JP2019187694A - Artery obstruction determination device, and program to function as artery obstruction determination device - Google Patents

Artery obstruction determination device, and program to function as artery obstruction determination device Download PDF

Info

Publication number
JP2019187694A
JP2019187694A JP2018082391A JP2018082391A JP2019187694A JP 2019187694 A JP2019187694 A JP 2019187694A JP 2018082391 A JP2018082391 A JP 2018082391A JP 2018082391 A JP2018082391 A JP 2018082391A JP 2019187694 A JP2019187694 A JP 2019187694A
Authority
JP
Japan
Prior art keywords
pulse wave
wave data
data
determination device
carotid artery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018082391A
Other languages
Japanese (ja)
Other versions
JP7156628B2 (en
Inventor
真美 松川
Masami Matsukawa
真美 松川
凌 津留崎
Ryo Tsurusaki
凌 津留崎
一行 長束
Kazuyuki Nagatsuka
一行 長束
こずえ 斎藤
Kozue Saito
こずえ 斎藤
宏 山上
Hiroshi Yamagami
宏 山上
橋本 英樹
Hideki Hashimoto
英樹 橋本
敏也 香川
Toshiya Kagawa
敏也 香川
和貴 樋ノ上
Kazuki Hinoue
和貴 樋ノ上
俊博 笹井
Toshihiro Sasai
俊博 笹井
孝雄 阪野
Takao Sakano
孝雄 阪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
National Cerebral and Cardiovascular Center
Proassist Ltd
Original Assignee
Doshisha Co Ltd
National Cerebral and Cardiovascular Center
Proassist Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd, National Cerebral and Cardiovascular Center, Proassist Ltd filed Critical Doshisha Co Ltd
Priority to JP2018082391A priority Critical patent/JP7156628B2/en
Publication of JP2019187694A publication Critical patent/JP2019187694A/en
Application granted granted Critical
Publication of JP7156628B2 publication Critical patent/JP7156628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

To provide an artery obstruction determination device capable of evaluating the obstruction or the like of a cerebral artery easily and quickly by using a pulse wave, and a program to function as an artery obstruction determination device.SOLUTION: An artery obstruction determination device includes measuring means 2 for measuring pulse wave data on the carotid artery of a human body, and determination means 4 for determining the presence or absence of the obstruction in the carotid artery and the cerebral artery branching from the carotid artery on the basis of the pulse wave data. The determination means 4 compares left pulse wave data on the left carotid artery with right pulse wave data on the right carotid artery, measured by the measuring means 2, and on the basis of the comparison result, determines the presence or absence of the obstruction.SELECTED DRAWING: Figure 1

Description

本発明は、動脈閉塞判定装置及び動脈閉塞判定装置として機能させるためのプログラムに関する。   The present invention relates to an arterial occlusion determination device and a program for causing it to function as an arterial occlusion determination device.

従来より動脈硬化などの血管機能を評価するものとして、例えば、特許文献1に記載の如き動脈硬化評価装置が知られている。この装置は、動脈を伝わる脈波と動脈の血流速度とに着目し、動脈の血流速度に基づく第1の波形及び脈波から第1の波形を差し引いた第2の波形の各振幅強度から動脈硬化度を評価している。脈波は年齢、性別、健康状態等によって、個人差が非常に大きく、一般的に正常な脈波と判定するための共通の基準を設定するのが困難である。この装置では、動脈血流速度を用いて脈波を入射波と反射波とに分離して、血管の状態を判定している。   Conventionally, for example, an arteriosclerosis evaluation apparatus described in Patent Document 1 is known as an apparatus for evaluating vascular functions such as arteriosclerosis. This device pays attention to the pulse wave transmitted through the artery and the blood flow velocity of the artery, and each amplitude intensity of the first waveform based on the blood flow velocity of the artery and the second waveform obtained by subtracting the first waveform from the pulse wave. The degree of arteriosclerosis is evaluated. Pulse waves vary greatly depending on their age, sex, health condition, etc., and it is generally difficult to set a common standard for determining a normal pulse wave. In this apparatus, the pulse wave is separated into an incident wave and a reflected wave using the arterial blood flow velocity, and the state of the blood vessel is determined.

一方で、脳梗塞などで倒れた患者に対する緊急医療の現場においては、脳細胞が酸素及び栄養不足に陥る疾患である虚血性脳血管疾患に対する素早い対応が求められている。虚血性脳血管疾患の主要因は、脳動脈の狭窄や閉塞であるため、簡便且つ迅速に脳動脈等の閉塞を評価し得る装置や方法が望まれていた。   On the other hand, in an emergency medical field for a patient who has fallen due to cerebral infarction or the like, quick response to ischemic cerebrovascular disease, which is a disease in which brain cells fall into oxygen and nutrient deficiencies, is required. Since the main cause of ischemic cerebrovascular disease is stenosis or occlusion of the cerebral artery, an apparatus or method that can easily and quickly evaluate occlusion of the cerebral artery or the like has been desired.

特許第5016717号公報Japanese Patent No. 5016717

かかる従来の実情に鑑みて、本発明は、脈波を用いて簡便且つ迅速に脳動脈の閉塞等を評価することが可能な動脈閉塞判定装置を提供することを目的とする。   In view of such a conventional situation, an object of the present invention is to provide an arterial occlusion determination device that can easily and quickly evaluate occlusion of a cerebral artery using a pulse wave.

上記目的を達成するため、本発明に係る動脈閉塞判定装置の特徴は、人体の頚動脈の脈波データを計測する計測手段と、前記脈波データに基づいて前記頚動脈及びこの頚動脈から分岐する脳動脈における閉塞の有無を判定する判定手段とを備え、前記判定手段は、前記計測手段により計測した左頚動脈の左脈波データと右頚動脈の右脈波データとを比較し、その比較結果に基づいて前記閉塞の有無を判定することにある。   In order to achieve the above object, the arterial occlusion determination device according to the present invention is characterized by measuring means for measuring pulse wave data of a human carotid artery, the carotid artery based on the pulse wave data, and a cerebral artery branching from the carotid artery Determining means for determining the presence or absence of occlusion in the left and right, and the determining means compares the left pulse wave data of the left carotid artery and the right pulse wave data of the right carotid artery measured by the measuring means, and based on the comparison result It is to determine the presence or absence of the blockage.

ここで、発明者らの実験によれば、同一人の左右の脈波データを比較することで、動脈の閉塞の有無を判定可能であることを見いだした。よって、上記構成によれば、計測手段により計測された左脈波データと右脈波データとを比較し、その比較結果に基づいて閉塞の有無を判定するので、計測されたデータを比較するだけでよく、上述の特許文献1の如く入射波と反射波とに分離する必要もなく、簡便且つ迅速に頚動脈及びこの頚動脈から分岐する脳動脈における閉塞の有無を判定することができる。   Here, according to the inventors' experiment, it was found that the presence or absence of an artery occlusion can be determined by comparing the left and right pulse wave data of the same person. Therefore, according to the above configuration, the left pulse wave data and the right pulse wave data measured by the measuring means are compared, and the presence / absence of obstruction is determined based on the comparison result, so only the measured data is compared. Therefore, it is not necessary to separate the incident wave and the reflected wave as in Patent Document 1 described above, and it is possible to easily and quickly determine the presence or absence of blockage in the carotid artery and the cerebral artery branched from the carotid artery.

上記構成において、前記判定手段は、前記左脈波データ及び前記右脈波データから相互相関関数の最大値を算出し、その最大値を基準値と比較して前記閉塞の有無を判定するとよい。これにより、定量的な比較が可能となり、閉塞の有無の判定精度が向上する。   The said structure WHEREIN: The said determination means is good to calculate the maximum value of a cross-correlation function from the said left pulse wave data and the said right pulse wave data, and to determine the presence or absence of the said obstruction by comparing the maximum value with a reference value. Thereby, a quantitative comparison is possible, and the determination accuracy of the presence or absence of blockage is improved.

係る場合、前記判定手段は、さらに、前記左脈波データ及び前記右脈波データの周波数解析を行い、前記左脈波データ及び前記右脈波データの各々で第一の周波数帯域の振幅スペクトルより算出される第一の値と第二の周波帯域の振幅スペクトルより算出される第二の値との比を求め、前記左脈波データの比と前記右脈波データの比とを比較するとよい。相互相関関数を用いた場合、頚動脈及び脳動脈における閉塞の有無は判定可能であるものの、閉塞箇所が左右のどちらの動脈に有るかまでは判定できない。そこで、閉塞の有無を判定した上で、左脈波データと右脈波データのそれぞれにおいて、第一の周波数帯域と第二の周波数帯域にわけて解析した結果の比を比較すれば、例えば、頚動脈及び脳動脈の閉塞に由来する周波数帯域の特徴を比較でき、左右のどちらに閉塞が存在するかを精度よく判定することができる。   In such a case, the determination unit further performs frequency analysis of the left pulse wave data and the right pulse wave data, and from each of the left pulse wave data and the right pulse wave data, based on an amplitude spectrum of a first frequency band. A ratio between the calculated first value and the second value calculated from the amplitude spectrum of the second frequency band is obtained, and the ratio of the left pulse wave data and the ratio of the right pulse wave data may be compared. . When the cross-correlation function is used, it can be determined whether or not the carotid artery and the cerebral artery are occluded, but it cannot be determined whether the occluded portion is located in the left or right artery. Therefore, after determining the presence or absence of occlusion, in each of the left pulse wave data and the right pulse wave data, comparing the ratio of the analysis results divided into the first frequency band and the second frequency band, for example, The characteristics of the frequency bands derived from the occlusion of the carotid artery and the cerebral artery can be compared, and it can be accurately determined whether the occlusion exists on the left or right.

一方、前記判定手段は、所定の時間領域において前記左脈波データ及び前記右脈波データの周波数解析を行い、前記左脈波データ及び前記右脈波データの各々で第一の周波数帯域の振幅スペクトルより算出される第一の値と第二の周波帯域の振幅スペクトルより算出される第二の値との比を求め、前記左脈波データの比と前記右脈波データの比とを比較して前記閉塞の有無を判定してもよい。これにより、左脈波データと右脈波データのそれぞれにおいて、第一の周波数帯域と第二の周波数帯域にわけて解析した結果の比を比較するので、例えば、頚動脈及び脳動脈の閉塞に由来する周波数帯域の特徴を比較でき、左右のどちらに閉塞が存在するかを精度よく判定することができる。   On the other hand, the determination means performs frequency analysis of the left pulse wave data and the right pulse wave data in a predetermined time region, and the amplitude of the first frequency band in each of the left pulse wave data and the right pulse wave data Find the ratio between the first value calculated from the spectrum and the second value calculated from the amplitude spectrum of the second frequency band, and compare the ratio of the left pulse wave data and the ratio of the right pulse wave data Then, the presence or absence of the blockage may be determined. As a result, in each of the left pulse wave data and the right pulse wave data, the ratio of the analysis results divided into the first frequency band and the second frequency band is compared. The characteristics of frequency bands to be compared can be compared, and it can be accurately determined whether there is a blockage on the left or right.

さらに、係る場合、前記第二の周波数帯域は、前記第一の周波数帯域の内の所定周波数以上の高周波帯域であるとよい。発明者らの実験によれば、閉塞に由来する脈波の周波数帯域は、高周波帯域であることが多いことが判明した。よって、例えば、第一の周波数帯域を受信した脈波の全周波数帯域とし、第二の周波数帯域を当該全周波数帯域の内の高周波数帯域とすることで、閉塞の有無の判定精度をさらに向上させることができる。   Further, in this case, the second frequency band may be a high frequency band that is equal to or higher than a predetermined frequency in the first frequency band. According to the inventors' experiments, it has been found that the frequency band of the pulse wave derived from the blockage is often a high frequency band. Therefore, for example, by making the first frequency band the entire frequency band of the received pulse wave and making the second frequency band a high frequency band of the entire frequency band, the accuracy of determining whether or not there is a blockage is further improved. Can be made.

さらに、係る場合、前記第一の値は、前記第一の周波数帯域の振幅スペクトルの2乗和の平方根であり、前記第二の値は、前記第二の周波数帯域の振幅スペクトルの2乗和の平方根であるとよい。   Further, in such a case, the first value is a square root of the square sum of the amplitude spectrum of the first frequency band, and the second value is a square sum of the amplitude spectrum of the second frequency band. The square root of

また、前記判定手段は、前記左脈波データ及び前記右脈波データの周波数解析を行い、前記左脈波データ及び前記右脈波データの各々で所定の周波数成分における特徴量を求め、前記左脈波データの特徴量と前記右脈波データの特徴量とを比較して前記閉塞の有無を判定することも可能である。上述のように、閉塞に由来する脈波の反射波の周波数帯域は高周波帯域であることが多いため、例えば、特徴量として高周波帯域の振幅スペクトルを比較することで、閉塞の有無を判定することが可能であり、左右のどちらに閉塞が存在するかを判定することも可能である。   Further, the determination means performs frequency analysis of the left pulse wave data and the right pulse wave data, obtains a feature amount in a predetermined frequency component in each of the left pulse wave data and the right pulse wave data, and It is also possible to compare the feature amount of the pulse wave data with the feature amount of the right pulse wave data to determine the presence or absence of the blockage. As described above, the frequency band of the reflected wave of the pulse wave derived from blockage is often a high-frequency band. For example, the presence / absence of blockage is determined by comparing the amplitude spectrum of the high-frequency band as a feature amount. It is also possible to determine which blockage exists on the left or right.

前記脈波データは、脈波波形の微分波形であるとよい。また、前記判定手段は、前記脈波波形又は前記微分波形から所定の波数分の波形を抽出し、抽出した波形を加算平均して加算平均波形を生成してもよい。抽出した波形を加算平均すると、ランダムに発生するノイズが互いに打ち消し合うこととなるので、ノイズの影響が低減され、閉塞の有無の判定精度がさらに向上する。   The pulse wave data may be a differential waveform of the pulse wave waveform. The determination unit may extract a waveform corresponding to a predetermined number of waves from the pulse wave waveform or the differential waveform, and generate an addition average waveform by averaging the extracted waveforms. When the extracted waveforms are added and averaged, randomly generated noises cancel each other, so that the influence of noise is reduced and the accuracy of determining whether or not there is a blockage is further improved.

前記計測手段は、例えば、圧電トランスデューサが用いられる。圧電トランスデューサを用いて、脈波データとして、頚動脈等の血管壁の変位の時間変化を示す脈波波形の微分波形を計測することで、測定時の呼吸、体のゆらぎ等に起因するノイズを軽減でき、閉塞の有無の判定精度をさらに向上させることができる。   As the measurement means, for example, a piezoelectric transducer is used. By using a piezoelectric transducer to measure the differential waveform of the pulse waveform that shows the time variation of the displacement of the blood vessel wall such as the carotid artery as pulse wave data, noise caused by breathing and body fluctuations during measurement is reduced. This can further improve the accuracy of determining the presence or absence of obstruction.

上記いずれかの構成において、前記計測手段で計測された脈波データを受信し増幅する増幅部と、増幅された脈波データをデジタルデータに変換するA/D変換部と、変換された脈波データを前記判定手段に送信する送信部とを有するデータ変換手段をさらに備えるとよい。係る場合、前記データ変換手段は、前記脈波データを表示する表示部を有するとよい。これにより、例えば、緊急医療の現場で脈波データが適切に計測されているか容易に判断でき、閉塞の有無の判定精度がさらに向上する。   In any one of the above-described configurations, the amplification unit that receives and amplifies the pulse wave data measured by the measurement unit, the A / D conversion unit that converts the amplified pulse wave data into digital data, and the converted pulse wave It is good to further have a data conversion means which has a transmission part which transmits data to the above-mentioned judgment means. In such a case, the data conversion means may include a display unit that displays the pulse wave data. Thereby, for example, it is possible to easily determine whether the pulse wave data is appropriately measured in an emergency medical field, and the determination accuracy of the presence or absence of obstruction is further improved.

上記目的を達成するため、本発明に係る動脈閉塞判定装置として機能させるためのプログラムの特徴は、コンピュータを、計測手段によって計測された人体の左頚動脈の左脈波データと右頚動脈の右脈波データとを比較し、その比較結果に基づいて、頚動脈及びこの頚動脈から分岐する脳動脈における閉塞の有無を判定する判定手段として機能させることにある。   In order to achieve the above object, a program for causing the apparatus to function as an arterial occlusion determination device according to the present invention is characterized in that the left pulse wave data of the left carotid artery of the human body and the right pulse wave of the right carotid artery measured by the measuring means. The comparison is made with data, and based on the comparison result, it is made to function as a determination means for determining the presence or absence of blockage in the carotid artery and the cerebral artery branched from the carotid artery.

上記本発明に係る動脈閉塞判定装置及び動脈閉塞判定装置として機能させるためのプログラムの特徴によれば、脈波を用いて簡便且つ迅速に脳動脈の閉塞等を評価することが可能となった。   According to the features of the arterial occlusion determination device and the program for functioning as the arterial occlusion determination device according to the present invention, it becomes possible to evaluate cerebral artery occlusion and the like simply and quickly using a pulse wave.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

本発明に係る動脈閉塞評価装置を示す図である。It is a figure which shows the artery occlusion evaluation apparatus which concerns on this invention. 脳動脈及び頚動脈と脈波の計測位置との位置関係を説明する図である。It is a figure explaining the positional relationship with the measurement position of a cerebral artery and a carotid artery, and a pulse wave. 脈波を構成する入射圧力波と反射圧力波とを説明する図である。It is a figure explaining the incident pressure wave and reflected pressure wave which comprise a pulse wave. 動脈閉塞評価装置のブロック図である。It is a block diagram of an arterial occlusion evaluation device. 計測手段で得られた脈波の微分波形の一例を示す図である。It is a figure which shows an example of the differential waveform of the pulse wave obtained by the measurement means. 計測装置で得られた波形と、加算平均処理を説明する図である。It is a figure explaining the waveform obtained with the measuring device, and an addition average process. 脈波の微分波形の時間変化を示す図であり、(a)が健常者の脈波、(b)が閉塞患者の脈波である。It is a figure which shows the time change of the differential waveform of a pulse wave, (a) is a healthy person's pulse wave, (b) is a pulse wave of an obstruction patient. 健常者と閉塞患者の脈波の微分波形をそれぞれ相互相関処理して解析した結果を示す図である。It is a figure which shows the result of having analyzed the cross-correlation process of the differential waveform of the pulse wave of a healthy person and an obstruction patient, respectively. 閉塞患者の左右の各脈波の微分波形とその波形を時間周波数解析した結果の一例を示す図であり、(a)が閉塞のない左脈波の微分波形の解析結果、(b)が閉塞のある右脈波の微分波形の解析結果である。It is a figure which shows an example of the result of having performed the time frequency analysis of the differential waveform of each pulse wave of the left and right of an obstruction patient, (a) is the analysis result of the differential waveform of the left pulse wave without obstruction, (b) is obstruction. It is an analysis result of the differential waveform of the right pulse wave with. 健常者と閉塞患者の左右の各脈波の微分波形を時間周波数解析して、振幅スペクトルの2乗和の平方根の比の左右差をプロットした図である。It is the figure which plotted the right-and-left difference of the ratio of the square root of the square sum of an amplitude spectrum by carrying out the time frequency analysis of the differential waveform of each right and left pulse wave of a healthy person and an obstruction patient. 健常者の左右の脈波の微分波形を周波数解析した結果の一例を示す図である。It is a figure which shows an example of the result of having analyzed the differential waveform of the right and left pulse wave of a healthy person. 閉塞患者の左右の脈波の微分波形を周波数解析した結果の一例を示す図である。It is a figure which shows an example of the result of having analyzed the differential waveform of the left and right pulse wave of an obstruction patient. 計測手段で得られた脈波の微分波形を積分した脈波波形の一例を示す図である。It is a figure which shows an example of the pulse wave waveform which integrated the differential waveform of the pulse wave obtained by the measurement means.

次に、図1〜10を参照しながら、本発明の第一実施形態をさらに詳しく説明する。
本発明に係る動脈閉塞判定装置1は、図1及び図2に示すように、大略、人体Hの動脈における脈波Pを計測する計測手段2と、計測された脈波Pを判定手段4へ送信するデータ変換手段3と、脈波データに基づいて頚動脈110及びこの頚動脈110から分岐する脳動脈120における閉塞Ocの有無を判定する判定手段4とを備える。なお、同図の例では、データ変換手段3と判定手段4との通信は有線にてデータ通信を行っているが、Bluetooth(登録商標)等の無線通信手段を用いても構わない。
Next, the first embodiment of the present invention will be described in more detail with reference to FIGS.
As shown in FIG. 1 and FIG. 2, the arterial occlusion determination device 1 according to the present invention generally includes a measuring unit 2 that measures a pulse wave P in an artery of a human body H, and the measured pulse wave P to a determining unit 4. Data conversion means 3 for transmission, and determination means 4 for determining the presence or absence of occlusion Oc in the carotid artery 110 and the cerebral artery 120 branched from the carotid artery 110 based on pulse wave data. In the example shown in the figure, the data conversion means 3 and the determination means 4 communicate with each other by wire, but wireless communication means such as Bluetooth (registered trademark) may be used.

ところで、図2に例示する脳動脈120の閉塞Ocや、図3に例示する内頚動脈113の閉塞Oc等が主な原因とされる虚血性脳血管疾患は、症状が現れた場合、速やかな治療が求められるため、例えば、救急医療の現場において、搬送中にこのような閉塞Ocの有無等の判断が求められている。本発明では、脳動脈120のみならず、脳動脈120へ分岐する頚動脈110も対象とする。頚動脈110は、総頚動脈111と、総頚動脈111から分岐する外頚動脈112、内頚動脈113を含む。以下、検査対象としての頚動脈110及びこの頚動脈110から分岐する脳動脈120を「脳動脈等100」と称する。また、閉塞Ocとは、動脈が何らかの原因で狭窄する場合も含み、血管Bvの一部または全部が狭くなった(閉じられる)場合をいう。   By the way, ischemic cerebrovascular disease mainly caused by the occlusion Oc of the cerebral artery 120 illustrated in FIG. 2 or the occlusion Oc of the internal carotid artery 113 illustrated in FIG. 3 is promptly treated when symptoms appear. Therefore, for example, in the emergency medical field, it is required to determine whether or not there is such a blockage Oc during transportation. In the present invention, not only the cerebral artery 120 but also the carotid artery 110 branching to the cerebral artery 120 is targeted. The carotid artery 110 includes a common carotid artery 111, an external carotid artery 112 that branches from the common carotid artery 111, and an internal carotid artery 113. Hereinafter, the carotid artery 110 to be examined and the cerebral artery 120 branched from the carotid artery 110 are referred to as “cerebral artery 100 or the like”. The term “occlusion Oc” refers to a case where a part or all of the blood vessel Bv is narrowed (closed), including the case where the artery is narrowed for some reason.

ここで、脈波Pとは、図3で示すように、心臓hの拍動に伴う血管系内の血圧・体積の変化であり、入射波Piと反射波Prとの合成波形である。入射波Piは、前進波であり、心臓hから躯出された血液による圧力波によるものである。反射波Prは、後退波であり、入射波Piが血管床(毛細血管等の微小血管とその周囲の組織から構成される領域)で反射した圧力波によるものである。血管床までの血管に閉塞Ocや狭窄がある場合、その地点でも反射する。特に、頚動脈110で計測される脈波Pには、脳動脈120の末端130等の血管床等で反射した波が含まれており、頚動脈110及びこの頚動脈110から分岐する脳動脈120の情報を反映することが知られている。よって、頚動脈110で計測された脈波Pを用いることにより、脳動脈等100の閉塞Ocの有無を判定することができる。   Here, the pulse wave P, as shown in FIG. 3, is a change in blood pressure and volume in the vascular system accompanying the pulsation of the heart h, and is a composite waveform of the incident wave Pi and the reflected wave Pr. The incident wave Pi is a forward wave and is caused by a pressure wave caused by blood squeezed out from the heart h. The reflected wave Pr is a receding wave, and is due to the pressure wave reflected by the incident wave Pi from a blood vessel bed (a region composed of microvessels such as capillaries and surrounding tissues). When there is a blockage Oc or stenosis in the blood vessel up to the blood vessel bed, the light is reflected at that point. In particular, the pulse wave P measured by the carotid artery 110 includes a wave reflected by a blood vessel bed or the like such as the end 130 of the cerebral artery 120. Information on the carotid artery 110 and the cerebral artery 120 branched from the carotid artery 110 is obtained. It is known to reflect. Therefore, by using the pulse wave P measured by the carotid artery 110, it is possible to determine the presence or absence of the blockage Oc of the cerebral artery 100 or the like.

本実施形態において、計測手段2として、図4に示すように、脈波Pの圧力によって変化する皮膚変位を出力する圧電トランスデューサ20を用いている。本実施形態では、皮膚変位を計測し、血管壁Vwの変位としている。この圧電トランスデューサ20で出力される波形は、図5に示すように、脈波Pによる血管壁Vwの変位波形の微分波形(速度波形)であり、本実施形態では、この微分波形(速度波形)を解析対象とする。以下、脈波データPdとは、圧電トランスデューサ20で出力された速度波形を示すこととする。計測された脈波データPdは、データ変換手段3に送られる。   In this embodiment, as shown in FIG. 4, a piezoelectric transducer 20 that outputs a skin displacement that changes depending on the pressure of the pulse wave P is used as the measuring unit 2. In this embodiment, skin displacement is measured and used as the displacement of the blood vessel wall Vw. As shown in FIG. 5, the waveform output from the piezoelectric transducer 20 is a differential waveform (velocity waveform) of the displacement waveform of the blood vessel wall Vw due to the pulse wave P. In this embodiment, this differential waveform (velocity waveform). Is the analysis target. Hereinafter, the pulse wave data Pd indicates a velocity waveform output from the piezoelectric transducer 20. The measured pulse wave data Pd is sent to the data conversion means 3.

なお、圧電トランスデューサ20は、速度波形を出力するのみならず、血管壁Vwの変位を変位波形として出力することも可能である。微分波形は変位波形の勾配であるので、変位波形の変化を鋭敏に反映する。よって、上述の如く、速度変化を表す微分波形をそのまま用いることが好ましい。   The piezoelectric transducer 20 can output not only the velocity waveform but also the displacement of the blood vessel wall Vw as a displacement waveform. Since the differential waveform is the gradient of the displacement waveform, the change of the displacement waveform is reflected sharply. Therefore, as described above, it is preferable to use the differential waveform representing the speed change as it is.

データ変換手段3は、図4に示すように、計測された脈波データPdを受信して増幅する増幅部30と、増幅された脈波データPdをデジタルデータに変換するA/D変換部31と、変換された脈波データPdを後述の判定手段4に送信する送信部32とを備える。また、計測された脈波データPdまたは計測状況等を表示する表示出力部34をさらに備えていてもよい。緊急医療の現場等で脈波データPdを確認できるため、計測ミスに起因する閉塞Ocの有無の誤判定等を防止できる。   As shown in FIG. 4, the data converting means 3 receives an amplified pulse wave data Pd and amplifies it, and an A / D converter 31 converts the amplified pulse wave data Pd into digital data. And a transmission unit 32 that transmits the converted pulse wave data Pd to the determination unit 4 described later. Moreover, you may further provide the display output part 34 which displays measured pulse wave data Pd or a measurement condition. Since the pulse wave data Pd can be confirmed at an emergency medical site or the like, it is possible to prevent erroneous determination of the presence or absence of the obstruction Oc caused by a measurement error.

判定手段4は、図4に示すように、送信部32からの脈波データPdを受信する受信部40と、受信した脈波データPdを正規化する正規化処理部41と、脈波データPdを積分する積分処理部42と、脈波データPdを加算平均処理する加算平均処理部43と、脈波データPdを解析して閉塞Ocの有無を判定する判定部44と、解析結果及び判定結果等を表示する表示部45と、脈波データPd、解析結果及び判定結果等を記憶する記憶部46を備える。   As shown in FIG. 4, the determination unit 4 includes a receiving unit 40 that receives the pulse wave data Pd from the transmitting unit 32, a normalization processing unit 41 that normalizes the received pulse wave data Pd, and the pulse wave data Pd. An integration processing unit 42 that integrates the pulse wave data Pd, an addition average processing unit 43 that performs an averaging process on the pulse wave data Pd, a determination unit 44 that analyzes the pulse wave data Pd to determine whether or not there is an obstruction Oc, and an analysis result and a determination result And a storage unit 46 for storing the pulse wave data Pd, analysis results, determination results, and the like.

この判定手段4としては、例えば、パーソナルコンピュータ(PC)や、タブレットやスマートフォン等の携帯端末を用いることができ、これらで実行されるプログラム(アプリケーション)として実装されてもよい。また、この判定手段4は、緊急医療現場の医療従事者が携帯していてもよく、病院などの緊急搬送先等に配置されていてもよい。係る場合、データ変換手段3の送信部32からインターネット等の通信手段を介してデータ送信される。   As this determination means 4, for example, a personal computer (PC), a portable terminal such as a tablet or a smartphone can be used, and it may be implemented as a program (application) executed by these. Further, the determination means 4 may be carried by a medical worker at an emergency medical site or may be arranged at an emergency transport destination such as a hospital. In such a case, data is transmitted from the transmission unit 32 of the data conversion means 3 via communication means such as the Internet.

受信部40は、図5に示す如き脈波データPdを送信部32から受信する。正規化処理部41は、受信部40で受信した脈波データPdを正規化する。正規化とは、脈波データPdの最大振幅値に一定の値を掛けて例えば1とし、さらに、脈波データPdに含まれる全てのデータに、同じ一定の値を掛けて、左右の脈波データPdの最大振幅値をそれぞれ1として波形形状を比較可能とする処理である。   The receiving unit 40 receives the pulse wave data Pd as shown in FIG. The normalization processing unit 41 normalizes the pulse wave data Pd received by the receiving unit 40. Normalization means multiplying the maximum amplitude value of the pulse wave data Pd by a constant value to be, for example, 1 and further multiplying all the data included in the pulse wave data Pd by the same constant value to obtain the left and right pulse waves. In this process, the maximum amplitude value of the data Pd is set to 1, and the waveform shapes can be compared.

加算平均処理部43は、図6に示すように、脈波データPdから所定の波数分の波形Pd1〜4を抽出し、抽出した波形を加算平均処理する。具体的には、波形の起点となる時間をそろえて、各波形を加え、波数で除することによって加算平均する。同図の例では、脈波データPdから4波数分の波形Pd1〜4を抽出し、この波形Pd1〜4を加算平均し、加算平均波形Pd’とする。この加算平均処理を左右それぞれのデータで行う。加算平均処理を実行することにより、脈波データの計測時に含まれるランダムなノイズを互いに打ち消し合うことで、脈波データからノイズを除去できるので、閉塞の有無の判定精度が向上する。もちろん、波数は4つに限られず、適宜設定可能である。   As shown in FIG. 6, the addition average processing unit 43 extracts waveforms Pd1 to Pd4 corresponding to a predetermined wave number from the pulse wave data Pd, and performs an addition average process on the extracted waveforms. Specifically, the averaging is performed by aligning the time at which the waveform starts, adding each waveform, and dividing by the wave number. In the example shown in the figure, waveforms Pd1 to P4 corresponding to four wave numbers are extracted from the pulse wave data Pd, and the waveforms Pd1 to Pd4 are added and averaged to obtain an added average waveform Pd '. This averaging process is performed on the left and right data. By executing the addition averaging process, the noises can be removed from the pulse wave data by canceling out random noises included in the measurement of the pulse wave data, thereby improving the accuracy of determining whether or not there is a blockage. Of course, the wave number is not limited to four and can be set as appropriate.

本実施形態において、判定部44は、図4に示すように、相互相関解析部44a及び時間周波数解析部44bを有する。判定部44にて解析され判定される脈波データの一例を図7に示す。(a)は健常者の左脈波データに右脈波データを重ね合わせたものであり、(b)は閉塞患者の左脈波データに右脈波データ(閉塞側)を重ね合わせたものである。この図に示されるように、健常者の左右の脈波データは略一致している一方で、閉塞患者の脈波データは、一致していないことがわかる。このように、左右の脈波データの重なり具合で、脳動脈等100の閉塞Ocの有無が判定可能である。   In the present embodiment, the determination unit 44 includes a cross correlation analysis unit 44a and a time frequency analysis unit 44b as shown in FIG. An example of the pulse wave data analyzed and determined by the determination unit 44 is shown in FIG. (A) is obtained by superimposing the right pulse wave data on the left pulse wave data of the healthy person, and (b) is obtained by superimposing the right pulse wave data (occlusion side) on the left pulse wave data of the obstructed patient. is there. As shown in this figure, it can be seen that the pulse wave data of the right and left of the healthy person are substantially coincident, while the pulse wave data of the obstructed patient is not coincident. In this way, it is possible to determine the presence or absence of the blockage Oc of the cerebral artery 100 or the like based on the overlapping state of the left and right pulse wave data.

そこで、本実施形態では、相互相関解析部44aにおいて、左右の脈波データPdから相互相関関数の最大値を算出し、その最大値を基準値と比較して基準値より小さい場合に、脳動脈等100において閉塞Ocがあると判定する。   Therefore, in the present embodiment, when the cross-correlation analysis unit 44a calculates the maximum value of the cross-correlation function from the left and right pulse wave data Pd and compares the maximum value with the reference value and is smaller than the reference value, the cerebral artery Etc., it is determined that there is a blocking Oc.

発明者らは、左右の脈波データPdの重なりを検証するべく、健常者と閉塞患者の脈波データから相互相関関数の最大値を算出した。その結果を図8に示す。この図の例では、健常者の最大値は最低でも0.85を超えている。一方で、閉塞患者の最大値は最高でも0.75程度である。よって、例えば、基準値を0.75〜0.80程度に設定することで、定量的に脳動脈等100の閉塞Ocの有無を判定することが可能である。   The inventors calculated the maximum value of the cross-correlation function from the pulse wave data of the healthy subject and the obstructed patient in order to verify the overlap of the left and right pulse wave data Pd. The result is shown in FIG. In the example of this figure, the maximum value of healthy persons exceeds 0.85 at least. On the other hand, the maximum value of obstructed patients is about 0.75 at the maximum. Therefore, for example, by setting the reference value to about 0.75 to 0.80, it is possible to quantitatively determine the presence or absence of the blockage Oc of the cerebral artery 100 or the like.

時間周波数解析部44bでは、所定の時間領域において左脈波データ及び右脈波データの時間周波数解析を行って、各周波数における振幅スペクトルを算出し、各周波数における左脈波データ及び右脈波データの各々で第一の周波数帯域の振幅スペクトルから算出される第一の値と、第二の周波数帯域の振幅スペクトルから算出される第二の値との比を求め、左脈波データの比と右脈波データの比とを比較して、所定量(値)以上に左右差がある場合に、大きい値の方に脳動脈等100の閉塞Ocが有ると判定する。時間周波数解析として、短時間フーリエ変換(STFT)を行っている。また、本実施形態では、第一の値は、第一の周波数帯域の振幅スペクトルの2乗和の平方根であり、第二の値は、第二の周波数帯域の振幅スペクトルの2乗和の平方根である。   The time frequency analysis unit 44b performs time frequency analysis of the left pulse wave data and the right pulse wave data in a predetermined time region, calculates an amplitude spectrum at each frequency, and outputs the left pulse wave data and the right pulse wave data at each frequency. For each of the first value calculated from the amplitude spectrum of the first frequency band and the second value calculated from the amplitude spectrum of the second frequency band, the ratio of the left pulse wave data and The right pulse wave data ratio is compared, and if there is a left-right difference greater than or equal to a predetermined amount (value), it is determined that there is a blockage Oc of the cerebral artery 100 or the like with a larger value. As a time-frequency analysis, short-time Fourier transform (STFT) is performed. In the present embodiment, the first value is the square root of the square sum of the amplitude spectrum of the first frequency band, and the second value is the square root of the square sum of the amplitude spectrum of the second frequency band. It is.

脳動脈等100に閉塞Ocを有する閉塞患者の左右の脈波データPdを時間周波数解析した結果を図9に示す。なお、実線は計測された脈波データを示す。(a)が閉塞のない左脈波波形で、(b)が閉塞のある右脈波波形である。この図では、閉塞のない左脈波波形に比べて、閉塞のある右脈波波形では、反射波Prが重畳する時間領域(波頭から約100ms以降)において、色が濃くなっており、高周波成分が多く含まれていることがわかる。   FIG. 9 shows the result of time-frequency analysis of the left and right pulse wave data Pd of an obstructed patient having an obstruction Oc in the cerebral artery 100 or the like. The solid line indicates the measured pulse wave data. (A) is a left pulse waveform without occlusion, and (b) is a right pulse waveform with occlusion. In this figure, compared with the left pulse waveform without occlusion, in the right pulse waveform with occlusion, the color is darker in the time domain where the reflected wave Pr is superimposed (after about 100 ms from the wave front), and the high frequency component It can be seen that many are included.

入射波Piの速度を一定とすると、閉塞箇所は、測定箇所から脳動脈の末端130等の血管床までの血管Bvのどこかであるので、反射波Prが測定箇所に返ってくる時間は、閉塞Ocがある場合の方が短くなる。すなわち、閉塞Ocがある場合の方が、反射波Prが入射波Piに重畳するまでの時間も短くなる。従って、脈波Pのうち、反射波Prによる成分では、高周波成分の割合が大きくなる。   If the velocity of the incident wave Pi is constant, the occlusion point is somewhere in the blood vessel Bv from the measurement point to the vascular bed such as the end 130 of the cerebral artery, so the time for the reflected wave Pr to return to the measurement point is It becomes shorter when there is a blocking Oc. That is, the time until the reflected wave Pr is superimposed on the incident wave Pi is shorter when there is the blocking Oc. Therefore, in the component of the pulse wave P due to the reflected wave Pr, the ratio of the high frequency component becomes large.

そこで、発明者らはその有効性を確認するべく、解析を行った。解析では、高周波成分が脳動脈等100の閉塞Ocに由来するものであるとして、第一の周波数帯域を1〜100Hzとし、第一の周波数帯域の振幅スペクトルの2乗和の平方根を算出すると共に、第二の周波数帯域を1〜100Hzのうち高周波帯域(10〜100Hz)とし、第二の周波数帯域の振幅スペクトルの2乗和の平方根を算出した。そして、第二の周波数帯域の平方根を第一の周波数帯域の平方根で除した数値(以下、スペクトル比と称する)を左右で比較した。   Therefore, the inventors conducted an analysis in order to confirm the effectiveness. In the analysis, assuming that the high-frequency component is derived from the blockage Oc of the cerebral artery 100 or the like, the first frequency band is set to 1 to 100 Hz, and the square root of the square sum of the amplitude spectrum of the first frequency band is calculated. The second frequency band was set to a high frequency band (10 to 100 Hz) of 1 to 100 Hz, and the square root of the square sum of the amplitude spectrum of the second frequency band was calculated. And the numerical value (henceforth a spectral ratio) which remove | divided the square root of the 2nd frequency band by the square root of the 1st frequency band was compared with right and left.

健常者と閉塞患者の脈波データからそれぞれ算出したスペクトル比を図10に示す。この図から明らかなように、健常者では、左右それぞれのスペクトル比はほぼ同じであり、左右差は最大でも0.07程度である。一方、閉塞患者では、閉塞側と非閉塞側で大きな差があり、最低でも0.11程度である。よって、例えば、基準値を0.08〜0.10程度に設定することで、定量的に脳動脈等100の閉塞Ocの有無を判定することが可能である。そして、さらに、閉塞側のスペクトル比が大きくなるので、左右のどちらの脳動脈等100に閉塞Ocが有るかを判定することも可能である。   The spectrum ratio calculated from the pulse wave data of the healthy person and the obstructed patient is shown in FIG. As is apparent from this figure, in the healthy person, the left and right spectral ratios are almost the same, and the left / right difference is about 0.07 at the maximum. On the other hand, in the obstructed patient, there is a large difference between the obstructed side and the non-occluded side, which is at least about 0.11. Therefore, for example, by setting the reference value to about 0.08 to 0.10, it is possible to quantitatively determine the presence or absence of blockage Oc of the cerebral artery 100 or the like. Further, since the spectrum ratio on the occlusion side becomes larger, it is possible to determine which of the left and right cerebral arteries 100 has the occlusion Oc.

次に、本実施形態の動脈閉塞判定装置1を用いて脳動脈等100の閉塞の有無を判定する手順を説明する。
まず、圧電トランスデューサ20を左側の総頚動脈111に当てることで、脈波データPdが測定され、脈波データPdはデータ変換手段3へ送られる。脈波データPdは、データ変換手段3にて、脈波データPdが測定されていれば、増幅部30によって増幅され、A/D変換部31によって変換され、変換された脈波データPdが送信部32によって判定手段4へ送信される。その後、右側の総頚動脈111に圧電トランスデューサ20を当て、同様に脈波データPdを計測し、データ処理される。
Next, a procedure for determining the presence or absence of blockage of the cerebral artery 100 or the like using the arterial blockage determination device 1 of the present embodiment will be described.
First, the pulse wave data Pd is measured by applying the piezoelectric transducer 20 to the left common carotid artery 111, and the pulse wave data Pd is sent to the data conversion means 3. If the pulse wave data Pd is measured by the data conversion means 3, the pulse wave data Pd is amplified by the amplifier 30, converted by the A / D converter 31, and the converted pulse wave data Pd is transmitted. The data is transmitted to the determination unit 4 by the unit 32. Thereafter, the piezoelectric transducer 20 is applied to the right common carotid artery 111, and the pulse wave data Pd is measured in the same manner, and data processing is performed.

ここで、脈波測定箇所を左右の総頚動脈111としたが、これに限られず、例えば、外頚動脈112または内頚動脈113等でもよい。しかし、計測の容易性と、閉塞Ocの有無を判定できる範囲を考慮すると、分岐後の内頚動脈113よりも分岐前の総頚動脈111で脈波Pを計測することが望ましい。なお、左側の総頚動脈111の脈波Pを計測してから、右側の総頚動脈111の脈波Pを計測したが、脈波Pを計測する順番は、左右のどちらが先でも良い。   Here, the pulse wave measurement location is the left and right common carotid arteries 111, but is not limited thereto, and may be, for example, the external carotid artery 112 or the internal carotid artery 113. However, considering the ease of measurement and the range in which the presence or absence of occlusion Oc can be determined, it is desirable to measure the pulse wave P in the common carotid artery 111 before branching rather than the internal carotid artery 113 after branching. Note that the pulse wave P of the right common carotid artery 111 was measured and then the pulse wave P of the right common carotid artery 111 was measured.

送信された脈波データPdは、受信部40に受信され、受信された脈波データPdは正規化処理部41にて正規化され、加算平均処理部43にて加算平均され、判定部44に送られる。   The transmitted pulse wave data Pd is received by the receiving unit 40, and the received pulse wave data Pd is normalized by the normalization processing unit 41, added and averaged by the addition average processing unit 43, and sent to the determination unit 44. Sent.

加算平均された脈波データPdは判定部44に送られ、相互相関解析部44aにて相互相関処理が行われ、相互相関関数の最大値を基準値と比較されることで、閉塞Ocの有無を判定される。相互相関解析部44aが閉塞Ocが有ると判定した場合、次に、脈波データPdは時間周波数解析部44bにて時間周波数解析が行われ、スペクトル比を左右で比較されることで、閉塞Ocが左右のどちらにあるかが判定される。相互相関解析部44aが閉塞Ocが無いと判定した場合、時間周波数解析を行う必要はない。その後、閉塞Ocの有無と、閉塞Ocが有った場合に、左右のどちらに閉塞Ocが有るか等を含む結果が表示部45に出力され、記憶部46に記憶される。   The addition-averaged pulse wave data Pd is sent to the determination unit 44, where cross-correlation processing is performed in the cross-correlation analysis unit 44a, and the maximum value of the cross-correlation function is compared with the reference value, so that the presence or absence of occlusion Oc Is determined. When the cross-correlation analysis unit 44a determines that the blockage Oc is present, the pulse wave data Pd is then subjected to time-frequency analysis by the time-frequency analysis unit 44b, and the spectral ratio is compared between the left and right sides. Is determined to be on the left or right. When the cross correlation analysis unit 44a determines that there is no blockage Oc, it is not necessary to perform time frequency analysis. Thereafter, a result including the presence / absence of the blockage Oc and whether the blockage Oc is present on the left or right side is output to the display unit 45 and stored in the storage unit 46.

最後に、本発明の他の実施形態の可能性について言及する。なお、上述の実施形態と同様の部材には同一の符号を附してある。
上記実施形態において、判定部44において、相互相関解析部44aにて相互相関解析を行った後に時間周波数解析部44bにて時間周波数解析を行った。しかし、これに限らず、どちらか一方のみでもよい。ただし、相互相関処理のみの場合では、左右のどちらに閉塞があるか判定できないため、上記実施形態の如く、相互相関解析部44a及び時間周波数解析部44bを設けるのがよい。
Finally, reference is made to the possibilities of other embodiments of the invention. In addition, the same code | symbol is attached | subjected to the member similar to the above-mentioned embodiment.
In the above embodiment, in the determination unit 44, the cross-correlation analysis is performed by the cross-correlation analysis unit 44a, and then the time-frequency analysis is performed by the time-frequency analysis unit 44b. However, the present invention is not limited to this, and only one of them may be used. However, in the case of only the cross-correlation process, it cannot be determined whether there is a blockage on the left or right, so it is preferable to provide the cross-correlation analysis unit 44a and the time-frequency analysis unit 44b as in the above embodiment.

上記実施形態では、時間周波数解析部44bにおいて、第一,二の周波数帯域の振幅スペクトルから算出される第一,二の値として振幅スペクトルの2乗和の平方根を用いた。振幅スペクトルの2乗和の平方根は、振幅の実効値に相当する。しかし、これに限らず、例えば、振幅スペクトルの2乗和や、周波数帯域の振幅スペクトルの総和を用いても構わない。振幅スペクトルの2乗和は、脈波のエネルギーに相当する。   In the above embodiment, the time-frequency analysis unit 44b uses the square root of the square sum of the amplitude spectrum as the first and second values calculated from the amplitude spectra in the first and second frequency bands. The square root of the sum of squares of the amplitude spectrum corresponds to the effective value of the amplitude. However, the present invention is not limited to this. For example, the sum of squares of amplitude spectra or the sum of amplitude spectra of frequency bands may be used. The sum of squares of the amplitude spectrum corresponds to the energy of the pulse wave.

また、上記実施形態において、判定部44は、相互相関解析部44a及び時間周波数解析部44bより構成した。しかし、例えば、時間周波数解析部44bにかえて、周波数解析部44cとしてもよい。周波数解析部44cでは、左脈波データ及び右脈波データに対してそれぞれ周波数解析を行い、各周波数における振幅スペクトルを算出し、これを特徴量とする。特定の周波数帯域に含まれる振幅スペクトルを左右で比較して、所定量以上に左右差が有る場合に、振幅スペクトルが多い方に、脳動脈等100の閉塞Ocがあると判定できる。例えば、周波数解析の手法として、高速フーリエ変換(FFT)を行う。なお、相互相関解析部44a及び時間周波数解析部44bにかえて周波数解析部44c単独でもかまわない。   Moreover, in the said embodiment, the determination part 44 was comprised from the cross correlation analysis part 44a and the time frequency analysis part 44b. However, for example, the frequency analysis unit 44c may be used instead of the time frequency analysis unit 44b. The frequency analysis unit 44c performs frequency analysis on the left pulse wave data and the right pulse wave data, calculates an amplitude spectrum at each frequency, and uses this as a feature amount. When the left and right amplitude spectra included in a specific frequency band are compared, and there is a left-right difference of a predetermined amount or more, it can be determined that there is a blockage Oc of the cerebral artery 100 or the like in the direction with the larger amplitude spectrum. For example, fast Fourier transform (FFT) is performed as a frequency analysis technique. The frequency analysis unit 44c alone may be used instead of the cross correlation analysis unit 44a and the time frequency analysis unit 44b.

ここで、健常者の脈波データを周波数解析した結果を図11に示す。同様に、閉塞患者の脈波データを周波数解析した結果を図12に示す。これらの図から明らかなように、健常者の脈波データは、左右で大きな違いが無いが、閉塞患者の脈波データは、特に、閉塞側において10Hzより高周波の成分が多くなっている。上述のように、閉塞側の脈波データでは高周波成分が多い傾向にある。よって、例えば、10Hzより高周波の周波数成分の特徴量を比較することで、閉塞Ocが左右のどちらにあるか判定することができる。   Here, the result of frequency analysis of the pulse wave data of a healthy person is shown in FIG. Similarly, FIG. 12 shows the result of frequency analysis of pulse wave data of an obstructed patient. As is clear from these figures, the pulse wave data of a healthy person has no significant difference between left and right, but the pulse wave data of an obstructed patient has a higher frequency component than 10 Hz particularly on the obstruction side. As described above, the pulse wave data on the occlusion side tends to have a high frequency component. Therefore, for example, by comparing feature amounts of frequency components higher than 10 Hz, it can be determined whether the blockage Oc is on the left or right.

さらに、判定部44において、図8に示すように、左右の脈波データPdの重なり具合によって閉塞Ocの有無を判定することも可能である。また、時間周波数解析部44bまたは周波数解析部44cと組み合わせることで、左右のどちらにOcが有るかを判定させるとよい。   Furthermore, as shown in FIG. 8, the determination unit 44 can also determine the presence or absence of the blockage Oc based on the overlapping state of the left and right pulse wave data Pd. Moreover, it is good to make it determine whether Oc exists in right and left by combining with the time frequency analysis part 44b or the frequency analysis part 44c.

上述の実施形態では、時間周波数解析部44bの時間周波数解析の手法として短時間フーリエ変換(STFT)を用いた。また、周波数解析部44cの周波数解析の手法として高速フーリエ変換(FFT)を用いた。しかし、これらに限定されるものではなく、例えば、ウェーブレット変換等を用いてもよい。なお、FFTの方が処理時間を短くすることができる。   In the above-described embodiment, the short-time Fourier transform (STFT) is used as the time-frequency analysis technique of the time-frequency analysis unit 44b. In addition, fast Fourier transform (FFT) is used as a frequency analysis method of the frequency analysis unit 44c. However, it is not limited to these, and for example, wavelet transform or the like may be used. Note that the FFT can shorten the processing time.

上記実施形態において、脈波Pを圧電トランスデューサ20で計測した微分波形のまま取り扱うため、図4に破線で示す積分処理部42にて行う積分処理を省略した。しかし、正規化処理された脈波データPdに対し、積分処理部42にて、積分処理を行ってもよい。この場合、脈波データPdは、図13に示すように、血管壁の変位を表す波形データとなる。そして、微分波形とは別に表示部45に出力させてもよく、記憶部46に記憶させて、他の用途に利用可能としてもよい。さらに、データ変換部3の波形積分部33において積分処理を行い、表示出力部34に表示させることで、計測された脈波Pの確認を容易とすることも可能である。   In the above embodiment, since the pulse wave P is handled as the differential waveform measured by the piezoelectric transducer 20, the integration processing performed by the integration processing unit 42 indicated by a broken line in FIG. 4 is omitted. However, the integration processing unit 42 may perform integration processing on the normalized pulse wave data Pd. In this case, the pulse wave data Pd is waveform data representing the displacement of the blood vessel wall as shown in FIG. Then, it may be output to the display unit 45 separately from the differential waveform, or may be stored in the storage unit 46 so that it can be used for other purposes. Furthermore, it is also possible to facilitate the confirmation of the measured pulse wave P by performing integration processing in the waveform integration unit 33 of the data conversion unit 3 and causing the display output unit 34 to display the integration process.

また、上記実施形態において、計測手段2として圧電トランスデューサ20を用いた。しかし、計測手段2はこれに限られるものではなく、脈波P(血管壁の変位)を計測できるものであれば、圧電トランスデューサ20に限られない。血管壁Vwの変位波形を計測する計測手段2に用いられる他のセンサ等の例として、磁気センサや、光センサ等がある。また、計測手段2として、超音波センサを搭載する超音波診断装置を用いて頚動脈波の変位波形を計測することも可能である。しかし、圧電トランスデューサ20に比べて、機器が大きくなり、緊急医療の現場などへの持ち運びが困難であるので、上記実施形態が優れている。   In the above embodiment, the piezoelectric transducer 20 is used as the measuring means 2. However, the measuring means 2 is not limited to this, and is not limited to the piezoelectric transducer 20 as long as it can measure the pulse wave P (displacement of the blood vessel wall). Examples of other sensors used for the measuring means 2 that measures the displacement waveform of the blood vessel wall Vw include a magnetic sensor and an optical sensor. Moreover, it is also possible to measure the displacement waveform of the carotid artery wave using an ultrasonic diagnostic apparatus equipped with an ultrasonic sensor as the measuring means 2. However, since the device is larger than the piezoelectric transducer 20 and it is difficult to carry it to an emergency medical site, the above embodiment is excellent.

なお、上記実施形態において、脈波データPdを圧電トランスデューサ20で計測される微分波形とした。しかし、例えば、計測手段2によっては、脈波Pによる血管壁Vwの変位波形の2回微分波形信号を出力することも可能であり、この2回微分波形信号を脈波データPdとしてもよい。この場合、2回微分波形を変位波形とするために、波形積分部33や積分処理部42にて、積分処理を二度行ってもよい。また、圧電トランスデューサ20で計測された微分波形をさらに微分処理した2回微分波形を脈波データPdとして用いてもよい。   In the above embodiment, the pulse wave data Pd is a differential waveform measured by the piezoelectric transducer 20. However, for example, depending on the measuring means 2, it is also possible to output a twice differential waveform signal of the displacement waveform of the blood vessel wall Vw by the pulse wave P, and this double differential waveform signal may be used as the pulse wave data Pd. In this case, in order to make the twice differentiated waveform a displacement waveform, the integration processing may be performed twice by the waveform integration unit 33 or the integration processing unit 42. Alternatively, a twice-differential waveform obtained by further differentiating the differential waveform measured by the piezoelectric transducer 20 may be used as the pulse wave data Pd.

上記実施形態において、計測手段2とデータ変換手段3は有線にて接続されているが、データ変換手段3を省略し、計測手段2から判定手段4へと送信してもよい。係る場合、判定手段4に、脈波データPdを増幅する増幅部と、A/D変換するA/D変換部とを設けるとよい。また、計測手段2とデータ変換手段3は一体の装置としてもよい。   In the above embodiment, the measurement unit 2 and the data conversion unit 3 are connected by wire, but the data conversion unit 3 may be omitted and the measurement unit 2 may transmit to the determination unit 4. In such a case, the determination unit 4 may be provided with an amplification unit that amplifies the pulse wave data Pd and an A / D conversion unit that performs A / D conversion. Further, the measuring means 2 and the data converting means 3 may be an integrated device.

上記実施形態において、1つの計測手段2を用いて、左右の脈波Pをそれぞれ計測した。しかし、一対の計測手段2を用いて、左右の脈波Pを同時に計測しても良い。係る場合、データ変換手段3を計測手段2にあわせて一対設ける。1つの計測手段2では、脈波Pを発生させる心臓の拍動が左右でそれぞれ異なるのに対して、一対の計測手段2を用いると、脈波Pを発生させる心臓の拍動が左右で同じである。そのため、閉塞Ocの有無を判定する精度がさらに向上する。   In the above embodiment, the left and right pulse waves P were measured using one measuring means 2. However, the left and right pulse waves P may be measured simultaneously using a pair of measuring means 2. In such a case, a pair of data conversion means 3 is provided in accordance with the measurement means 2. In one measuring means 2, the pulsation of the heart that generates the pulse wave P is different on the left and right, whereas when the pair of measuring means 2 is used, the pulsation of the heart that generates the pulse wave P is the same on the left and right. It is. Therefore, the accuracy of determining the presence or absence of the blocking Oc is further improved.

なお、一方の脈波Pを計測し、判定手段4へ送信する前に、もう一方の脈波Pを計測し、左右の脈波データPdを同時に判定手段4へ送信してもよい。例えば、データ変換手段3に判定手段4へ左右の脈波データPdを送信する送信ボタンを備え、ボタン操作により、データ送信を行うようにすることもできる。   Note that before one pulse wave P is measured and transmitted to the determination unit 4, the other pulse wave P may be measured and the left and right pulse wave data Pd may be transmitted to the determination unit 4 at the same time. For example, the data conversion unit 3 may be provided with a transmission button for transmitting the left and right pulse wave data Pd to the determination unit 4, and data transmission may be performed by operating the button.

また、上記実施形態において、脈波データPdに左右のどちらの脈波Pであるかという情報を含めてもよい。これにより、左右のどちらの脈波Pを計測した脈波データPdであるかが明確となり、特に、閉塞Ocが左右のどちらにあるか判定する場合に、誤診の可能性を減少させることができる。例えば、データ変換手段3に、圧電トランスデューサ20を左右のどちらの総頚動脈111に当てているかを指定するスイッチを設けるとよい。   In the above embodiment, the pulse wave data Pd may include information indicating which pulse wave P is left or right. As a result, it becomes clear which pulse wave data Pd is obtained by measuring the left and right pulse waves P, and in particular, when determining whether the blockage Oc is on the left or right, the possibility of misdiagnosis can be reduced. . For example, the data conversion means 3 may be provided with a switch for designating which of the left and right common carotid arteries 111 the piezoelectric transducer 20 is applied to.

図4では、正規化処理部41、積分処理部42、加算平均処理部43の順番で記載しているが、これに限られるものではない。例えば、脈波データPdを加算平均処理してから正規化処理し、積分処理を行ったうえで、判定部44へ脈波データPdを送り閉塞Ocの有無を判定してもよい。また、積分処理部42と同様に、正規化処理部41と加算平均処理部43での各処理を省略してもよい。   In FIG. 4, the normalization processing unit 41, the integration processing unit 42, and the addition average processing unit 43 are described in this order, but the present invention is not limited to this. For example, the pulse wave data Pd may be added and averaged, normalized, integrated, and then the pulse wave data Pd may be sent to the determination unit 44 to determine the presence or absence of the blockage Oc. Further, similarly to the integration processing unit 42, each processing in the normalization processing unit 41 and the addition average processing unit 43 may be omitted.

本発明は、緊急医療の現場において脳動脈等の閉塞の有無を判定する動脈閉塞判定装置として利用できる。また、閉塞患者の治療や術後の経過状況の評価においてや、脳動脈等の閉塞のリスクが高い人が自宅で日常的に閉塞状況をモニターすることに利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used as an arterial occlusion determination device that determines the presence or absence of an obstruction of a cerebral artery or the like in an emergency medical field. In addition, it can be used for treatment of obstructed patients and evaluation of post-operative progress, and for people with high risk of obstruction such as cerebral arteries to monitor the obstruction status on a daily basis at home.

1:脳動脈閉塞判定装置、2:計測手段(圧電トランスデューサ)、3:データ変換手段(データロガー)、4:判定手段(スマートフォン、PC)、20:センサ、30:増幅部、31:A/D変換部、32:送信部、33:波形積分部、34:表示出力部、40:受信部、41:正規化処理部、42:積分処理部、43:加算平均処理部、44:判定部、44a:相互相関解析部、44b:時間周波数解析部、44c:周波数解析部、45:表示部、46:記憶部、100:脳動脈等(検査対象部位)、110:頚動脈、111:総頚動脈、112:外頚動脈、113:内頚動脈、120:脳動脈、130:脳動脈の末端、P:脈波、Pi:入射波、Pr:反射波、Pd:脈波データ、Pd1〜Pd4:抽出された脈波データ、Pd’:加算平均脈波データ、Bv:血管、h:心臓、Vw:血管壁、H:人体 1: cerebral artery occlusion determination device, 2: measurement means (piezoelectric transducer), 3: data conversion means (data logger), 4: determination means (smartphone, PC), 20: sensor, 30: amplification unit, 31: A / D conversion unit, 32: transmission unit, 33: waveform integration unit, 34: display output unit, 40: reception unit, 41: normalization processing unit, 42: integration processing unit, 43: addition averaging processing unit, 44: determination unit 44a: cross-correlation analysis unit, 44b: time-frequency analysis unit, 44c: frequency analysis unit, 45: display unit, 46: storage unit, 100: cerebral artery, etc. (site to be examined), 110: carotid artery, 111: common carotid artery 112: external carotid artery, 113: internal carotid artery, 120: cerebral artery, 130: terminal of cerebral artery, P: pulse wave, Pi: incident wave, Pr: reflected wave, Pd: pulse wave data, Pd1 to Pd4: extracted Pulse wave data, Pd ': Calculated average pulse wave data, Bv: Vascular, h: Heart, Vw: vascular wall, H: human

Claims (14)

人体の頚動脈の脈波データを計測する計測手段と、
前記脈波データに基づいて前記頚動脈及びこの頚動脈から分岐する脳動脈における閉塞の有無を判定する判定手段とを備え、
前記判定手段は、前記計測手段により計測した左頚動脈の左脈波データと右頚動脈の右脈波データとを比較し、その比較結果に基づいて前記閉塞の有無を判定する動脈閉塞判定装置。
A measuring means for measuring pulse wave data of the carotid artery of the human body,
Determination means for determining the presence or absence of occlusion in the carotid artery and the cerebral artery branched from the carotid artery based on the pulse wave data,
The determination means compares the left pulse wave data of the left carotid artery measured by the measurement means with the right pulse wave data of the right carotid artery, and determines whether or not the obstruction is present based on the comparison result.
前記判定手段は、前記左脈波データ及び前記右脈波データから相互相関関数の最大値を算出し、その最大値を基準値と比較して前記閉塞の有無を判定する請求項1記載の動脈閉塞判定装置。 The artery according to claim 1, wherein the determination means calculates a maximum value of a cross-correlation function from the left pulse wave data and the right pulse wave data and compares the maximum value with a reference value to determine the presence or absence of the blockage. Blockage determination device. 前記判定手段は、さらに、前記左脈波データ及び前記右脈波データの周波数解析を行い、前記左脈波データ及び前記右脈波データの各々で第一の周波数帯域の振幅スペクトルより算出される第一の値と第二の周波帯域の振幅スペクトルより算出される第二の値との比を求め、前記左脈波データの比と前記右脈波データの比とを比較する請求項2記載の動脈閉塞判定装置。 The determination means further performs a frequency analysis of the left pulse wave data and the right pulse wave data, and is calculated from an amplitude spectrum of a first frequency band for each of the left pulse wave data and the right pulse wave data. 3. The ratio between the first value and the second value calculated from the amplitude spectrum of the second frequency band is obtained, and the ratio of the left pulse wave data is compared with the ratio of the right pulse wave data. Arterial occlusion determination device. 前記判定手段は、所定の時間領域において前記左脈波データ及び前記右脈波データの周波数解析を行い、前記左脈波データ及び前記右脈波データの各々で第一の周波数帯域の振幅スペクトルより算出される第一の値と第二の周波帯域の振幅スペクトルより算出される第二の値との比を求め、前記左脈波データの比と前記右脈波データの比とを比較して前記閉塞の有無を判定する請求項1記載の動脈閉塞判定装置。 The determination means performs frequency analysis of the left pulse wave data and the right pulse wave data in a predetermined time region, and from each of the left pulse wave data and the right pulse wave data, based on an amplitude spectrum of a first frequency band. The ratio between the calculated first value and the second value calculated from the amplitude spectrum of the second frequency band is obtained, and the ratio of the left pulse wave data and the ratio of the right pulse wave data are compared. The arterial occlusion determination device according to claim 1, wherein the presence or absence of the occlusion is determined. 前記第二の周波数帯域は、前記第一の周波数帯域の内の所定の周波数以上の高周波帯域である請求項3又は4記載の動脈閉塞判定装置。 The arterial occlusion determination device according to claim 3 or 4, wherein the second frequency band is a high frequency band equal to or higher than a predetermined frequency in the first frequency band. 前記第一の値は、前記第一の周波数帯域の振幅スペクトルの2乗和の平方根であり、前記第二の値は、前記第二の周波数帯域の振幅スペクトルの2乗和の平方根である請求項3〜5のいずれかに記載の動脈閉塞判定装置。 The first value is a square root of a square sum of an amplitude spectrum of the first frequency band, and the second value is a square root of a square sum of an amplitude spectrum of the second frequency band. The arterial occlusion determination device according to any one of Items 3 to 5. 前記判定手段は、前記左脈波データ及び前記右脈波データの周波数解析を行い、前記左脈波データ及び前記右脈波データの各々で所定の周波数成分における特徴量を求め、前記左脈波データの特徴量と前記右脈波データの特徴量とを比較して前記閉塞の有無を判定する請求項1記載の動脈閉塞判定装置。 The determination means performs a frequency analysis of the left pulse wave data and the right pulse wave data, obtains a feature amount in a predetermined frequency component in each of the left pulse wave data and the right pulse wave data, and the left pulse wave The arterial occlusion determination device according to claim 1, wherein the feature amount of the data and the feature amount of the right pulse wave data are compared to determine the presence or absence of the occlusion. 前記判定手段は、さらに、前記左脈波データ及び前記右脈波データの周波数解析を行い、前記左脈波データ及び前記右脈波データの各々で所定の周波数成分における特徴量を求め、前記左脈波データの特徴量と前記右脈波データの特徴量とを比較する請求項2記載の動脈閉塞判定装置。 The determination means further performs a frequency analysis of the left pulse wave data and the right pulse wave data, obtains a feature amount at a predetermined frequency component in each of the left pulse wave data and the right pulse wave data, and The arterial occlusion determination device according to claim 2, wherein the feature amount of the pulse wave data is compared with the feature amount of the right pulse wave data. 前記脈波データは、脈波波形の微分波形である請求項1〜8のいずれかに記載の動脈閉塞判定装置。 The arterial occlusion determination device according to claim 1, wherein the pulse wave data is a differential waveform of a pulse wave waveform. 前記判定手段は、前記脈波波形又は前記微分波形から所定の波数分の波形を抽出し、抽出した波形を加算平均して加算平均波形を生成する請求項9記載の動脈閉塞判定装置。 The arterial occlusion determination device according to claim 9, wherein the determination unit extracts a waveform corresponding to a predetermined wave number from the pulse wave waveform or the differential waveform, and generates an addition average waveform by averaging the extracted waveforms. 前記計測手段は、圧電トランスデューサである請求項1〜10のいずれかに記載の動脈閉塞判定装置。 The arterial occlusion determination device according to claim 1, wherein the measuring unit is a piezoelectric transducer. 前記計測手段で計測された脈波データを受信し増幅する増幅部と、増幅された脈波データをデジタルデータに変換するA/D変換部と、変換された脈波データを前記判定手段に送信する送信部とを有するデータ変換手段をさらに備える請求項1〜11のいずれかに記載の動脈閉塞判定装置。 An amplification unit that receives and amplifies the pulse wave data measured by the measurement unit, an A / D conversion unit that converts the amplified pulse wave data into digital data, and transmits the converted pulse wave data to the determination unit The arterial occlusion determination device according to any one of claims 1 to 11, further comprising a data conversion unit including a transmission unit. 前記データ変換手段は、前記脈波データを表示する表示部を有する請求項12記載の動脈閉塞判定装置。 The arterial occlusion determination device according to claim 12, wherein the data conversion unit includes a display unit that displays the pulse wave data. コンピュータを、
計測手段によって計測された人体の左頚動脈の左脈波データと右頚動脈の右脈波データとを比較し、その比較結果に基づいて、頚動脈及びこの頚動脈から分岐する脳動脈における閉塞の有無を判定する判定手段として機能させるプログラム。
Computer
Comparing the left pulse wave data of the left carotid artery of the human body and the right pulse wave data of the right carotid artery measured by the measuring means, and based on the comparison result, the presence or absence of blockage in the carotid artery and the cerebral artery branching from the carotid artery is determined. A program that functions as a determination means.
JP2018082391A 2018-04-23 2018-04-23 Arterial occlusion determination device and program for functioning as an arterial occlusion determination device Active JP7156628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018082391A JP7156628B2 (en) 2018-04-23 2018-04-23 Arterial occlusion determination device and program for functioning as an arterial occlusion determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018082391A JP7156628B2 (en) 2018-04-23 2018-04-23 Arterial occlusion determination device and program for functioning as an arterial occlusion determination device

Publications (2)

Publication Number Publication Date
JP2019187694A true JP2019187694A (en) 2019-10-31
JP7156628B2 JP7156628B2 (en) 2022-10-19

Family

ID=68387888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018082391A Active JP7156628B2 (en) 2018-04-23 2018-04-23 Arterial occlusion determination device and program for functioning as an arterial occlusion determination device

Country Status (1)

Country Link
JP (1) JP7156628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187307A1 (en) * 2020-03-17 2021-09-23 データソリューションズ株式会社 Living body abnormality detection device, living body abnormality detection method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010986A (en) * 2000-06-29 2002-01-15 Yoshinaga Kajimoto Noninvasive measurement device for intracerebral blood amount
JP2002291709A (en) * 2001-03-30 2002-10-08 Nippon Colin Co Ltd Pressure pulse wave detection device
JP2007117481A (en) * 2005-10-28 2007-05-17 Medical Electronic Science Inst Co Ltd Biological information monitor system
JP2008073088A (en) * 2006-09-19 2008-04-03 Gifu Univ Vascular sclerosis measuring system
JP2012507341A (en) * 2008-11-04 2012-03-29 ヘルススタッツ インターナショナル ピーティーイー リミテッド Blood pressure measuring method and blood pressure measuring device
JP2014504936A (en) * 2011-02-09 2014-02-27 オルサン メディカル テクノロジーズ リミテッド Device and method for monitoring cerebral hemodynamic status
JP2016522730A (en) * 2013-06-26 2016-08-04 インテル コーポレイション Detection of pre-existing stroke risk index

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010986A (en) * 2000-06-29 2002-01-15 Yoshinaga Kajimoto Noninvasive measurement device for intracerebral blood amount
JP2002291709A (en) * 2001-03-30 2002-10-08 Nippon Colin Co Ltd Pressure pulse wave detection device
JP2007117481A (en) * 2005-10-28 2007-05-17 Medical Electronic Science Inst Co Ltd Biological information monitor system
JP2008073088A (en) * 2006-09-19 2008-04-03 Gifu Univ Vascular sclerosis measuring system
JP2012507341A (en) * 2008-11-04 2012-03-29 ヘルススタッツ インターナショナル ピーティーイー リミテッド Blood pressure measuring method and blood pressure measuring device
JP2014504936A (en) * 2011-02-09 2014-02-27 オルサン メディカル テクノロジーズ リミテッド Device and method for monitoring cerebral hemodynamic status
JP2016522730A (en) * 2013-06-26 2016-08-04 インテル コーポレイション Detection of pre-existing stroke risk index

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187307A1 (en) * 2020-03-17 2021-09-23 データソリューションズ株式会社 Living body abnormality detection device, living body abnormality detection method, and program
JP7455191B2 (en) 2020-03-17 2024-03-25 データソリューションズ株式会社 Biological abnormality detection device, biological abnormality detection method, and program

Also Published As

Publication number Publication date
JP7156628B2 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
US20200367767A1 (en) Electrical Coupling of Pulse Transit Time (PTT) Measurement System to Heart for Blood Pressure Measurement
US10517489B2 (en) Wrist worn accelerometer for pulse transit time (PTT) measurements of blood pressure
CN109310349B (en) Diastolic blood pressure measurement calibration
RU2571333C2 (en) System, stethoscope and method for detection of risk of ischemic heart disease
EP3102100B1 (en) Apparatuses for determining blood pressure
US7361148B2 (en) Cuff volumetric pulse wave obtaining apparatus, cuff volumetric pulse wave analyzing apparatus, pressure pulse wave obtaining apparatus, and pressure pulse wave analyzing apparatus
EP1273262A1 (en) Heart-sound detection apparatus and pulse-wave-propagation-velocity determination
JP3987099B2 (en) Vascular endothelial reaction measuring device and method for controlling vascular endothelial reaction measuring device
US8419646B2 (en) Blood pressure estimation apparatus and blood pressure estimation method
JP2017506110A (en) Method for determining pulse wave velocity in an artery
JP2016112277A (en) Blood pressure measurement device, electronic apparatus and blood pressure measurement method
US20160106326A1 (en) Pressure Wave Measurement of Blood Flow
Chen et al. Assessment of algorithms for oscillometric blood pressure measurement
Shukla et al. Noninvasive cuffless blood pressure measurement by vascular transit time
KR20160113889A (en) Apparatus and method for detecting information of the living body
JP6865685B2 (en) Systems and methods for measuring arterial parameters
Papaioannou et al. Measurement of central augmentation index by three different methods and techniques: Agreement among Arteriograph, Complior, and Mobil‐O‐Graph devices
Okano et al. Multimodal cardiovascular information monitor using piezoelectric transducers for wearable healthcare
JP7156628B2 (en) Arterial occlusion determination device and program for functioning as an arterial occlusion determination device
JP2010207344A (en) Blood pressure/blood velocity state determination device and method for determining the same
EP3558107A1 (en) System and method of detecting inter-vascular occlusion
JP2008228934A (en) Artery wall hardness evaluation system
Huang et al. Using bioimpedance plethysmography for measuring the pulse wave velocity of peripheral vascular
Kim et al. Continuous blood pressure monitoring algorithm using laser Doppler flowmetry
JP2020185320A (en) Vascular access abnormality detection device

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220928

R150 Certificate of patent or registration of utility model

Ref document number: 7156628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150