JP2020003329A - Optical device, distance measuring device, and distance measuring method - Google Patents

Optical device, distance measuring device, and distance measuring method Download PDF

Info

Publication number
JP2020003329A
JP2020003329A JP2018122714A JP2018122714A JP2020003329A JP 2020003329 A JP2020003329 A JP 2020003329A JP 2018122714 A JP2018122714 A JP 2018122714A JP 2018122714 A JP2018122714 A JP 2018122714A JP 2020003329 A JP2020003329 A JP 2020003329A
Authority
JP
Japan
Prior art keywords
light
instantaneous
reflected
distance
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2018122714A
Other languages
Japanese (ja)
Inventor
加園 修
Osamu Kasono
修 加園
佐藤 充
Mitsuru Sato
充 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2018122714A priority Critical patent/JP2020003329A/en
Publication of JP2020003329A publication Critical patent/JP2020003329A/en
Priority to JP2022138953A priority patent/JP2022164850A/en
Priority to JP2024028118A priority patent/JP2024059877A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

To provide an optical device with which it is possible to observe safety standards relating to the intensity of a laser beam and measure the distance of an object existing at a remote position with good accuracy.SOLUTION: The optical device comprises: a plurality of light projection units each including a light source 11 for emitting emission light and an emitted light deflection element 12, and each emitting the emission light deflected by the emitted light deflection element as irradiation light having an instantaneous irradiation field; and a light receiving unit including a reflected light deflection element 21 for direction variably deflecting reflected light of the irradiation light having been reflected by an object and a light receiving element 22 for receiving the reflected light having been deflected by the reflected light deflection element, the solid angle of an instantaneous visual field being larger than the solid angle of the instantaneous irradiation field of the respective irradiation light.SELECTED DRAWING: Figure 1

Description

本発明は、出射光の出射及び当該出射光の受光を行う光学装置、物体までの距離を計測する測距装置並びに測距方法に関する。   The present invention relates to an optical device that emits emitted light and receives the emitted light, a distance measuring device that measures a distance to an object, and a distance measuring method.

光学装置を含む測距装置は、例えば、レーザ光を対象領域内で走査して物体までの距離を計測する、すなわち測距する。このような測距装置としては、例えば、可動部が揺動する光走査部、可動部の光反射面に向かってパルス光を出射する光源部、パルス光の反射光を受光する受光部及び物体までの距離を計測する測距部を備える光測距装置が特許文献1に開示されている。   A distance measuring apparatus including an optical device measures a distance to an object by scanning a laser beam in a target area, that is, measures a distance. Examples of such a distance measuring device include an optical scanning unit in which a movable unit swings, a light source unit that emits pulse light toward a light reflecting surface of the movable unit, a light receiving unit that receives reflected light of the pulse light, and an object. Patent Literature 1 discloses an optical distance measuring device including a distance measuring unit that measures a distance to the optical distance measuring device.

特開2011−053137号公報JP 2011-053137 A

レーザ光は物体に照射されると散乱する。このため、レーザ光が照射される物体が測距装置から遠くなるにつれて、測距装置が受光するレーザ光の光量は少なくなる。したがって、測距装置から遠方に位置する物体の測距を行うためには、レーザ光の出力を高くして出射することが望ましい。   Laser light is scattered when irradiated on an object. For this reason, as the object irradiated with the laser beam moves away from the distance measuring device, the amount of laser light received by the distance measuring device decreases. Therefore, in order to measure the distance of an object located far from the distance measuring apparatus, it is desirable to emit the laser light at a high output.

しかし、レーザ光は、パワー密度が高い場合には人体に有害となることがある。このため、安全基準によってレーザ光の出力が制限されている。従って、遠距離に位置する物体までの距離を測定する場合、安全基準を順守したレーザ光では、測距装置が受光するレーザ光の光量が少なくなることが課題の1つとして挙げられる。   However, laser light may be harmful to the human body when the power density is high. For this reason, the output of laser light is restricted by safety standards. Therefore, when measuring the distance to an object located at a long distance, one of the problems is that the amount of laser light received by the distance measuring device is small with respect to laser light complying with safety standards.

本発明は上記した点に鑑みてなされたものであり、レーザ光の強度に関する安全基準を順守し、かつ遠方に位置する物体の測距を精度良く行うことが可能な光学装置を提供することを課題の1つとする。   The present invention has been made in view of the above points, and an object of the present invention is to provide an optical device that adheres to safety standards regarding the intensity of laser light and that can accurately measure the distance of a distant object. One of the issues.

本願請求項1に記載の光学装置は、出射光を出射する光源及び前記出射光を方向可変に偏向させる出射光偏向素子を各々が含む複数の投光部と、前記出射光が物体で反射した反射光を方向可変に偏向させる反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を含み、かつ前記複数の投光部の各々の瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部と、を有することを特徴とする。   The optical device according to claim 1 of the present application includes a plurality of light emitting units each including a light source that emits outgoing light and an outgoing light deflecting element that deflects the outgoing light in a variable direction, and the outgoing light is reflected by an object. A reflected light deflecting element for deflecting the reflected light in a variable direction and a light receiving element for receiving the reflected light deflected by the reflected light deflecting element, and a solid angle of an instantaneous irradiation field of each of the plurality of light projecting units. And a light receiving section having a large solid angle in the instantaneous field of view.

本願請求項6に記載の測距装置は、出射光を出射する光源及び前記出射光を方向可変に偏向させる出射光偏向素子を各々が含む複数の投光部、並びに前記出射光が物体で反射した反射光を方向可変に偏向させる反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を含み、かつ前記複数の投光部の各々の瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部を有する光学装置と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有することを特徴とする。   The distance measuring apparatus according to claim 6 of the present application is configured such that a plurality of light emitting units each including a light source for emitting outgoing light and an outgoing light deflecting element for deflecting the outgoing light in a variable direction, and the outgoing light is reflected by an object. And a light receiving element for receiving the reflected light deflected by the reflected light deflecting element, and a solid angle of an instantaneous irradiation field of each of the plurality of light projecting units. An optical device having a light receiving unit having a larger solid angle in the instantaneous field of view than the optical device, and a distance measuring unit for measuring a distance to the object based on the emitted light and the reflected light.

本願請求項7に記載の測距方法は、出射光を出射する光源及び前記出射光を方向可変に偏向させる出射光偏向素子を各々が含む複数の投光部と、前記出射光が物体で反射した反射光を方向可変に偏向させる反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を含み、かつ前記複数の投光部の各々の瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部と、を有する光学装置と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有する測距装置が、前記複数の投光部の各々から前記出射光を同時に出射させる工程と、前記受光部に前記反射光を受光させる工程と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する工程と、を実行することを特徴とする測距方法。   The distance measuring method according to claim 7 of the present application is directed to a distance measuring method, wherein a plurality of light emitting units each including a light source for emitting outgoing light and an outgoing light deflecting element for deflecting the outgoing light in a variable direction, and the outgoing light is reflected by an object And a light receiving element for receiving the reflected light deflected by the reflected light deflecting element, and a solid angle of an instantaneous irradiation field of each of the plurality of light projecting units. A light receiving unit having a solid angle greater than the instantaneous field of view, and an optical device, and a distance measuring device having a distance measuring unit that measures the distance to the object based on the emitted light and the reflected light, Simultaneously emitting the emitted light from each of the plurality of light emitting units, causing the light receiving unit to receive the reflected light, and measuring a distance to the object based on the emitted light and the reflected light Performing the step of performing Ranging method to.

本願請求項8に記載のプログラムは、出射光を出射する光源及び前記出射光を方向可変に偏向させる出射光偏向素子を各々が含む複数の投光部と、前記出射光が物体で反射した反射光を方向可変に偏向させる反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を含み、かつ前記複数の投光部の各々の瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部と、を有する光学装置と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有する測距装置を、前記複数の投光部の各々から前記出射光を同時に出射させる出射制御手段、前記受光部に前記反射光を受光させる受光手段、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距手段、として機能させることを特徴とする。   The program according to claim 8, wherein the program includes a plurality of light emitting units each including a light source for emitting the emitted light and an emitted light deflecting element for deflecting the emitted light in a variable direction, and a reflection of the emitted light reflected from an object. Including a reflected light deflecting element that deflects light in a variable direction and a light receiving element that receives the reflected light deflected by the reflected light deflecting element, and a solid angle of the instantaneous irradiation field of each of the plurality of light projecting units. A light receiving unit having a large solid angle of the instantaneous field of view, and a distance measuring unit having a distance measuring unit that measures a distance to the object based on the emitted light and the reflected light; Emission control means for simultaneously emitting the emitted light from each of the light emitting sections, light receiving means for causing the light receiving section to receive the reflected light, and measuring a distance to the object based on the emitted light and the reflected light. Distance measuring means, as machine Characterized in that to.

本願請求項9に記載の記録媒体は、出射光を出射する光源及び前記出射光を方向可変に偏向させる出射光偏向素子を各々が含む複数の投光部と、前記出射光が物体で反射した反射光を方向可変に偏向させる反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を含み、かつ前記複数の投光部の各々の瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部と、を有する光学装置と、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有する測距装置を、前記複数の投光部の各々から前記出射光を同時に出射させる出射制御手段、前記受光部に前記反射光を受光させる受光手段、前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距手段、として機能させるプログラムが記録されていることを特徴とする。   The recording medium according to claim 9 of the present application includes a plurality of light emitting units each including a light source that emits outgoing light and an outgoing light deflecting element that deflects the outgoing light in a variable direction, and the outgoing light is reflected by an object. A reflected light deflecting element for deflecting the reflected light in a variable direction and a light receiving element for receiving the reflected light deflected by the reflected light deflecting element, and a solid angle of an instantaneous irradiation field of each of the plurality of light projecting units. An optical device having a light receiving unit having a large solid angle of the instantaneous field of view, and a distance measuring unit having a distance measuring unit that measures a distance to the object based on the emitted light and the reflected light. Emission control means for simultaneously emitting the emitted light from each of the plurality of light emitting sections, light receiving means for causing the light receiving section to receive the reflected light, and measuring a distance to the object based on the emitted light and the reflected light. Function as distance measuring means Wherein the program causing is recorded.

実施例1に係る測距装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置の投光系の動作原理を説明する説明図である。FIG. 4 is an explanatory diagram illustrating an operation principle of a light projecting system of the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置の受光系の動作原理を説明する説明図である。FIG. 3 is an explanatory diagram illustrating an operation principle of a light receiving system of the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置の投光部及び受光部の配置例を示す斜視図である。FIG. 2 is a perspective view illustrating an example of the arrangement of a light projecting unit and a light receiving unit of the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置からの距離に応じた投光部の瞬間照射野と受光部の瞬間視野を説明する概念図である。FIG. 4 is a conceptual diagram illustrating an instantaneous irradiation field of a light projecting unit and an instantaneous field of view of a light receiving unit according to a distance from the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置から所定の距離における仮想面上の瞬間照射野の立体角を説明する概念図である。FIG. 3 is a conceptual diagram illustrating a solid angle of an instantaneous irradiation field on a virtual plane at a predetermined distance from the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置から所定の距離における仮想面上の瞬間視野の立体角を説明する概念図である。FIG. 3 is a conceptual diagram illustrating a solid angle of an instantaneous visual field on a virtual plane at a predetermined distance from the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置から所定の距離における仮想面上の瞬間照射野と瞬間視野を説明する概念図である。FIG. 3 is a conceptual diagram illustrating an instantaneous irradiation field and an instantaneous visual field on a virtual plane at a predetermined distance from the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置の測距方法を示す処理フローである。4 is a processing flow illustrating a distance measuring method of the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置の投光部及び受光部の他の配置例を示す斜視図である。FIG. 4 is a perspective view illustrating another example of the arrangement of the light projecting unit and the light receiving unit of the distance measuring apparatus according to the first embodiment. 実施例1に係る測距装置の投光部の他の構成例を示す説明図である。FIG. 4 is an explanatory diagram illustrating another configuration example of the light projecting unit of the distance measuring apparatus according to the first embodiment. 実施例2に係る測距装置の構成を示すブロック図である。FIG. 9 is a block diagram illustrating a configuration of a distance measuring apparatus according to a second embodiment. 実施例3に係る測距装置の投光部及び受光部の配置例を示す斜視図である。FIG. 13 is a perspective view illustrating an example of the arrangement of a light projecting unit and a light receiving unit of the distance measuring apparatus according to the third embodiment. 実施例3に係る測距装置から所定の距離における仮想面上の瞬間照射野と瞬間視野を説明する概念図である。FIG. 9 is a conceptual diagram illustrating an instantaneous irradiation field and an instantaneous field of view on a virtual plane at a predetermined distance from a distance measuring apparatus according to a third embodiment. 実施例3に係る測距装置の投光部及び受光部の他の配置例を示す斜視図である。FIG. 14 is a perspective view illustrating another example of the arrangement of the light projecting unit and the light receiving unit of the distance measuring apparatus according to the third embodiment. 実施例3に係る測距装置の投光部及び受光部の他の配置例を示す斜視図である。FIG. 14 is a perspective view illustrating another example of the arrangement of the light projecting unit and the light receiving unit of the distance measuring apparatus according to the third embodiment.

以下、本発明の光学装置を測距装置に用いた実施例を説明する。   Hereinafter, an embodiment in which the optical device of the present invention is used for a distance measuring device will be described.

図1は、本実施例に係る測距装置100の機能ブロックを示している。図1において、投光部10a,10bは、出射光を出射する発光装置である。投光部10a,10bは、互いに同一の構成を有する。投光部10a、10bの光源11は、例えば出射光としてパルス光を出射可能なレーザ素子である。   FIG. 1 shows functional blocks of a distance measuring apparatus 100 according to the present embodiment. In FIG. 1, light projecting units 10a and 10b are light emitting devices that emit outgoing light. The light emitting units 10a and 10b have the same configuration as each other. The light sources 11 of the light projecting units 10a and 10b are, for example, laser elements capable of emitting pulsed light as emitted light.

光偏向素子12は、制御信号に応じて光ビームを偏向させる装置である。言い換えれば、光偏向素子12は、パルス光を方向可変に偏向させることができる。光偏向素子12は、光反射面(図示せず)を含む出射光反射部材を有している。光偏向素子12には、MEMS(Micro Electro Mechanical Systems)ミラー装置、ポリゴンミラー等を用いることができる。尚、光偏向素子12は、光反射面を持たない光偏向素子であってもよい。このような光偏向素子12としては、音響光学偏向器(AO偏向器)等が挙げられる。   The light deflection element 12 is a device that deflects a light beam according to a control signal. In other words, the light deflecting element 12 can deflect the pulse light in a variable direction. The light deflection element 12 has an outgoing light reflecting member including a light reflecting surface (not shown). As the light deflection element 12, a MEMS (Micro Electro Mechanical Systems) mirror device, a polygon mirror, or the like can be used. The light deflecting element 12 may be a light deflecting element having no light reflecting surface. An example of such a light deflecting element 12 is an acousto-optic deflector (AO deflector).

光偏向素子12は、当該光反射面にて光源11から出射されたパルス光を反射して、走査対象となる所定の領域(以下、走査対象領域とする)に向けて照射光を出射可能である。したがって、光偏向素子12は、出射光偏光素子として機能する。   The light deflecting element 12 reflects the pulse light emitted from the light source 11 on the light reflecting surface, and can emit irradiation light toward a predetermined region to be scanned (hereinafter, referred to as a scanning region). is there. Therefore, the light deflection element 12 functions as an output light polarization element.

このように、投光部10a,10bは、各々が光偏向素子12で偏光された出射光を、瞬間照射野を有する照射光として走査対象領域に向けて出射する。照射光は、走査対象領域に存在する物体で反射される。当該物体で反射された照射光は、反射光として測距装置100に向かって進行する。   In this manner, the light projecting units 10a and 10b emit the emitted light, each of which is polarized by the light deflecting element 12, toward the scanning target area as irradiation light having an instantaneous irradiation field. The irradiation light is reflected by an object existing in the scanning target area. The irradiation light reflected by the object travels toward the distance measuring apparatus 100 as reflected light.

受光部20は、反射光を受光して、電気信号である受光信号を生成する受光装置である。光偏向素子21は、制御信号に応じて光ビームを偏向させることができる装置である。言い換えれば、光偏向素子21は、照射光が物体で反射した反射光を方向可変に偏向させることができる。光偏向素子21は、光反射面(図示せず)を含む反射光反射部材を有する。光偏向素子21は、光偏向素子12と同様にMEMSミラー装置等を用いることができる。したがって、光偏向素子21は、反射光偏向素子として機能する。   The light receiving unit 20 is a light receiving device that receives the reflected light and generates a light receiving signal that is an electric signal. The light deflection element 21 is a device that can deflect a light beam according to a control signal. In other words, the light deflecting element 21 can deflect the reflected light of the irradiation light reflected by the object in a variable direction. The light deflecting element 21 has a reflected light reflecting member including a light reflecting surface (not shown). As the light deflection element 21, a MEMS mirror device or the like can be used similarly to the light deflection element 12. Therefore, the light deflecting element 21 functions as a reflected light deflecting element.

受光素子22は、光偏向素子21で偏向された反射光を受光して、電気信号である受光信号を生成する。受光素子22としては、例えば、アバランシェフォトダイオード(Avalanche Photodiode)等を採用することができる。   The light receiving element 22 receives the reflected light deflected by the light deflecting element 21 and generates a light receiving signal that is an electric signal. As the light receiving element 22, for example, an avalanche photodiode (Avalanche Photodiode) or the like can be used.

制御部30は、投光部10a,10bの各々の光源11から出射するパルス光の制御並びに、受光部20の光偏向素子21及び投光部10a,10bの各々の光偏向素子12の光反射面の角度の制御を行う。制御部30は、中央処理装置、主記憶装置、補助記憶装置を少なくとも有するコンピュータである。   The control unit 30 controls the pulse light emitted from each of the light sources 11 of the light projecting units 10a and 10b, and controls the light reflection of the light deflecting element 21 of the light receiving unit 20 and the light deflecting element 12 of each of the light projecting units 10a and 10b. Controls the angle of the surface. The control unit 30 is a computer having at least a central processing unit, a main storage device, and an auxiliary storage device.

光源制御部31は、投光部10a,10bの各々の光源11の発光制御を行う。具体的には、光源11がパルス発光をするように発光タイミングを規定したテーブル(図示せず)を参照して、その発光を制御する。   The light source control unit 31 controls the light emission of each of the light sources 11 of the light emitting units 10a and 10b. Specifically, the light emission is controlled with reference to a table (not shown) in which the light emission timing is specified so that the light source 11 emits the pulse light.

ミラー制御部32は、投光部10a,10bの各々の光偏向素子12の光反射面の傾きの角度を制御する。具体的には、ミラー制御部32は、光偏向素子12の光反射面でパルス光を反射させ、反射させた照射光によって走査対象領域の走査がなされるように光偏向素子12の光反射面の傾きの角度を制御する。   The mirror control unit 32 controls the inclination angle of the light reflecting surface of the light deflecting element 12 of each of the light projecting units 10a and 10b. Specifically, the mirror control unit 32 reflects the pulse light on the light reflecting surface of the light deflecting element 12 and scans the scanning target area with the reflected irradiation light. To control the angle of tilt.

ミラー制御部32は、受光部20の光偏向素子21の光偏向素子21の光反射面の傾きの角度を制御する。具体的には、ミラー制御部32は、受光部20の光偏向素子21の光反射面の方向(傾きの角度)と投光部10a,10bの光偏向素子12の光反射面との方向(傾きの角度)が連動するように、光偏向素子21の光反射面の傾きを制御する。すなわち、受光部20の光偏向素子21の光反射面の方向と投光部10a,10bの光偏向素子12の光反射面との方向が連動することによって、反射光が受光素子22に向かって進行する。   The mirror controller 32 controls the angle of inclination of the light reflecting surface of the light deflecting element 21 of the light deflecting element 21 of the light receiving unit 20. Specifically, the mirror control unit 32 determines the direction (angle of inclination) of the light reflecting surface of the light deflecting element 21 of the light receiving unit 20 and the direction of the light reflecting surface of the light deflecting element 12 of the light projecting units 10a and 10b ( The inclination of the light reflecting surface of the light deflecting element 21 is controlled so that the inclination angle is linked. That is, the direction of the light reflecting surface of the light deflecting element 21 of the light receiving unit 20 and the direction of the light reflecting surface of the light deflecting element 12 of the light projecting units 10a and 10b are linked, so that the reflected light is directed toward the light receiving element 22. proceed.

言い換えれば、光源制御部31及びミラー制御部32は、投光部10a,10bの各々からパルス光を同時に出射させる出射制御手段として機能する。また、ミラー制御部32は、受光部20に反射光を受光させる受光手段として機能する。   In other words, the light source control unit 31 and the mirror control unit 32 function as emission control units that simultaneously emit pulse light from each of the light projection units 10a and 10b. The mirror control unit 32 functions as a light receiving unit that causes the light receiving unit 20 to receive the reflected light.

測距部としての距離測定部33は、測距装置100から走査対象領域内にある物体までの距離を算出する。言い換えれば、距離測定部33は、パルス光及び反射光に基づいて物体までの距離を測距する測距手段として機能する。   The distance measurement unit 33 as a distance measurement unit calculates the distance from the distance measurement device 100 to an object in the scanning target area. In other words, the distance measuring unit 33 functions as a distance measuring unit that measures the distance to the object based on the pulse light and the reflected light.

距離測定部33は、受光素子22によって生成された受光信号に基づいて測距装置100から走査対象領域内にある物体までの距離を算出する。例えば、距離測定部33は、タイムオブフライト法を用いて当該距離が算出される。尚、物体までの距離の算出は、タイムオブフライト法に限られず位相差法であってもよい。   The distance measuring unit 33 calculates a distance from the distance measuring device 100 to an object in the scanning target area based on the light receiving signal generated by the light receiving element 22. For example, the distance measuring unit 33 calculates the distance using a time-of-flight method. The calculation of the distance to the object is not limited to the time-of-flight method, but may be a phase difference method.

具体的には、距離測定部33は、光源11によって出射された1のパルス光の出射時刻と、当該1のパルス光が偏向された照射光が走査対象領域内の物体によって反射されて反射光として受光素子22で検出された受光時刻を取得する。そして、当該出射時刻と当該受光時刻の時刻差に基づいて、測距装置100と物体との距離を算出する。   Specifically, the distance measuring unit 33 determines the emission time of one pulse light emitted by the light source 11 and the irradiation light deflected by the one pulse light is reflected by an object in the scanning target area and reflected light As a result, the light receiving time detected by the light receiving element 22 is obtained. Then, the distance between the distance measuring device 100 and the object is calculated based on the time difference between the emission time and the light reception time.

尚、光偏向素子12によって偏向された照射光の進行方向には、仮想の面である照射面(図示せず)が設けられている。尚、照射面は、実在するものではない。   Note that a virtual irradiation surface (not shown) is provided in the traveling direction of the irradiation light deflected by the light deflecting element 12. Note that the irradiation surface is not real.

図2は、投光部10a、10bを含む投光系の動作を示す概念図である。図2において、光源11から出射されたパルス光EL1は、光偏向素子12の光反射面MRに入射する。   FIG. 2 is a conceptual diagram showing the operation of the light projecting system including the light projecting units 10a and 10b. In FIG. 2, the pulse light EL <b> 1 emitted from the light source 11 enters the light reflecting surface MR of the light deflecting element 12.

光偏向素子12は、光反射面MRに入射されたパルス光EL1を反射する。すなわち、光偏向素子12は、パルス光EL1を照射光EL2として走査対象領域Rに向けて偏向する。   The light deflecting element 12 reflects the pulse light EL1 incident on the light reflection surface MR. That is, the light deflecting element 12 deflects the pulse light EL1 toward the scanning target region R as the irradiation light EL2.

光偏向素子12の光反射面MRは、揺動自在に本体に固定されている。したがって、光偏向素子12は、光反射面MRを揺動させることにより、走査対象領域R内の所望の方向に照射光EL2の進行方向を偏向する。   The light reflecting surface MR of the light deflecting element 12 is swingably fixed to the main body. Therefore, the light deflecting element 12 deflects the traveling direction of the irradiation light EL2 to a desired direction in the scanning target region R by swinging the light reflecting surface MR.

照射光EL2は、照射面VSにおいて所望の軌跡が描かれるように光偏向素子12によって偏向される。また、照射面VSで描かれる軌跡は、ラスタ走査軌跡、リサージュ走査軌跡等が望ましいがこれに限るものではない。   The irradiation light EL2 is deflected by the light deflection element 12 so that a desired trajectory is drawn on the irradiation surface VS. The trajectory drawn on the irradiation surface VS is preferably a raster scanning trajectory, a Lissajous scanning trajectory, or the like, but is not limited thereto.

図3は、受光部20の受光系の動作を示す概念図である。図3において、照射光EL2は、走査対象領域R内に存在する物体OBで反射する。物体OBで反射した照射光EL2は、反射光RLとして受光部20に向かって進行する。反射光RLは、受光部20の光偏向素子21の光反射面MRで反射されると、受光素子22に入射する。   FIG. 3 is a conceptual diagram illustrating the operation of the light receiving system of the light receiving unit 20. In FIG. 3, the irradiation light EL2 is reflected by the object OB existing in the scanning target region R. The irradiation light EL2 reflected by the object OB travels toward the light receiving unit 20 as reflected light RL. When the reflected light RL is reflected by the light reflecting surface MR of the light deflecting element 21 of the light receiving section 20, it enters the light receiving element 22.

受光素子22は、入射された反射光RLに基づいて受光信号を生成し、制御部30に生成した受光信号を供給する。制御部30の距離測定部33は、パルス光EL1を出射した時刻と反射光RLを受光した時刻に基づいて、物体OBまでの距離を計測する。   The light receiving element 22 generates a light receiving signal based on the incident reflected light RL and supplies the generated light receiving signal to the control unit 30. The distance measuring unit 33 of the control unit 30 measures the distance to the object OB based on the time when the pulse light EL1 is emitted and the time when the reflected light RL is received.

図4は、本実施例に係る測距装置100の投光部10a,10b及び受光部20の配置例を示している。図4に示すように、投光部10a,10bは、基板40上において受光部20を挟み込むように列状に配置されている。   FIG. 4 shows an example of the arrangement of the light projecting units 10a and 10b and the light receiving unit 20 of the distance measuring apparatus 100 according to the present embodiment. As shown in FIG. 4, the light projecting units 10 a and 10 b are arranged in a row on the substrate 40 so as to sandwich the light receiving unit 20.

また、投光部10a,10bは、受光部20までの距離が等しく配置されている。具体的には、受光部20から投光部10aまでの距離LH1は、受光部20から投光部10bまでの距離LH2に等しい。   Further, the light projecting units 10a and 10b are arranged at equal distances to the light receiving unit 20. Specifically, the distance LH1 from the light receiving unit 20 to the light emitting unit 10a is equal to the distance LH2 from the light receiving unit 20 to the light emitting unit 10b.

図5は、投光部10,10bの瞬間照射野(iFOI)(Instantaneous Field of Illumination)及び受光部20の瞬間視野(iFOV)(Instantaneous Field of View)の態様を示している。尚、図中の破線矢印は、照射光EL2の進行方向を示している。   FIG. 5 shows a mode of an instantaneous field of illumination (iFOI) of the light projecting units 10 and 10b and an instantaneous field of view (iFOV) of the light receiving unit 20. In addition, the broken line arrow in the figure has shown the traveling direction of irradiation light EL2.

具体的には、図5は、投光部10a,10bの瞬間照射野(iFOI)及び受光部20の瞬間視野(iFOV)の図中の破線矢印で示した照射光EL2の進行方向に対して垂直な方向の断面を測距装置100からの距離に応じて示している。   Specifically, FIG. 5 shows the instantaneous irradiation fields (iFOI) of the light projecting units 10a and 10b and the instantaneous field of view (iFOV) of the light receiving unit 20 with respect to the traveling direction of the irradiation light EL2 indicated by the broken arrow in the drawing. The cross section in the vertical direction is shown according to the distance from the distance measuring apparatus 100.

ここで、瞬間照射野(iFOI)とは、注目する瞬間に出射光ELが照射される領域である。例えば、瞬間照射野(iFOI)とは、投光部10a,10bの投光レンズ(図示しない)により光源形状(図示しない)が投影される各々の角度範囲、もしくは各々の和の角度範囲であり、瞬間視野(iFOV)とは、受光部20の受光レンズにより受光部20の受光面が見込む角度範囲である。   Here, the instantaneous irradiation field (iFOI) is a region irradiated with the emission light EL at the moment of interest. For example, the instantaneous irradiation field (iFOI) is an angle range in which a light source shape (not shown) is projected by a light emitting lens (not shown) of the light emitting units 10a and 10b, or an angle range of each sum. The instantaneous visual field (iFOV) is an angle range in which the light receiving surface of the light receiving unit 20 can be seen by the light receiving lens of the light receiving unit 20.

図中の二点鎖線は、投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b))を示している。また、図中の一点鎖線は、受光部20の瞬間視野(iFOV)を示している。   The two-dot chain line in the figure indicates the instantaneous irradiation field (iFOI (a)) of the light emitting unit 10a and the instantaneous irradiation field (iFOI (b)) of the light emitting unit 10b. The dashed line in the figure indicates the instantaneous visual field (iFOV) of the light receiving unit 20.

投光部10a,10bは、安全基準を満たす出力で各々が照射光EL2を出射する。安全基準は、測距装置100から所定の距離における光の強度に基づいて定められている。安全基準は、例えば、測距装置100から100mmにおける光の強度に基づいて定められている。また、投光部10a及び投光部10bが出射する出射光ELの瞬間照射野(iFOI(a),iFOI(b))は瞬間視野(iFOV)よりも小さい。   Each of the light emitting units 10a and 10b emits the irradiation light EL2 with an output satisfying the safety standard. The safety standard is determined based on the light intensity at a predetermined distance from the distance measuring device 100. The safety standard is determined based on, for example, the light intensity at a distance of 100 mm from the distance measuring device 100. Further, the instantaneous irradiation fields (iFOI (a), iFOI (b)) of the emitted light EL emitted from the light projecting units 10a and 10b are smaller than the instantaneous field of view (iFOV).

測距装置100からの距離に応じて、瞬間視野(iFOV)内における瞬間照射野(iFOI(a),iFOI(b))の各々の位置関係は変化する。具体的には、測距装置100からの距離が遠くなるにつれて、瞬間照射野(iFOI(a),iFOI(b))は互いに近づき、測距装置100からの所定の距離において互いに接する。   The positional relationship of each of the instantaneous irradiation fields (iFOI (a), iFOI (b)) in the instantaneous visual field (iFOV) changes according to the distance from the distance measuring apparatus 100. Specifically, as the distance from the distance measuring apparatus 100 increases, the instantaneous irradiation fields (iFOI (a), iFOI (b)) approach each other and come into contact with each other at a predetermined distance from the distance measuring apparatus 100.

距離L1〜L4は、測距装置100からの距離である。例えば、距離L1〜L4は、受光部20からの距離である。また、距離L1〜L4は、投光部10a又は投光部10bからの距離であってもよい。   The distances L1 to L4 are distances from the distance measuring device 100. For example, the distances L1 to L4 are distances from the light receiving unit 20. Further, the distances L1 to L4 may be distances from the light emitting unit 10a or the light emitting unit 10b.

距離L1は、安全基準で定められている測距装置100からの距離である。距離L1の位置において、投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b))は、受光部20の瞬間視野(iFOV)の外側に配されている。   The distance L1 is a distance from the distance measuring device 100 defined by the safety standard. At the position of the distance L1, the instantaneous irradiation field (iFOI (a)) of the light emitting unit 10a and the instantaneous irradiation field (iFOI (b)) of the light emitting unit 10b are arranged outside the instantaneous field of view (iFOV) of the light receiving unit 20. Have been.

従って、距離L1の位置における投光部10a、10bが出射する照射光EL2の強度は、安全基準を満たしている。尚、距離L1の位置において、投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b)のうち、いずれか一方、又はその両方が、受光部20の瞬間視野(iFOV)の内側に配されていてもよい。この場合、距離L1の位置における安全基準を満たすように適宜、照射光EL2の出力を調整するとよい。   Therefore, the intensity of the irradiation light EL2 emitted from the light emitting units 10a and 10b at the position of the distance L1 satisfies the safety standard. At the position of the distance L1, one or both of the instantaneous irradiation field (iFOI (a)) of the light emitting unit 10a and the instantaneous irradiation field (iFOI (b)) of the light emitting unit 10b are set to the light receiving unit. It may be arranged inside the instantaneous visual field (iFOV) of 20. In this case, the output of the irradiation light EL2 may be appropriately adjusted so as to satisfy the safety standard at the position of the distance L1.

距離L2は、測距装置100からの距離であり、距離L1よりも長い。距離L2は、例えば、測距装置100から50mである。距離L2の位置において、投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b)の一部は、受光部20の瞬間視野(iFOV)の内側に配されている。したがって、距離L2の位置において物体OBが存在する場合、受光部20は、物体OBの測距を行うにあたり十分な反射光RLを得ることができる。このため、測距装置100は、距離L2よりも遠い距離に存在する物体OBの測距を行うことができる。   The distance L2 is a distance from the distance measuring device 100, and is longer than the distance L1. The distance L2 is, for example, 50 m from the distance measuring device 100. At the position of the distance L2, a part of the instantaneous irradiation field (iFOI (a)) of the light emitting unit 10a and a part of the instantaneous irradiation field (iFOI (b) of the light emitting unit 10b are inside the instantaneous field of view (iFOV) of the light receiving unit 20. Therefore, when the object OB exists at the position of the distance L2, the light receiving unit 20 can obtain a sufficient reflected light RL for measuring the distance of the object OB. 100 can measure the distance of the object OB existing at a distance longer than the distance L2.

距離L3は、測距装置100からの距離であり、距離L2よりも長い。距離L3は、例えば、測距装置100から100mである。距離L3の位置において、投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b)の一部は、受光部20の瞬間視野(iFOV)の内側に配されている。   The distance L3 is a distance from the distance measuring device 100, and is longer than the distance L2. The distance L3 is, for example, 100 m from the distance measuring device 100. At the position of the distance L3, a part of the instantaneous irradiation field (iFOI (a)) of the light emitting unit 10a and a part of the instantaneous irradiation field (iFOI (b) of the light emitting unit 10b are located inside the instantaneous field of view (iFOV) of the light receiving unit 20. It is arranged in.

また、距離L3において受光部20の瞬間視野(iFOV)の内側に配されている投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b)の領域の割合は、距離L2よりも多い。   In addition, the instantaneous irradiation field (iFOI (a)) of the light projecting unit 10a and the instantaneous irradiation field (iFOI (b)) of the light projecting unit 10b arranged inside the instantaneous field of view (iFOV) of the light receiving unit 20 at the distance L3. The ratio of the area is larger than the distance L2.

したがって、距離L3の位置に物体OBが存在する場合、受光部20は、物体OBの測距を行うにあたり十分な反射光RLが得ることができる。このため、測距装置100は、瞬間視野(iFOV)内に配される瞬間照射野(iFOI)の密度が、距離L2に物体OBが存在する場合よりも高い状態で測距を行うことができる。   Therefore, when the object OB exists at the position of the distance L3, the light receiving unit 20 can obtain sufficient reflected light RL for measuring the distance of the object OB. For this reason, the ranging device 100 can perform ranging in a state where the density of the instantaneous irradiation field (iFOI) arranged in the instantaneous field of view (iFOV) is higher than when the object OB exists at the distance L2. .

距離L4は、測距装置100からの距離であり、距離L3よりも長い。距離L4は、例えば、測距装置100から200mである。   The distance L4 is a distance from the distance measuring device 100, and is longer than the distance L3. The distance L4 is, for example, 200 m from the distance measuring device 100.

距離L4の位置において、投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b)は、受光部20の瞬間視野(iFOV)の内側に配されている。   At the position of the distance L4, the instantaneous irradiation field (iFOI (a)) of the light emitting unit 10a and the instantaneous irradiation field (iFOI (b)) of the light emitting unit 10b are arranged inside the instantaneous field of view (iFOV) of the light receiving unit 20. ing.

すなわち、距離L4において受光部20の瞬間視野(iFOV)の内側に配されている投光部10aの瞬間照射野(iFOI(a))及び投光部10bの瞬間照射野(iFOI(b)の領域の割合は、距離L3よりも多い。   That is, the instantaneous irradiation field (iFOI (a)) of the light projecting unit 10a and the instantaneous irradiation field (iFOI (b)) of the light projecting unit 10b arranged inside the instantaneous field of view (iFOV) of the light receiving unit 20 at the distance L4. The ratio of the area is larger than the distance L3.

従って、距離L4の位置に物体OBが存在する場合、受光部20は、物体OBの測距を行うにあたり十分な反射光RLが得られる。このため、測距装置100は、瞬間視野(iFOV)内に配される瞬間照射野(iFOI)の密度が、距離L3に物体OBが存在する場合よりも高い状態で測距を行うことができる。   Therefore, when the object OB exists at the position of the distance L4, the light receiving unit 20 can obtain a sufficient reflected light RL for measuring the distance of the object OB. For this reason, the ranging device 100 can perform ranging in a state where the density of the instantaneous irradiation field (iFOI) arranged in the instantaneous field of view (iFOV) is higher than when the object OB exists at the distance L3. .

図6Aは、図5の距離L4における照射面VSでの瞬間照射野(iFOI(a),iFOI(b))を示している。図6Aにおいて、光源11から所定の距離(r)の位置に照射面VSが配されている。照射面VS上に投光部10a,10bの光源11の瞬間照射野(iFOI(a),iFOI(b))が示されている。   FIG. 6A shows instantaneous irradiation fields (iFOI (a), iFOI (b)) on the irradiation surface VS at the distance L4 in FIG. In FIG. 6A, the irradiation surface VS is arranged at a position at a predetermined distance (r) from the light source 11. The instantaneous irradiation fields (iFOI (a), iFOI (b)) of the light source 11 of the light projecting units 10a, 10b are shown on the irradiation surface VS.

照射面VS上における瞬間照射野(iFOI(a),iFOI(b))は、矩形状に示されている。尚、照射面VS上における瞬間照射野(iFOI(a),iFOI(b))は、矩形状に限られず、例えば、円状や楕円状になるように光源11を構成してもよい。   The instantaneous irradiation fields (iFOI (a), iFOI (b)) on the irradiation surface VS are shown in a rectangular shape. Note that the instantaneous irradiation field (iFOI (a), iFOI (b)) on the irradiation surface VS is not limited to a rectangular shape, and the light source 11 may be configured to have, for example, a circular shape or an elliptical shape.

ここで、立体角は、空間上の同一の点から出る半直線が動いてつくる錐面によって区切られた部分のことをいう。立体角は、当該点を中心とする半径が1の球から当該錐面が切り取った面積の大きさで表すことができる。   Here, the solid angle refers to a portion divided by a conical surface formed by moving a half line coming out of the same point in space. The solid angle can be represented by the size of an area obtained by cutting the conical surface from a sphere having a radius of 1 around the point.

本実施例において空間上の同一の点を光源11とした場合、光源11が瞬間照射野(iFOI(a),iFOI(b))を見込む立体角は、照射面VS上における瞬間照射野(iFOI(a),iFOI(b))で表される。尚、瞬間照射野(iFOI(a),iFOI(b))の中心CIと光源11とを結ぶ線を軸AX1とする。   In the present embodiment, when the same point in space is the light source 11, the solid angle at which the light source 11 sees the instantaneous irradiation field (iFOI (a), iFOI (b)) is determined by the instantaneous irradiation field (iFOI) on the irradiation surface VS. (A), iFOI (b)). A line connecting the center CI of the instantaneous irradiation field (iFOI (a), iFOI (b)) and the light source 11 is defined as an axis AX1.

図6Bは、図5の距離L4における照射面VSでの瞬間視野(iFOV)を示している。図6Bにおいて、受光素子22から所定の距離(r)の位置に照射面VSが配されている。すなわち、図6Aの光源11から照射面VSまでの距離と、受光素子22から照射面VSまでの距離は等しい。   FIG. 6B shows the instantaneous visual field (iFOV) on the irradiation surface VS at the distance L4 in FIG. In FIG. 6B, the irradiation surface VS is arranged at a position at a predetermined distance (r) from the light receiving element 22. That is, the distance from the light source 11 to the irradiation surface VS in FIG. 6A is equal to the distance from the light receiving element 22 to the irradiation surface VS.

照射面VS上に受光部20の瞬間視野(iFOV)が示されている。照射面VS上における瞬間視野(iFOV)は、矩形状に示されている。尚、照射面VS上における瞬間視野(iFOV)は、矩形状に限られず、例えば、円状や楕円状になるように受光部20の受光素子22を構成してもよい。   The instantaneous visual field (iFOV) of the light receiving unit 20 is shown on the irradiation surface VS. The instantaneous visual field (iFOV) on the irradiation surface VS is shown in a rectangular shape. Note that the instantaneous field of view (iFOV) on the irradiation surface VS is not limited to a rectangular shape, and the light receiving element 22 of the light receiving unit 20 may be configured to have, for example, a circular shape or an elliptical shape.

また、照射面VS上の瞬間視野(iFOV)の内側には、図6Aで示した瞬間照射野(iFOI(a),iFOI(b))が示されている。照射面VS上における、瞬間視野(iFOV)は、瞬間照射野(iFOI(a),iFOI(b))よりも大きい。   Further, inside the instantaneous visual field (iFOV) on the irradiation surface VS, the instantaneous irradiation fields (iFOI (a), iFOI (b)) shown in FIG. 6A are shown. The instantaneous visual field (iFOV) on the irradiation surface VS is larger than the instantaneous irradiation field (iFOI (a), iFOI (b)).

本実施例において空間上の同一の点を受光素子22とした場合、受光素子22が瞬間視野(iFOV)を見込む立体角は、照射面VS上における瞬間視野(iFOV)で表される。   In this embodiment, when the same point in space is the light receiving element 22, the solid angle at which the light receiving element 22 looks at the instantaneous field of view (iFOV) is represented by the instantaneous field of view (iFOV) on the irradiation surface VS.

従って、光源11が瞬間照射野(iFOI(a),iFOI(b))見込む立体角は、受光素子22が瞬間視野(iFOV)を見込む立体角よりも小さい。言い換えれば、受光素子22が瞬間視野(iFOV)を見込む立体角は、光源11が瞬間照射野(iFOI(a),iFOI(b))を見込む立体角よりも大きい。尚、瞬間視野(iFOV)の中心CVと受光素子22とを結ぶ線を軸AX2とする。   Therefore, the solid angle at which the light source 11 sees the instantaneous irradiation field (iFOI (a), iFOI (b)) is smaller than the solid angle at which the light receiving element 22 looks at the instantaneous field of view (iFOV). In other words, the solid angle at which the light receiving element 22 looks at the instantaneous visual field (iFOV) is larger than the solid angle at which the light source 11 looks at the instantaneous irradiation field (iFOI (a), iFOI (b)). Note that a line connecting the center CV of the instantaneous visual field (iFOV) and the light receiving element 22 is defined as an axis AX2.

図6Cは、距離L4に位置する照射面VSにおける瞬間照射野(iFOI(a)、iFOI(b))及び瞬間視野(iFOV)を示している。尚、照射面VS上における瞬間照射野(iFOI(a)、iFOI(b))及び瞬間視野(iFOV)は、矩形状に示されている。   FIG. 6C shows an instantaneous irradiation field (iFOI (a), iFOI (b)) and an instantaneous field of view (iFOV) on the irradiation surface VS located at the distance L4. The instantaneous irradiation fields (iFOI (a), iFOI (b)) and the instantaneous field of view (iFOV) on the irradiation surface VS are shown in a rectangular shape.

図6Cに示すように、距離L4に位置する照射面VSにおいて、照射領域RIは、投光部10a,10bの各々の瞬間照射野(iFOI(a),iFOI(b))によって形成されている。照射領域RIは、投光部10a,10bの各々によって照らされている領域である。   As shown in FIG. 6C, on the irradiation surface VS located at the distance L4, the irradiation region RI is formed by the instantaneous irradiation fields (iFOI (a), iFOI (b)) of the light emitting units 10a and 10b. . The irradiation area RI is an area illuminated by each of the light emitting units 10a and 10b.

照射領域RIは、例えば、距離L4に位置する照射面VSにおいて、照射光EL2が照射される領域のうち、当該領域の中心における照射光EL2の明るさの半分を少なくとも有する領域である。   The irradiation area RI is, for example, an area having at least half of the brightness of the irradiation light EL2 at the center of the irradiation light EL2 on the irradiation surface VS located at the distance L4.

視野領域RVは、距離L4に位置する照射面VSにおいて、受光部20の瞬間視野(iFOV)によって形成されている。照射領域RIは、距離L4に位置する照射面VSにおいて、視野領域RVの全体を含んでいる。   The visual field region RV is formed by the instantaneous visual field (iFOV) of the light receiving unit 20 on the irradiation surface VS located at the distance L4. The irradiation region RI includes the entire viewing region RV on the irradiation surface VS located at the distance L4.

尚、照射領域RIが瞬間視野RVの全体を含んでいる走査領域R上の位置、すなわち、測距装置100からの距離は、適宜調整することができる。例えば、当該測距装置100からの距離は、距離L2や距離L3のように、距離L4よりも測距装置100に近い距離であってもよいし、距離L4よりも測距装置100に遠い距離であってもよい。   Note that the position on the scanning region R in which the irradiation region RI includes the entire instantaneous visual field RV, that is, the distance from the distance measuring device 100 can be adjusted as appropriate. For example, the distance from the distance measuring device 100 may be a distance closer to the distance measuring device 100 than the distance L4, such as the distance L2 or the distance L3, or a distance farther than the distance L4 to the distance measuring device 100. It may be.

図7は、測距装置100の測距方法を示す処理フローである。図7に示すように、制御部30は、投光部10a,10bの各々から照射光EL2を同時に出射させる(ステップS01)。言い換えれば、測距装置100は、投光部10a,10bの各々から照射光EL2を同時に出射する。具体的には、制御部30は、投光部10a,10bの各々の光源11からパルス光EL1を出射させる。制御部30は、投光部10a,10bの各々の光偏向素子12によってパルス光EL1を偏向させる。この結果、投光部10a,10bの各々から照射光EL2が同時に出射される。   FIG. 7 is a processing flow illustrating a distance measuring method of the distance measuring apparatus 100. As shown in FIG. 7, the control unit 30 simultaneously emits the irradiation light EL2 from each of the light projecting units 10a and 10b (step S01). In other words, the distance measuring apparatus 100 simultaneously emits the irradiation light EL2 from each of the light emitting units 10a and 10b. Specifically, the control unit 30 causes the light sources 11 of the light emitting units 10a and 10b to emit pulsed light EL1. The control unit 30 deflects the pulse light EL1 by the light deflecting elements 12 of the light projecting units 10a and 10b. As a result, the irradiation light EL2 is simultaneously emitted from each of the light emitting units 10a and 10b.

次いで、制御部30は、照射光EL2が物体OBで反射した反射光RLを受光部20に受光させる(ステップS02)。言い換えれば、測距装置100は、受光部20で瞬間視野(iFOV)をもって反射光RLを受光する。具体的には、制御部30は、反射光RLを受光部20の光偏向素子21によって偏向させ、偏向された反射光RLを受光素子22において受光させる。   Next, the control unit 30 causes the light receiving unit 20 to receive the reflected light RL of the irradiation light EL2 reflected by the object OB (Step S02). In other words, in the distance measuring apparatus 100, the light receiving unit 20 receives the reflected light RL with the instantaneous visual field (iFOV). Specifically, the control unit 30 deflects the reflected light RL by the light deflection element 21 of the light receiving unit 20 and causes the light receiving element 22 to receive the deflected reflected light RL.

制御部30は、パルス光EL1及び反射光RLに基づいて物体OBまでの距離を測距する(ステップS03)。言い換えれば、測距装置100は、パルス光EL1及び反射光RLに基づいて物体OBまでの距離を測距する。   The control unit 30 measures the distance to the object OB based on the pulse light EL1 and the reflected light RL (Step S03). In other words, the distance measuring device 100 measures the distance to the object OB based on the pulse light EL1 and the reflected light RL.

具体的には、制御部30は、光源11によって出射された1のパルス光の出射時刻と、当該1のパルス光が反射光RLとして受光素子22で検出された受光時刻と、を取得する。制御部30は、当該出射時刻と当該受光時刻の時刻差に基づいて、測距装置100と物体OBとの距離を算出する。   Specifically, the control unit 30 acquires the emission time of one pulse light emitted by the light source 11 and the light reception time at which the one pulse light is detected by the light receiving element 22 as the reflected light RL. The control unit 30 calculates the distance between the distance measuring device 100 and the object OB based on the time difference between the emission time and the light reception time.

以上のように、受光部20、投光部10a、10bから出射される各々の出射光ELの強度は、距離L1の位置において安全基準を満たしている。   As described above, the intensity of each emitted light EL emitted from the light receiving unit 20 and the light emitting units 10a and 10b satisfies the safety standard at the position of the distance L1.

また、測距装置100からの距離が距離L1よりも遠い距離L2以降においては、投光部10a,10bの瞬間照射野(iFOI(a)、iFOI(b))が瞬間視野(iFOV)内に配されている。また、測距装置100からの距離が遠くなるにつれて、瞬間視野(iFOV)内に配される瞬間照射野(iFOI(a)、iFOI(b))の領域の割合が高くなる。したがって、本実施例に係る測距装置100によれば、レーザ光の出力に関する安全基準を順守し、かつ遠方に位置する物体OBの測距を精度よく行うことが可能となる。   In addition, after the distance L2, which is farther than the distance L1, from the distance measuring apparatus 100, the instantaneous irradiation fields (iFOI (a), iFOI (b)) of the light projecting units 10a, 10b are within the instantaneous field of view (iFOV). Are arranged. Further, as the distance from the distance measuring apparatus 100 increases, the ratio of the area of the instantaneous irradiation field (iFOI (a), iFOI (b)) arranged in the instantaneous field of view (iFOV) increases. Therefore, according to the distance measuring apparatus 100 according to the present embodiment, it is possible to observe the safety standard regarding the output of the laser beam and accurately measure the distance of the object OB located at a long distance.

尚、本願発明の測距装置100が行っている情報処理は、上記実施例において測距装置100が行っている情報処理を実行させるプログラムによって実行することができる。なお、本願発明の情報処理方法を実行させるプログラムは、コンピュータで読み取り可能な記録媒体に記録され、好適に使用することができる。例えば、本願発明の測距装置100が、本願発明のプログラムを記録媒体から読み取り、本願発明のプログラムを実行することができる。   The information processing performed by the distance measuring apparatus 100 of the present invention can be executed by a program that executes the information processing performed by the distance measuring apparatus 100 in the above embodiment. The program for executing the information processing method of the present invention is recorded on a computer-readable recording medium, and can be suitably used. For example, the distance measuring apparatus 100 of the present invention can read the program of the present invention from a recording medium and execute the program of the present invention.

また、投光部10a,10bの配置は、本実施例の配置例に限られず、例えば、図8に示すように、投光部10a,10bは、基板40上において図4に示した投光部10a,10bの配列方向に対して垂直な方向に列状に基板40上に配置してもよい。   Further, the arrangement of the light projecting units 10a and 10b is not limited to the arrangement example of the present embodiment. For example, as shown in FIG. The portions 10a and 10b may be arranged on the substrate 40 in a row in a direction perpendicular to the arrangement direction.

このように投光部10a,10bを配置した場合、図4において説明したように、投光部10a,10bは、受光部20までの距離が等しく配置するとよい。具体的には、受光部20から投光部10aまでの距離LV1は、受光部20から投光部10bまでの距離LV2と等しくするとよい。   When the light projecting units 10a and 10b are arranged as described above, it is preferable that the light projecting units 10a and 10b have the same distance to the light receiving unit 20, as described in FIG. Specifically, the distance LV1 from the light receiving unit 20 to the light emitting unit 10a may be equal to the distance LV2 from the light receiving unit 20 to the light emitting unit 10b.

さらに、瞬間照射野(iFOI(a),iFOI(b))の調整は、光源11から出射された照射光EL2を遮蔽することにより行うとよい。図9は、投光部10a,10bに遮蔽部材SCを設けた構成例を示している。図9に示すように、遮蔽部材SCは、光源11と光偏向素子12との間に設けられている。遮蔽部材SCは、パルス光EL1の一部を遮蔽する。従って、パルス光EL1は、その一部が遮蔽部材SCで遮蔽されて光偏向素子12の光反射面MRに入射する。   Further, the adjustment of the instantaneous irradiation field (iFOI (a), iFOI (b)) may be performed by blocking the irradiation light EL2 emitted from the light source 11. FIG. 9 shows a configuration example in which the light-projecting units 10a and 10b are provided with a shielding member SC. As shown in FIG. 9, the shielding member SC is provided between the light source 11 and the light deflecting element 12. The shielding member SC shields a part of the pulsed light EL1. Therefore, a part of the pulse light EL1 is shielded by the shield member SC and enters the light reflection surface MR of the light deflection element 12.

遮蔽部材SCによって瞬間照射野(iFOI(a),iFOI(b))を調整することにより、照射光EL2を出射する光源11の出力の設定が容易になる。例えば、光源11から出射されたパルス光EL1のうち半分をカットする場合、パルス光EL1の半分を遮蔽部材SCで遮蔽することによりこれを実現することができる。従って、光源11に供給される電流を制御する構成を必要とすることなく、簡易な構成でパルス光を出射する光源11のパワーの設定が容易になる。   By adjusting the instantaneous irradiation field (iFOI (a), iFOI (b)) by the shielding member SC, it is easy to set the output of the light source 11 that emits the irradiation light EL2. For example, when cutting half of the pulse light EL1 emitted from the light source 11, this can be realized by shielding half of the pulse light EL1 with the shielding member SC. Therefore, it is easy to set the power of the light source 11 that emits pulsed light with a simple configuration without requiring a configuration for controlling the current supplied to the light source 11.

実施例1においては、受光部20は、受光部としての機能を有するように構成した。しかし、受光部は、受光部としての機能のみならず投光部としての機能を有するように構成してもよい。尚、実施例1に係る測距装置100と同一の構成については、同一の符号を付して説明を省略する。   In the first embodiment, the light receiving unit 20 is configured to have a function as a light receiving unit. However, the light receiving unit may be configured to have not only a function as a light receiving unit but also a function as a light emitting unit. Note that the same components as those of the distance measuring apparatus 100 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図10は、実施例2に係る測距装置100の機能ブロックを示している。図10に示すように、投受光部50の光源51は、出射光を出射する発光装置である。光源51は、投光部10a,10bの光源11と同一の構成を有する。   FIG. 10 illustrates functional blocks of the distance measuring apparatus 100 according to the second embodiment. As shown in FIG. 10, the light source 51 of the light emitting / receiving unit 50 is a light emitting device that emits outgoing light. The light source 51 has the same configuration as the light source 11 of the light emitting units 10a and 10b.

光偏向素子52は、制御信号に応じて光ビームを偏向させる装置である。言い換えれば、光偏向素子52は、パルス光EL1の方向及び反射光RLの方向を可変に偏向させることができる。光偏向素子52は、光反射面(図示せず)を含む出射光反射部材を有している。   The light deflection element 52 is a device that deflects a light beam according to a control signal. In other words, the light deflection element 52 can variably deflect the direction of the pulse light EL1 and the direction of the reflected light RL. The light deflecting element 52 has an outgoing light reflecting member including a light reflecting surface (not shown).

光偏向素子52は、光偏向素子12と同様にMEMSミラー装置等を用いることができる。光偏向素子52は、当該光反射面にてパルス光を反射して、走査対象領域Rに向けて照射光EL2を出射可能であると共に、受光素子53に向けて反射光を偏向可能である。したがって、光偏向素子52は、出射光偏光素子及び反射光偏光素子として機能する。   As the light deflection element 52, a MEMS mirror device or the like can be used similarly to the light deflection element 12. The light deflecting element 52 can reflect the pulse light on the light reflecting surface and emit the irradiation light EL2 toward the scanning target region R, and can deflect the reflected light toward the light receiving element 53. Therefore, the light deflecting element 52 functions as an outgoing light polarizing element and a reflected light polarizing element.

尚、光源51と、光偏向素子52との間にビームスプリッタ(図示せず)を設けて、パルス光EL1と反射光RLを分けるようにするとよい。   Note that a beam splitter (not shown) may be provided between the light source 51 and the light deflecting element 52 to separate the pulse light EL1 from the reflected light RL.

受光素子53は、光偏向素子52で偏向された反射光RLを受光して、電気信号である受光信号を生成する。受光素子53としては、例えば、アバランシェフォトダイオード等を採用することができる。   The light receiving element 53 receives the reflected light RL deflected by the light deflecting element 52 and generates a light receiving signal that is an electric signal. As the light receiving element 53, for example, an avalanche photodiode or the like can be used.

このように、投受光部50は、投光部の機能と受光部の機能を有している。従って、投受光部50の瞬間照射野(iFOI)の軸AX1は、瞬間視野(iFOV)の軸AX2と一致している。   Thus, the light emitting / receiving unit 50 has a function of a light emitting unit and a function of a light receiving unit. Therefore, the axis AX1 of the instantaneous irradiation field (iFOI) of the light emitting and receiving unit 50 coincides with the axis AX2 of the instantaneous visual field (iFOV).

以上のように、本実施例の測距装置100によれば、実施例1の測距装置100と同様に、レーザ光の出力に関する安全基準を順守し、かつ遠方に位置する物体OBの測距を精度よく行うことが可能となる。また、投受光部50の瞬間照射野(iFOI)の軸AX1は、瞬間視野(iFOV)の軸AX2と一致していることにより、例えば、測距装置100からの距離が距離L2よりも短い距離に物体OBが存在している場合でも、当該物体OBの測距を精度よく行うことが可能となる。   As described above, according to the distance measuring apparatus 100 of the present embodiment, similarly to the distance measuring apparatus 100 of the first embodiment, the safety standard regarding the output of the laser beam is observed, and the distance of the object OB located at a long distance is measured. Can be performed with high accuracy. Also, since the axis AX1 of the instantaneous irradiation field (iFOI) of the light emitting and receiving unit 50 coincides with the axis AX2 of the instantaneous visual field (iFOV), for example, the distance from the distance measuring device 100 is shorter than the distance L2. Even if the object OB exists in the object OB, it is possible to accurately measure the distance of the object OB.

実施例1に係る測距装置100は、投光部10a及び投光部10bは、瞬間視野(iFOV)において、互いに異なる位置に配されていた。しかし、投光部10a及び投光部10bは、瞬間視野(iFOV)において、互いに重なる位置に配されているようにしてもよい。尚、実施例1に係る測距装置100と同一の構成については、同一の符号を付して説明を省略する。   In the distance measuring apparatus 100 according to the first embodiment, the light projecting unit 10a and the light projecting unit 10b are arranged at different positions in the instantaneous visual field (iFOV). However, the light projecting unit 10a and the light projecting unit 10b may be arranged at positions overlapping each other in the instantaneous visual field (iFOV). Note that the same components as those of the distance measuring apparatus 100 according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

図11は、実施例3に係る測距装置100の投光部10及び受光部20の配置例を示している。図11に示すように、投光部10a〜10dは、基板40上において受光部20を挟み込むように列状に配置されている。具体的には、投光部10a〜10dは、投光部10a及び投光部10dが列の末端に配され、投光部10b,10cがその間に配されている。投光部10b,10cの間には、受光部20が配されている。   FIG. 11 illustrates an example of the arrangement of the light projecting unit 10 and the light receiving unit 20 of the distance measuring apparatus 100 according to the third embodiment. As shown in FIG. 11, the light projecting units 10a to 10d are arranged in a row on the substrate 40 so as to sandwich the light receiving unit 20. Specifically, in the light emitting units 10a to 10d, the light emitting unit 10a and the light emitting unit 10d are arranged at the end of the row, and the light emitting units 10b and 10c are arranged between them. A light receiving unit 20 is arranged between the light emitting units 10b and 10c.

また、投光部10aと投光部10bとの間の距離、投光部10bと受光部20との間の距離、受光部20と投光部10cとの間に距離、及び投光部10cと投光部10dとの間の距離は等しく配置されている。   Further, the distance between the light emitting unit 10a and the light emitting unit 10b, the distance between the light emitting unit 10b and the light receiving unit 20, the distance between the light receiving unit 20 and the light emitting unit 10c, and the distance between the light emitting unit 10c And the light projecting unit 10d are equally spaced.

図12は、距離L4に位置する照射面VSにおける瞬間照射野(iFOI(a)〜iFOI(d))及び瞬間視野(iFOV)を示している。尚、照射面VS上における瞬間照射野(iFOI(a)〜iFOI(d))及び瞬間視野(iFOV)は、矩形状に示されている。   FIG. 12 shows an instantaneous irradiation field (iFOI (a) to iFOI (d)) and an instantaneous visual field (iFOV) on the irradiation surface VS located at the distance L4. Note that the instantaneous irradiation fields (iFOI (a) to iFOI (d)) and the instantaneous field of view (iFOV) on the irradiation surface VS are shown in a rectangular shape.

図12に示すように、距離L4に位置する照射面VSにおいて、照射領域RIは、投光部10a〜10dの各々の瞬間照射野(iFOI(a)〜iFOI(d))によって形成されている。   As shown in FIG. 12, on the irradiation surface VS located at the distance L4, the irradiation region RI is formed by the instantaneous irradiation fields (iFOI (a) to iFOI (d)) of the light emitting units 10a to 10d. .

具体的には、照射領域RIは、照射面VSにおいて投光部10a〜10dの各々によって照らされている領域である。照射領域RIは、視野領域RVの全体を含んでいる。   Specifically, the irradiation area RI is an area illuminated by each of the light emitting units 10a to 10d on the irradiation surface VS. The irradiation region RI includes the entire viewing region RV.

投光部10a〜10dのうちの一組の投光部10a,10bの各々の照射面VSにおける瞬間照射野(iFOI(a),iFOI(b))は、照射面VSにおける瞬間視野(iFOV)上において互いに重なっている。また、投光部10a〜10dのうちの一組の投光部10c,10dの各々の照射面VSにおける瞬間照射野(iFOI(c),iFOI(d))は、照射面VSにおける瞬間視野(iFOV)上において距離L4で互いに重なっている。   The instantaneous irradiation field (iFOI (a), iFOI (b)) on the irradiation surface VS of each of the set of light emitting units 10a and 10b among the light emitting units 10a to 10d is an instantaneous field of view (iFOV) on the irradiation surface VS. Above each other on top. In addition, the instantaneous irradiation field (iFOI (c), iFOI (d)) on the irradiation surface VS of each of the pair of light emitting units 10c and 10d among the light emitting units 10a to 10d has an instantaneous field of view ( on iFOV) at a distance L4.

視野領域RVは、距離L4に位置する照射面VSにおいて、受光部20の瞬間視野(iFOV)によって形成されている。照射領域RIは、距離L4に位置する照射面VSにおいて、視野領域RVの全体を含んでいる。   The visual field region RV is formed by the instantaneous visual field (iFOV) of the light receiving unit 20 on the irradiation surface VS located at the distance L4. The irradiation region RI includes the entire viewing region RV on the irradiation surface VS located at the distance L4.

ここで、投光部10a〜10dから出射された各々の出射光ELのうち、測距装置100からの距離において瞬間視野(iFOV)内に照射される出射光ELの強度の和を、測距装置100からの距離における照射光強度とする。   Here, the sum of the intensities of the outgoing light ELs emitted into the instantaneous visual field (iFOV) at a distance from the distance measuring device 100 among the outgoing light ELs emitted from the light projecting units 10a to 10d is determined by distance measurement. The irradiation light intensity at a distance from the device 100 is assumed.

このように、投光部10a,10bの各々の照射面VSにおける瞬間照射野(iFOI(a),iFOI(b))は、照射面VSにおける瞬間視野(iFOV)上で互いに重なっていることにより、当該瞬間照射野(iFOI(a),iFOI(b))が互いに重なっている領域における照射光強度を強くすることができる。同様に、投光部10c,10dの各々の照射面VSにおける瞬間照射野(iFOI(c),iFOI(d))は、照射面VSにおける瞬間視野(iFOV)上で互いに重なっていることにより、当該瞬間照射野(iFOI(c),iFOI(d))が互いに重なっている領域における照射光強度を強くすることができる。従って、受光部20が受光する反射光RLの光量を多くすることが可能となる。   As described above, the instantaneous irradiation fields (iFOI (a), iFOI (b)) on the irradiation surface VS of each of the light emitting units 10a and 10b overlap each other on the instantaneous field of view (iFOV) on the irradiation surface VS. In addition, it is possible to increase the irradiation light intensity in a region where the instantaneous irradiation fields (iFOI (a), iFOI (b)) overlap each other. Similarly, the instantaneous irradiation fields (iFOI (c), iFOI (d)) on the irradiation surface VS of each of the light projecting units 10c, 10d overlap each other on the instantaneous field of view (iFOV) on the irradiation surface VS. It is possible to increase the irradiation light intensity in a region where the instantaneous irradiation fields (iFOI (c), iFOI (d)) overlap each other. Therefore, the amount of the reflected light RL received by the light receiving unit 20 can be increased.

以上のように、本実施例の測距装置100によれば、実施例1の測距装置100と同様に、レーザ光の出力に関する安全基準を順守し、かつ遠方に位置する物体OBの測距を精度よく行うことが可能となる。特に、受光部20が受光する反射光RLの光量を多くすることが可能となるため、物体OBの測距を精度よく行うことが可能となる。   As described above, according to the distance measuring apparatus 100 of the present embodiment, similarly to the distance measuring apparatus 100 of the first embodiment, the safety standard regarding the output of the laser beam is observed, and the distance of the object OB located at a long distance is measured. Can be performed with high accuracy. In particular, since the amount of the reflected light RL received by the light receiving unit 20 can be increased, the distance measurement of the object OB can be accurately performed.

尚、投光部10a,10bの配置は、本実施例の配置例に限られず、例えば、図13に示すように、投光部10a〜10dは、基板40上において図11に示した投光部10a〜10dの配列方向に対して垂直な方向に列状に配置してもよい。   Note that the arrangement of the light emitting units 10a and 10b is not limited to the arrangement example of the present embodiment. For example, as shown in FIG. The sections 10a to 10d may be arranged in a row in a direction perpendicular to the arrangement direction.

このように投光部10a〜10dを配置した場合、図11において説明したように、投光部10aと投光部10bとの間の距離、投光部10bと受光部20との間の距離、受光部20と投光部10cとの間に距離、及び投光部10cと投光部10dとの間の距離は等しく配置されているとよい。   When the light projecting units 10a to 10d are arranged in this manner, as described in FIG. 11, the distance between the light projecting unit 10a and the light projecting unit 10b and the distance between the light projecting unit 10b and the light receiving unit 20 The distance between the light receiving unit 20 and the light projecting unit 10c and the distance between the light projecting unit 10c and the light projecting unit 10d may be equally arranged.

さらに、投光部10a〜10dは、基板40上において受光部20から等距離の位置に各々が配置されているようにしてもよい。図14は、変形例に係る測距装置100の投光部の配置例を示している。図14に示すように、受光部20から投光部10aまでの距離LH1は、受光部20から投光部10cまでの距離LH2に等しい。また、受光部20から投光部10bまでの距離LV1は、受光部20から投光部10dまでの距離LV2に等しい。さらに、距離LV1,LV2,LH1,LH2は、互いに等しい。   Further, each of the light emitting units 10a to 10d may be arranged on the substrate 40 at a position equidistant from the light receiving unit 20. FIG. 14 shows an example of the arrangement of the light projecting unit of the distance measuring apparatus 100 according to the modification. As shown in FIG. 14, the distance LH1 from the light receiving unit 20 to the light emitting unit 10a is equal to the distance LH2 from the light receiving unit 20 to the light emitting unit 10c. The distance LV1 from the light receiving unit 20 to the light emitting unit 10b is equal to the distance LV2 from the light receiving unit 20 to the light emitting unit 10d. Further, the distances LV1, LV2, LH1, LH2 are equal to each other.

尚、本実施例の受光部20は、実施例2で説明した投受光部50によって実施してもよい。   The light receiving unit 20 of the present embodiment may be implemented by the light emitting and receiving unit 50 described in the second embodiment.

100 測距装置
10a〜10d 投光部
11 光源
12 光偏向素子
20 投受光部
21 光源
22 受光素子
23 光偏向素子
30 制御部
40 距離測定部
iFOI 瞬間照射野
iFOV 瞬間視野
OB 物体
VS 照射面
REFERENCE SIGNS LIST 100 Distance measuring devices 10 a to 10 d Light projecting unit 11 Light source 12 Light deflecting element 20 Light emitting / receiving unit 21 Light source 22 Light receiving element 23 Light deflecting element 30 Control unit 40 Distance measuring unit iFOI Instantaneous irradiation field iFOV Instantaneous field of view OB Object VS Irradiation surface

Claims (9)

出射光を出射する光源及び前記出射光を方向可変に偏向させる出射光偏向素子を各々が含み、かつ各々が前記出射光偏向素子で偏光された前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、
前記照射光が物体で反射した反射光を方向可変に偏向させる反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を含み、かつ前記照射光の各々の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部と、
を有することを特徴とする光学装置。
A light source that emits outgoing light and an outgoing light deflecting element that deflects the outgoing light in a variable direction are included, and the outgoing light that is each polarized by the outgoing light deflector is irradiated light having an instantaneous irradiation field. A plurality of light emitting units for emitting light,
The illuminating light includes a reflected light deflecting element for deflecting the reflected light reflected by the object in a variable direction and a light receiving element for receiving the reflected light deflected by the reflected light deflecting element, and the moment of each of the illuminating light is included. A light receiving unit having a larger solid angle of the instantaneous field of view than the solid angle of the irradiation field,
An optical device, comprising:
前記受光部から所定の距離にある照射面において、前記複数の投光部の前記瞬間照射野によって形成される照射領域は、前記瞬間視野によって形成される視野領域を含んでいることを特徴とする請求項1に記載の測距装置。   On an irradiation surface at a predetermined distance from the light receiving unit, an irradiation area formed by the instantaneous irradiation fields of the plurality of light emitting units includes a visual field area formed by the instantaneous visual field. The distance measuring device according to claim 1. 前記複数の投光部のうちの少なくとも一組の投光部の各々の前記瞬間照射野は、前記瞬間視野上において前記受光部から所定の距離で互いに重なることを特徴とする請求項2に記載の光学装置。   The instantaneous irradiation field of each of at least one set of the light emitting units of the plurality of light emitting units overlaps with each other at a predetermined distance from the light receiving unit on the instantaneous field of view. Optical device. 前記投光部は、前記光源と前記出射光偏向素子との間に前記出射光の一部を遮蔽する遮蔽部材を有することを特徴とする請求項1乃至3のいずれかに記載の光学装置。   The optical device according to claim 1, wherein the light projecting unit includes a shielding member that shields a part of the emitted light between the light source and the emitted light deflecting element. 前記複数の投光部のうち1の投光部の瞬間照射野の軸は、前記瞬間視野の軸と一致していることを特徴とする請求項1乃至4のいずれかに記載の光学装置。   5. The optical device according to claim 1, wherein an axis of an instantaneous irradiation field of one of the plurality of light emitting units coincides with an axis of the instantaneous field of view. 6. 出射光を出射する光源及び前記出射光を方向可変に偏向させる出射光偏向素子を各々が含む複数の投光部と、前記出射光が物体で反射した反射光を方向可変に偏向させる反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を含み、かつ前記複数の投光部の各々の瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部と、を有する光学装置と、
前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、
を有することを特徴とする測距装置。
A plurality of light projecting units each including a light source for emitting outgoing light and an outgoing light deflecting element for deflecting the outgoing light in a variable direction; and a reflected light deflection for deflecting the reflected light of the outgoing light reflected by an object in a variable direction. A light receiving unit that includes a light receiving element that receives the reflected light deflected by the element and the reflected light deflecting element, and that has a larger solid angle of the instantaneous field of view than the solid angle of the instantaneous irradiation field of each of the plurality of light projecting units; An optical device having
A distance measuring unit that measures a distance to the object based on the emitted light and the reflected light,
A distance measuring device comprising:
出射光を出射する光源及び前記出射光を方向可変に偏向させる出射光偏向素子を各々が含み、かつ各々が前記出射光偏向素子で偏光された前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、前記照射光が物体で反射した反射光を方向可変に偏向させる反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を含み、かつ前記照射光の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部と、
前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有する測距装置によって実行される測距方法であって、
前記複数の投光部の各々から前記照射光を同時に出射する工程と、
前記受光部で前記瞬間視野をもって前記反射光を受光する工程と、
前記出射光及び前記反射光に基づいて前記物体までの距離を測距する工程と、
を含むことを特徴とする測距方法。
A light source that emits outgoing light and an outgoing light deflecting element that deflects the outgoing light in a variable direction are included, and the outgoing light that is each polarized by the outgoing light deflector is irradiated light having an instantaneous irradiation field. A plurality of light emitting units that emit, and a light receiving element that receives the reflected light deflected by the reflected light deflecting element and the reflected light deflecting element that deflects the reflected light reflected by the object in the direction, and And a light receiving unit having a larger solid angle of the instantaneous field of view than the solid angle of the instantaneous irradiation field of the irradiation light,
A distance measuring unit that measures a distance to the object based on the emitted light and the reflected light, and a distance measuring method executed by a distance measuring device,
Simultaneously emitting the irradiation light from each of the plurality of light emitting units,
Receiving the reflected light with the instantaneous field of view at the light receiving unit;
A step of measuring the distance to the object based on the emitted light and the reflected light,
A distance measuring method comprising:
出射光を出射する光源及び前記出射光を方向可変に偏向させる出射光偏向素子を各々が含み、かつ各々が前記出射光偏向素子で偏光された前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、
前記照射光が物体で反射した反射光を方向可変に偏向させる反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を含み、かつ前記照射光の各々の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部と、
前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有する測距装置に、
前記複数の投光部の各々から前記照射光を同時に出射する工程と、
前記受光部で前記瞬間視野をもって前記反射光を受光する工程と、
前記出射光及び前記反射光に基づいて前記物体までの距離を測距する工程と、
をさせることを特徴とするプログラム。
A light source that emits outgoing light and an outgoing light deflecting element that deflects the outgoing light in a variable direction are included, and the outgoing light that is each polarized by the outgoing light deflector is irradiated light having an instantaneous irradiation field. A plurality of light emitting units for emitting light,
The illuminating light includes a reflected light deflecting element for deflecting the reflected light reflected by the object in a variable direction and a light receiving element for receiving the reflected light deflected by the reflected light deflecting element, and the moment of each of the illuminating light is included. A light receiving unit having a larger solid angle of the instantaneous field of view than the solid angle of the irradiation field,
A distance measuring unit that measures a distance to the object based on the emitted light and the reflected light,
Simultaneously emitting the irradiation light from each of the plurality of light emitting units,
Receiving the reflected light with the instantaneous field of view at the light receiving unit;
A step of measuring the distance to the object based on the emitted light and the reflected light,
A program characterized by the following.
出射光を出射する光源及び前記出射光を方向可変に偏向させる出射光偏向素子を各々が含み、かつ各々が前記出射光偏向素子で偏光された前記出射光を、瞬間照射野を有する照射光として出射する複数の投光部と、
前記照射光が物体で反射した反射光を方向可変に偏向させる反射光偏向素子及び前記反射光偏向素子によって偏向された前記反射光を受光する受光素子を含み、かつ前記照射光の各々の前記瞬間照射野の立体角よりも瞬間視野の立体角が大きい受光部と、
前記出射光及び前記反射光に基づいて前記物体までの距離を測距する測距部と、を有する測距装置に、
前記複数の投光部の各々から前記照射光を同時に出射する工程と、
前記受光部で前記瞬間視野をもって前記反射光を受光する工程と、
前記出射光及び前記反射光に基づいて前記物体までの距離を測距する工程と、
をさせるプログラムが記録されていることを特徴とする記録媒体。
A light source that emits outgoing light and an outgoing light deflecting element that deflects the outgoing light in a variable direction are included, and the outgoing light that is each polarized by the outgoing light deflector is irradiated light having an instantaneous irradiation field. A plurality of light emitting units for emitting light,
The illuminating light includes a reflected light deflecting element for deflecting the reflected light reflected by the object in a variable direction and a light receiving element for receiving the reflected light deflected by the reflected light deflecting element, and the moment of each of the illuminating light is included. A light receiving unit having a larger solid angle of the instantaneous field of view than the solid angle of the irradiation field,
A distance measuring unit that measures a distance to the object based on the emitted light and the reflected light,
Simultaneously emitting the irradiation light from each of the plurality of light emitting units,
Receiving the reflected light with the instantaneous field of view at the light receiving unit;
A step of measuring the distance to the object based on the emitted light and the reflected light,
A recording medium characterized by recording a program for causing a computer to execute the program.
JP2018122714A 2018-06-28 2018-06-28 Optical device, distance measuring device, and distance measuring method Ceased JP2020003329A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018122714A JP2020003329A (en) 2018-06-28 2018-06-28 Optical device, distance measuring device, and distance measuring method
JP2022138953A JP2022164850A (en) 2018-06-28 2022-09-01 Optical device, distance measuring device and distance measuring method
JP2024028118A JP2024059877A (en) 2018-06-28 2024-02-28 Optical device, distance measuring device, distance measuring method, program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018122714A JP2020003329A (en) 2018-06-28 2018-06-28 Optical device, distance measuring device, and distance measuring method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022138953A Division JP2022164850A (en) 2018-06-28 2022-09-01 Optical device, distance measuring device and distance measuring method

Publications (1)

Publication Number Publication Date
JP2020003329A true JP2020003329A (en) 2020-01-09

Family

ID=69099705

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018122714A Ceased JP2020003329A (en) 2018-06-28 2018-06-28 Optical device, distance measuring device, and distance measuring method
JP2022138953A Pending JP2022164850A (en) 2018-06-28 2022-09-01 Optical device, distance measuring device and distance measuring method
JP2024028118A Pending JP2024059877A (en) 2018-06-28 2024-02-28 Optical device, distance measuring device, distance measuring method, program, and recording medium

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022138953A Pending JP2022164850A (en) 2018-06-28 2022-09-01 Optical device, distance measuring device and distance measuring method
JP2024028118A Pending JP2024059877A (en) 2018-06-28 2024-02-28 Optical device, distance measuring device, distance measuring method, program, and recording medium

Country Status (1)

Country Link
JP (3) JP2020003329A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461085U (en) * 1990-10-02 1992-05-26
JPH11352140A (en) * 1998-06-10 1999-12-24 Nippon Signal Co Ltd:The Vehicle speed measuring device
JP2005292156A (en) * 1999-02-24 2005-10-20 Denso Corp Distance-measuring device
JP2014219250A (en) * 2013-05-07 2014-11-20 富士通株式会社 Range finder and program
CN204989469U (en) * 2015-07-29 2016-01-20 武汉万集信息技术有限公司 Many emission unit laser rangefinder with strengthen remote range finding ability
WO2017132704A1 (en) * 2016-01-31 2017-08-03 Velodyne Lidar, Inc. Lidar based 3-d imaging with far-field illumination overlap

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0461085U (en) * 1990-10-02 1992-05-26
JPH11352140A (en) * 1998-06-10 1999-12-24 Nippon Signal Co Ltd:The Vehicle speed measuring device
JP2005292156A (en) * 1999-02-24 2005-10-20 Denso Corp Distance-measuring device
JP2014219250A (en) * 2013-05-07 2014-11-20 富士通株式会社 Range finder and program
CN204989469U (en) * 2015-07-29 2016-01-20 武汉万集信息技术有限公司 Many emission unit laser rangefinder with strengthen remote range finding ability
WO2017132704A1 (en) * 2016-01-31 2017-08-03 Velodyne Lidar, Inc. Lidar based 3-d imaging with far-field illumination overlap

Also Published As

Publication number Publication date
JP2022164850A (en) 2022-10-27
JP2024059877A (en) 2024-05-01

Similar Documents

Publication Publication Date Title
US11726315B2 (en) Ladar transmitter with ellipsoidal reimager
US9285266B2 (en) Object detector including a light source with light emitting region of a first size in a first direction and a second size in a second direction
TW201734501A (en) Ladar transmitter with improved gaze on scan area portions
US9304228B2 (en) Object detection apparatus with detection based on reflected light or scattered light via an imaging unit
JP2019128232A (en) Lidar apparatus
US10802115B2 (en) Light projecting and receiving device, and laser radar device provided with same
JP2021535996A (en) Coaxial settings for photodetection and ranging, ie LIDAR measurements
US20200150418A1 (en) Distance measurement device and mobile body
CN110312947B (en) Lidar sensor for detecting objects
JP2022165971A (en) Scanning device and ranging device
JP2021170033A (en) Scanner
KR101415918B1 (en) Laser multi-sacn apparatus
JP2022162080A (en) Distance measuring device
JP2020003329A (en) Optical device, distance measuring device, and distance measuring method
JP2022159438A (en) Ranging device
JP6993195B2 (en) Distance measuring device
JP2019095354A (en) Ranging device
JP2019082405A (en) Scanner and range finder
WO2019151092A1 (en) Scanning device and distance measuring device
JP7148249B2 (en) rangefinder
JP2023101803A (en) Scanning device and distance-measuring device
TW202219547A (en) Systems and operating methods for tof imaging of a target and a light emission apparatus
US20200150245A1 (en) Lidar device having increased transmission power while taking eye safety into consideration, and method for scanning a region to be scanned
JP2019158599A (en) Distance measurement apparatus
JP2021063696A (en) Object information detector and object information detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20221220