリアルタイムに見直す事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。 According to claim 3, even before and during traveling, based on the information obtained from GIS and GNSS, traveling at the traveling point for each unit distance or unit time, or for each unit combining unit distance and unit time A predictive power generation and charge control technology for range extender vehicles, which incorporates changes in speed, remaining battery power, auxiliary equipment operating status, and installed load capacity to review start or stop of generator charging in real time. 請求項1に係わり、走行ルート途中に発電機を停止する必要のある地点においては、その地点を通過する間は発電機動作を行わない事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。 A predictive power generation charging control technique for a range extender vehicle according to claim 1, wherein at a point where the generator needs to be stopped on the way of the traveling route, the generator does not operate while passing through the point. 請求項3に係わり、目的地において電池の残量が決められた値になるように、発電機の開始及び停止を制御する事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。 A predictive power generation charging control technique for a range extender vehicle according to claim 3, wherein the start and stop of the generator are controlled so that the remaining battery level at the destination becomes a predetermined value. 請求項8に係わり、目的地において電池の残量が余め決められた値を下回る予想された場合には、不足と予想される電力量を発電するための期間と走行場所を目的地までの走行途中に余め設ける事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。 According to claim 8, when it is expected that the remaining battery level at the destination will be less than the predetermined value, the period and traveling place for generating the expected shortage of the amount of electric power will be set to the destination. Predictive power generation and charging control technology for range extender vehicles, which is characterized by being provided in the middle of driving. 請求項3に係わり、走行途中において目的地あるいは走行ルートが変更になった場合は、改めてGISとGNSSから変更後の目的地と走行ルートの各情報を入手することで、発電機の充電開始及び停止の地点又は時期、あるいは両者を再設定する事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。 According to claim 3, when the destination or the driving route is changed in the middle of driving, the information on the changed destination and driving route is obtained from GIS and GNSS again, and the charging of the generator is started. Predictive power generation and charging control technology for range extender vehicles, which is characterized by resetting the stop point or time, or both. 請求項1に係わり、二次電池に充電するためにディーゼルエンジン、ガソリンエンジン、燃料電池エンジン、バイオマスエンジン等を使用する事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。 A predictive power generation charging control technique for a range extender vehicle according to claim 1, wherein a diesel engine, a gasoline engine, a fuel cell engine, a biomass engine, or the like is used to charge the secondary battery. 請求項1に係わり、走行途中に設置された充電設備から必要に応じて二次電池に充電出来る装置を備えた事を特徴としたレンジエクステンダー車両の予測発電充電制御技術。 A predictive power generation charging control technique for a range extender vehicle according to claim 1, further comprising a device capable of charging a secondary battery as needed from a charging facility installed during traveling.
JP2018194138A 2018-10-15 2018-10-15 Predictive power generation charging control method for range extender vehicles Active JP7408063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018194138A JP7408063B2 (en) 2018-10-15 2018-10-15 Predictive power generation charging control method for range extender vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018194138A JP7408063B2 (en) 2018-10-15 2018-10-15 Predictive power generation charging control method for range extender vehicles

Publications (3)

Publication Number Publication Date
JP2020062906A true JP2020062906A (en) 2020-04-23
JP2020062906A5 JP2020062906A5 (en) 2021-12-09
JP7408063B2 JP7408063B2 (en) 2024-01-05

Family

ID=70386644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018194138A Active JP7408063B2 (en) 2018-10-15 2018-10-15 Predictive power generation charging control method for range extender vehicles

Country Status (1)

Country Link
JP (1) JP7408063B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113071335A (en) * 2021-04-06 2021-07-06 浙江吉利控股集团有限公司 Energy control method for extended range vehicle, control system and storage medium thereof
CN113771647A (en) * 2021-08-06 2021-12-10 广西玉柴机器股份有限公司 Control method of novel cluster type range extender set
CN114919459A (en) * 2022-05-24 2022-08-19 潍柴动力股份有限公司 Method and device for determining driving range and computer equipment
CN114932811A (en) * 2022-05-30 2022-08-23 重庆金康赛力斯新能源汽车设计院有限公司 Energy recovery method, device, equipment and storage medium
CN116663869A (en) * 2023-08-01 2023-08-29 国网安徽省电力有限公司巢湖市供电公司 Electric automobile centralized charging management system based on virtual power plant
WO2024084712A1 (en) * 2022-10-21 2024-04-25 エーシーテクノロジーズ株式会社 Planned electric power generation and storage control technology using soc chart

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240435A (en) * 1995-03-06 1996-09-17 Mitsubishi Motors Corp Navigation system for electric automobile
JP2000333305A (en) * 1999-05-20 2000-11-30 Nissan Motor Co Ltd Drive controller for hybrid car
JP2010132240A (en) * 2008-12-08 2010-06-17 Aisin Aw Co Ltd Running support apparatus, running support method, and computer program
JP2012095519A (en) * 2010-09-30 2012-05-17 Equos Research Co Ltd Electric drive vehicle
JP2016049922A (en) * 2014-09-02 2016-04-11 三菱電機株式会社 Vehicle energy management device
JP2016159848A (en) * 2015-03-04 2016-09-05 トヨタ自動車株式会社 Vehicular information processing device
JP2016181965A (en) * 2015-03-23 2016-10-13 株式会社東芝 Electric bus and charging system
JP2017144801A (en) * 2016-02-15 2017-08-24 東京電力ホールディングス株式会社 Electric car

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6205804B2 (en) 2013-04-05 2017-10-04 三菱自動車工業株式会社 Vehicle destination arrival estimation device
EP3575170A1 (en) 2015-06-15 2019-12-04 Volvo Bus Corporation Adapting a vehicle control strategy based on historical data related to a geographical zone

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240435A (en) * 1995-03-06 1996-09-17 Mitsubishi Motors Corp Navigation system for electric automobile
JP2000333305A (en) * 1999-05-20 2000-11-30 Nissan Motor Co Ltd Drive controller for hybrid car
JP2010132240A (en) * 2008-12-08 2010-06-17 Aisin Aw Co Ltd Running support apparatus, running support method, and computer program
JP2012095519A (en) * 2010-09-30 2012-05-17 Equos Research Co Ltd Electric drive vehicle
JP2016049922A (en) * 2014-09-02 2016-04-11 三菱電機株式会社 Vehicle energy management device
JP2016159848A (en) * 2015-03-04 2016-09-05 トヨタ自動車株式会社 Vehicular information processing device
JP2016181965A (en) * 2015-03-23 2016-10-13 株式会社東芝 Electric bus and charging system
JP2017144801A (en) * 2016-02-15 2017-08-24 東京電力ホールディングス株式会社 Electric car

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113071335A (en) * 2021-04-06 2021-07-06 浙江吉利控股集团有限公司 Energy control method for extended range vehicle, control system and storage medium thereof
CN113071335B (en) * 2021-04-06 2022-10-14 浙江吉利控股集团有限公司 Energy control method for extended range vehicle, control system and storage medium thereof
CN113771647A (en) * 2021-08-06 2021-12-10 广西玉柴机器股份有限公司 Control method of novel cluster type range extender set
CN113771647B (en) * 2021-08-06 2023-11-14 广西玉柴机器股份有限公司 Novel control method of clustered range extender group
CN114919459A (en) * 2022-05-24 2022-08-19 潍柴动力股份有限公司 Method and device for determining driving range and computer equipment
CN114932811A (en) * 2022-05-30 2022-08-23 重庆金康赛力斯新能源汽车设计院有限公司 Energy recovery method, device, equipment and storage medium
CN114932811B (en) * 2022-05-30 2024-04-09 重庆金康赛力斯新能源汽车设计院有限公司 Energy recovery method, device, equipment and storage medium
WO2024084712A1 (en) * 2022-10-21 2024-04-25 エーシーテクノロジーズ株式会社 Planned electric power generation and storage control technology using soc chart
CN116663869A (en) * 2023-08-01 2023-08-29 国网安徽省电力有限公司巢湖市供电公司 Electric automobile centralized charging management system based on virtual power plant
CN116663869B (en) * 2023-08-01 2024-01-12 国网安徽省电力有限公司巢湖市供电公司 Electric automobile centralized charging management system based on virtual power plant

Also Published As

Publication number Publication date
JP7408063B2 (en) 2024-01-05

Similar Documents

Publication Publication Date Title
JP7408063B2 (en) Predictive power generation charging control method for range extender vehicles
JP6758025B2 (en) Control system for hybrid vehicles with a high degree of hybridization
US9211804B2 (en) Optimization of extended range electric vehicle
CN102233807B (en) Self-learning satellite navigation assisted hybrid vehicle controls system
JP5642253B1 (en) Vehicle energy management system
CN101687506B (en) Hybrid energy power management system and method
Gao et al. Energy consumption and cost savings of truck electrification for heavy-duty vehicle applications
US20080288132A1 (en) Method of operating vehicle and associated system
US20170320481A1 (en) A hybrid vehicle and a method for energy management of a hybrid vehicle
US10829104B2 (en) Hybrid vehicle control system
JP2015157530A (en) Movement support apparatus and movement support method
JP2000232703A (en) Control method for hybrid vehicle
EP2583874A2 (en) Method of Operating a Vehicle and Associated System
JP4761785B2 (en) Vehicle operation plan creation device
JP5885170B1 (en) Vehicle energy management system
JP7281099B2 (en) Range Extender Using Route-Adaptive Power Generation Control - EV Bus Operation Method
JP6918261B2 (en) Plug-in hybrid vehicle
JP2021112081A (en) Planned power generation accumulation control technique
JP2023522253A (en) State of charge control for hybrid vehicles
KR20160072066A (en) Energy storage advisement controller for vehicle
US20240085204A1 (en) System and Method for Preparing a Hybrid Electric Vehicle for Operation in a Geographic Zone with an Operational Requirement
JP7363826B2 (en) Vehicle control device and vehicle control method
US20230227019A1 (en) Hybrid electric vehicle and method for controlling the same
WO2024084712A1 (en) Planned electric power generation and storage control technology using soc chart
JP2023150633A (en) Method of utilizing regenerative electric power using scheduled power generation storage control technique

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210930

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R150 Certificate of patent or registration of utility model

Ref document number: 7408063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150