JP2019161009A - Memory device - Google Patents

Memory device Download PDF

Info

Publication number
JP2019161009A
JP2019161009A JP2018045645A JP2018045645A JP2019161009A JP 2019161009 A JP2019161009 A JP 2019161009A JP 2018045645 A JP2018045645 A JP 2018045645A JP 2018045645 A JP2018045645 A JP 2018045645A JP 2019161009 A JP2019161009 A JP 2019161009A
Authority
JP
Japan
Prior art keywords
insulating film
word lines
film
electrode
semiconductor pillar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018045645A
Other languages
Japanese (ja)
Inventor
秀人 武木田
Hidehito Takekida
秀人 武木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Toshiba Memory Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Memory Corp filed Critical Toshiba Memory Corp
Priority to JP2018045645A priority Critical patent/JP2019161009A/en
Priority to US16/109,365 priority patent/US10950617B2/en
Publication of JP2019161009A publication Critical patent/JP2019161009A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/24Bit-line control circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/10Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

To provide a memory device capable of restraining malfunction of memory cells.SOLUTION: A memory device includes multiple word lines laminated in the first direction, a first insulator film provided between the word lines adjoining in the first direction, out of the multiple word lines, selector gates juxtaposed to the multiple word lines in the first direction, a first intermediate electrode provided between the multiple word lines and the selector gate, a second insulator film provided between the first intermediate electrode and the selector gate, a semiconductor pillar extending in the first direction while penetrating the multiple word lines, the first insulator film, the first intermediate electrode, the second insulator film and the selector gate, and charge holding films located, respectively, between the multiple word lines and the semiconductor pillar. The second insulator film has a second film thickness in the first direction thicker than the first film thickness in the first direction of the first insulator film.SELECTED DRAWING: Figure 2

Description

実施形態は、記憶装置に関する。   Embodiments described herein relate generally to a storage device.

3次元配置されたメモリセルを含む記憶装置の開発が進められている。例えば、NAND型不揮発性記憶装置では、複数のワード線および選択ゲートを層間絶縁膜を介して積層し、それらを積層方向に貫く半導体ピラーが設けられる。メモリセルは、半導体ピラーと複数のワード線が交差する部分に配置される。このような半導体装置の記憶容量を大きくするためには、ワード線、選択ゲートおよび層間絶縁膜を薄層化し、ワード線の積層数を多くすることが有効である。しかしながら、ワード線および選択ゲートの薄層化は、それらの寄生抵抗を大きくし、層間絶縁膜の薄層化は、寄生容量を大きくする。このため、メモリセルの誤動作を生じさせることがある。   Development of a storage device including memory cells arranged three-dimensionally is in progress. For example, in a NAND nonvolatile memory device, a plurality of word lines and select gates are stacked via an interlayer insulating film, and a semiconductor pillar is provided that penetrates them in the stacking direction. The memory cell is arranged at a portion where the semiconductor pillar intersects with the plurality of word lines. In order to increase the storage capacity of such a semiconductor device, it is effective to reduce the number of word lines by increasing the number of word lines, select gates, and interlayer insulating films. However, the thinning of the word line and the select gate increases their parasitic resistance, and the thinning of the interlayer insulating film increases the parasitic capacitance. For this reason, a malfunction of the memory cell may occur.

特開2007−266143号公報JP 2007-266143 A

実施形態は、メモリセルの誤動作を抑制できる記憶装置を提供する。   Embodiments provide a storage device capable of suppressing malfunction of a memory cell.

実施形態に係る記憶装置は、第1方向に積層された複数のワード線と、前記複数のワード線のうちの前記第1方向において隣接するワード線間に設けられた第1絶縁膜と、前記第1方向において複数のワード線に並べて配置された選択ゲートと、前記複数のワード線と前記選択ゲートの間に設けられた第1中間電極と、前記第1中間電極と前記選択ゲートの間に設けられた第2絶縁膜と、前記複数のワード線、前記第1絶縁膜、前記第1中間電極、前記第2絶縁膜および前記選択ゲートを貫いて前記第1方向に延びる半導体ピラーと、前記複数のワード線のそれぞれと、前記半導体ピラーと、の間に位置する電荷保持膜と、を備える。前記第2絶縁膜は、前記第1絶縁膜の前記第1方向の第1膜厚よりも厚い前記第1方向の第2膜厚を有する。   The memory device according to the embodiment includes a plurality of word lines stacked in a first direction, a first insulating film provided between adjacent word lines in the first direction among the plurality of word lines, A selection gate arranged in a plurality of word lines in a first direction; a first intermediate electrode provided between the plurality of word lines and the selection gate; and between the first intermediate electrode and the selection gate. A second insulating film, a semiconductor pillar extending in the first direction through the plurality of word lines, the first insulating film, the first intermediate electrode, the second insulating film, and the selection gate; A charge retention film positioned between each of the plurality of word lines and the semiconductor pillar; The second insulating film has a second film thickness in the first direction that is thicker than a first film thickness in the first direction of the first insulating film.

実施形態に係る記憶装置を模式的に示す斜視図である。1 is a perspective view schematically showing a storage device according to an embodiment. 実施形態に係る記憶装置を模式的に示す部分断面図である。It is a fragmentary sectional view showing typically the memory device concerning an embodiment. 実施形態に係る記憶装置の構成を示すブロック図である。It is a block diagram which shows the structure of the memory | storage device which concerns on embodiment. 実施形態に係る記憶装置の動作を示すタイムチャートである。It is a time chart which shows operation | movement of the memory | storage device which concerns on embodiment. 比較例に係る記憶装置の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the memory | storage device which concerns on a comparative example. 実施形態に係る記憶装置の製造過程を示す模式断面図である。It is a schematic cross section showing a manufacturing process of the memory device according to the embodiment. 図6に続く製造過程を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing a manufacturing process following FIG. 6. 図7に続く製造過程を示す模式断面図である。FIG. 8 is a schematic cross-sectional view showing the manufacturing process following FIG. 7. 図8に続く製造過程を示す模式断面図である。FIG. 9 is a schematic cross-sectional view showing the manufacturing process following FIG. 8.

以下、実施の形態について図面を参照しながら説明する。図面中の同一部分には、同一番号を付してその詳しい説明は適宜省略し、異なる部分について説明する。なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。   Hereinafter, embodiments will be described with reference to the drawings. The same parts in the drawings are denoted by the same reference numerals, detailed description thereof will be omitted as appropriate, and different parts will be described. The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between the parts, and the like are not necessarily the same as actual ones. Further, even when the same part is represented, the dimensions and ratios may be represented differently depending on the drawings.

さらに、各図中に示すX軸、Y軸およびZ軸を用いて各部分の配置および構成を説明する。X軸、Y軸、Z軸は、相互に直交し、それぞれX方向、Y方向、Z方向を表す。また、Z方向を上方、その反対方向を下方として説明する場合がある。   Furthermore, the arrangement and configuration of each part will be described using the X-axis, Y-axis, and Z-axis shown in each drawing. The X axis, the Y axis, and the Z axis are orthogonal to each other and represent the X direction, the Y direction, and the Z direction, respectively. Further, the Z direction may be described as the upper side and the opposite direction as the lower side.

図1は、実施形態に係る記憶装置1を模式的に示す斜視図である。記憶装置1は、例えば、NAND型不揮発性記憶装置であり、メモリセルアレイMCAを含む。図1では、メモリセルアレイMCAの構成を示すために、絶縁膜の一部を省略している。   FIG. 1 is a perspective view schematically showing a storage device 1 according to the embodiment. The storage device 1 is, for example, a NAND type nonvolatile storage device, and includes a memory cell array MCA. In FIG. 1, a part of the insulating film is omitted to show the configuration of the memory cell array MCA.

メモリセルアレイMCAは、導電層CL、複数の電極層、層間絶縁膜13、15および17を含む。導電層CLは、例えば、シリコン基板(図示しない)に設けられたP形ウェル、もしくは、シリコン基板上に層間絶縁膜を介して設けられた半導体層である。複数の電極層は、導電層CLの上に積層され、例えば、選択ゲートSGS、ワード線WLおよび選択ゲートSGDを含む。   Memory cell array MCA includes a conductive layer CL, a plurality of electrode layers, and interlayer insulating films 13, 15 and 17. The conductive layer CL is, for example, a P-type well provided on a silicon substrate (not shown) or a semiconductor layer provided on the silicon substrate via an interlayer insulating film. The plurality of electrode layers are stacked on the conductive layer CL and include, for example, a selection gate SGS, a word line WL, and a selection gate SGD.

複数の電極層は、ダミーワード線WLSおよびWLDをさらに含む。ダミーワード線WLSは、選択ゲートSGSと、それに近接するワード線WLと、の間に設けられる。ダミーワード線WLDは、選択ゲートSGDと、それに近接するワード線WLと、の間に設けられる。   The plurality of electrode layers further include dummy word lines WLS and WLD. The dummy word line WLS is provided between the selection gate SGS and the word line WL adjacent thereto. The dummy word line WLD is provided between the selection gate SGD and the word line WL adjacent thereto.

図1に示すように、選択ゲートSGDは、分離溝SHLにより、複数の選択ゲートSGDAと、複数の選択ゲートSGDBに分断される。選択ゲートSGDAおよび選択ゲートSGDBは、それぞれワード線WLの上に積層される。   As shown in FIG. 1, the selection gate SGD is divided into a plurality of selection gates SGDA and a plurality of selection gates SGDB by the isolation trench SHL. The selection gate SGDA and the selection gate SGDB are respectively stacked on the word line WL.

層間絶縁膜13は、導電層CLと選択ゲートSGSとの間に設けられる。層間絶縁膜15は、複数の電極層のうちのZ方向において隣接する2つの電極層の間に設けられる。層間絶縁膜17は、選択ゲートSGDの上に設けられる。   The interlayer insulating film 13 is provided between the conductive layer CL and the selection gate SGS. The interlayer insulating film 15 is provided between two electrode layers adjacent in the Z direction among the plurality of electrode layers. The interlayer insulating film 17 is provided on the selection gate SGD.

メモリセルアレイMCAは、複数の半導体ピラーSPをさらに含む。半導体ピラーSPは、ワード線WLおよび選択ゲートSGDを貫いてZ方向に延びる(図2参照)。   The memory cell array MCA further includes a plurality of semiconductor pillars SP. The semiconductor pillar SP extends in the Z direction through the word line WL and the select gate SGD (see FIG. 2).

記憶装置1は、メモリセルアレイMCAの上方に設けられたビット線BLおよびソース線SLをさらに含む。半導体ピラーSPは、それぞれ接続プラグCHおよびV1を介してビット線BLに電気的に接続される。ソース線SLは、例えば、接続導体LIを介して導電層CLに電気的に接続される。接続導体LIは、例えば、メモリセルアレイMCAの側方に設けられた板状の導電体である。   Memory device 1 further includes a bit line BL and a source line SL provided above memory cell array MCA. The semiconductor pillar SP is electrically connected to the bit line BL via connection plugs CH and V1, respectively. For example, the source line SL is electrically connected to the conductive layer CL via the connection conductor LI. The connection conductor LI is, for example, a plate-like conductor provided on the side of the memory cell array MCA.

図2は、実施形態に係る記憶装置1を模式的に示す部分断面図である。図2は、半導体ピラーを含むメモリホールMHおよび電極層の構成を示す模式図である。   FIG. 2 is a partial cross-sectional view schematically showing the storage device 1 according to the embodiment. FIG. 2 is a schematic diagram showing the configuration of the memory hole MH including the semiconductor pillar and the electrode layer.

図2に示すように、半導体ピラーSPは、ワード線WLおよび選択ゲートSGDを貫いてZ方向に延びるメモリホールMH(図6(b)参照)の内部に設けられる。半導体ピラーSPは、半導体膜SFと、絶縁性コアICと、を含む。絶縁性コアICは、例えば、酸化シリコンであり、メモリホールMHの内部においてZ方向に延びる。半導体膜SFは、例えば、ポリシリコン膜であり、絶縁性コアを覆うように設けられる。   As shown in FIG. 2, the semiconductor pillar SP is provided inside a memory hole MH (see FIG. 6B) extending in the Z direction through the word line WL and the selection gate SGD. The semiconductor pillar SP includes a semiconductor film SF and an insulating core IC. The insulating core IC is, for example, silicon oxide, and extends in the Z direction inside the memory hole MH. The semiconductor film SF is, for example, a polysilicon film, and is provided so as to cover the insulating core.

半導体ピラーSPは、接続プラグCHおよびV1を介してビット線BLに接続される。具体的には、半導体ピラーSPの上端において、接続プラグCHが、半導体膜SFに接続される。一方、半導体ピラーSPの下端と、導電層CLと、の間には、半導体層SCが設けられる。半導体層SCは、選択ゲートSGSを貫くように設けられる。半導体層SCは、その下端において導電層CLに接続され、その上端において半導体ピラーSPに接続される。また、半導体層SCと選択ゲートSGSとの間には、絶縁膜25が設けられる。   The semiconductor pillar SP is connected to the bit line BL via connection plugs CH and V1. Specifically, the connection plug CH is connected to the semiconductor film SF at the upper end of the semiconductor pillar SP. On the other hand, the semiconductor layer SC is provided between the lower end of the semiconductor pillar SP and the conductive layer CL. The semiconductor layer SC is provided so as to penetrate the selection gate SGS. The semiconductor layer SC is connected to the conductive layer CL at the lower end and connected to the semiconductor pillar SP at the upper end. An insulating film 25 is provided between the semiconductor layer SC and the selection gate SGS.

さらに、メモリホールMHの内部には、メモリ膜MFが設けられる。メモリ膜MFは、半導体ピラーSPとメモリホールMHの内壁との間に設けられる。メモリ膜MFは、例えば、ブロック絶縁膜FL1、電荷保持膜FL2およびトンネル絶縁膜FL3を含む。ブロック絶縁膜FL1、電荷保持膜FL2およびトンネル絶縁膜FL3は、メモリホールMHの内壁上に順に積層される。   Further, a memory film MF is provided inside the memory hole MH. The memory film MF is provided between the semiconductor pillar SP and the inner wall of the memory hole MH. The memory film MF includes, for example, a block insulating film FL1, a charge holding film FL2, and a tunnel insulating film FL3. The block insulating film FL1, the charge holding film FL2, and the tunnel insulating film FL3 are sequentially stacked on the inner wall of the memory hole MH.

図2に示すように、選択ゲートSGDと、ワード線WLの最上層と、の間には、ダミーワード線WLD0およびWLD1が配置される。ダミーワード線WLD0は、選択ゲートSGDとダミーワード線WLD1との間に配置される。   As shown in FIG. 2, dummy word lines WLD0 and WLD1 are arranged between the selection gate SGD and the uppermost layer of the word line WL. The dummy word line WLD0 is arranged between the selection gate SGD and the dummy word line WLD1.

本実施形態に係る記憶装置1では、選択ゲートSGDとダミーワード線WLD0との間に層間絶縁膜15Mが設けられる。層間絶縁膜15Mは、例えば、Z方向において隣り合うワード線WL間に設けられる層間絶縁膜15と同じ材料を含む。層間絶縁膜15Mは、例えば、シリコン酸化膜である。さらに、層間絶縁膜15Mは、層間絶縁膜15のZ方向の厚さTよりも厚いZ方向の厚さTを有するように形成される。 In the memory device 1 according to the present embodiment, the interlayer insulating film 15M is provided between the selection gate SGD and the dummy word line WLD0. The interlayer insulating film 15M includes, for example, the same material as the interlayer insulating film 15 provided between adjacent word lines WL in the Z direction. The interlayer insulating film 15M is, for example, a silicon oxide film. Further, an interlayer insulating film 15M is formed to have a thickness T 1 of the thick Z-direction than the Z direction thickness T 2 of the interlayer insulating film 15.

図3は、実施形態に係る記憶装置の構成を示すブロック図である。例えば、ワード線WLは、それぞれ駆動回路WD1に接続される。ダミーワード線WLD0およびWLD1は、共通の駆動回路WD2に接続される。選択ゲートSGDおよびSGSは、駆動回路GD1およびGD2にそれぞれ接続される。また、半導体ピラーSPは、ビット線BLを介してセンスアンプSAに接続される。   FIG. 3 is a block diagram illustrating the configuration of the storage device according to the embodiment. For example, each word line WL is connected to the drive circuit WD1. Dummy word lines WLD0 and WLD1 are connected to a common drive circuit WD2. Select gates SGD and SGS are connected to drive circuits GD1 and GD2, respectively. The semiconductor pillar SP is connected to the sense amplifier SA via the bit line BL.

図3に示すように、半導体ピラーSPとワード線WLとが交差する部分にメモリセルMCが配置される。メモリセルMCは、半導体ピラーSPとワード線WLとの間に位置するメモリ膜MFの一部を電荷保持部として含む。   As shown in FIG. 3, the memory cell MC is arranged at a portion where the semiconductor pillar SP and the word line WL intersect. The memory cell MC includes a part of the memory film MF located between the semiconductor pillar SP and the word line WL as a charge holding unit.

半導体ピラーSPと選択ゲートSGDとが交差する部分には、選択トランジスタSTDが設けられる。選択トランジスタSTDは、例えば、半導体ピラーSPと選択ゲートSGDとの間に位置するメモリ膜MFの一部をゲート絶縁膜として含む。また、選択ゲートSGSと半導体層SCとが交差する部分には、選択トランジスタSTSが設けられる。選択トランジスタSTSは、半導体層SCと選択ゲートSGSとの間に位置す絶縁膜25をゲート絶縁膜として含む(図2参照)。   A selection transistor STD is provided at a portion where the semiconductor pillar SP and the selection gate SGD intersect. The selection transistor STD includes, for example, a part of the memory film MF located between the semiconductor pillar SP and the selection gate SGD as a gate insulating film. A selection transistor STS is provided at a portion where the selection gate SGS and the semiconductor layer SC intersect. The selection transistor STS includes an insulating film 25 located between the semiconductor layer SC and the selection gate SGS as a gate insulating film (see FIG. 2).

図4(a)および(b)は、実施形態に係る記憶装置1の動作を示すタイムチャートである。図4(a)および(b)は、メモリセルMCへのデータ書き込み時において、駆動回路WD1、WD2およびGD1から各電極層へ供給されるバイアスを示している。   4A and 4B are time charts showing the operation of the storage device 1 according to the embodiment. 4A and 4B show biases supplied from the drive circuits WD1, WD2, and GD1 to the respective electrode layers when data is written to the memory cell MC.

図4(a)に示す選択ゲートSGD_SELは、例えば、図1中に示すSGDAであり、図4(b)に示す選択ゲートSGD_USELは、例えば、図1中に示すSGDBである。以下の説明では、選択ゲートSGDAを選択された選択ゲートSGD_SELとし、選択ゲートSGDBを非選択の選択ゲートSGD_USELとして説明する。   The selection gate SGD_SEL illustrated in FIG. 4A is, for example, SGDA illustrated in FIG. 1, and the selection gate SGD_USEL illustrated in FIG. 4B is, for example, SGDB illustrated in FIG. In the following description, the selection gate SGDA will be described as a selected selection gate SGD_SEL, and the selection gate SGDB will be described as an unselected selection gate SGD_USEL.

図4(a)および(b)は、データ書き込み時に選択ゲートSGD_SELおよびSGD_USEL、その下方に位置するワード線WLおよびダミーワード線WLDに供給されるバイアスVSGD、VWLDおよびVWLを示す。なお、ダミーワード線WLD0およびWLD1には、同じバイアスVWLDが供給される。以下の説明では、ダミーワード線WLD0およびWLD1を集合的にダミーワード線WLDと表現する。さらに、図4(a)では、非選択のビット線BL_USELに供給されるバイアスVBLも併せて示す。 FIGS. 4A and 4B show selection gates SGD_SEL and SGD_USEL, and biases V SGD , V WLD and V WL supplied to the word lines WL and dummy word lines WLD located therebelow during data writing. The same bias V WLD is supplied to the dummy word lines WLD0 and WLD1. In the following description, dummy word lines WLD0 and WLD1 are collectively expressed as dummy word lines WLD. Further, in FIG. 4 (a), the also shows bias V BL supplied to the unselected bit lines BL_USEL.

図4(a)および(b)に示すように、時間t〜tにおいて、選択ゲートSGD_SELおよびSGD_USELには、バイアスVPCが供給される。これにより、選択トランジスタSTDは、ON状態となる。一方、ビット線BL_USELには、バイアスVDDが供給される。選択されたビット線BL(図示しない)のバイアスは0Vである。この時、ソース側の選択トランジスタSTSは、OFF状態となっている。結果として、非選択のビット線BL_USELにつながった半導体ピラーSPは、電位VDDにチャージアップされる。 As shown in FIGS. 4 (a) and (b), at time t 0 ~t 1, the selection gate SGD_SEL and SGD_USEL, bias V PC is supplied. As a result, the selection transistor STD is turned on. On the other hand, the bias V DD is supplied to the bit line BL_USEL. The bias of the selected bit line BL (not shown) is 0V. At this time, the selection transistor STS on the source side is in an OFF state. As a result, the semiconductor pillar SP connected to the unselected bit line BL_USEL is charged up to the potential V DD .

ここで、選択されたビット線BLとは、書き込み対象のメモリセルMCを含む半導体ピラーSPにつながったビット線BLを意味し、非選択のビット線BL_USELは、書き込み対象のメモリセルMCを含まない半導体ピラーSPにつながったビット線BLを意味する。他の要素についても同様である。   Here, the selected bit line BL means the bit line BL connected to the semiconductor pillar SP including the memory cell MC to be written, and the unselected bit line BL_USEL does not include the memory cell MC to be written. It means the bit line BL connected to the semiconductor pillar SP. The same applies to other elements.

時間tにおいて、選択ゲートSGD_SELおよびSGD_USELへのバイアスVPCの供給が停止される。このため、選択ゲートSGD_SELおよびSGD_USELの電位VSGDは、その寄生抵抗および寄生容量に起因する時定数CRで定まる減衰率を持って低下する。 At time t 1, the supply of the bias V PC to select gate SGD_SEL and SGD_USEL is stopped. For this reason, the potential V SGD of the selection gates SGD_SEL and SGD_USEL decreases with an attenuation factor determined by the time constant CR caused by the parasitic resistance and parasitic capacitance.

図4(b)に示すように、選択ゲートSGD_SELおよびSGD_USELの電位VSGDは、駆動回路GD1に近い近端NSにおいて早く低下し、例えば、時間tにおいて0Vになる。一方、駆動回路GD1から離れた遠端FSでは、時定数CRが大きくなるために電位VSGDの低下は遅くなる。例えば、データの書き込みサイクル内に0Vまで下がりきらないケースも生じる。 As shown in FIG. 4 (b), the potential V SGD of the select gate SGD_SEL and SGD_USEL is reduced quickly in the near end NS closer to the drive circuits GD1, for example, it becomes 0V at time t 2. On the other hand, at the far end FS distant from the drive circuit GD1, the time constant CR is increased, so that the decrease in the potential VSGD is delayed. For example, there may be a case where the voltage does not drop to 0V within the data write cycle.

続いて、図4(a)に示すように、時間tにおいて、選択ゲートSGD_SELにバイアスVSONが供給される。この時、選択されたビット線BLの電位は0Vであり、書き込み対象のメモリセルMCを含む半導体ピラーSPに設けられた選択トランジスタSTDは、ON状態となる。一方、ビット線BL_USELには、バイアスVDDが供給されている。このため、書き込み対象のメモリセルMCを含まない半導体ピラーSPに設けられた選択トランジスタSTDは、OFF状態となる。 Subsequently, as illustrated in FIG. 4A, the bias V SON is supplied to the selection gate SGD_SEL at time t 2 . At this time, the potential of the selected bit line BL is 0 V, and the selection transistor STD provided in the semiconductor pillar SP including the memory cell MC to be written is turned on. On the other hand, the bias VDD is supplied to the bit line BL_USEL. For this reason, the select transistor STD provided in the semiconductor pillar SP not including the memory cell MC to be written is turned off.

また、図4(b)に示す選択ゲートSGD_USELには、駆動回路GD1からバイアスが供給されず、さらに、ビット線BL_USELの電位はVDDであるため、選択ゲートSGD_USELを含む選択トランジスタSTDは、OFF状態となる。結果として、書き込み対象のメモリセルMCを含む半導体ピラーSP_SEL以外の半導体ピラーSP_USELでは、選択トランジスタSTSおよびSTDがOFF状態となり、半導体ピラーSP_USELは、浮遊電位となる。 In addition, the selection gate SGD_USEL illustrated in FIG. 4B is not supplied with a bias from the driving circuit GD1, and the potential of the bit line BL_USEL is V DD , so that the selection transistor STD including the selection gate SGD_USEL is OFF. It becomes a state. As a result, in the semiconductor pillar SP_USEL other than the semiconductor pillar SP_SEL including the write target memory cell MC, the selection transistors STS and STD are turned off, and the semiconductor pillar SP_USEL becomes a floating potential.

一方、ワード線WLおよびダミーワード線WLDには、時間tにおいてバイアスVPASSが供給される。これにより、メモリセルMCのチャネルはON状態となる。さらに、選択されたワード線WL_SELには、時間tにおいてバイアスVPGが供給される。これにより、書き込み対象のメモリセルMCにデータを書き込むことができる。 On the other hand, the word line WL and the dummy word line WLD, the bias V PASS is applied at time t 2. As a result, the channel of the memory cell MC is turned on. Further, the bias V PG is supplied to the selected word line WL_SEL at time t 3 . Thereby, data can be written into the memory cell MC to be written.

一方、書き込み対象のメモリセルMCを含まない半導体ピラーSP_USELでは、各ワード線WLに供給されるバイアスに応じてその電位がブーストされ、例えば、半導体ピラーSP_USELと、バイアスVPGを供給されたワード線WL_SELと、の間の電位差が小さくなる。これにより、非選択のメモリセルMCへの誤書き込みを防ぐことができる。 On the other hand, in the semiconductor pillar SP_USEL not including the write target memory cell MC, and the potential is boosted in accordance with the bias to be supplied to each word line WL, and for example, a semiconductor pillar SP_USEL, word lines supplying a bias V PG The potential difference with WL_SEL is reduced. Thereby, erroneous writing to the non-selected memory cell MC can be prevented.

なお、書き込み電圧VPGは、ダミーワード線WLD0およびWLD1には供給されない。すなわち、各ワード線WLにバイアスを供給する駆動回路WD1は、ダミーワード線WLD0およびWLD1にバイアスを供給する駆動回路WD2よりも高いバイアスを供給することが可能な構成を有する(図3参照)。バイアスVPGは、例えば、10Vを超える。これに対し、ダミーワード線WLDに供給されるバイアスVPASSは、例えば、数Vである。 The write voltage V PG is not supplied to the dummy word line WLD0 and WLD1. That is, the drive circuit WD1 that supplies a bias to each word line WL has a configuration capable of supplying a higher bias than the drive circuit WD2 that supplies a bias to the dummy word lines WLD0 and WLD1 (see FIG. 3). The bias V PG exceeds, for example, 10V. On the other hand, the bias V PASS supplied to the dummy word line WLD is, for example, several volts.

図5(a)および(b)は、比較例に係る記憶装置2の動作を示す模式図である。図5(a)は、記憶装置2の構造を示す模式断面図である。図5(b)は、記憶装置2の動作を示すタイムチャートである。   FIGS. 5A and 5B are schematic diagrams illustrating the operation of the storage device 2 according to the comparative example. FIG. 5A is a schematic cross-sectional view showing the structure of the storage device 2. FIG. 5B is a time chart showing the operation of the storage device 2.

図5(a)に示すように、記憶装置2では、選択ゲートSGDとダミーワード線WLD0との間に層間絶縁膜15が設けられる。すなわち、選択ゲートSGDとダミーワード線WLD0との間に設けられる絶縁膜のZ方向の厚さは、ワード線WL間に設けられる層間絶縁膜15と略同一のZ方向の厚さを有する。   As shown in FIG. 5A, in the memory device 2, an interlayer insulating film 15 is provided between the selection gate SGD and the dummy word line WLD0. That is, the thickness in the Z direction of the insulating film provided between the select gate SGD and the dummy word line WLD0 has substantially the same Z direction thickness as the interlayer insulating film 15 provided between the word lines WL.

図5(b)に示すように、メモリセルMCへのデータ書き込み時において、選択ゲートSGD_USELには、バイアスVPCが供給され、時間tにおいて停止される。その後、選択ゲートSGD_USELの電位は徐々に低下する。 As shown in FIG. 5B, at the time of data writing to the memory cell MC, the selection gate SGD_USEL is supplied with the bias V PC and stopped at time t 1 . Thereafter, the potential of the selection gate SGD_USEL gradually decreases.

続いて、時間tにおいて、ワード線WLおよびダミーワード線WLDにバイアスVPASSが供給される。この時、選択ゲートSGD_USELとダミーワード線WLDとの間の寄生容量Cpを介したカップリングにより、選択ゲートSGD_USELに誘導電位VCPが誘起され、選択ゲートSGD_USELの電位が上昇する。 Subsequently, at time t 2, the bias V PASS is applied to the word line WL and the dummy word line WLD. At this time, by coupling through the parasitic capacitance Cp between the selection gate SGD_USEL and the dummy word line WLD, is induced induced potential V CP is the selection gate SGD_USEL, the potential of the selection gate SGD_USEL rises.

例えば、駆動回路GD1から離れた遠端FSでは、選択ゲートSGD_USELの電位がVPCから下がりきっておらず、そこに誘導電位VCPが重畳されることになる。このため、選択トランジスタSTDの一部がON状態となり、半導体ピラーSPにおける電位のブーストが抑制される場合がある。その結果、非選択のメモリセルMCにデータが書き込まれる誤動作が生じる可能性がある。 For example, the far-end FS away from the driving circuit GD1, the potential of the select gate SGD_USEL is not fully down from V PC, induced potential VCP is to be superimposed thereon. For this reason, part of the selection transistor STD is turned on, and the potential boost in the semiconductor pillar SP may be suppressed. As a result, a malfunction may occur in which data is written in the non-selected memory cell MC.

これに対し、本実施形態に係る記憶装置1では、選択ゲートSGDとダミーワード線WLD0との間に層間絶縁膜15Mが設けられる。層間絶縁膜15Mは、ワード線WL間に設けられる層間絶縁膜15よりもZ方向に厚く形成される。このため、選択ゲートSGDとダミーワード線WLD0との間の寄生容量Cpが小さくなり、カップリングが抑制される。これにより、メモリセルMCへの誤書き込みを防ぐことができる。   On the other hand, in the memory device 1 according to the present embodiment, the interlayer insulating film 15M is provided between the selection gate SGD and the dummy word line WLD0. The interlayer insulating film 15M is formed thicker in the Z direction than the interlayer insulating film 15 provided between the word lines WL. For this reason, the parasitic capacitance Cp between the selection gate SGD and the dummy word line WLD0 is reduced, and coupling is suppressed. Thereby, erroneous writing to the memory cell MC can be prevented.

次に、図6(a)〜図9(b)を参照して、実施形態に係る記憶装置1の製造方法を説明する。図6(a)〜図9(b)は、記憶装置1の製造過程を示す模式断面図である。   Next, with reference to FIGS. 6A to 9B, a method for manufacturing the storage device 1 according to the embodiment will be described. FIG. 6A to FIG. 9B are schematic cross-sectional views showing the manufacturing process of the storage device 1.

図6(a)に示すように、導電層CLの上に層間絶縁膜13、15、17、犠牲膜23を積層する。犠牲膜23は、層間絶縁膜13、15、17のうちのZ方向において隣接する2つの層間絶縁膜の間にそれぞれ設けられる。層間絶縁膜13は、導電層CLと、複数の犠牲膜23のうちの最下層に位置する犠牲膜23と、の間に設けられる。層間絶縁膜17は、複数の犠牲膜23のうちの最上層に位置する犠牲膜23の上に設けられる。
層間絶縁膜13、15および17は、例えば、シリコン酸化膜である。犠牲膜23は、例えば、シリコン窒化膜である。
As shown in FIG. 6A, interlayer insulating films 13, 15, 17 and a sacrificial film 23 are stacked on the conductive layer CL. The sacrificial film 23 is provided between two interlayer insulating films adjacent to each other in the Z direction among the interlayer insulating films 13, 15, and 17. The interlayer insulating film 13 is provided between the conductive layer CL and the sacrificial film 23 located at the lowest layer among the plurality of sacrificial films 23. The interlayer insulating film 17 is provided on the sacrificial film 23 positioned at the uppermost layer among the plurality of sacrificial films 23.
The interlayer insulating films 13, 15 and 17 are, for example, silicon oxide films. The sacrificial film 23 is, for example, a silicon nitride film.

例えば、層間絶縁膜15は、層間絶縁膜15Mを含む。層間絶縁膜15Mは、Z方向の厚さTが他の層間絶縁膜15のZ方向の厚さTよりも厚くなるように形成される。厚さTは、例えば、厚さTの1.5〜3.0倍である。 For example, the interlayer insulating film 15 includes an interlayer insulating film 15M. Interlayer insulating film 15M, the thickness T 1 of the Z direction is formed to be thicker than the Z direction thickness T 2 of the other interlayer insulating film 15. The thickness T 1 is, for example, 1.5 to 3.0 times the thickness T 2.

図6(b)に示すように、層間絶縁膜17の上面から導電層CLに至る深さを有するメモリホールMHを形成する。メモリホールMHは、例えば、層間絶縁膜17の上面において、円形、楕円形もしくは多角形の開口を有するように形成される。   As shown in FIG. 6B, a memory hole MH having a depth from the upper surface of the interlayer insulating film 17 to the conductive layer CL is formed. For example, the memory hole MH is formed to have a circular, elliptical, or polygonal opening on the upper surface of the interlayer insulating film 17.

続いて、メモリホールMHの底部に半導体層SCを形成する。例えば、導電層CLは、シリコン層であり、半導体層SCは、例えば、CVD(Chemical Vapor Deposition)を用いてポリシリコン層であり、メモリホールMHの側壁に露出された層間絶縁膜13、15、17および犠牲膜23の上には堆積されず、導電層CL上に選択的に堆積されるように形成される。また、半導体層SCは、例えば、最下層の犠牲膜23と、その上に位置する犠牲膜23の間のレベルに上面TSSが位置するように形成される。   Subsequently, the semiconductor layer SC is formed at the bottom of the memory hole MH. For example, the conductive layer CL is a silicon layer, the semiconductor layer SC is a polysilicon layer using, for example, CVD (Chemical Vapor Deposition), and the interlayer insulating films 13, 15 exposed on the sidewalls of the memory hole MH, 17 is not deposited on the sacrificial film 23 and the sacrificial film 23, but is selectively deposited on the conductive layer CL. Further, the semiconductor layer SC is formed, for example, so that the upper surface TSS is located at a level between the lowermost sacrificial film 23 and the sacrificial film 23 located thereon.

図7(a)に示すように、メモリホールMHの内部にメモリ膜MFと半導体膜SF1を形成する。メモリ膜MFは、例えば、図2に示す積層構造を有する。メモリ膜MFは、メモリホールMHの底面において、半導体層SCの上面に接するように形成される。半導体膜SF1は、例えば、アモルファスシリコン膜である。メモリ膜MFおよび半導体膜SF1は、メモリホールMH内にスペースを残す厚さに形成される。   As shown in FIG. 7A, the memory film MF and the semiconductor film SF1 are formed inside the memory hole MH. The memory film MF has, for example, a stacked structure shown in FIG. The memory film MF is formed in contact with the upper surface of the semiconductor layer SC at the bottom surface of the memory hole MH. The semiconductor film SF1 is, for example, an amorphous silicon film. The memory film MF and the semiconductor film SF1 are formed to a thickness that leaves a space in the memory hole MH.

図7(b)に示すように、メモリホールMHの内面を覆う半導体膜SF2を形成する。具体的には、メモリホールMHの底面上に積層された半導体膜SF1の一部およびメモリ膜MFの一部を、例えば、異方性RIE(Reactive Ion Etching)により選択的に除去する。この過程において、半導体膜SF1は、メモリホールMHの内壁上に残されるメモリ膜MFを保護する。   As shown in FIG. 7B, a semiconductor film SF2 that covers the inner surface of the memory hole MH is formed. Specifically, a part of the semiconductor film SF1 and a part of the memory film MF stacked on the bottom surface of the memory hole MH are selectively removed by, for example, anisotropic RIE (Reactive Ion Etching). In this process, the semiconductor film SF1 protects the memory film MF remaining on the inner wall of the memory hole MH.

続いて、メモリホールMHの内面を覆う半導体膜SF2を形成する。半導体膜SF2は、例えば、アモルファスシリコン膜であり、メモリホールMHの内部にスペースを残す厚さに形成される。さらに、半導体膜SF1およびSF2を熱処理により結晶化させ、半導体膜SFを形成する。半導体膜SFは、例えば、ポリシリコン膜である。   Subsequently, a semiconductor film SF2 that covers the inner surface of the memory hole MH is formed. The semiconductor film SF2 is an amorphous silicon film, for example, and is formed to a thickness that leaves a space inside the memory hole MH. Further, the semiconductor films SF1 and SF2 are crystallized by heat treatment to form the semiconductor film SF. The semiconductor film SF is, for example, a polysilicon film.

図8(a)に示すように、メモリホールMHの内部に絶縁体を埋め込み、絶縁性コアICを形成する。絶縁性コアICは、例えば、CVDにより形成される酸化シリコンである。続いて、スリットSTを形成し、層間絶縁膜13、15、17および犠牲膜23を分断する。スリットSTは、例えば、層間絶縁膜17の上面から導電層CLに至る深さを有し、Y方向に延在する。   As shown in FIG. 8A, an insulator is embedded in the memory hole MH to form an insulating core IC. The insulating core IC is, for example, silicon oxide formed by CVD. Subsequently, a slit ST is formed, and the interlayer insulating films 13, 15, 17 and the sacrificial film 23 are divided. The slit ST has, for example, a depth from the upper surface of the interlayer insulating film 17 to the conductive layer CL, and extends in the Y direction.

図8(b)に示すように、スリットSTを介して犠牲膜23を選択的に除去する。犠牲膜23は、例えば、ウェットエッチングにより、層間絶縁膜13、15および17を残して除去される。この際、メモリホールMHの内部に形成されたメモリ膜MF、半導体膜SFおよび絶縁性コアICは、層間絶縁膜13、15および17を支持し、犠牲膜23を除去した後のスペース23Sを保持する。   As shown in FIG. 8B, the sacrificial film 23 is selectively removed through the slits ST. The sacrificial film 23 is removed, for example, by wet etching, leaving the interlayer insulating films 13, 15 and 17. At this time, the memory film MF, the semiconductor film SF, and the insulating core IC formed inside the memory hole MH support the interlayer insulating films 13, 15 and 17, and hold the space 23S after the sacrifice film 23 is removed. To do.

図9(a)に示すように、スリットSTおよびスペース23Sを介して半導体層SCの表面に絶縁膜25を形成する。絶縁膜25は、例えば、半導体層SCを熱酸化することにより形成されるシリコン酸化膜である。   As shown in FIG. 9A, an insulating film 25 is formed on the surface of the semiconductor layer SC through the slit ST and the space 23S. The insulating film 25 is, for example, a silicon oxide film formed by thermally oxidizing the semiconductor layer SC.

続いて、スペース23Sの内部にバリアメタル層BMLとコアメタル層MLCとを形成する。バリアメタル層BMLは、例えば、窒化チタニウム(TiN)を含む。また、コアメタル層MLCは、例えば、タングステン(W)を含む。バリアメタル層BMLおよびコアメタル層MLCは、例えば、CVDによりスリットSTを介して堆積される。   Subsequently, a barrier metal layer BML and a core metal layer MLC are formed in the space 23S. The barrier metal layer BML includes, for example, titanium nitride (TiN). The core metal layer MLC includes, for example, tungsten (W). The barrier metal layer BML and the core metal layer MLC are deposited through the slits ST by, for example, CVD.

図9(b)に示すように、接続導体LIおよび絶縁膜27をスリットSTの内部に形成する。具体的には、スリットSTの内面を覆うバリアメタル層BMLおよびコアメタル層MLCを、例えば、等方性のドライエッチングを用いて除去し、その後、スリットSTの内面を覆う絶縁膜27を形成する。さらに、スリットSTを介して導電層CLにN形不純物をイオン注入し、コンタクト領域LCRを形成する。続いて、スリットSTの底面を覆う絶縁膜27の一部を選択的に除去し、その後、スリットSTの内面を覆うバリアメタル層BMLと、スリットSTの内部を埋め込んだコアメタル層MLCと、を形成する。これにより、接続導体LIをスリットSTの内部に形成することができる。   As shown in FIG. 9B, the connection conductor LI and the insulating film 27 are formed inside the slit ST. Specifically, the barrier metal layer BML and the core metal layer MLC covering the inner surface of the slit ST are removed using, for example, isotropic dry etching, and then the insulating film 27 covering the inner surface of the slit ST is formed. Further, N-type impurities are ion-implanted into the conductive layer CL through the slits ST to form contact regions LCR. Subsequently, a part of the insulating film 27 covering the bottom surface of the slit ST is selectively removed, and thereafter, a barrier metal layer BML covering the inner surface of the slit ST and a core metal layer MLC filling the inside of the slit ST are formed. To do. Thereby, the connection conductor LI can be formed inside the slit ST.

続いて、層間絶縁膜17の上に層間絶縁膜19、21、接続プラグCH、V1およびビット線BLを形成し、メモリセルアレイMCAを完成させる。   Subsequently, interlayer insulating films 19 and 21, connection plugs CH and V1, and bit lines BL are formed on the interlayer insulating film 17, thereby completing the memory cell array MCA.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1、2…記憶装置、 13、15、15M、17、19、21…層間絶縁膜、 23…犠牲膜、 23S…スペース、 25、27…絶縁膜、 BL…ビット線、 CH…接続プラグ、 CL…導電層、 Cp…寄生容量、 NS…近端、 FS…遠端、 GD1、WD1、WD2…駆動回路、 IC…絶縁性コア、 LCR…コンタクト領域、 LI…接続導体、 MC…メモリセル、 MCA…メモリセルアレイ、 MF…メモリ膜、 FL1…ブロック絶縁膜、 FL2…電荷保持膜、 FL3…トンネル絶縁膜、 MH…メモリホール、 BML…バリアメタル層、 MLC…コアメタル層、 SA…センスアンプ、 SC…半導体層、 SF、SF1、SF2…半導体膜、 SGD、SGDA、SGDB、SGS…選択ゲート、 SHL…分離溝、 SL…ソース線、 SP…半導体ピラー、 ST…スリット、 STD、STS…選択トランジスタ、 TSS…上面、 WL…ワード線、 WLD、WLD0、WLD1、WLS…ダミーワード線   DESCRIPTION OF SYMBOLS 1, 2 ... Memory | storage device 13, 15, 15M, 17, 19, 21 ... Interlayer insulation film, 23 ... Sacrificial film, 23S ... Space, 25, 27 ... Insulation film, BL ... Bit line, CH ... Connection plug, CL ... conductive layer, Cp ... parasitic capacitance, NS ... near end, FS ... far end, GD1, WD1, WD2 ... drive circuit, IC ... insulating core, LCR ... contact region, LI ... connection conductor, MC ... memory cell, MCA ... memory cell array, MF ... memory film, FL1 ... block insulating film, FL2 ... charge retention film, FL3 ... tunnel insulating film, MH ... memory hole, BML ... barrier metal layer, MLC ... core metal layer, SA ... sense amplifier, SC ... Semiconductor layer, SF, SF1, SF2 ... semiconductor film, SGD, SGDA, SGDB, SGS ... select gate, SHL ... isolation trench, S L ... Source line, SP ... Semiconductor pillar, ST ... Slit, STD, STS ... Selection transistor, TSS ... Top surface, WL ... Word line, WLD, WLD0, WLD1, WLS ... Dummy word line

Claims (5)

第1方向に積層された複数のワード線と、
前記複数のワード線のうちの前記第1方向において隣接するワード線間に設けられた第1絶縁膜と、
前記第1方向において複数のワード線に並べて配置された選択ゲートと、
前記複数のワード線と前記選択ゲートの間に設けられた第1中間電極と、
前記第1中間電極と前記選択ゲートの間に設けられた第2絶縁膜と、
前記複数のワード線、前記第1絶縁膜、前記第1中間電極、前記第2絶縁膜および前記選択ゲートを貫いて前記第1方向に延びる半導体ピラーと、
前記複数のワード線のそれぞれと、前記半導体ピラーと、の間に位置する電荷保持膜と、
を備え、
前記第2絶縁膜は、前記第1絶縁膜の前記第1方向の第1膜厚よりも厚い前記第1方向の第2膜厚を有する記憶装置。
A plurality of word lines stacked in a first direction;
A first insulating film provided between adjacent word lines in the first direction of the plurality of word lines;
Selection gates arranged side by side on a plurality of word lines in the first direction;
A first intermediate electrode provided between the plurality of word lines and the selection gate;
A second insulating film provided between the first intermediate electrode and the selection gate;
A semiconductor pillar extending in the first direction through the plurality of word lines, the first insulating film, the first intermediate electrode, the second insulating film, and the select gate;
A charge retention film positioned between each of the plurality of word lines and the semiconductor pillar;
With
The storage device, wherein the second insulating film has a second film thickness in the first direction that is thicker than a first film thickness in the first direction of the first insulating film.
前記複数のワード線のそれぞれにバイアスを供給する第1駆動回路と、
前記中間電極にバイアスを供給する第2駆動回路と、
をさらに備え、
前記第1駆動回路は、前記第2駆動回路から供給される第1電位よりも高い第2電位を供給する請求項1記載の記憶装置。
A first drive circuit for supplying a bias to each of the plurality of word lines;
A second drive circuit for supplying a bias to the intermediate electrode;
Further comprising
The storage device according to claim 1, wherein the first drive circuit supplies a second potential that is higher than the first potential supplied from the second drive circuit.
前記第1駆動回路は、前記複数のワード線のうちの1つに前記2電位を供給することにより、前記半導体ピラーから前記電荷保持膜に電荷を注入する請求項2記載の記憶装置。   3. The memory device according to claim 2, wherein the first drive circuit injects charges from the semiconductor pillar into the charge holding film by supplying the two potentials to one of the plurality of word lines. 前記第1中間電極と前記複数のワード線との間に設けられた第2中間電極をさらに備え、
前記第2駆動回路は、前記第1中間電極および前記第2中間電極に共通の電位を供給する請求項2記載の記憶装置。
A second intermediate electrode provided between the first intermediate electrode and the plurality of word lines;
The storage device according to claim 2, wherein the second drive circuit supplies a common potential to the first intermediate electrode and the second intermediate electrode.
第1方向に積層された複数の第1電極と、
前記複数の第1電極のうちの前記第1方向において隣接する第1電極間に設けられた第1絶縁膜と、
前記第1方向において複数の第1電極に並べて配置された第2電極と、
前記複数の第1電極と前記第2電極との間に設けられた第3電極と、
前記第3電極と前記第2電極の間に設けられた第2絶縁膜と、
前記複数の第1電極と前記第3電極との間に設けられた第4電極と、
前記複数の第1電極、前記第1絶縁膜、前記第4電極、前記3電極、前記第2絶縁膜および前記第2電極を貫いて前記第1方向に延びる半導体ピラーと、
前記複数の第1電極のそれぞれと、前記半導体ピラーと、の間に位置する電荷保持膜と、
前記複数の第1電極のそれぞれに電位を供給する第1駆動回路と、
前記第3電極および前記第4電極に共通の電位を供給する第2駆動回路と、
を備え、
前記第2絶縁膜は、前記第1絶縁膜の前記第1方向の第1膜厚よりも厚い前記第1方向の第2膜厚を有する記憶装置。
A plurality of first electrodes stacked in a first direction;
A first insulating film provided between adjacent first electrodes in the first direction of the plurality of first electrodes;
A second electrode arranged side by side with a plurality of first electrodes in the first direction;
A third electrode provided between the plurality of first electrodes and the second electrode;
A second insulating film provided between the third electrode and the second electrode;
A fourth electrode provided between the plurality of first electrodes and the third electrode;
A semiconductor pillar extending in the first direction through the plurality of first electrodes, the first insulating film, the fourth electrode, the three electrodes, the second insulating film, and the second electrode;
A charge retention film positioned between each of the plurality of first electrodes and the semiconductor pillar;
A first drive circuit for supplying a potential to each of the plurality of first electrodes;
A second drive circuit for supplying a common potential to the third electrode and the fourth electrode;
With
The storage device, wherein the second insulating film has a second film thickness in the first direction that is thicker than a first film thickness in the first direction of the first insulating film.
JP2018045645A 2018-03-13 2018-03-13 Memory device Pending JP2019161009A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018045645A JP2019161009A (en) 2018-03-13 2018-03-13 Memory device
US16/109,365 US10950617B2 (en) 2018-03-13 2018-08-22 Memory device with multiple layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045645A JP2019161009A (en) 2018-03-13 2018-03-13 Memory device

Publications (1)

Publication Number Publication Date
JP2019161009A true JP2019161009A (en) 2019-09-19

Family

ID=67903653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045645A Pending JP2019161009A (en) 2018-03-13 2018-03-13 Memory device

Country Status (2)

Country Link
US (1) US10950617B2 (en)
JP (1) JP2019161009A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021047939A (en) * 2019-09-17 2021-03-25 キオクシア株式会社 Semiconductor storage device
KR20220053172A (en) * 2020-10-22 2022-04-29 삼성전자주식회사 Variable resistance memory devices
KR20220114259A (en) * 2021-02-08 2022-08-17 에스케이하이닉스 주식회사 Semiconductor Device Having Dummy Lines Electrically Connected with Each Other

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059481A (en) * 2004-08-23 2006-03-02 Renesas Technology Corp Semiconductor storage device
US9496038B1 (en) * 2015-06-30 2016-11-15 Samsung Electronics Co., Ltd. Three-dimensional flash memory device including dummy word line
US20170103999A1 (en) * 2015-10-13 2017-04-13 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5016832B2 (en) 2006-03-27 2012-09-05 株式会社東芝 Nonvolatile semiconductor memory device and manufacturing method thereof
KR100777348B1 (en) * 2006-07-11 2007-11-20 삼성전자주식회사 Cell array structure of non-volatile memory device and method of forming the same
JP5376789B2 (en) * 2007-10-03 2013-12-25 株式会社東芝 Nonvolatile semiconductor memory device and control method of nonvolatile semiconductor memory device
JP5491982B2 (en) * 2010-06-21 2014-05-14 株式会社東芝 Nonvolatile semiconductor memory device and manufacturing method thereof
JP5349423B2 (en) * 2010-08-20 2013-11-20 株式会社東芝 Nonvolatile semiconductor memory device and manufacturing method thereof
JP2012069187A (en) * 2010-09-22 2012-04-05 Toshiba Corp Nonvolatile semiconductor memory
KR102415401B1 (en) * 2015-05-21 2022-07-01 삼성전자주식회사 3-dimsional semiconductor memory device and operation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059481A (en) * 2004-08-23 2006-03-02 Renesas Technology Corp Semiconductor storage device
US9496038B1 (en) * 2015-06-30 2016-11-15 Samsung Electronics Co., Ltd. Three-dimensional flash memory device including dummy word line
US20170103999A1 (en) * 2015-10-13 2017-04-13 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory device

Also Published As

Publication number Publication date
US10950617B2 (en) 2021-03-16
US20190287988A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
TWI819090B (en) semiconductor memory device
JP6581012B2 (en) Semiconductor memory device and manufacturing method thereof
JP6495838B2 (en) Semiconductor memory device and manufacturing method thereof
US20190319038A1 (en) Semiconductor devices
CN110943088B (en) Semiconductor memory device and method for manufacturing the same
JP4908238B2 (en) Nonvolatile semiconductor memory device
CN110416220B (en) Semiconductor memory device with a plurality of memory cells
US8687425B2 (en) Nonvolatile memory device, method for operating the same, and method for fabricating the same
CN110875326B (en) Semiconductor memory device with a memory cell having a memory cell with a memory cell having a memory cell
KR20130005430A (en) Non-volatile memory device and method of manufacturing the same
CN109473137B (en) Control method of storage device
JP2020047848A (en) Semiconductor memory
JP2019161009A (en) Memory device
JP2020047850A (en) Semiconductor storage
KR20140086599A (en) Nonvolatile memory device
CN110838319B (en) Semiconductor memory device with a memory cell having a memory cell with a memory cell having a memory cell
JP5801341B2 (en) Semiconductor memory
JP2020047786A (en) Semiconductor storage
TWI714211B (en) Semiconductor memory device
TW202125784A (en) Semiconductor memory device
CN112447747A (en) Semiconductor memory device with a plurality of memory cells
US11641744B2 (en) Method for fabricating memory device
TWI776377B (en) Semiconductor memory device and method of manufacturing the same
KR102597549B1 (en) Read operation method of 3d flash memory
JP2024044009A (en) semiconductor storage device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211210