JP2019213992A - Measuring device - Google Patents

Measuring device Download PDF

Info

Publication number
JP2019213992A
JP2019213992A JP2019181359A JP2019181359A JP2019213992A JP 2019213992 A JP2019213992 A JP 2019213992A JP 2019181359 A JP2019181359 A JP 2019181359A JP 2019181359 A JP2019181359 A JP 2019181359A JP 2019213992 A JP2019213992 A JP 2019213992A
Authority
JP
Japan
Prior art keywords
light
light receiving
noise
output signal
receiving unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019181359A
Other languages
Japanese (ja)
Inventor
裕 松井
Yutaka Matsui
裕 松井
泰裕 下野
Yasuhiro Shimono
泰裕 下野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2019181359A priority Critical patent/JP2019213992A/en
Publication of JP2019213992A publication Critical patent/JP2019213992A/en
Priority to JP2021092201A priority patent/JP2021137606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

To detect noise which has to be removed from a measurement signal relating to an object.SOLUTION: A measuring device (1) comprises: a light emission part (11) which emits light to a living body; a first light-receiving part and a second light-receiving part (12, 13) which respectively receive the return light of the emitted light returned from the living body; and output means (100) which on the basis of an output signal from the first receiving part and that from the second light-receiving part, outputs information about noise of at least one of the output signal from the first light-receiving part and that from the second light-receiving part. The measuring device is capable of easily detecting whether a measurement signal related to a living body includes noise which has to be removed.SELECTED DRAWING: Figure 6

Description

本発明は、例えば対象物に照射された光の戻り光等を受光して、例えば生体情報等の情報を計測する計測装置の技術分野に関する。   The present invention relates to a technical field of a measurement device that receives, for example, return light of light applied to an object and measures information such as biological information.

この種の装置として、例えば、被験者の体の一部の光の透過率又は反射率から脈波信号を検出すると共に、体動に伴う加速度信号を検出し、該検出された脈波信号から該検出された加速度信号を除去して、体動に伴うノイズの影響が抑制された心拍数を測定する装置が提案されている(特許文献1参照)。   As this type of device, for example, a pulse wave signal is detected from the transmittance or reflectance of light of a part of the body of the subject, an acceleration signal accompanying body movement is detected, and the pulse wave signal is detected from the detected pulse wave signal. There has been proposed a device that removes a detected acceleration signal and measures a heart rate in which the influence of noise due to body movement is suppressed (see Patent Document 1).

或いは、600nm(ナノメートル)〜750nmの波長の光を出射する静脈発光部と、600nm〜750nmの波長について強い受光特性を有する静脈受光部と、を有する静脈用脈波センサと、800nm〜1000nmの波長の光を出射する動脈発光部と、800nm〜1000nmの波長について強い受光特性を有する動脈受光部と、を有する動脈用脈波センサと、を備える装置が提案されている。ここでは特に、動脈用脈波センサにより検出された動脈信号から、静脈用脈波センサにより検出された静脈信号を減算することにより、体動の影響が除去された脈拍数を測定する技術が提案されている(特許文献2参照)。   Alternatively, a vein pulse wave sensor having a vein light emitting portion that emits light having a wavelength of 600 nm (nanometers) to 750 nm, a vein light receiving portion having strong light receiving characteristics for a wavelength of 600 nm to 750 nm, and a vein pulse wave sensor having a wavelength of 800 nm to 1000 nm. An apparatus has been proposed that includes an arterial light emitting unit that emits light of a wavelength and an arterial pulse wave sensor that includes an arterial light receiving unit that has strong light receiving characteristics for a wavelength of 800 nm to 1000 nm. Here, in particular, a technique for measuring a pulse rate from which the influence of body movement has been removed by subtracting a venous signal detected by a venous pulse wave sensor from an arterial signal detected by an arterial pulse wave sensor is proposed. (See Patent Document 2).

特開2003−102694号公報JP 2003-102694 A 特開2002−51996号公報JP-A-2002-51996

上述の背景技術によれば、体動の影響(即ち、ノイズ)を抑制する処理を常に実施している。このため、上述の背景技術には、例えば計測の応答性が低下する等の技術的問題点がある。   According to the background art described above, processing for suppressing the influence of body movement (ie, noise) is always performed. For this reason, the above-mentioned background art has a technical problem such as a decrease in measurement responsiveness.

本発明は、例えば上記問題点に鑑みてなされたものであり、対象物に係る計測信号から除去すべきノイズを検出することができる計測装置を提供することを課題とする。   The present invention has been made in view of, for example, the above-described problems, and has as its object to provide a measurement device that can detect noise to be removed from a measurement signal of an object.

本発明の計測装置は、上記課題を解決するために、生体に対し光を照射する発光部と、前記照射された光の前記生体からの戻り光を夫々受光する第1受光部及び第2受光部と、前記第1受光部の出力信号と前記第2受光部の出力信号とに基づいて、前記第1受光部の出力信号及び前記第2受光部の出力信号の少なくとも一方の出力信号の雑音に関する情報を出力する出力手段と、を備える。   In order to solve the above-mentioned problems, a measuring device of the present invention includes a light emitting unit that irradiates light to a living body, a first light receiving unit that receives return light of the irradiated light from the living body, and a second light receiving unit. And a noise of at least one of an output signal of the first light receiving unit and an output signal of the second light receiving unit based on an output signal of the first light receiving unit and an output signal of the second light receiving unit. Output means for outputting information about

本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。   The operation and other advantages of the present invention will become more apparent from the embodiments explained below.

実施例に係る計測装置の概要を示す概略構成図である。It is a schematic structure figure showing the outline of the measuring device concerning an example. 実施例に係る算出装置の要部を示すブロック図である。FIG. 2 is a block diagram illustrating a main part of a calculation device according to an embodiment. 体動の概念を示す概念図である。It is a conceptual diagram which shows the concept of a body motion. 脈拍測定結果の一例である。It is an example of a pulse measurement result. 2つの出力信号間の相関性の一例である。It is an example of the correlation between two output signals. 実施例に係る計測処理を示すフローチャートである。6 is a flowchart illustrating a measurement process according to the embodiment. 実施例の変形例に係る計測装置の概要を示す概略構成図である。It is a schematic structure figure showing the outline of the measuring device concerning the modification of an example. 発光素子及び受光素子の配置の一例を示す平面図である。It is a top view showing an example of arrangement of a light emitting element and a light sensing element. 発光素子を2以上備える場合の配置の一例を示す平面図である。It is a top view showing an example of arrangement at the time of having two or more light emitting elements. 受光素子を3以上備える場合の配置の一例を示す平面図である。It is a top view which shows an example of arrangement at the time of having three or more light receiving elements. 実施例に係るパルスオキシメータの概要を示す概略構成図である。It is a schematic structure figure showing the outline of the pulse oximeter concerning an example.

本発明の計測装置、パルスオキシメータ、計測方法及びコンピュータプログラム各々に係る実施形態について説明する。   An embodiment according to each of the measuring device, the pulse oximeter, the measuring method, and the computer program of the present invention will be described.

(計測装置)
実施形態に係る計測装置は、生体に対し光を照射する発光部と、該照射された光の生体からの戻り光を夫々受光する第1受光部及び第2受光部と、第1受光部の出力信号と第2受光部の出力信号とに基づいて、第1受光部の出力信号及び第2受光部の出力信号の少なくとも一方の出力信号の雑音に関する情報を出力する出力手段と、を備える。
(Measurement device)
The measuring device according to the embodiment includes a light emitting unit that irradiates light to the living body, a first light receiving unit and a second light receiving unit that respectively receive return light of the irradiated light from the living body, and a first light receiving unit. Output means for outputting information on noise of at least one of the output signal of the first light receiving unit and the output signal of the second light receiving unit based on the output signal and the output signal of the second light receiving unit.

例えばLED(Light Emitting Diode)等の発光素子である発光部は、例えば人体等の生体に対し光を照射する。ここで、光の波長は、測定対象に応じて適宜設定すればよい。   For example, a light emitting unit which is a light emitting element such as an LED (Light Emitting Diode) irradiates a living body such as a human body with light. Here, the wavelength of the light may be appropriately set according to the measurement object.

例えばPD(Photodiode)等の受光素子である第1受光部及び第2受光部各々は、生体に照射された光の該生体からの戻り光を受光する。ここで、「戻り光」は、生体により散乱又は反射された光に限らず、生体を透過した光も含む概念である。つまり、実施形態に係る計測装置は、反射型の計測装置であってもよいし、透過型の計測装置であってもよい。   For example, each of a first light receiving unit and a second light receiving unit, which are light receiving elements such as PDs (Photodiodes), receives return light from the living body of light applied to the living body. Here, “return light” is a concept including not only light scattered or reflected by a living body but also light transmitted through the living body. That is, the measurement device according to the embodiment may be a reflection-type measurement device or a transmission-type measurement device.

例えばメモリ、プロセッサ等を備えてなる出力手段は、第1受光部の出力信号と第2受光部の出力信号とに基づいて、第1受光部の出力信号及び第2受光部の出力信号の少なくとも一方の出力信号の雑音に関する情報を出力する。   For example, the output unit including a memory, a processor, and the like, based on the output signal of the first light receiving unit and the output signal of the second light receiving unit, outputs at least the output signal of the first light receiving unit and the output signal of the second light receiving unit. The information about the noise of one output signal is output.

ここで、本願発明者の研究によれば、以下の事項が判明している。即ち、生体を計測対称とすると、該生体の体動に起因して、例えば容積脈波信号等の計測信号に雑音が混入することがある。そして、体動に起因する雑音を除去するための各種方法が提案されている。他方で、体動に起因する雑音を除去する処理(以降、適宜“雑音除去処理”と称する)が実施されると、例えば計測精度、即応性、安定性等の装置性能が低下する可能性がある。   Here, according to the research of the present inventor, the following matters have been found. That is, when the living body is set to be symmetrical for measurement, noise may be mixed into a measurement signal such as a volume pulse signal due to body movement of the living body. Various methods for removing noise caused by body motion have been proposed. On the other hand, when processing for removing noise due to body movement (hereinafter, appropriately referred to as “noise removal processing”) is performed, there is a possibility that device performance such as measurement accuracy, responsiveness, and stability may be reduced. is there.

具体的には例えば、雑音除去処理として、計測信号の周波数解析が実施される場合、該周波数解析に用いられる一定期間分の計測信号を取得する必要があり、即応性が低下する。他方で、周波数解析に用いられる計測信号の取得期間を短くすると、雑音が十分には除去されず計測精度が低下する。   Specifically, for example, when frequency analysis of a measurement signal is performed as noise removal processing, it is necessary to acquire a measurement signal for a certain period used for the frequency analysis, and the responsiveness is reduced. On the other hand, if the acquisition period of the measurement signal used for the frequency analysis is shortened, the noise is not sufficiently removed and the measurement accuracy is reduced.

但し、体動が生じる環境下において、雑音除去処理を全くせずに計測することは極めて困難である。そこで、除去すべき雑音が計測信号に混入している場合のみ雑音除去処理が実施されれば、上記装置性能の低下の抑制が期待される。   However, it is extremely difficult to perform measurement without performing any noise removal processing in an environment where body motion occurs. Therefore, if the noise removal processing is performed only when the noise to be removed is mixed in the measurement signal, it is expected that the device performance is suppressed from deteriorating.

本実施形態では、上述の如く、出力手段により、第1受光部の出力信号と第2受光部の出力信号とに基づいて、第1受光部の出力信号及び第2受光部の出力信号の少なくとも一方の出力信号の雑音に関する情報が出力される。このため、出力された雑音に関する情報を参照すれば、除去すべき雑音が出力信号(即ち、計測信号)に混入しているか否かを比較的容易に判定することができる。以上の結果、実施形態に係る計測装置によれば、対象物(生体)に係る計測信号から除去すべき雑音(ノイズ)を検出することができる。   In this embodiment, as described above, at least the output signal of the first light receiving unit and the output signal of the second light receiving unit are output by the output unit based on the output signal of the first light receiving unit and the output signal of the second light receiving unit. Information about the noise of one output signal is output. Therefore, by referring to the information regarding the output noise, it can be relatively easily determined whether the noise to be removed is mixed in the output signal (that is, the measurement signal). As a result, according to the measurement device according to the embodiment, noise (noise) to be removed can be detected from the measurement signal of the object (living body).

実施形態に係る計測装置の一態様では、出力手段は、第1受光部の出力信号と第2受光部の出力信号との間の相関性に基づいて、少なくとも一方の出力信号の雑音に関する情報を出力する。   In one aspect of the measuring device according to the embodiment, the output unit outputs information regarding noise of at least one output signal based on a correlation between the output signal of the first light receiving unit and the output signal of the second light receiving unit. Output.

計測信号に雑音が混入している場合、混入している雑音の程度によって、第1受光部の出力信号と第2受光部の出力信号との間の相関性が変化する(具体的には例えば、混入している雑音が大きい程、相関性が低下する)ことが、本願発明者の研究により判明している。   When noise is mixed in the measurement signal, the correlation between the output signal of the first light receiving unit and the output signal of the second light receiving unit changes depending on the degree of the mixed noise (specifically, for example, It has been found from the study of the inventor of the present invention that the larger the noise mixed, the lower the correlation.)

従って、出力された雑音に関する情報を参照すれば、除去すべき雑音が出力信号に混入しているか否かを比較的容易に判定することができる。   Therefore, by referring to the information regarding the output noise, it can be relatively easily determined whether or not the noise to be removed is mixed in the output signal.

実施形態に係る計測装置の他の態様では、出力された雑音に関する情報に基づいて、少なくとも一方の出力信号に雑音が含まれているか否かを判定し、少なくとも一方の出力信号に雑音が含まれていることを条件に、少なくとも一方の出力信号に含まれる雑音を低減する雑音低減手段を更に備える。   In another aspect of the measurement device according to the embodiment, based on information about the output noise, it is determined whether or not at least one output signal includes noise, and at least one output signal includes noise. And a noise reduction unit that reduces noise included in at least one of the output signals.

この態様によれば、出力信号に含まれる雑音を低減することができ、実用上非常に有利である。尚、雑音を低減する方法には、公知の各種態様を適用可能であるので、その詳細についての説明は割愛する。   According to this aspect, noise included in the output signal can be reduced, which is extremely advantageous in practice. Various known modes can be applied to the method of reducing noise, and a detailed description thereof will be omitted.

実施形態に係る計測装置の他の態様では、雑音に関する情報は、生体の体動に関する情報を含む。   In another aspect of the measurement device according to the embodiment, the information on noise includes information on body movement of a living body.

この態様によれば、例えば体動の方向等の体動に関する情報も出力されるので、実用上非常に有利である。   According to this aspect, information on the body movement such as the direction of the body movement is also output, which is extremely advantageous in practice.

実施形態に係る計測装置の他の態様では、発光部、第1受光部及び第2受光部の相互間の位置関係が固定されている。   In another aspect of the measuring device according to the embodiment, the positional relationship among the light emitting unit, the first light receiving unit, and the second light receiving unit is fixed.

この態様によれば、生体に係る出力信号から除去すべき雑音を好適に検出することができ、実用上非常に有利である。   According to this aspect, noise to be removed from the output signal relating to the living body can be suitably detected, which is extremely advantageous in practice.

(パルスオキシメータ)
実施形態に係るパルスオキシメータは、生体に第1光を照射する第1発光部と、第1光の波長とは異なる波長を有する第2光を生体に照射する第2発光部と、第1光の生体からの第1戻り光と、第2光の生体からの第2戻り光とを夫々受光する第1受光部及び第2受光部と、第1戻り光及び第2戻り光の一方の戻り光を受光した第1受光部の第1出力信号と、該一方の戻り光を受光した第2受光部の第2出力信号と、に基づいて、第1出力信号及び第2出力信号の少なくとも一方の出力信号の雑音に関する情報を出力する出力手段と、を備える。
(Pulse oximeter)
The pulse oximeter according to the embodiment includes a first light emitting unit that irradiates the living body with the first light, a second light emitting unit that irradiates the living body with the second light having a wavelength different from the wavelength of the first light, A first light receiving unit and a second light receiving unit that receive the first return light from the living body of light and the second return light from the living body of the second light, respectively, and one of the first return light and the second return light At least one of the first output signal and the second output signal based on the first output signal of the first light receiving unit receiving the return light and the second output signal of the second light receiving unit receiving the one return light. Output means for outputting information on noise of one of the output signals.

尚、「第1光の生体からの第1戻り光と、第2光の生体からの第2戻り光とを夫々受光する第1受光部及び第2受光部」とは、第1戻り光及び第2戻り光各々を受光する第1受光部、並びに、第1戻り光及び第2戻り光各々を受光する第2受光部という意味である。つまり、第1受光部及び第2受光部の両方とも、第1戻り光及び第2戻り光の両方を受光する。   The “first light receiving unit and the second light receiving unit that respectively receive the first return light from the living body of the first light and the second return light from the living body of the second light” include the first return light and the second return light. This means a first light receiving unit that receives each second return light, and a second light receiving unit that receives each of the first return light and the second return light. That is, both the first light receiving unit and the second light receiving unit receive both the first return light and the second return light.

第1発光部及び第2発光部は、典型的には、互いに交互に発光する(つまり、第1光と第2光とは、交互に生体に照射される)。このため、第1受光部及び第2受光部各々は、第1戻り光と第2戻り光とを交互に受光することとなる。   The first light emitting unit and the second light emitting unit typically emit light alternately (that is, the first light and the second light are alternately irradiated on the living body). Therefore, each of the first light receiving unit and the second light receiving unit receives the first return light and the second return light alternately.

例えばメモリ、プロセッサ等を備えてなる出力手段は、第1戻り光及び第2戻り光の一方の戻り光を受光した第1受光部の第1出力信号と、該一方の戻り光を受光した第2受光部の第2出力信号と、に基づいて、第1出力信号及び第2出力信号の少なくとも一方の出力信号の雑音に関する情報を出力する。   For example, an output unit including a memory, a processor, and the like includes a first output signal of a first light receiving unit that receives one of the first return light and the second return light, and a first output signal that receives the one return light. Based on the second output signal of the two light receiving units, information on noise of at least one of the first output signal and the second output signal is output.

実施形態に係るパルスオキシメータも、上述した実施形態に係る計測装置と同様に、生体に係る出力信号から除去すべき雑音(ノイズ)を検出することができる。   The pulse oximeter according to the embodiment can also detect noise (noise) to be removed from the output signal relating to the living body, similarly to the measurement device according to the above-described embodiment.

実施形態に係るパルスオキシメータの一態様では、第1発光部、第2発光部、第1受光部及び第2受光部の相互間の位置関係が固定されている。   In one aspect of the pulse oximeter according to the embodiment, the positional relationship among the first light emitting unit, the second light emitting unit, the first light receiving unit, and the second light receiving unit is fixed.

この態様によれば、生体に係る出力信号から除去すべき雑音を好適に検出することができ、実用上非常に有利である。   According to this aspect, noise to be removed from the output signal relating to the living body can be suitably detected, which is extremely advantageous in practice.

(計測方法)
実施形態に係る計測方法は、生体に対し光を照射する発光部と、照射された光の生体からの戻り光を夫々受光する第1受光部及び第2受光部と、を備える計測装置における計測方法である。当該計測方法は、第1受光部の出力信号と第2受光部の出力信号とに基づいて、第1受光部の出力信号及び第2受光部の出力信号の少なくとも一方の出力信号の雑音に関する情報を出力する出力工程を備える。
(Measurement method)
A measuring method according to an embodiment measures a light emitting unit that irradiates light to a living body, and a first light receiving unit and a second light receiving unit that respectively receive return light of the irradiated light from the living body. Is the way. The measurement method includes information on noise of at least one of the output signal of the first light receiving unit and the output signal of the second light receiving unit based on the output signal of the first light receiving unit and the output signal of the second light receiving unit. Is provided.

実施形態に係る計測方法によれば、上述した実施形態に係る計測装置と同様に、生体に係る出力信号から除去すべき雑音(ノイズ)を検出することができる。   According to the measuring method according to the embodiment, similarly to the measuring device according to the above-described embodiment, it is possible to detect noise to be removed from an output signal relating to a living body.

(コンピュータプログラム)
実施形態に係るコンピュータプログラムは、生体に対し光を照射する発光部と、照射された光の生体からの戻り光を夫々受光する第1受光部及び第2受光部と、を備える計測装置に搭載されたコンピュータを、第1受光部の出力信号と第2受光部の出力信号とに基づいて、第1受光部の出力信号及び第2受光部の出力信号の少なくとも一方の出力信号の雑音に関する情報を出力する出力手段として機能させる。
(Computer program)
The computer program according to the embodiment is mounted on a measuring device including a light emitting unit that irradiates light to a living body, and a first light receiving unit and a second light receiving unit that respectively receive return light of the irradiated light from the living body. The computer which has performed the information on the noise of at least one of the output signal of the first light receiving unit and the output signal of the second light receiving unit based on the output signal of the first light receiving unit and the output signal of the second light receiving unit Function as output means for outputting

本実施形態のコンピュータプログラムによれば、当該コンピュータプログラムを格納するRAM(Random Access Memory)、CD−ROM(Compact Disc Read Only Memory)、DVD−ROM(DVD Read Only Memory)等の記録媒体から、当該コンピュータプログラムを、計測装置に備えられたコンピュータに読み込んで実行させれば、或いは、当該コンピュータプログラムを、通信手段を介してダウンロードさせた後に実行させれば、上述した実施形態に係る計測装置を比較的容易にして実現できる。これにより、上述した実施形態に係る計測装置と同様に、生体に係る出力信号から除去すべき雑音(ノイズ)を検出することができる。   According to the computer program of the present embodiment, the recording medium such as a RAM (Random Access Memory), a CD-ROM (Compact Disc Read Only Memory), or a DVD-ROM (DVD Read Only Memory) for storing the computer program is used. If the computer program is read and executed by a computer provided in the measuring device, or if the computer program is executed after being downloaded via a communication unit, the measuring device according to the above-described embodiment is compared. It can be achieved easily. Thereby, similarly to the measurement device according to the above-described embodiment, it is possible to detect noise to be removed from the output signal relating to the living body.

<計測装置>
本発明の計測装置に係る実施例を、図面を参照して説明する。本実施例では、光学的方法により容積脈波を計測する装置を、計測装置の一例として挙げる。
<Measurement device>
An embodiment according to the measuring device of the present invention will be described with reference to the drawings. In the present embodiment, a device for measuring a volume pulse wave by an optical method will be described as an example of a measuring device.

(計測装置の構成)
実施例に係る計測装置の構成について、図1及び図2を参照して説明する。図1は、実施例に係る計測装置の概要を示す概略構成図である。図2は、実施例に係る算出装置の要部を示すブロック図である。
(Configuration of measuring device)
A configuration of the measuring device according to the embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic configuration diagram illustrating an outline of a measurement device according to an embodiment. FIG. 2 is a block diagram illustrating a main part of the calculation device according to the embodiment.

図1において、計測装置1は、例えば赤色LED、赤外線LED等である発光手段11と、例えばPD等である受光手段12及び13と、該受光手段12及び13各々から出力された信号を処理する算出装置100と、を備えて構成されている。発光手段11と、受光手段12及び13とは、支持板に固定されている。   In FIG. 1, a measuring device 1 processes a light output unit 11 such as a red LED or an infrared LED, a light receiving unit 12 or 13 such as a PD, and a signal output from each of the light receiving units 12 and 13. And a calculation device 100. The light emitting means 11 and the light receiving means 12 and 13 are fixed to a support plate.

発光手段11から出射された光は、人の指の血管(本発明に係る“生体”に相当)に照射される。受光手段12及び13各々は、血管を透過した透過光(本発明に係る“戻り光”に相当)を主に受光し、受光量に応じた信号を出力する。   The light emitted from the light emitting means 11 is applied to blood vessels of a human finger (corresponding to the “living body” according to the present invention). Each of the light receiving means 12 and 13 mainly receives transmitted light (corresponding to "return light" according to the present invention) transmitted through the blood vessel, and outputs a signal corresponding to the amount of received light.

例えば図1に示すように、指先の血管に光を照射して計測を行う場合、指が動くことにより、発光手段11と受光手段12及び13との位置関係が変動する(図3参照)。すると、指の動き(即ち、体動)に起因して、受光手段12及び13から出力される出力信号に雑音が混入する可能性がある。   For example, as shown in FIG. 1, when measurement is performed by irradiating light to a blood vessel at the fingertip, the movement of the finger changes the positional relationship between the light emitting unit 11 and the light receiving units 12 and 13 (see FIG. 3). Then, there is a possibility that noise is mixed in the output signals output from the light receiving units 12 and 13 due to the movement of the finger (that is, the body movement).

ここで、単純には、受光手段12又は13から出力された出力信号から、例えば脈波、脈拍、心拍等が検出される。しかしながら、体動に起因する雑音が出力信号に混入していると、受光手段12又は13からの出力信号をそのまま用いて脈波等を正しく検出することは困難である(図4(b)“通常測定(破線)”参照)。   Here, simply, for example, a pulse wave, a pulse, a heartbeat, and the like are detected from the output signal output from the light receiving unit 12 or 13. However, if noise due to body motion is mixed in the output signal, it is difficult to correctly detect a pulse wave or the like using the output signal from the light receiving means 12 or 13 as it is (FIG. 4B). Normal measurement (broken line) ”).

他方で、体動に起因する雑音を除去するために、様々な雑音除去方法が提案されている。受光手段12又は13から出力された出力信号に雑音除去処理が施されることにより、体動に起因する雑音の影響が抑制された、例えば脈波、脈拍、心拍等が検出される。しかしながら、雑音除去処理が実施されると(図4“雑音除去済み(実線)”参照)、該雑音除去処理が実施されない場合(図4“通常測定(破線)”参照)に比べて、応答遅れが生じる。   On the other hand, various noise removal methods have been proposed to remove noise caused by body motion. By subjecting the output signal output from the light receiving unit 12 or 13 to noise removal processing, a pulse wave, a pulse, a heartbeat, or the like, in which the influence of noise due to body movement is suppressed, is detected. However, when the noise elimination processing is performed (see FIG. 4 “Noise elimination (solid line)”), the response delay is longer than when the noise elimination processing is not performed (see FIG. 4 “Normal measurement (dashed line)”). Occurs.

図4(a)に示すように、体動に起因する雑音がなければ雑音除去処理が実施されなくとも、例えば脈拍を正しく検出することができる。そこで、本実施例では、受光手段12及び13からの出力信号に雑音が混入しているか否かを判定し、雑音が混入していると判定された場合に雑音除去処理を実施するように、当該計測装置1が構成されている。   As shown in FIG. 4A, for example, a pulse can be correctly detected without noise removal processing if there is no noise due to body motion. Therefore, in the present embodiment, it is determined whether or not noise is mixed in the output signals from the light receiving units 12 and 13, and if it is determined that the noise is mixed, the noise removal processing is performed. The measuring device 1 is configured.

具体的には、図2に示すように、算出装置100は、受光手段12及び13各々から出力された出力信号間の相関係数を求める相関係数算出部110と、求められた相関係数と所定の閾値とを比較する比較器121、122及び123と、出力信号の雑音レベルを判定する雑音レベル判定部130と、を備えて構成されている。   Specifically, as shown in FIG. 2, the calculation device 100 includes a correlation coefficient calculation unit 110 that calculates a correlation coefficient between output signals output from the light receiving units 12 and 13, and a calculated correlation coefficient. And a predetermined threshold value, and a noise level determination unit 130 that determines the noise level of the output signal.

ここで、図5(a)に示すように、体動がない場合、受光手段12からの出力信号と、受光手段13からの出力信号とは高い相関性を有している(即ち、相関係数が高い)ことがわかる。他方、図5(b)に示すように、体動がある場合、受光手段12からの出力信号と、受光手段13からの出力信号との相関性は低い(即ち、相関係数が低い)。   Here, as shown in FIG. 5A, when there is no body movement, the output signal from the light receiving unit 12 and the output signal from the light receiving unit 13 have a high correlation (that is, the phase relationship). (The number is high). On the other hand, as shown in FIG. 5B, when there is body movement, the correlation between the output signal from the light receiving unit 12 and the output signal from the light receiving unit 13 is low (that is, the correlation coefficient is low).

受光素子12からの出力信号のうち脈動に起因する信号成分と、受光素子13からの出力信号のうち脈動に起因する信号成分とは、広範に亘り同相である。これに対し、体動に起因する信号成分は局所的に位相が変化する。このため、受光素子12及び13各々からの出力信号を互いに比較すれば、体動の有無がわかる。つまり、受光手段12からの出力信号と、受光手段13からの出力信号との相関係数を算出すれば、体動が生じているか否か、更には、体動の程度を、比較的容易にして検出することができる。   The signal component of the output signal from the light receiving element 12 due to the pulsation and the signal component of the output signal from the light receiving element 13 due to the pulsation are widely in phase. On the other hand, the phase of the signal component caused by the body movement changes locally. Therefore, if the output signals from the light receiving elements 12 and 13 are compared with each other, the presence or absence of body movement can be determined. That is, if the correlation coefficient between the output signal from the light receiving unit 12 and the output signal from the light receiving unit 13 is calculated, it is possible to relatively easily determine whether or not the body movement has occurred, and furthermore, to determine the degree of the body movement relatively easily. Can be detected.

図2において、比較器121は、相関係数算出部110により算出された相関係数と、閾値1とを比較する。比較器121は、算出された相関係数が閾値1より大きい場合、例えば“1”を出力し、算出された相関係数が閾値1以下である場合、例えば“0”を出力する。   In FIG. 2, a comparator 121 compares the correlation coefficient calculated by the correlation coefficient calculation unit 110 with a threshold value 1. The comparator 121 outputs, for example, “1” when the calculated correlation coefficient is larger than the threshold value 1, and outputs, for example, “0” when the calculated correlation coefficient is equal to or smaller than the threshold value 1.

同様に、比較器122は、算出された相関係数と、閾値1とは異なる閾値2とを比較する。比較器122は、算出された相関係数が閾値2より大きい場合、例えば“1”を出力し、算出された相関係数が閾値2以下である場合、例えば“0”を出力する。   Similarly, the comparator 122 compares the calculated correlation coefficient with a threshold 2 different from the threshold 1. The comparator 122 outputs, for example, “1” when the calculated correlation coefficient is larger than the threshold value 2, and outputs, for example, “0” when the calculated correlation coefficient is smaller than the threshold value 2.

同様に、比較器123は、算出された相関係数と、閾値1及び閾値2とは異なる閾値3とを比較する。比較器123は、算出された相関係数が閾値3より大きい場合、例えば“1”を出力し、算出された相関係数が閾値3以下である場合、例えば“0”を出力する。   Similarly, the comparator 123 compares the calculated correlation coefficient with a threshold 3 different from the thresholds 1 and 2. The comparator 123 outputs, for example, “1” when the calculated correlation coefficient is larger than the threshold value 3, and outputs, for example, “0” when the calculated correlation coefficient is equal to or smaller than the threshold value 3.

ここで、閾値1、閾値2及び閾値3は、実験的に若しくは経験的に、又はシミュレーションによって、例えば雑音の程度と相関係数との関係を求め、該求められた関係に基づいて、計測誤差の許容範囲の上限値に対応する相関係数、雑音除去処理により除去可能な雑音の最大値に対応する相関係数、等として設定すればよい。   Here, the threshold value 1, the threshold value 2, and the threshold value 3 are determined experimentally, empirically, or by simulation, for example, by obtaining the relationship between the degree of noise and the correlation coefficient, and measuring the measurement error based on the obtained relationship. May be set as the correlation coefficient corresponding to the upper limit of the allowable range, the correlation coefficient corresponding to the maximum value of noise that can be removed by the noise removal processing, and the like.

より具体的には、本実施例に係る「閾値1」は、雑音除去処理を実施しなくとも計測誤差が許容範囲内となる雑音に対応する相関係数として設定されている。
本実施例に係る「閾値2」は、簡便な雑音除去処理(例えば、アルゴリズムが単純で、処理時間が短い等)を実施することにより計測誤差を許容範囲内とすることができる雑音の最大値に対応する相関係数として設定されている。本実施例に係る「閾値3」は、雑音除去処理を実施したとしても計測誤差が許容範囲を超える雑音の最小値に対応する相関係数として設定されている。つまり、本実施例では、“閾値1>閾値2>閾値3”となるように設定されている。
More specifically, “threshold 1” according to the present embodiment is set as a correlation coefficient corresponding to noise for which a measurement error is within an allowable range without performing noise removal processing.
The “threshold value 2” according to the present embodiment is a maximum value of noise that can make a measurement error within an allowable range by performing a simple noise removal process (for example, a simple algorithm and a short processing time). Is set as the correlation coefficient corresponding to. The “threshold value 3” according to the present embodiment is set as a correlation coefficient corresponding to a minimum value of noise in which a measurement error exceeds an allowable range even when noise removal processing is performed. That is, in the present embodiment, the threshold value is set so that “threshold value 1> threshold value 2> threshold value 3”.

比較器121から“1”が出力された場合(即ち、“相関係数>閾値1”である場合)、雑音レベル判定部130は、雑音除去処理を実施しない「通常測定」を選択する。   When “1” is output from the comparator 121 (that is, when “correlation coefficient> threshold value 1”), the noise level determination unit 130 selects “normal measurement” in which noise removal processing is not performed.

比較器121から“0”が出力され、且つ比較器122から“1”が出力された場合(即ち、“閾値1≧相関係数>閾値2”である場合)、雑音レベル判定部130は、簡便な雑音除去処理が実施される「体動除去1」を選択する。   If “0” is output from the comparator 121 and “1” is output from the comparator 122 (that is, if “threshold 1 ≧ correlation coefficient> threshold 2”), the noise level determination unit 130 “Body removal 1” for which simple noise removal processing is performed is selected.

比較器122から“0”が出力され、且つ比較器123から“1”が出力された場合(即ち、“閾値2≧相関係数>閾値3”である場合)、雑音レベル判定部130は、雑音除去処理が実施される「体動除去2」を選択する。   When “0” is output from the comparator 122 and “1” is output from the comparator 123 (that is, when “threshold value 2 ≧ correlation coefficient> threshold value 3”), the noise level determination unit 130 "Body removal 2" for which noise removal processing is performed is selected.

比較器123から“0”が出力された場合(即ち、“閾値3≧相関係数”である場合)、雑音レベル判定部130は、所定期間(例えば1サイクル期間等)だけ測定を中止する。   When “0” is output from the comparator 123 (that is, when “threshold value 3 ≧ correlation coefficient”), the noise level determination unit 130 stops the measurement for a predetermined period (for example, one cycle period).

このように構成すれば、体動がない場合には、雑音除去処理が実施されない応答性の良い計測を行うことができ、体動が生じた場合には、体動の程度に応じて目標とする計測精度が得られるような雑音除去処理が実施される。従って、本実施例に係る計測装置1によれば、体動に起因する雑音を適切に除去しつつ、計測の応答性や当該計測装置1の負荷を抑制することができる。   With this configuration, it is possible to perform measurement with good responsiveness in which the noise removal processing is not performed when there is no body movement, and when the body movement occurs, the target is set according to the degree of the body movement. A noise removal process is performed to obtain the required measurement accuracy. Therefore, according to the measuring device 1 according to the present embodiment, the responsiveness of measurement and the load on the measuring device 1 can be suppressed while appropriately removing noise caused by body movement.

(計測処理)
以上のように構成された計測装置1において実行される計測処理について、図6のフローチャートを参照して説明する。
(Measurement processing)
The measurement processing executed in the measurement device 1 configured as described above will be described with reference to the flowchart in FIG.

図6において、先ず、算出装置100の相関係数算出部110は、受光手段12からの出力信号を取得する(ステップS101)。該ステップS101の処理と並行して又は相前後して、相関係数算出部110は、受光手段13からの出力信号を取得する(ステップS102)。   6, first, the correlation coefficient calculation unit 110 of the calculation device 100 acquires an output signal from the light receiving unit 12 (Step S101). In parallel with or before or after the process of step S101, the correlation coefficient calculation unit 110 acquires an output signal from the light receiving unit 13 (step S102).

次に、相関係数算出部110は、受光手段12からの出力信号と受光手段13からの出力信号との間の相関係数を算出する(ステップS103)。続いて、雑音レベル判定部130は、算出された相関係数が閾値1より大きいか否かを判定する(ステップS104)。   Next, the correlation coefficient calculator 110 calculates a correlation coefficient between the output signal from the light receiving unit 12 and the output signal from the light receiving unit 13 (Step S103). Subsequently, the noise level determination unit 130 determines whether the calculated correlation coefficient is larger than the threshold 1 (step S104).

算出された相関係数が閾値1より大きいと判定された場合(ステップS104:Yes)、雑音レベル判定部130は、通常測定を選択する(ステップS105)。この結果、雑音除去処理が施されていない受光手段12又は13からの出力信号に基づく、例えば脈拍等の値が出力される。   When it is determined that the calculated correlation coefficient is larger than the threshold value 1 (Step S104: Yes), the noise level determination unit 130 selects the normal measurement (Step S105). As a result, a value such as a pulse is output based on the output signal from the light receiving unit 12 or 13 to which the noise removal processing has not been performed.

算出された相関係数が閾値1以下であると判定された場合(ステップS104:No)、雑音レベル判定部130は、算出された相関係数が閾値2より大きいか否かを判定する(ステップS106)。算出された相関係数が閾値2より大きいと判定された場合(ステップS106:Yes)、雑音レベル判定部130は、体動除去1を選択する(ステップS107)。この結果、簡便な雑音除去処理が施された受光手段12又は13からの出力信号に基づく、例えば脈拍等の値が出力される。   When it is determined that the calculated correlation coefficient is equal to or smaller than the threshold 1 (Step S104: No), the noise level determination unit 130 determines whether the calculated correlation coefficient is larger than the threshold 2 (Step S104). S106). When it is determined that the calculated correlation coefficient is larger than the threshold value 2 (step S106: Yes), the noise level determination unit 130 selects body motion removal 1 (step S107). As a result, a value such as a pulse is output based on the output signal from the light receiving unit 12 or 13 to which the simple noise removal processing has been performed.

算出された相関係数が閾値2以下であると判定された場合(ステップS106:No)、雑音レベル判定部130は、算出された相関係数が閾値3より大きいか否かを判定する(ステップS108)。算出された相関係数が閾値3より大きいと判定された場合(ステップS108:Yes)、雑音レベル判定部130は、体動除去2を選択する(ステップS109)。この結果、雑音除去処理が施された受光手段12又は13からの出力信号に基づく、例えば脈拍等の値が出力される。   When it is determined that the calculated correlation coefficient is equal to or smaller than the threshold 2 (Step S106: No), the noise level determination unit 130 determines whether the calculated correlation coefficient is larger than the threshold 3 (Step S106). S108). When it is determined that the calculated correlation coefficient is larger than the threshold value 3 (Step S108: Yes), the noise level determination unit 130 selects the body motion removal 2 (Step S109). As a result, a value such as a pulse is output based on the output signal from the light receiving unit 12 or 13 on which the noise removal processing has been performed.

算出された相関係数が閾値3以下であると判定された場合(ステップS108:No)、雑音レベル判定部130は、一旦測定を中止する(ステップS110)。この際、測定不能である旨がユーザに提示されるように構成されてもよい。   When it is determined that the calculated correlation coefficient is equal to or smaller than the threshold value 3 (step S108: No), the noise level determination unit 130 temporarily stops the measurement (step S110). At this time, it may be configured that the user is notified that measurement is impossible.

尚、実施形態に係る「算出装置100」は、本発明に係る「出力手段」及び「雑音低減手段」の一例である。   The “calculating device 100” according to the embodiment is an example of the “output unit” and the “noise reducing unit” according to the present invention.

(計測装置の変形例)
次に、実施例に係る計測装置の変形例について、図7乃至図10を参照して説明する。
(Modification of measuring device)
Next, a modified example of the measuring device according to the embodiment will be described with reference to FIGS.

図7に示すように、計測装置は、同一の支持板上に固定された発光素子、受光素子1及び受光素子2を備えて構成されてよい。この場合、発光手段から出射された光は、人の指の血管に照射される。受光手段1及び2各々は、血管(血液中のヘモグロビン)により散乱・反射された反射光(本発明に係る“戻り光”に相当)を主に受光し、受光量に応じた信号を出力する。   As shown in FIG. 7, the measuring device may be configured to include a light emitting element, a light receiving element 1 and a light receiving element 2 fixed on the same support plate. In this case, the light emitted from the light emitting means is applied to a blood vessel of a human finger. Each of the light receiving units 1 and 2 mainly receives reflected light (corresponding to “return light” according to the present invention) scattered and reflected by a blood vessel (hemoglobin in blood), and outputs a signal corresponding to the amount of received light. .

所謂透過型の計測装置(図1参照)においても、所謂反射型の計測装置(図7参照)においても、発光素子と2つの受光素子とは、様々な位置関係を採ることができる。具体的には例えば、平面的に見て、発光素子及び受光素子1間の距離と、発光素子及び受光素子2間の距離とが等しい二等辺三角形が形成されるように、発光素子、受光素子1及び受光素子2が夫々配置されてもよい(図8(a)参照)。或いは、受光素子1と受光素子2とを結ぶ直線の中間に発光素子が配置されてもよい(図8(b)参照)。或いは、発光素子及び受光素子1間の距離と、発光素子及び受光素子2間の距離とが互いに異なるように、発光素子、受光素子1及び受光素子2が夫々配置されてもよい(図8(c)参照)。   In both the so-called transmission-type measuring device (see FIG. 1) and the so-called reflection-type measuring device (see FIG. 7), the light-emitting element and the two light-receiving elements can have various positional relationships. Specifically, for example, the light-emitting element and the light-receiving element are formed such that an isosceles triangle in which the distance between the light-emitting element and the light-receiving element 1 is equal to the distance between the light-emitting element and the light-receiving element 2 in a plan view. 1 and the light receiving element 2 may be arranged respectively (see FIG. 8A). Alternatively, the light emitting element may be arranged in the middle of the straight line connecting the light receiving element 1 and the light receiving element 2 (see FIG. 8B). Alternatively, the light emitting element, the light receiving element 1 and the light receiving element 2 may be arranged such that the distance between the light emitting element and the light receiving element 1 is different from the distance between the light emitting element and the light receiving element 2 (FIG. c)).

実施例に係る計測装置は、更に、複数の発光素子を備えていてよい(図9参照)。尚、複数の発光素子各々から出射される光の波長は、典型的には、同一である。   The measuring device according to the embodiment may further include a plurality of light emitting elements (see FIG. 9). Note that the wavelength of light emitted from each of the plurality of light emitting elements is typically the same.

この場合、複数の発光素子が1箇所にまとめて配置されてもよい(図9(a)参照)。このように構成すれば、例えば比較的光量の低い発光素子を用いて、比較的高い光量を得ることができる。このため、例えば製造コストの抑制や、発光素子の劣化の抑制等を図ることができる。   In this case, a plurality of light emitting elements may be arranged at one place (see FIG. 9A). With this configuration, for example, a relatively high light amount can be obtained by using a light emitting element having a relatively low light amount. Therefore, for example, it is possible to suppress the manufacturing cost and the deterioration of the light emitting element.

或いは、発光素子と受光素子との組が複数配置されてもよい(図9(b)参照)。このように構成すれば、発光素子及び受光素子間の距離を近づけることができるので、受光量を増加させることができ、実用上非常に有利である。   Alternatively, a plurality of sets of light emitting elements and light receiving elements may be arranged (see FIG. 9B). With such a configuration, the distance between the light emitting element and the light receiving element can be reduced, so that the amount of received light can be increased, which is extremely advantageous in practical use.

実施例に係る計測装置は、更に、1つの発光素子と、3つ以上の受光素子とを備えて構成されてもよい(図10参照)。   The measuring device according to the embodiment may further include one light emitting element and three or more light receiving elements (see FIG. 10).

この場合、図10(a)に示すように、受光素子1と受光素子2とを結ぶ線分の垂直二等分線上に、発光素子及び受光素子3が夫々配置されてもよい。このように構成すれば、受光素子1の受光量と受光素子2の受光量との平均値(即ち、“(受光素子1の受光量+受光素子2の受光量)/2”)の変動から、図10におけるx方向の体動を検出することができる。また、受光素子1の受光量と受光素子2の受光量との平均値と、受光素子3の受光量との平均値(即ち、“{(受光素子1の受光量+受光素子2の受光量)/2+受光素子3の受光量}/2”)の変動から、図10におけるy方向の体動を検出することができる。   In this case, as shown in FIG. 10A, the light emitting element and the light receiving element 3 may be respectively arranged on a vertical bisector of a line connecting the light receiving element 1 and the light receiving element 2. With this configuration, the average value of the light receiving amount of the light receiving element 1 and the light receiving amount of the light receiving element 2 (ie, “((light receiving amount of light receiving element 1 + light receiving amount of light receiving element 2) / 2))” , The body movement in the x direction in FIG. 10 can be detected. Also, the average value of the light receiving amount of the light receiving element 1 and the light receiving amount of the light receiving element 2 and the average value of the light receiving amount of the light receiving element 3 (that is, “{(light receiving amount of the light receiving element 1 + light receiving amount of the light receiving element 2) 10), the body movement in the y direction in FIG. 10 can be detected from the fluctuation of the amount of light received by the light receiving element 3) / 2 +).

或いは、図10(b)に示すように、発光素子を中心とする矩形の各頂点に受光素子が配置されてもよい。このように構成すれば、(i)受光素子1の受光量と受光素子2の受光量との平均値(即ち、“(受光素子1の受光量+受光素子2の受光量)/2”)の変動と、(ii)受光素子3の受光量と受光素子4の受光量との平均値(即ち、“(受光素子3の受光量+受光素子4の受光量)/2”)の変動とから、図10におけるx方向の体動を検出することができる。また、(i)受光素子1の受光量と受光素子3の受光量との平均値(即ち、“(受光素子1の受光量+受光素子3の受光量)/2”)の変動と、(ii)受光素子2の受光量と受光素子4の受光量との平均値(即ち、“(受光素子2の受光量+受光素子4の受光量)/2”)の変動とから、図10におけるy方向の体動を検出することができる。   Alternatively, as shown in FIG. 10B, a light receiving element may be arranged at each vertex of a rectangle centered on the light emitting element. According to this structure, (i) the average value of the amount of light received by the light receiving element 1 and the amount of light received by the light receiving element 2 (that is, "((the amount of light received by the light receiving element 1 + the amount of light received by the light receiving element 2) / 2)") And (ii) the average value of the amount of light received by the light receiving element 3 and the amount of light received by the light receiving element 4 (ie, “(the amount of light received by the light receiving element 3 + the amount of light received by the light receiving element 4) / 2”). Thus, the body movement in the x direction in FIG. 10 can be detected. Also, (i) the variation of the average value of the light receiving amount of the light receiving element 1 and the light receiving amount of the light receiving element 3 (that is, “((the light receiving amount of the light receiving element 1 + the light receiving amount of the light receiving element 3) / 2))”; ii) From the variation of the average value of the amount of light received by the light receiving element 2 and the amount of light received by the light receiving element 4 (ie, “(the amount of light received by the light receiving element 2 + the amount of light received by the light receiving element 4) / 2”), FIG. The body motion in the y direction can be detected.

<パルスオキシメータ>
次に、実施例に係るパルスオキシメータについて、図11を参照して説明する。図11は、実施例に係るパルスオキシメータの概要を示す概略構成図である。
<Pulse oximeter>
Next, a pulse oximeter according to an embodiment will be described with reference to FIG. FIG. 11 is a schematic configuration diagram illustrating an outline of the pulse oximeter according to the example.

図11(a)において、パルスオキシメータは、例えば赤色LEDである発光素子1と、例えば赤外線LEDである発光素子2と、受光素子1及び受光素子2と、算出装置100(図1参照、ここでは図示せず)とを備えて構成されている。   In FIG. 11A, the pulse oximeter includes a light emitting element 1 that is, for example, a red LED, a light emitting element 2 that is, for example, an infrared LED, a light receiving element 1 and a light receiving element 2, and a calculating device 100 (see FIG. (Not shown).

算出装置100は、発光素子1及び発光素子2の一方から光が出射されている期間における、受光素子1からの出力信号と受光素子2からの出力信号との相関係数を算出し、該算出された相関係数と所定の閾値(上述の実施例では、“閾値1”、“閾値2”及び“閾値3”)とを比較して、出力信号に体動に起因する雑音が混入しているか否かを判定する。そして、出力信号に体動に起因する雑音が混入していると判定された場合、所定の雑音除去処理が実施される。   The calculating device 100 calculates a correlation coefficient between an output signal from the light receiving element 1 and an output signal from the light receiving element 2 during a period in which light is emitted from one of the light emitting element 1 and the light emitting element 2. The obtained correlation coefficient is compared with a predetermined threshold value (“threshold value 1”, “threshold value 2”, and “threshold value 3” in the above-described embodiment), and noise resulting from body movement is mixed in the output signal. Is determined. Then, when it is determined that noise due to body movement is mixed in the output signal, predetermined noise removal processing is performed.

パルスオキシメータとしては、発光手段1から光が出射されている期間における、受光素子1及び受光素子2の一方からの出力信号と、発光手段2から光が出射されている期間における該一方からの出力信号とに基づいて、例えば脈拍等を検出する。尚、パルスオキシメータとしての機能には、公知の各種態様を適用可能であるので、その詳細についての説明は割愛する。   As a pulse oximeter, an output signal from one of the light receiving element 1 and the light receiving element 2 during a period when light is emitted from the light emitting unit 1 and a signal from the one during a period when light is emitted from the light emitting unit 2 For example, a pulse or the like is detected based on the output signal. It should be noted that various known modes can be applied to the function as the pulse oximeter, and a detailed description thereof will be omitted.

尚、図11(b)に示すように、発光素子1から出射される光と、受光素子1及び受光素子2各々からの出力信号とにより体動の有無が検出され、発光素子1及び発光素子2各々から出射される光と、受光素子2からの出力信号とにより、例えば脈拍等が検出されてもよい。   As shown in FIG. 11B, the presence or absence of body movement is detected based on the light emitted from the light emitting element 1 and the output signals from the light receiving elements 1 and 2, and the light emitting element 1 and the light emitting element are detected. For example, a pulse or the like may be detected from the light emitted from each of the light receiving elements 2 and the output signal from the light receiving element 2.

本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う計測装置もまた本発明の技術的範囲に含まれるものである。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or idea of the invention which can be read from the claims and the entire specification, and a measuring device with such a change is also applicable. Also, they are included in the technical scope of the present invention.

1…計測装置、11…発光手段、12、13…受光手段、100…算出装置、110…相関係数算出部、130…雑音レベル判定部   DESCRIPTION OF SYMBOLS 1 ... Measuring device, 11 ... Light emitting means, 12, 13 ... Light receiving means, 100 ... Calculation device, 110 ... Correlation coefficient calculation part, 130 ... Noise level determination part

Claims (1)

生体に対し光を照射する発光部と、
前記照射された光の前記生体からの戻り光を夫々受光する第1受光部及び第2受光部と、
前記第1受光部の出力信号と前記第2受光部の出力信号とに基づいて、前記第1受光部の出力信号及び前記第2受光部の出力信号の少なくとも一方の出力信号の雑音に関する情報を出力する出力手段と、
を備えることを特徴とする計測装置。
A light emitting unit that irradiates light to a living body,
A first light receiving unit and a second light receiving unit that respectively receive return light from the living body of the irradiated light,
Based on an output signal of the first light receiving unit and an output signal of the second light receiving unit, information on noise of at least one of the output signal of the first light receiving unit and the output signal of the second light receiving unit is provided. Output means for outputting,
A measuring device comprising:
JP2019181359A 2019-10-01 2019-10-01 Measuring device Pending JP2019213992A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019181359A JP2019213992A (en) 2019-10-01 2019-10-01 Measuring device
JP2021092201A JP2021137606A (en) 2019-10-01 2021-06-01 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019181359A JP2019213992A (en) 2019-10-01 2019-10-01 Measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018087299A Division JP2018134470A (en) 2018-04-27 2018-04-27 Measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021092201A Division JP2021137606A (en) 2019-10-01 2021-06-01 Measuring device

Publications (1)

Publication Number Publication Date
JP2019213992A true JP2019213992A (en) 2019-12-19

Family

ID=68918306

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019181359A Pending JP2019213992A (en) 2019-10-01 2019-10-01 Measuring device
JP2021092201A Pending JP2021137606A (en) 2019-10-01 2021-06-01 Measuring device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021092201A Pending JP2021137606A (en) 2019-10-01 2021-06-01 Measuring device

Country Status (1)

Country Link
JP (2) JP2019213992A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059439A (en) * 2011-09-13 2013-04-04 Nippon Koden Corp Biological signal measurement device
JP2013150772A (en) * 2011-12-29 2013-08-08 Sony Corp Signal processing apparatus and signal processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896025B2 (en) * 2012-07-27 2016-03-30 株式会社島津製作所 Optical biological measurement apparatus and analysis method using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013059439A (en) * 2011-09-13 2013-04-04 Nippon Koden Corp Biological signal measurement device
JP2013150772A (en) * 2011-12-29 2013-08-08 Sony Corp Signal processing apparatus and signal processing method

Also Published As

Publication number Publication date
JP2021137606A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US9820681B2 (en) Reducing nuisance alarms
US8024021B2 (en) Time-segmented pulse oximetry and pulse oximeter performing the same
US11197620B2 (en) PPG signal collection method and apparatus
JPH07171139A (en) Pulse oximeter
JP2019120684A (en) Biological component measuring apparatus and method
JP2013150772A (en) Signal processing apparatus and signal processing method
JP2004121668A (en) System for detecting and measuring abnormal respiration, and method for detecting abnormal respiration
WO2015129025A1 (en) Measurement device, pulse oximeter, measurement method, computer program, and recording medium
JP2018007894A (en) Measuring device, measuring method, and measuring program
US20090326347A1 (en) Synchronous Light Detection Utilizing CMOS/CCD Sensors For Oximetry Sensing
JP2019213992A (en) Measuring device
JP2018134470A (en) Measuring device
JP7140288B2 (en) Biosignal Estimation Apparatus, Biosignal Estimation Method, and Biosignal Estimation Program
JP6510913B2 (en) Blood pressure ratio calculation device, blood pressure ratio calculation method, blood pressure ratio calculation program, and recording medium for recording the program
JP2018068556A (en) Intrathoracic pressure estimation device
KR102475521B1 (en) PHYSIOLOGICAL ABNORMAL SIGNAL ANALYSIS APPARATUS and METHOD
JP6857484B2 (en) Medical photometer and control method of medical photometer
JP6794219B2 (en) Medical photometers and control methods for medical photometers
JP6847627B2 (en) Medical photometers and control methods for medical photometers
WO2009124077A1 (en) Detection of site oximetry degradation
US20160360973A1 (en) Medical apparatus, phisiological parameter analyzing method and computer readable medium
JP2020025732A (en) Pulse wave evaluation apparatus and pulse wave evaluation method
KR102299035B1 (en) Physiological abnormal signal analysis apparatus
EP3742193A1 (en) Laser sensor module with soiling detection
TWI827419B (en) Method for detecting blood oxygen saturation, equipment, electronic device and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302