JP2019203810A - Method for capturing droplet, measurement cell, and droplet capturing device - Google Patents

Method for capturing droplet, measurement cell, and droplet capturing device Download PDF

Info

Publication number
JP2019203810A
JP2019203810A JP2018099543A JP2018099543A JP2019203810A JP 2019203810 A JP2019203810 A JP 2019203810A JP 2018099543 A JP2018099543 A JP 2018099543A JP 2018099543 A JP2018099543 A JP 2018099543A JP 2019203810 A JP2019203810 A JP 2019203810A
Authority
JP
Japan
Prior art keywords
droplet
guide surface
droplets
measurement cell
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018099543A
Other languages
Japanese (ja)
Other versions
JP7285049B2 (en
Inventor
譲 島崎
Yuzuru Shimazaki
譲 島崎
樹生 中川
Shigeo Nakagawa
樹生 中川
原田 邦男
Kunio Harada
邦男 原田
植松千宗
Chihiro Uematsu
千宗 植松
淳子 田中
Junko Tanaka
淳子 田中
小原 賢信
Masanobu Obara
賢信 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018099543A priority Critical patent/JP7285049B2/en
Publication of JP2019203810A publication Critical patent/JP2019203810A/en
Application granted granted Critical
Publication of JP7285049B2 publication Critical patent/JP7285049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

To provide a method for trapping droplets floating on the surface of oil with high capture rate, a measurement cell, and a droplet capturing device.SOLUTION: A fluid containing a plurality of droplets and oil is flown from a flow passage 4 between a chamber part 2 and a flat surface by a flat surface (bottom surface) provided below the chamber part to face a droplet guide surface 21 with a plurality of wells into the chamber part, which has an inner wall 22 in contact with the droplet guide surface at a surface which the droplet guide surface and the inner wall have in common, the inner wall being provided in an opposite direction to the direction of the recess side of the wells. After that, the droplets are captured by the wells of the droplet guide surface.SELECTED DRAWING: Figure 1

Description

本開示は、液滴捕捉方法、測定セル、および液滴捕捉装置に関する。   The present disclosure relates to a droplet capture method, a measurement cell, and a droplet capture device.

現在、遺伝子変異を高感度で検知できるデジタルPCR法が注目されている。デジタルPCR法の一種である、液滴を用いたデジタルPCR法では、まず、検体中に含まれるDNAを液滴中に単離し、単離したDNAの種類を蛍光標識などの方法で可視化する。その後、流路を流れる液滴に含まれるDNAの種類をフローサイトメーターで判別し、それぞれの個数を積算して、検体中のターゲットDNAの数を定量する。   At present, a digital PCR method capable of detecting a gene mutation with high sensitivity is attracting attention. In a digital PCR method using droplets, which is a kind of digital PCR method, first, DNA contained in a specimen is isolated in a droplet, and the type of the isolated DNA is visualized by a method such as fluorescent labeling. Thereafter, the type of DNA contained in the droplet flowing in the flow path is discriminated with a flow cytometer, and the number of each is integrated to quantify the number of target DNAs in the sample.

一方、非特許文献1では、複数のウエルを有する液滴ガイド面を内壁に有するマイクロ流路中に液滴を流し、液滴ガイド面に捕捉された液滴群の蛍光を上面から観察することで、液滴中の蛍光色素の有無を判別する技術を開示している。   On the other hand, in Non-Patent Document 1, a droplet is caused to flow through a microchannel having a droplet guide surface having a plurality of wells on the inner wall, and the fluorescence of the droplet group captured on the droplet guide surface is observed from above. Thus, a technique for determining the presence or absence of a fluorescent dye in a droplet is disclosed.

L. Labanieh et al. Micromachines 2015, 6, 1469-1482.L. Labanieh et al. Micromachines 2015, 6, 1469-1482.

発明者らは、平面状に配列した液滴群からの蛍光を検出する液滴を用いたデジタルPCR法を検討している。発明者らが、非特許文献1に開示されているような、マイクロ流路中の内壁に設置された、複数のウエルを有する液滴ガイド面に液滴を捕捉する方法を検討したところ、液滴の捕捉率(投入液滴数に対する捕捉液滴数の割合)が20%程度と悪く、十分量の液滴を液滴ガイド面に捕捉させるために多量の液滴を流す必要があることが分かった。
しかしながら、一般に、生体分子計測に使用できる検体量は少なく、検査に供する検体量は少ないことが望ましい。
本開示はこのような状況に鑑みてなされたものであり、液滴の捕捉率の高い液滴のトラップ技術を提供する。
The inventors are examining a digital PCR method using droplets that detect fluorescence from a group of droplets arranged in a plane. The inventors have studied a method of capturing a droplet on a droplet guide surface having a plurality of wells installed on the inner wall in the microchannel as disclosed in Non-Patent Document 1. Drop capture rate (ratio of the number of captured droplets to the number of input droplets) is about 20%, and it is necessary to flow a large number of droplets to capture a sufficient amount of droplets on the droplet guide surface. I understood.
However, in general, the amount of specimen that can be used for biomolecule measurement is small, and it is desirable that the quantity of specimen to be used for testing is small.
The present disclosure has been made in view of such a situation, and provides a droplet trap technology with a high droplet capture rate.

上記課題を解決するために、本開示による液滴の捕捉方法は、
内部空間の一方の内壁面に複数のウエルを有する液滴ガイド面と、液滴ガイド面と共通な面と接し、ウエルの凹側とは逆方向に設けられた内壁と、を有するチャンバ部と、液滴ガイド面と対面するようにチャンバ部の下側に設けられた平面により、チャンバ部と平面との間に形成される流路と、オイルと、オイルよりも比重の軽い液滴と、を流路に導入する導入部と、オイルを外部に排出するオイル排出部と、筐体部と、を備える測定セルを用意する工程と、
測定セル内に、液滴ガイド面を上にした状態で複数の液滴とオイルとを含む流体を流路に流す工程と、
チャンバ部において、液滴のオイルに対する浮力を利用して、液滴ガイド面の複数のウエルに複数の液滴を捕捉する工程と、
を含む。
本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。
本明細書の記述は典型的な例示に過ぎず、特許請求の範囲又は適用例を如何なる意味に於いても限定するものではないことを理解する必要がある。
In order to solve the above problems, a droplet capturing method according to the present disclosure includes:
A chamber portion having a droplet guide surface having a plurality of wells on one inner wall surface of the internal space, and an inner wall in contact with a surface common to the droplet guide surface and provided in a direction opposite to the concave side of the well; A flow path formed between the chamber portion and the plane by the plane provided on the lower side of the chamber portion so as to face the droplet guide surface, oil, and a droplet having a specific gravity lighter than that of the oil, Preparing a measurement cell comprising an introduction part for introducing the oil into the flow path, an oil discharge part for discharging the oil to the outside, and a housing part;
Flowing a fluid containing a plurality of droplets and oil in a flow path in a state where the droplet guide surface is in the measurement cell;
Capturing a plurality of droplets in a plurality of wells of a droplet guide surface using buoyancy of the droplets with respect to oil in the chamber portion;
including.
Further features related to the present disclosure will become apparent from the description of the present specification and the accompanying drawings. The aspects of the present disclosure are achieved and realized by elements and combinations of various elements and the following detailed description and appended claims.
It should be understood that the description herein is merely exemplary and is not intended to limit the scope of the claims or the application in any way.

本開示によれば、測定セルにおける液滴の捕捉率を向上させることが可能となる。   According to the present disclosure, it is possible to improve the droplet capture rate in the measurement cell.

液滴の捕捉方法を模式的に示す図である。図1Aは液滴101とオイル102とを含む流体を流す前の測定セル1の状態を示し、図1Bは測定セル1中に液滴101とオイル102とを含む流体を流した後の状態を示し、図1Cは液滴101が液滴ガイド面(後述するように、複数のウエルが形成された面)21に捕捉された状態を示す。It is a figure which shows typically the capture method of a droplet. FIG. 1A shows the state of the measurement cell 1 before flowing the fluid containing the droplet 101 and the oil 102, and FIG. 1B shows the state after flowing the fluid containing the droplet 101 and the oil 102 in the measurement cell 1. FIG. 1C shows a state in which the droplet 101 is captured by the droplet guide surface 21 (a surface on which a plurality of wells are formed as will be described later). 本実施形態による測定セル1の概略構成例を示す図である。It is a figure which shows the schematic structural example of the measurement cell 1 by this embodiment. 本実施形態による液滴捕捉装置200の概略構成例を示す図である。It is a figure which shows the example of schematic structure of the droplet trapping apparatus 200 by this embodiment. 本実施形態による液滴捕捉装置200の動作例を模式的に示す図である。It is a figure which shows typically the operation example of the droplet trapping apparatus 200 by this embodiment. 実施例と比較例で使用した各測定セルの構造例を示す図である。It is a figure which shows the structural example of each measurement cell used by the Example and the comparative example. 実施例と比較例で用いた各測定セルの液滴ガイド面の構造を示す図である。It is a figure which shows the structure of the droplet guide surface of each measurement cell used by the Example and the comparative example. 測定セル中の配列液滴の蛍光像を観察した計測システムを模式的に示す図である。It is a figure which shows typically the measurement system which observed the fluorescence image of the arrangement | sequence droplet in a measurement cell. 測定セル中の配列液滴の蛍光顕微鏡像を示す図である。It is a figure which shows the fluorescence microscope image of the arrangement | sequence droplet in a measurement cell.

本実施形態は、生体分子計測方法、特に、遺伝子変異の計測方法に関わる液滴の捕捉方法、測定セル、および液滴捕捉装置に関する。本実施形態は、測定セルに設けられたウエルにおける液滴の捕捉率を向上させるために、流路と接続されたチャンバ部を設けた測定セルと、それを備える液滴補足装置、およびそれを用いた液滴捕捉方法について開示する。   The present embodiment relates to a biomolecule measurement method, in particular, a droplet trapping method, a measurement cell, and a droplet trapping apparatus related to a gene mutation measurement method. In this embodiment, in order to improve the capture rate of a droplet in a well provided in a measurement cell, a measurement cell provided with a chamber portion connected to a flow path, a droplet supplement device including the measurement cell, and Disclosed is the droplet capture method used.

以下、添付図面を参照して本実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もあり、重複した説明を省略する。なお、添付図面は本開示の原理に則った具体的な実施形態と実施例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。
本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In the accompanying drawings, functionally identical elements may be indicated by the same numbers, and redundant description is omitted. The accompanying drawings show specific embodiments and examples in accordance with the principles of the present disclosure, but these are for the purpose of understanding the present disclosure and are not intended to limit the present disclosure in any way. Not used.
This embodiment has been described in sufficient detail for those skilled in the art to implement the present disclosure, but other implementations and forms are possible, without departing from the scope and spirit of the technical idea of the present disclosure. It is necessary to understand that the configuration and structure can be changed and various elements can be replaced. Therefore, the following description should not be interpreted as being limited to this.

<トラップ方法の例>
はじめに、本開示の一実施形態に係る液滴のトラップ方法について説明する。
図1は、液滴の捕捉方法を模式的に示す図である。図1Aは液滴101とオイル102とを含む流体を流す前の測定セル1の状態を示し、図1Bは測定セル1中に液滴101とオイル102とを含む流体を流した後の状態を示し、図1Cは液滴101が液滴ガイド面(後述するように、複数のウエルが形成された面)21に捕捉された状態を示す。まず、導入部3から、測定セル1中に液滴101とオイル102とを含む流体を流す。流体の流し方は、流体が測定セル中に入る方法であれば、特に制限はない。例えば、導入部3にチューブなどを接続し、ポンプなどを用いて注入する方法や、マイクロピペットを使って注入する方法などが挙げられる。
<Example of trap method>
First, a droplet trapping method according to an embodiment of the present disclosure will be described.
FIG. 1 is a diagram schematically showing a droplet capturing method. FIG. 1A shows the state of the measurement cell 1 before flowing the fluid containing the droplet 101 and the oil 102, and FIG. 1B shows the state after flowing the fluid containing the droplet 101 and the oil 102 in the measurement cell 1. FIG. 1C shows a state in which the droplet 101 is captured by the droplet guide surface 21 (a surface on which a plurality of wells are formed as will be described later). First, a fluid containing droplets 101 and oil 102 is caused to flow from the introduction unit 3 into the measurement cell 1. There is no particular limitation on the way the fluid flows as long as the fluid enters the measurement cell. For example, a method of injecting using a pump or the like by connecting a tube or the like to the introduction unit 3 or a method of injecting using a micropipette can be used.

液滴101は、オイル102よりも密度が低く、オイル102の表面に浮遊するものが好ましい。液滴101の直径は、用途に応じて20μmから100μmの範囲、より好ましくは20μmから60μmの範囲から選ぶことができる。液滴101の直径が20μmよりも小さい場合、液滴の蛍光観察が困難になるため好ましくない。また、液滴101の直径が100μmよりも大きい場合、配列した液滴群の単位面積当たりに含まれる液滴101の数が少なくなり、一度に蛍光評価できる液滴の数が少なくなるため好ましくない。液滴101の直径を20μmから60μmの範囲から選ぶことにより、一度に評価できる液滴101の数を十分数確保した状態で液滴101を評価することができる。また、液滴101は、例えば、オイル102の中で浮くような分子で構成され、また、液滴中の観察対象や、液滴中で観察対象を形成するために必要な分子を含有することができる。液滴101に含有させることができる分子の例としては、生体関連分子、PCR反応に必要な薬剤、蛍光色素、塩などが挙げられる。また、液滴101を、界面活性剤で安定化するようにしてもよい。界面活性剤の例として、EA surfactant (RainDance社製)や、Pico-SurfTM 1(dolomite社製)などが挙げられる。さらに、オイル102は、液滴101を浮遊させる液体であればよい。オイル102の例として、フロリナート(3M製)、Novec(3M製)などが挙げられる。液滴101とオイル102とを含む流体を測定セル1に流すと、液滴101は浮力を受けて、図1Bのようにチャンバ部2に一旦捕捉される。また、浮力で浮遊した液滴101の一部は、液滴ガイド面21に捕捉される。そのため、オイル排出部5から液滴101が抜け出ることが抑制される。従って、本開示の液滴のトラップ方法によって、液滴の捕捉率を大幅に向上させることが可能である。 It is preferable that the droplet 101 has a lower density than the oil 102 and floats on the surface of the oil 102. The diameter of the droplet 101 can be selected from the range of 20 μm to 100 μm, more preferably from the range of 20 μm to 60 μm, depending on the application. When the diameter of the droplet 101 is smaller than 20 μm, it is difficult to observe the fluorescence of the droplet, which is not preferable. Further, when the diameter of the droplet 101 is larger than 100 μm, the number of droplets 101 included per unit area of the arranged droplet group is reduced, and the number of droplets that can be subjected to fluorescence evaluation at a time is reduced. . By selecting the diameter of the droplet 101 from the range of 20 μm to 60 μm, the droplet 101 can be evaluated in a state where a sufficient number of droplets 101 can be evaluated at one time. In addition, the droplet 101 is composed of molecules that float in the oil 102, for example, and contains an observation target in the droplet and molecules necessary for forming the observation target in the droplet. Can do. Examples of molecules that can be contained in the droplet 101 include biologically relevant molecules, drugs necessary for PCR reactions, fluorescent dyes, salts, and the like. Further, the droplet 101 may be stabilized with a surfactant. Examples of the surfactant include EA surfactant (manufactured by RainDance), Pico-Surf 1 (manufactured by dolomite), and the like. Further, the oil 102 may be a liquid that floats the droplet 101. Examples of the oil 102 include Fluorinert (manufactured by 3M), Novec (manufactured by 3M), and the like. When a fluid containing the droplet 101 and the oil 102 is caused to flow to the measurement cell 1, the droplet 101 receives buoyancy and is temporarily captured in the chamber portion 2 as shown in FIG. 1B. Further, a part of the droplet 101 that has floated due to buoyancy is captured by the droplet guide surface 21. Therefore, the droplet 101 is prevented from coming out from the oil discharge part 5. Therefore, the droplet trapping method can be greatly improved by the droplet trapping method of the present disclosure.

液滴101とオイル102とを含む流体を測定セル1に流した後、より多くの液滴101を液滴ガイド面21に捕捉させるための操作を施しても良い。より多くの液滴101を液滴ガイド面21に捕捉させるための操作の例として、測定セル1を振動させる操作や導入部3からオイル102を流す操作が挙げられる。なお、測定セル1を振動させる操作は、測定セル1に液滴101とオイル102とを含む液体を流すときに同時に施しても良い。
以上に示した液滴101の捕捉方法により、高捕捉率で測定セル1中に液滴101を捕捉し、配列させることができる。
After flowing a fluid containing the droplet 101 and the oil 102 to the measurement cell 1, an operation for capturing more droplets 101 on the droplet guide surface 21 may be performed. Examples of the operation for capturing more droplets 101 on the droplet guide surface 21 include an operation for vibrating the measurement cell 1 and an operation for flowing the oil 102 from the introduction unit 3. The operation of vibrating the measurement cell 1 may be performed at the same time when a liquid containing the droplet 101 and the oil 102 is allowed to flow through the measurement cell 1.
With the method for capturing droplets 101 described above, the droplets 101 can be captured and arranged in the measurement cell 1 with a high capture rate.

<測定セルの構成例>
図2は、本実施形態による測定セル1の概略構成例を示す図である。測定セル1は、例えば、チャンバ部2と、導入部3と、流路4と、オイル排出部5と、筐体部6と、を有する。チャンバ部2は、一方の内壁面に複数のウエル23を有する液滴ガイド面21と、液滴ガイド面21と共通な面24と接し、ウエル23が凹む方向(ウエル23の凹側)とは逆方向に設けられた(共通な面24から凹む方向とは逆方向に延設された)内壁22と、を有する。
<Configuration example of measurement cell>
FIG. 2 is a diagram illustrating a schematic configuration example of the measurement cell 1 according to the present embodiment. The measurement cell 1 includes, for example, a chamber part 2, an introduction part 3, a flow path 4, an oil discharge part 5, and a housing part 6. The chamber portion 2 is in contact with a droplet guide surface 21 having a plurality of wells 23 on one inner wall surface and a surface 24 common to the droplet guide surface 21, and the direction in which the well 23 is recessed (the concave side of the well 23). And an inner wall 22 provided in the opposite direction (extending in the opposite direction to the direction recessed from the common surface 24).

液滴ガイド面21と流路4との最小距離は、2D(ただし、Dは液滴の平均径)以上であることが好ましい。液滴ガイド面21と流路4との最小距離が2Dより小さいと、流路を通してチャンバ部2に流入した液滴101が十分に捕捉できず、液滴101の捕捉率が低下するため好ましくないからである。また、液滴ガイド面21が有するウエル23と内壁22との最短距離(共通な面24におけるウエルと内壁までの距離の最小値)は、5D(ただしDは液滴の平均径)以下とするのが良い。内壁22に衝突して跳ね返った液滴101は、オイル102の流動により空のウエル23まで流動され、ウエル23に捕捉される。しかし、液滴ガイド面21が有するウエル23と内壁22との最短距離が5Dよりも大きいと、液滴101がウエル23に到達できず、ウエル23に捕捉されない液滴101の量が増加するため好ましくないからである。なお、液滴ガイド面21が有するウエル23と内壁22は隣接していても良い。また、液滴ガイド面に配列した液滴群の光学像を一括計測するアプリケーションでは、撮像に焦点を合わせやすいように液敵群は平面状に配列していることが好ましく、液滴ガイド面が有する複数のウエルは、平面状に配列していることが好ましい。   The minimum distance between the droplet guide surface 21 and the flow path 4 is preferably 2D (where D is the average diameter of the droplets) or more. If the minimum distance between the droplet guide surface 21 and the channel 4 is smaller than 2D, the droplet 101 flowing into the chamber part 2 through the channel cannot be sufficiently captured, and the capture rate of the droplet 101 is reduced, which is not preferable. Because. In addition, the shortest distance between the well 23 and the inner wall 22 of the droplet guide surface 21 (the minimum value of the distance between the well and the inner wall on the common surface 24) is 5D (where D is the average diameter of the droplets) or less. Is good. The droplet 101 that has bounced off the inner wall 22 flows to the empty well 23 by the flow of the oil 102 and is captured by the well 23. However, if the shortest distance between the well 23 and the inner wall 22 of the droplet guide surface 21 is greater than 5D, the droplet 101 cannot reach the well 23 and the amount of the droplet 101 that is not captured by the well 23 increases. It is because it is not preferable. The well 23 and the inner wall 22 of the droplet guide surface 21 may be adjacent to each other. In addition, in an application that collectively measures an optical image of a group of droplets arranged on the droplet guide surface, it is preferable that the liquid enemy groups are arranged in a plane so that the imaging can be easily focused. It is preferable that the plurality of wells are arranged in a planar shape.

チャンバ部2を液滴ガイド面21と平行な面で切断したときのボイド形状は、特に制限はなく、例として楕円形(円形を含む)、多角形、少なくとも一部に曲線を有する形状(チャンバ部2の側壁の少なくとも一部が曲面で構成されている)などが挙げられる。特に、チャンバ部2を液滴ガイド面21と平行な面で切断したときのボイド部の形状が楕円形の場合、オイルの流動が角部で阻害されず、液滴の流動が良くなるため、液滴がウエルに捕捉される割合が増加する。   The void shape when the chamber section 2 is cut along a plane parallel to the droplet guide surface 21 is not particularly limited, and examples thereof include an ellipse (including a circle), a polygon, and a shape having at least a curve (chamber). And at least a part of the side wall of the portion 2 is formed of a curved surface. In particular, when the shape of the void portion when the chamber portion 2 is cut along a plane parallel to the droplet guide surface 21 is an ellipse, the flow of oil is not inhibited by the corner portion, and the flow of the droplet is improved. The rate at which droplets are trapped in the wells increases.

液滴ガイド面21は、複数のウエル23で液滴101を捕捉し配列させる。ウエル23の形状は、液滴101を捕捉できる形状であれば特に制限はない。ウエル23の形状の例として、円柱状、楕円柱状、多角柱状(三角柱状、四角柱状、五角柱状、六角柱状など)、四面体状などが挙げられる。ウエル23の内径は、液滴位置のドリフトを最小限に抑えるために、液滴の平均径の0.5倍から1.2倍の範囲であることが望ましい。また、ウエル23の深さは、液滴101の平均径の0.3倍以上1.5倍以下、より好ましくは0.5倍以上1.0倍以下の範囲から選択することが望ましい。ウエル23の深さが液滴101の平均径の0.3倍よりも小さいと、液滴101が捕捉されず好ましくない。また、ウエル23の深さが液滴101の平均径の1.5倍より大きいと、ウエル23に2つ以上の液滴が捕捉される確率が高くなり、好ましくない。ウエル23の深さを液滴101の平均径の0.5倍以上1.0倍以下の範囲で選択することにより、捕捉された複数の隣接した液滴101が形成するくぼみの影響(当該くぼみに別の液滴がトラップされてしまうという現象)と、ウエル23に2つ以上の液滴が捕捉される確率を最小限にしながら、液滴ガイド面21に高密度で液滴101を配列することが可能となる。また、チャンバ部2に含まれるウエル23の数は、適用するアプリケーションのコスト要求と性能要求のバランスによって10−10個の範囲で決定される。 The droplet guide surface 21 captures and arranges the droplets 101 in the plurality of wells 23. The shape of the well 23 is not particularly limited as long as it can capture the droplet 101. Examples of the shape of the well 23 include a columnar shape, an elliptical columnar shape, a polygonal columnar shape (triangular columnar shape, quadrangular columnar shape, pentagonal columnar shape, hexagonal columnar shape, etc.), a tetrahedral shape, and the like. The inner diameter of the well 23 is preferably in the range of 0.5 to 1.2 times the average droplet diameter in order to minimize droplet position drift. Further, the depth of the well 23 is desirably selected from a range of 0.3 to 1.5 times the average diameter of the droplets 101, more preferably 0.5 to 1.0 times. If the depth of the well 23 is smaller than 0.3 times the average diameter of the droplet 101, the droplet 101 is not captured, which is not preferable. On the other hand, if the depth of the well 23 is larger than 1.5 times the average diameter of the droplet 101, the probability that two or more droplets are trapped in the well 23 increases, which is not preferable. By selecting the depth of the well 23 in the range of 0.5 to 1.0 times the average diameter of the droplet 101, the influence of the depression formed by a plurality of adjacent droplets 101 captured (the depression And the droplet 101 is arranged on the droplet guide surface 21 at a high density while minimizing the probability that two or more droplets are trapped in the well 23. It becomes possible. The number of wells 23 included in the chamber unit 2 is determined in the range of 10 1 to 10 6 according to the balance between the cost requirement and the performance requirement of the application to be applied.

流路4は、チャンバ部2と導入部3及びオイル排出部5を結ぶ流路であり、液滴ガイド面21と対面するようにチャンバ部2の下側に設けられた平面により、チャンバ部2と前記平面との間に形成され、さらにチャンバ部2と導入部3、及びチャンバ部2とオイル排出部5を連結する。流路4は、液滴101とオイル102とを含む流体をチャンバ部2に誘導し、過剰のオイルをオイル排出部5まで誘導する流路であれば特に制約はない。ただし、流路の断面のサイズは液滴101の最大断面積よりも大きく構成することが好ましい。また、導入部3は、液滴101とオイル102とを流路4に導入できる構造であれば特に制限はなく、オイル排出部5は、オイルを測定セル1の外部に排出できる構造であれば特に制限はない。   The flow path 4 is a flow path connecting the chamber section 2 to the introduction section 3 and the oil discharge section 5, and the chamber section 2 is formed by a plane provided on the lower side of the chamber section 2 so as to face the droplet guide surface 21. Between the chamber portion 2 and the introduction portion 3 and between the chamber portion 2 and the oil discharge portion 5. The flow path 4 is not particularly limited as long as it is a flow path that guides a fluid including the droplet 101 and the oil 102 to the chamber portion 2 and guides excess oil to the oil discharge portion 5. However, the size of the cross section of the flow path is preferably larger than the maximum cross sectional area of the droplet 101. The introduction unit 3 is not particularly limited as long as the droplet 101 and the oil 102 can be introduced into the flow path 4, and the oil discharge unit 5 has a structure capable of discharging the oil to the outside of the measurement cell 1. There is no particular limitation.

筐体部6は、測定セル1の構造を維持し、液滴を構成する溶液の沸点(100℃程度)までの耐熱性を有することが望ましい。また、液滴の光学観察をする場合には、液滴ガイド面21と測定セル1の外周とに挟まれた筐体部61の、波長が450〜750nmの光の透過率が70%以上であることが望ましい。当該透過率が70%より小さいと、測定セル1の外部から液滴の蛍光を計測することが困難となるため、好ましくない。また、倒立顕微鏡などの顕微鏡を用いて、筐体下部を通して液滴を光学観察する場合には、筐体部62の、波長が450〜750nmの光の透過率が70%以上であることが望ましい。前記透過率が70%より小さいと、測定セル1の外部から液滴の蛍光を計測することが困難となるため、好ましくない。   The casing 6 desirably maintains the structure of the measurement cell 1 and has heat resistance up to the boiling point (about 100 ° C.) of the solution forming the droplet. When optically observing the droplet, the transmittance of light having a wavelength of 450 to 750 nm of the casing 61 sandwiched between the droplet guide surface 21 and the outer periphery of the measurement cell 1 is 70% or more. It is desirable to be. When the transmittance is less than 70%, it is difficult to measure the fluorescence of the droplet from the outside of the measurement cell 1, which is not preferable. In addition, when the liquid droplet is optically observed through the lower part of the casing using a microscope such as an inverted microscope, it is desirable that the transmittance of the light having a wavelength of 450 to 750 nm of the casing unit 62 is 70% or more. . If the transmittance is less than 70%, it is difficult to measure the fluorescence of the droplet from the outside of the measurement cell 1, which is not preferable.

<液滴捕捉装置の構成例>
図3は、本実施形態による液滴捕捉装置200の概略構成例を示す図である。液滴捕捉装置200は、例えば、測定セル1を設置する設置部201と、試料容器(例:ディスポーザルチューブ)211を保持する試料保持部202と、オイル流速度を制御する流速制御部203と、を有する。設置部201は、測定セル1が設置(固定)できれば特に制限はなく、測定セル1を加振する機構や、設置した測定セル1を傾斜させる機構を備えていても良い。また、試料保持部202は、オイルと液滴を保持する試料容器211を固定できる構造を備えていれば特に制限はなく、オイルと液滴を保持する容器を加振する機構を備えていても良い。流速制御部203は、互いに接続された流路212、測定セル1、流路213を経由してオイルを試料容器に供給する機能、または互いに接続された流路213、測定セル1、流路212を経由してオイルを吸引する機能を備えていれば特に制限はない。
<Configuration example of droplet trapping device>
FIG. 3 is a diagram illustrating a schematic configuration example of the droplet capturing apparatus 200 according to the present embodiment. The droplet capturing apparatus 200 includes, for example, an installation unit 201 that installs the measurement cell 1, a sample holding unit 202 that holds a sample container (eg, a disposal tube) 211, and a flow rate control unit 203 that controls the oil flow rate. Have. The installation unit 201 is not particularly limited as long as the measurement cell 1 can be installed (fixed), and may include a mechanism for vibrating the measurement cell 1 or a mechanism for tilting the installed measurement cell 1. The sample holder 202 is not particularly limited as long as it has a structure capable of fixing the sample container 211 that holds oil and droplets, and may have a mechanism for vibrating the container that holds oil and droplets. good. The flow rate control unit 203 has a function of supplying oil to the sample container via the mutually connected channel 212, the measurement cell 1, and the channel 213, or the mutually connected channel 213, the measurement cell 1, and the channel 212. There is no particular limitation as long as it has a function of sucking oil via the.

<液滴捕捉装置200の動作>
図4は、本実施形態による液滴捕捉装置200の動作例を模式的に示す図である。まず、測定セル1と試料容器211をそれぞれ設置部、試料保持部に設置し、互いに接続された流路212、測定セル1、流路213を経由して、流速制御部203から試料容器211にオイル102を供給する(図4A参照)。図4Bは、オイル供給後の状態を示している。その後、試料容器211中のオイルに必要量の液滴101を加える。この操作の後に、試料保持部に備えられた試料容器211を加振する機能を用いて、液滴101をオイル102中に分散させてもよい。図4Cは、オイル102に液滴101を加えた後の状態を示している。その後、試料保持部202の加振を継続しながら、流路213、測定セル1、流路212を経由して試料容器211中の液滴分散液を、流速制御部203を用いて吸引し、液滴101を測定セル1に導入する。液滴101が測定セル1に導入されると、液滴101は、浮力によってチャンバ部2に捕捉され、さらに浮力によって液滴ガイド部21中の各ウエル23に捕捉されて配列する。このときに設置部201の加振によって測定セルを加振し、液滴101の配列を促進してもよい。また、設置部201を傾斜させることにより測定セル1を傾斜させて、液滴101の配列を促進してもよい。図4Dは、液滴101の配列後の状態を示している。
以上の動作を経て、液滴捕捉装置200は測定セル1中に液滴を配列させる。
<Operation of Droplet Capture Device 200>
FIG. 4 is a diagram schematically illustrating an operation example of the droplet capturing apparatus 200 according to the present embodiment. First, the measurement cell 1 and the sample container 211 are installed in the installation unit and the sample holding unit, respectively, and the flow rate control unit 203 transfers to the sample container 211 via the flow channel 212, the measurement cell 1, and the flow channel 213 connected to each other. Oil 102 is supplied (see FIG. 4A). FIG. 4B shows a state after the oil supply. Thereafter, the required amount of droplets 101 is added to the oil in the sample container 211. After this operation, the droplet 101 may be dispersed in the oil 102 using a function of vibrating the sample container 211 provided in the sample holding unit. FIG. 4C shows a state after the droplet 101 is added to the oil 102. Thereafter, while continuing to vibrate the sample holding unit 202, the droplet dispersion liquid in the sample container 211 is sucked using the flow rate control unit 203 via the flow path 213, the measurement cell 1, and the flow path 212. The droplet 101 is introduced into the measurement cell 1. When the droplet 101 is introduced into the measurement cell 1, the droplet 101 is captured in the chamber portion 2 by buoyancy, and further captured by the wells 23 in the droplet guide portion 21 by buoyancy and arranged. At this time, the arrangement of the droplets 101 may be promoted by exciting the measurement cell by the vibration of the installation unit 201. Further, the arrangement of the droplets 101 may be promoted by inclining the measurement cell 1 by inclining the installation portion 201. FIG. 4D shows a state after the droplets 101 are arranged.
Through the above operation, the droplet capturing apparatus 200 arranges the droplets in the measurement cell 1.

<実施例と比較例>
以下、本開示による実施例と比較例について説明する。なお、比較例は、非特許文献1に開示の方法による結果である。
<Examples and comparative examples>
Hereinafter, examples and comparative examples according to the present disclosure will be described. The comparative example is a result obtained by the method disclosed in Non-Patent Document 1.

図5は、実施例と比較例で使用した各測定セルの構造例を示す図である。これらの測定セルは、スライドガラス(松浪硝子工業製 S1111)と粘着シート(3M製 9969)を積層して作成した。流路の幅は1mm、高さは100μmとした。また、実施例で使用した測定セルのチャンバ部の深さ(液滴ガイド面21と流路4との最小距離)は75μmとした。液滴ガイド面は、光ナノインプリント法を用いて作成した。液滴ガイド面を構成する材料として、光架橋性のポリウレタン(ダイセルサイテック社製 EB8405)と光架橋剤(新中村化学製 A−NPG)の混合物(1:2)を用いた。   FIG. 5 is a diagram illustrating an example of the structure of each measurement cell used in Examples and Comparative Examples. These measurement cells were prepared by laminating a slide glass (S1111 made by Matsunami Glass Industry) and an adhesive sheet (9969 made by 3M). The width of the flow path was 1 mm and the height was 100 μm. In addition, the depth of the chamber portion of the measurement cell used in the example (the minimum distance between the droplet guide surface 21 and the flow path 4) was 75 μm. The droplet guide surface was prepared using the optical nanoimprint method. As a material constituting the droplet guide surface, a mixture (1: 2) of photocrosslinkable polyurethane (EB8405 manufactured by Daicel Cytec Co., Ltd.) and a photocrosslinker (A-NPG manufactured by Shin-Nakamura Chemical Co., Ltd.) was used.

図6は、実施例と比較例で用いた各測定セルの液滴ガイド面の構造を示す図である。ウエル23の直径Rは20.5μmであり、ウエルの深さdは18μmであった。ウエルは三角配列しており、ウエル間の最短ピッチは25μmであった。   FIG. 6 is a diagram showing the structure of the droplet guide surface of each measurement cell used in the examples and comparative examples. The diameter R of the well 23 was 20.5 μm, and the depth d of the well was 18 μm. The wells were arranged in a triangle, and the shortest pitch between the wells was 25 μm.

本実施例と比較例のそれぞれにおいて、RainDance社製のRainDrop Systemを用いて作製した液滴(粒径20μm)を用い、オイルとしてRainDance社製のキャリアオイルを用いた。なお、オイルに添加した液滴は、オイル上に浮遊した。   In each of the present example and the comparative example, a droplet (particle diameter: 20 μm) produced using a RainDrop System made by RainDance was used, and a carrier oil made by RainDance was used as the oil. The droplets added to the oil floated on the oil.

(1)実施例1と比較例1
実施例1では、まず、測定セル1と試料容器211をそれぞれ設置部201、試料保持部202に設置し、互いに接続された流路212、測定セル1、流路213を経由して、流速制御部203から、試料容器211にオイルを400μL供給した(流速1ml/min)。その後、試料容器211中のオイルに、マイクロピペットを用いて1.0μLの液滴を加え、試料保持部202の加振機能を用いて液滴をオイル中に分散させた。なお、実施例1では、試料保持部202として、ブロックバスシェーカー(アズワン製 MyBL-100CS、振動数600rpm)を用いた。その後、試料保持部202の加振を継続しながら、流路213、測定セル1、流路212を経由して試料容器211中の液滴分散液を、流速制御部203を用いて吸引し(流速0.1ml/min)、設置部201の加振機能を用いて測定セル1を加振しながら液滴を測定セル1に導入した。実施例1では、設置部201としてブロックバスシェーカー(アズワン製 MyBL-100CS、振動数600rpm)を用いた。以上の動作を経て、測定セル1中に液滴を配列させた。光学顕微鏡を用いて液滴を観察したところ、液滴は、ウエルに従い規則配列していた。また、光学顕微鏡像から液滴ガイド面に存在する液滴の数を求めた結果、3×10個の液滴が捕捉されていることがわかった。
(1) Example 1 and Comparative Example 1
In the first embodiment, first, the measurement cell 1 and the sample container 211 are installed in the installation unit 201 and the sample holding unit 202, respectively, and flow rate control is performed via the channel 212, the measurement cell 1, and the channel 213 connected to each other. 400 μL of oil was supplied from the unit 203 to the sample container 211 (flow rate: 1 ml / min). Thereafter, 1.0 μL droplets were added to the oil in the sample container 211 using a micropipette, and the droplets were dispersed in the oil using the vibration function of the sample holding unit 202. In Example 1, a block bath shaker (MyBL-100CS manufactured by ASONE, frequency 600 rpm) was used as the sample holder 202. Thereafter, while continuing the excitation of the sample holding unit 202, the liquid droplet dispersion in the sample container 211 is sucked using the flow rate control unit 203 via the channel 213, the measurement cell 1, and the channel 212 ( The liquid droplet was introduced into the measurement cell 1 while vibrating the measurement cell 1 using the vibration function of the installation unit 201 at a flow rate of 0.1 ml / min. In Example 1, a block bus shaker (MyBL-100CS manufactured by ASONE, frequency 600 rpm) was used as the installation unit 201. Through the above operation, the droplets were arranged in the measurement cell 1. When the droplets were observed using an optical microscope, the droplets were regularly arranged according to the wells. Further, as a result of obtaining the number of droplets present on the droplet guide surface from the optical microscope image, it was found that 3 × 10 4 droplets were captured.

一方、比較例1では、まず、測定セル1と試料容器211をそれぞれ設置部201、試料保持部202に設置し、互いに接続された流路212、測定セル1、流路213を経由して、流速制御部203から、試料容器211にオイルを400μL供給した(流速1ml/min)。その後、試料容器211中のオイルに、マイクロピペットを用いて1.0μLの液滴を加え、試料保持部202の加振機能を用いて液滴をオイル中に分散させた。なお、実施例1では、試料保持部202として、ブロックバスシェーカー(アズワン製 MyBL-100CS、振動数600rpm)を用いた。その後、試料保持部202の加振を継続しながら、流路213、測定セル1、流路212を経由して試料容器211中の液滴分散液を、流速制御部203を用いて吸引し(流速0.1ml/min)、設置部201の加振機能を用いて測定セル1を加振しながら液滴を測定セル1に導入した。本実施例では、設置部201としてブロックバスシェーカー(アズワン製 MyBL-100CS、振動数600rpm)を用いた。以上の動作を経て、測定セル1中に液滴を配列させた。光学顕微鏡を用いて液滴を観察したところ、液滴は、ウエルに従い規則配列していた。また、光学顕微鏡像から液滴ガイド面に存在する液滴の数を求めた結果、5×10個の液滴が捕捉されていることがわかった。 On the other hand, in Comparative Example 1, first, the measurement cell 1 and the sample container 211 are installed in the installation unit 201 and the sample holding unit 202, respectively, and the channel 212, the measurement cell 1, and the channel 213 are connected to each other. 400 μL of oil was supplied from the flow rate control unit 203 to the sample container 211 (flow rate: 1 ml / min). Thereafter, 1.0 μL droplets were added to the oil in the sample container 211 using a micropipette, and the droplets were dispersed in the oil using the vibration function of the sample holding unit 202. In Example 1, a block bath shaker (MyBL-100CS manufactured by ASONE, frequency 600 rpm) was used as the sample holder 202. Thereafter, while continuing the excitation of the sample holding unit 202, the liquid droplet dispersion in the sample container 211 is sucked using the flow rate control unit 203 via the channel 213, the measurement cell 1, and the channel 212 ( The liquid droplet was introduced into the measurement cell 1 while vibrating the measurement cell 1 using the vibration function of the installation unit 201 at a flow rate of 0.1 ml / min. In this example, a block bath shaker (MyBL-100CS manufactured by ASONE, vibration frequency 600 rpm) was used as the installation unit 201. Through the above operation, the droplets were arranged in the measurement cell 1. When the droplets were observed using an optical microscope, the droplets were regularly arranged according to the wells. Further, as a result of obtaining the number of droplets present on the droplet guide surface from the optical microscope image, it was found that 5 × 10 3 droplets were captured.

(2)実施例2
実施例2では、蛍光色素(FAM)で修飾したDNA分子(100nM)を含む液滴(直径20μm)をRainDance社製のRainDrop Systemを用いて作製した。その後、実施例1と同じ手順に従い、測定セル中で液滴を配列させた。
(2) Example 2
In Example 2, a droplet (diameter 20 μm) containing a DNA molecule (100 nM) modified with a fluorescent dye (FAM) was prepared using a RainDrop System RainDrop System. Thereafter, following the same procedure as in Example 1, the droplets were arranged in the measurement cell.

次に、配列した液滴の蛍光像を観察した。図7は、測定セル中の配列液滴の蛍光像を観察した計測システムを模式的に示す図である。本観察では、光源301から出た光をダイクロイックミラー302で反射させ、対物レンズ303を通して、測定セル設置部308に設置した測定セル1を照射した。光照射により液滴が発した蛍光は、対物レンズ303、ダイクロイックミラー302、結像レンズ304、ロングパスフィルター305、バンドパスフィルター306を通過し、カメラ307の受光素子表面で結像した。図7の計測システムを用いて、測定セル中の配列液滴の蛍光像を測定した結果を図8に示す。この図から、光学システムを用いて、配列した液滴の蛍光像が観察できることがわかった。   Next, the fluorescence image of the arranged droplets was observed. FIG. 7 is a diagram schematically showing a measurement system in which a fluorescence image of the array droplets in the measurement cell is observed. In this observation, light emitted from the light source 301 was reflected by the dichroic mirror 302, and the measurement cell 1 installed in the measurement cell installation unit 308 was irradiated through the objective lens 303. The fluorescence emitted from the droplets by the light irradiation passed through the objective lens 303, the dichroic mirror 302, the imaging lens 304, the long pass filter 305, and the band pass filter 306, and formed an image on the surface of the light receiving element of the camera 307. FIG. 8 shows the result of measuring the fluorescence image of the arrayed droplets in the measurement cell using the measurement system of FIG. From this figure, it was found that the fluorescence image of the arranged droplets can be observed using the optical system.

(3)実施例による結果と比較例による結果についての考察
実施例1と比較例1の比較から、実施例1の液滴ガイド面に存在する液滴の数が、比較例1に比べて6倍程度多いことがわかった。以上から、本開示の技術により液滴の捕捉率が大幅に向上できることがわかった。また、実施例2から、測定セル中で配列させた液滴の蛍光像が観察できることがわかった。
(3) Consideration about the result by an Example, and the result by a comparative example From the comparison of Example 1 and Comparative Example 1, the number of the droplets which exist in the droplet guide surface of Example 1 is 6 compared with Comparative Example 1. I found that it was about twice as many. From the above, it has been found that the droplet capture rate can be greatly improved by the technique of the present disclosure. Further, from Example 2, it was found that the fluorescence image of the droplets arranged in the measurement cell can be observed.

<まとめ>
(i)本実施形態では、流体導入口(導入部3)からオイル排出口(オイル排出部5)まで続く流路の底面から、複数のウエルを有する液滴ガイド面までの空間が流路の高さよりも高く設定されたチャンバ部を構成する(チャンバ構造)測定セルを用い、測定セル内に、液滴ガイド面を上にした状態で複数の液滴とオイルとを含む流体を流路に流す。そして、チャンバ部において、液滴のオイルに対する浮力を利用して、液滴ガイド面の複数のウエルに複数の液滴を捕捉する。このように、チャンバ構造を採る測定セルを用いて液滴を捕捉することにより、効率的にかつ高確率で液滴を液滴ガイド面のウエルに捕捉することができる(捕捉率の向上)。さらに、測定セルを振動させて、液滴ガイド面における複数の液滴の配列を促進するようにしてもよい。これにより、さらに捕捉率を向上させることが可能となる。
<Summary>
(I) In the present embodiment, the space from the bottom surface of the flow path extending from the fluid inlet (introduction section 3) to the oil discharge outlet (oil discharge section 5) to the droplet guide surface having a plurality of wells is the flow path. Using a measurement cell (chamber structure) that constitutes a chamber set higher than the height, a fluid containing a plurality of droplets and oil in the measurement cell with the droplet guide surface facing up is used as a flow path. Shed. In the chamber portion, a plurality of droplets are captured in a plurality of wells on the droplet guide surface by using the buoyancy of the droplets with respect to oil. Thus, by capturing a droplet using a measurement cell having a chamber structure, it is possible to capture the droplet efficiently and with high probability in the well of the droplet guide surface (improvement of capture rate). Furthermore, the measurement cell may be vibrated to promote the arrangement of a plurality of droplets on the droplet guide surface. As a result, the capture rate can be further improved.

(ii)本実施形態による測定セルは、内部空間の一方の内壁面に複数のウエルを有する液滴ガイド面と、液滴ガイド面と共通な面と接し、ウエルの凹側とは逆方向に設けられた内壁と、を有するチャンバ部と、液滴ガイド面と対面するようにチャンバ部の下側に設けられた平面により、チャンバ部と平面との間に形成される流路と、オイルと、オイルよりも比重の軽い液滴と、を流路に導入する導入部と、オイルを外部に排出するオイル排出部と、を備える。このようにすることにより、チャンバ部では、液滴をその浮力により、整列させ、液滴ガイド面の各ウエルに確実に誘導することができ、液滴をより多く捕捉することができるようになる(捕捉率の向上)。なお、さらなる捕捉率向上のためには、複数のウエルは、液滴ガイド面上で平面状に配列されていることが好ましい。 (Ii) The measurement cell according to the present embodiment is in contact with a droplet guide surface having a plurality of wells on one inner wall surface of the internal space, a surface common to the droplet guide surface, and in a direction opposite to the concave side of the well An inner wall provided, a flow path formed between the chamber part and the plane by a plane provided on the lower side of the chamber part so as to face the droplet guide surface, oil, , A liquid droplet having a lighter specific gravity than oil, and an introduction portion for introducing the droplet into the flow path, and an oil discharge portion for discharging the oil to the outside. By doing so, in the chamber portion, the droplets can be aligned by their buoyancy, can be reliably guided to each well of the droplet guide surface, and more droplets can be captured. (Improvement of capture rate). In order to further improve the capture rate, the plurality of wells are preferably arranged in a plane on the droplet guide surface.

また、液滴の平均直径をD[μm]、液滴ガイド面と流路との最小距離(液滴ガイド面と流路上面との距離)をL[μm]とするとき、20μm≦D≦100μmと、L≧2Dを満足するように、測定セルを構成する。Lが2Dよりも小さいと、流路を通してチャンバ部に流入した液滴を十分に捕捉することができないからである。   Further, when the average diameter of the droplets is D [μm] and the minimum distance between the droplet guide surface and the channel (distance between the droplet guide surface and the channel upper surface) is L [μm], 20 μm ≦ D ≦ The measurement cell is configured to satisfy 100 μm and L ≧ 2D. This is because when L is smaller than 2D, the droplets that have flowed into the chamber portion through the flow path cannot be sufficiently captured.

また、液滴ガイド面が有するウエルと内壁との最短距離をW[μm]とするとき、20μm≦D≦100μmと、W≦5Dを満足するように、測定セルを構成する。共通な面の距離が5Dよりも大きいとウエルに捕捉されず共通な面に留まってしまう液滴が多く発生し、捕捉率の向上を阻害する可能性があるからである。   Further, when the shortest distance between the well and the inner wall of the droplet guide surface is W [μm], the measurement cell is configured to satisfy 20 μm ≦ D ≦ 100 μm and W ≦ 5D. This is because if the distance between the common surfaces is greater than 5D, a large number of liquid droplets that are not captured by the well and remain on the common surface are generated, which may hinder the improvement of the capture rate.

本実施形態の測定セルにおいて、チャンバ部の側面(内壁22)の少なくとも一部は曲面をなしている。より具体的には、チャンバ部の水平断面形状は、楕円形あるいは円形である。このようにすることにより、液滴の流動性を良好にすることができるようになる。
また、本実施形態の測定セルにおいて、液滴ガイド面と測定セルの外周とに挟まれた筐体部の、波長が450〜750nmの光の透過率が70%以上となっている。このようにすることにより、液滴からの蛍光を効率よく測定することができるようになる。
In the measurement cell of this embodiment, at least a part of the side surface (inner wall 22) of the chamber portion is a curved surface. More specifically, the horizontal cross-sectional shape of the chamber portion is elliptical or circular. By doing so, the fluidity of the droplet can be improved.
Further, in the measurement cell of the present embodiment, the transmittance of light having a wavelength of 450 to 750 nm is 70% or more in the casing part sandwiched between the droplet guide surface and the outer periphery of the measurement cell. By doing so, the fluorescence from the droplet can be measured efficiently.

1 測定セル
2 チャンバ部
3 導入部
4 流路
5 オイル排出部
21 液滴ガイド面
22 内壁
23 ウエル
24 共通な面
61 筐体部
62 筐体部
101 液滴
102 オイル
200 液滴捕捉装置
201 設置部
202 試料保持部
203 流速制御部
211 試料容器
212 流路
213 流路
301 光源
302 ダイクロイックミラー
303 対物レンズ
304 結像レンズ
305 ロングパスフィルター
306 バンドパスフィルター
307 カメラ
308 測定セル設置部
DESCRIPTION OF SYMBOLS 1 Measurement cell 2 Chamber part 3 Introduction part 4 Flow path 5 Oil discharge part 21 Droplet guide surface 22 Inner wall 23 Well 24 Common surface 61 Case part 62 Case part 101 Droplet 102 Oil 200 Droplet trapping device 201 Installation part 202 Sample holding unit 203 Flow rate control unit 211 Sample container 212 Channel 213 Channel 301 Light source 302 Dichroic mirror 303 Objective lens 304 Imaging lens 305 Long pass filter 306 Band pass filter 307 Camera 308 Measurement cell installation unit

Claims (12)

内部空間の一方の内壁面に複数のウエルを有する液滴ガイド面と、前記液滴ガイド面と共通な面と接し、前記ウエルの凹側とは逆方向に設けられた内壁と、を有するチャンバ部と、前記液滴ガイド面と対面するように前記チャンバ部の下側に設けられた平面により、前記チャンバ部と前記平面との間に形成される流路と、オイルと、オイルよりも比重の軽い液滴と、を前記流路に導入する導入部と、前記オイルを外部に排出するオイル排出部と、筐体部と、を備える測定セルを用意する工程と、
前記測定セル内に、前記液滴ガイド面を上にした状態で複数の液滴とオイルとを含む流体を前記流路に流す工程と、
前記チャンバ部において、前記液滴の前記オイルに対する浮力を利用して、前記液滴ガイド面の前記複数のウエルに前記複数の液滴を捕捉する工程と、
を含む、液滴の捕捉方法。
A chamber having a droplet guide surface having a plurality of wells on one inner wall surface of the internal space, and an inner wall in contact with a surface common to the droplet guide surface and provided in a direction opposite to the concave side of the well Section, a flow path formed between the chamber section and the plane, oil, and a specific gravity greater than that of the oil by a plane provided on the lower side of the chamber section so as to face the droplet guide surface Preparing a measurement cell comprising: a light droplet; an introduction part for introducing the light droplet into the flow path; an oil discharge part for discharging the oil to the outside; and a housing part;
Flowing a fluid containing a plurality of droplets and oil through the flow channel in the measurement cell with the droplet guide surface facing upward;
Capturing the plurality of droplets in the plurality of wells of the droplet guide surface using buoyancy of the droplets with respect to the oil in the chamber portion; and
A method for capturing droplets.
請求項1において、
さらに、前記測定セルを振動させて、前記液滴ガイド面における前記複数の液滴の配列を促進する工程を含む、液滴の捕捉方法。
In claim 1,
Furthermore, the droplet capturing method includes the step of oscillating the measurement cell to promote the arrangement of the plurality of droplets on the droplet guide surface.
内部空間の一方の内壁面に複数のウエルを有する液滴ガイド面と、前記液滴ガイド面と共通な面と接し、前記ウエルの凹側とは逆方向に設けられた内壁と、を有するチャンバ部と、
前記液滴ガイド面と対面するように前記チャンバ部の下側に設けられた平面により、前記チャンバ部と前記平面との間に形成される流路と、
オイルと、オイルよりも比重の軽い液滴と、を前記流路に導入する導入部と、
前記オイルを外部に排出するオイル排出部と、
を備える、測定セル。
A chamber having a droplet guide surface having a plurality of wells on one inner wall surface of the internal space, and an inner wall in contact with a surface common to the droplet guide surface and provided in a direction opposite to the concave side of the well And
A flow path formed between the chamber portion and the plane by a plane provided on the lower side of the chamber portion so as to face the droplet guide surface;
An introduction part for introducing oil and droplets having a lighter specific gravity than oil into the flow path;
An oil discharge part for discharging the oil to the outside;
A measuring cell.
請求項3において、
前記複数のウエルは、前記液滴ガイド面上で平面状に配列されている、測定セル。
In claim 3,
The plurality of wells are measurement cells arranged in a plane on the droplet guide surface.
請求項3において、
前記液滴の平均直径をD[μm]、前記液滴ガイド面と前記流路との最小距離をL[μm]とするとき、下記式(1)および(2)の関係を満たす、測定セル。
20μm≦D≦100μm ・・・ (1)
L≧2D ・・・ (2)
In claim 3,
A measurement cell that satisfies the relationship of the following formulas (1) and (2), where D is an average diameter of the droplets and L is a minimum distance between the droplet guide surface and the flow path. .
20 μm ≦ D ≦ 100 μm (1)
L ≧ 2D (2)
請求項3において、
前記液滴の平均直径をD[μm]、前記液滴ガイド面が有するウエルと前記内壁との最短距離をW[μm]とするとき、下記式(1)および(3)の関係を満たす、測定セル。
20μm≦D≦100μm ・・・ (1)
W≦5D ・・・ (3)
In claim 3,
When the average diameter of the droplet is D [μm] and the shortest distance between the well of the droplet guide surface and the inner wall is W [μm], the relationship of the following formulas (1) and (3) is satisfied. Measuring cell.
20 μm ≦ D ≦ 100 μm (1)
W ≦ 5D (3)
請求項3において、
前記チャンバ部を前記液滴ガイド面と平行な面で切断したときのボイド部の形状の少なくとも一部が曲線をなす、測定セル。
In claim 3,
A measurement cell in which at least a part of the shape of the void portion when the chamber portion is cut along a plane parallel to the droplet guide surface forms a curve.
請求項7において、
前記ボイド部の形状は、楕円形あるいは円形である、測定セル。
In claim 7,
The shape of the void part is a measurement cell which is elliptical or circular.
請求項3において、
前記液滴ガイド面と前記測定セルの外周とに挟まれた筐体部の、波長が450〜750nmの光の透過率が70%以上である、測定セル。
In claim 3,
A measurement cell in which the transmittance of light having a wavelength of 450 to 750 nm is 70% or more in a casing part sandwiched between the droplet guide surface and the outer periphery of the measurement cell.
液滴を捕捉させるための装置であって、
請求項3に記載の測定セルを設置する設置部と、
注入前の液滴を溶媒中に分散させる機構を有する試料保持部と、
液滴分散液の注入速度を制御する流速制御部と、
を備える、液滴捕捉装置。
An apparatus for capturing droplets,
An installation section for installing the measurement cell according to claim 3;
A sample holder having a mechanism for dispersing droplets before injection in a solvent;
A flow rate controller for controlling the injection speed of the liquid droplet dispersion;
A droplet trapping device comprising:
請求項10において、
前記設置部が加振機構を有する、液滴捕捉装置。
In claim 10,
A droplet trapping device, wherein the installation part has a vibration mechanism.
請求項10において、
前記試料保持部が加振機構を有する、液滴捕捉装置。
In claim 10,
A droplet trapping device in which the sample holder has a vibration mechanism.
JP2018099543A 2018-05-24 2018-05-24 Droplet capture method, measurement cell and drop capture device Active JP7285049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018099543A JP7285049B2 (en) 2018-05-24 2018-05-24 Droplet capture method, measurement cell and drop capture device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018099543A JP7285049B2 (en) 2018-05-24 2018-05-24 Droplet capture method, measurement cell and drop capture device

Publications (2)

Publication Number Publication Date
JP2019203810A true JP2019203810A (en) 2019-11-28
JP7285049B2 JP7285049B2 (en) 2023-06-01

Family

ID=68726738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018099543A Active JP7285049B2 (en) 2018-05-24 2018-05-24 Droplet capture method, measurement cell and drop capture device

Country Status (1)

Country Link
JP (1) JP7285049B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104531519A (en) * 2015-01-30 2015-04-22 中国科学院苏州生物医学工程技术研究所 Microfluidic detection chip based on droplet experiments
US20180067038A1 (en) * 2015-03-19 2018-03-08 The Board Of Trustees Of The Leland Stanford Junior University Devices and methods for high-throughput single cell and biomolecule analysis and retrieval in a microfluidic chip
US20180071738A1 (en) * 2015-03-18 2018-03-15 The Broad Institute, Inc. Massively parallel on-chip coalescence of microemulsions
US20180071739A1 (en) * 2016-08-18 2018-03-15 Northeastern University Platform For Liquid Droplet Formation And Isolation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104531519A (en) * 2015-01-30 2015-04-22 中国科学院苏州生物医学工程技术研究所 Microfluidic detection chip based on droplet experiments
US20180071738A1 (en) * 2015-03-18 2018-03-15 The Broad Institute, Inc. Massively parallel on-chip coalescence of microemulsions
US20180067038A1 (en) * 2015-03-19 2018-03-08 The Board Of Trustees Of The Leland Stanford Junior University Devices and methods for high-throughput single cell and biomolecule analysis and retrieval in a microfluidic chip
US20180071739A1 (en) * 2016-08-18 2018-03-15 Northeastern University Platform For Liquid Droplet Formation And Isolation

Also Published As

Publication number Publication date
JP7285049B2 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
EP2806261B1 (en) Wellplate and suction device provided with said wellplate
CN109716102B (en) Microparticle dispensing device, microparticle analysis device, reaction detection device, and method for using same
JP4571193B2 (en) Droplet generating and conveying method and apparatus, and particle manipulation apparatus
US6482652B2 (en) Biological particle sorter
US8470605B2 (en) Optical reader for reading encoded microparticles
TWI328607B (en)
US20030083575A1 (en) Capillary array-based sample screening
JP2021521417A (en) Methods and equipment for single biological nanoparticle analysis
CN1416365A (en) Microarray fabrication tech and appts.
JP2009532031A5 (en)
NO317958B1 (en) A microcurrent system for particle separation and analysis
JP2004093558A (en) Chip for analysis, chip unit for analysis and analyzer, and manufacturing method of chip for analysis
US20080047833A1 (en) Microfluidic device, measuring apparatus, and microfluid stirring method
WO2017043530A1 (en) Method for detecting biological substance
JP2009150756A (en) Biological substance detection cartridge, biological substance detecting apparatus, and biological substance detection method
EP1237653A1 (en) Device for binding a target molecule
US20020015149A1 (en) Multiple microchannels chip for biomolecule imaging
JP7285049B2 (en) Droplet capture method, measurement cell and drop capture device
WO2018127997A1 (en) Method for trapping droplets, measurement cell, and droplet-trapping device
US20180193836A1 (en) Microfluidic in situ labelling on stable interfaces
EP3152546A1 (en) Biased sample injection flow cell
CN113029961B (en) High-flux liquid drop micro-reactor detection system and method
CN107427831B (en) Microchip, analysis device, and analysis method
EP3890876B1 (en) Lateral loading of microcapillary arrays
CN110402383B (en) Optical flow control diagnosis system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220623

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220623

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220704

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220705

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220729

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220802

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221220

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20230130

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230308

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230322

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7285049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150