JP2019105170A - Diagnostic system and exhaust emission control device for internal combustion engine - Google Patents

Diagnostic system and exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2019105170A
JP2019105170A JP2017236409A JP2017236409A JP2019105170A JP 2019105170 A JP2019105170 A JP 2019105170A JP 2017236409 A JP2017236409 A JP 2017236409A JP 2017236409 A JP2017236409 A JP 2017236409A JP 2019105170 A JP2019105170 A JP 2019105170A
Authority
JP
Japan
Prior art keywords
ammonia concentration
downstream
catalyst
value
exhaust passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017236409A
Other languages
Japanese (ja)
Other versions
JP7002312B2 (en
Inventor
尚裕 久柴
Naohiro Hisashiba
尚裕 久柴
寿子 岡崎
Toshiko Okazaki
寿子 岡崎
康彰 赤羽
Yasuaki Akabane
康彰 赤羽
隆裕 田辺
Takahiro Tanabe
隆裕 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2017236409A priority Critical patent/JP7002312B2/en
Priority to DE102018215214.4A priority patent/DE102018215214A1/en
Publication of JP2019105170A publication Critical patent/JP2019105170A/en
Application granted granted Critical
Publication of JP7002312B2 publication Critical patent/JP7002312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

To provide a diagnostic system capable of improving detection accuracy of abnormalities such as missing and deterioration of an NOselective reduction catalyst provided in an exhaust passage downstream of an NOocclusion catalyst, and an exhaust emission control device for an internal combustion engine.SOLUTION: A diagnostic system for diagnosing an abnormality of an NOselective reduction catalyst in an exhaust emission control device having an NOocclusion catalyst and the NOselective reduction catalyst provided in an exhaust passage of an internal combustion engine from the upstream side in this order includes: a downstream side ammonia concentration estimation section for calculating a downstream side ammonia concentration estimation value that is an estimation value of an ammonia concentration in the exhaust passage downstream of the NOselective reduction catalyst; a downstream side ammonia concentration detection section for acquiring a downstream side ammonia concentration detection value that is a detection value of an ammonia concentration in the exhaust passage downstream of the NOselective reduction catalyst on the basis of a sensor signal of an ammonia concentration sensor provided in the exhaust passage downstream of the NOselective reduction catalyst; and a determination section for determining an abnormality of the NOselective reduction catalyst on the basis of the downstream side ammonia concentration estimation value and the downstream side ammonia concentration detection value.SELECTED DRAWING: Figure 3

Description

本発明は、診断装置及び内燃機関の排気浄化装置に関する。   The present invention relates to a diagnostic device and an exhaust gas purification device for an internal combustion engine.

ディーゼルエンジン等の内燃機関の排気中に含まれるNOXを還元して排気を浄化する部材として、NOX吸蔵触媒及びNOX選択還元触媒が知られている。NOX吸蔵触媒は、内燃機関で燃焼される混合気が理論空燃比(ストイキ)に対して燃料希薄(リーン)状態のときに排気中のNOXを吸蔵し、混合気がストイキ状態又は燃料過濃(リッチ)状態のときにNOXを放出して、排気中の未燃炭化水素(HC:Hydrocarbon)と反応させることにより、NOXをN2に還元する。NOX選択還元触媒は、NOXの還元成分としてのアンモニア(NH3)を吸着する機能を有し、流入する排気中のNOXをNH3と反応させることにより、NOXをN2に還元する。 NO x storage catalysts and NO x selective reduction catalysts are known as members for reducing NO x contained in exhaust gases of internal combustion engines such as diesel engines to purify the exhaust gases. The NO X storage catalyst occludes NO X in the exhaust gas when the air-fuel mixture combusted in the internal combustion engine is fuel-lean (lean) state with respect to the stoichiometric air-fuel ratio (stoichiometric) air-fuel mixture over stoichiometric state or fuel concentrated by releasing NO X when (rich) state, unburnt hydrocarbons in the exhaust gas (HC:: hydrocarbon) by reaction with, for reducing the NO X to N 2. The NO x selective reduction catalyst has a function of adsorbing ammonia (NH 3 ) as a reducing component of NO x , and reduces NO x to N 2 by reacting NO x in the inflowing exhaust with NH 3. Do.

例えば、特許文献1には、内燃機関の排気を浄化する排気浄化装置の一態様として、NOX吸蔵触媒及びNOX選択還元触媒をともに備えた排気浄化装置が開示されている。具体的に、特許文献1に開示された排気浄化装置では、NOX吸蔵触媒とNOX選択還元触媒とがこの順に排気通路の上流側から順に配置されている。かかる排気浄化装置においては、NOX吸蔵触媒でNOXとHCとの還元反応によりNH3が生成される場合に、NOX選択還元触媒が当該NH3を吸着する。そして、NOX吸蔵触媒からNOXが流出する場合に、NOX選択還元触媒はNH3を用いてNOXを還元する。 For example, Patent Document 1, as one embodiment of the exhaust gas purification apparatus for purifying an exhaust gas of the internal combustion engine, an exhaust gas purification apparatus having both the NO X storage catalyst and the NO X selective reducing catalyst. Specifically, in the exhaust purification system disclosed in Patent Document 1, the NO X storage catalyst and the NO X selective reduction catalyst are arranged in this order from the upstream side of the exhaust passage. In such an exhaust gas purification apparatus, when NH 3 is generated by the reduction reaction between NO x and HC in the NO x storage catalyst, the NO x selective reduction catalyst adsorbs the NH 3 . When the NO X flows out from the NO X storing catalyst, NO X selective reduction catalyst for reducing NO X using NH 3.

特表2006−522257号公報Japanese Patent Application Publication No. 2006-522257

ここで、特許文献1に開示された排気浄化装置では、NOX選択還元触媒の劣化が進んだ場合やNOX選択還元触媒が欠落(未装着)している場合、大気中へのNOXやNH3の放出量が増大するおそれがある。このため、NOX選択還元触媒の欠落又は劣化を検出可能な診断機能があれば有意義である。 Here, in the exhaust purification apparatus disclosed in Patent Document 1, when the NO X selective reducing catalyst or when the NO X selective reducing catalyst advanced deterioration of missing (not installed), Ya NO X into the atmosphere There is a possibility that the release amount of NH 3 may increase. Therefore, it is meaningful if detectable diagnostics missing or deterioration of the NO X selective reducing catalyst.

例えば、NOX選択還元触媒が熱容量を持つことを利用して、NOX選択還元触媒よりも下流側に温度センサを設け、NOX選択還元触媒の熱容量を考慮して作成した温度モデルと温度センサによる検出温度とを比較することにより、NOX選択還元触媒の欠落を判定することが考えられる。 For example, the NO X selective reducing catalyst by utilizing the fact that with a heat capacity, the temperature sensor provided on the downstream side of the NO X selective reducing catalyst, the NO X selective reducing catalyst temperature model and a temperature sensor capacity created in consideration of the by comparing the temperature detected by, it is conceivable to determine the loss of the NO X selective reducing catalyst.

しかしながら、温度モデルと検出温度とを比較する方法の場合、診断結果の精度を高めるには、排気の温度変化が比較的少ない運転状態で診断を実行する必要があり、診断を実行可能な運転状態が限定的となる。また、NOX選択還元触媒が劣化しても熱容量の変化は少ないことから、温度モデルと検出温度とを比較する方法の場合、NOX選択還元触媒の欠落を検出することができる一方、NOX選択還元触媒の劣化を検出することは困難である。 However, in the case of the method of comparing the temperature model and the detected temperature, in order to improve the accuracy of the diagnosis result, it is necessary to execute the diagnosis in an operating state in which the temperature change of the exhaust gas is relatively small. Is limited. Further, NO changes in X selective reduction catalyst also deteriorates heat capacity since less, if the method of comparing the temperature model and the detected temperature, while it is possible to detect the missing of the NO X selective reduction catalyst, NO X It is difficult to detect the degradation of the selective reduction catalyst.

本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、NOX吸蔵触媒よりも下流側の排気通路に備えられたNOX選択還元触媒の欠落や劣化等の異常の検出精度を向上可能な診断装置及び内燃機関の排気浄化装置を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to eliminate or deteriorate the NO X selective reduction catalyst provided in the exhaust passage downstream of the NO X storage catalyst. An object of the present invention is to provide a diagnostic device and an exhaust gas purification device for an internal combustion engine capable of improving the detection accuracy of an abnormality.

上記課題を解決するために、本発明のある観点によれば、内燃機関の排気通路に上流側から順にNOX吸蔵触媒とNOX選択還元触媒とを備えた排気浄化装置におけるNOX選択還元触媒の異常を診断する診断装置において、NOX選択還元触媒よりも下流側の排気通路内のアンモニア濃度の推定値である下流側アンモニア濃度推定値を算出する下流側アンモニア濃度推定部と、NOX選択還元触媒よりも下流側の排気通路に備えられたアンモニア濃度センサのセンサ信号に基づいてNOX選択還元触媒よりも下流側の排気通路内のアンモニア濃度の検出値である下流側アンモニア濃度検出値を取得する下流側アンモニア濃度検出部と、下流側アンモニア濃度推定値及び下流側アンモニア濃度検出値に基づいてNOX選択還元触媒の異常を判定する判定部と、を備える、診断装置が提供される。 In order to solve the above problems, according to an aspect of the present invention, the NO X selective reducing catalyst in the exhaust purification device provided in this order from the upstream side in an exhaust passage of an internal combustion engine and the NO X storage catalyst and the NO X selective reducing catalyst in the diagnostic apparatus for diagnosing an abnormality, and the downstream ammonia concentration estimating unit that calculates a downstream ammonia concentration estimated value is an estimated value of the ammonia concentration in the exhaust passage downstream of the NO X selective reducing catalyst, the NO X selective A downstream ammonia concentration detection value, which is a detection value of the ammonia concentration in the exhaust passage downstream of the NO X selective reduction catalyst, based on the sensor signal of the ammonia concentration sensor provided in the exhaust passage downstream of the reduction catalyst be judged and the downstream ammonia concentration detection unit for acquiring, the abnormality of the NO X selective reducing catalyst on the basis of the downstream ammonia concentration estimated value and a downstream ammonia concentration detection value Comprising a determining unit, a diagnostic device is provided.

また、上記課題を解決するために、本発明の別の観点によれば、内燃機関の排気通路に備えられたNOX吸蔵触媒と、NOX吸蔵触媒よりも下流側の排気通路に備えられたNOX選択還元触媒と、NOX選択還元触媒よりも下流側の排気通路に備えられたアンモニア濃度センサと、NOX選択還元触媒の異常を診断する診断装置と、を備えた内燃機関の排気浄化装置において、診断装置は、NOX選択還元触媒よりも下流側の排気通路内のアンモニア濃度の推定値である下流側アンモニア濃度推定値を算出する下流側アンモニア濃度推定部と、NOX選択還元触媒よりも下流側の排気通路に備えられたアンモニア濃度センサのセンサ信号に基づいてNOX選択還元触媒よりも下流側の排気通路内のアンモニア濃度の検出値である下流側アンモニア濃度検出値を取得する下流側アンモニア濃度検出部と、下流側アンモニア濃度推定値及び下流側アンモニア濃度検出値に基づいてNOX選択還元触媒の異常を判定する判定部と、を備える、内燃機関の排気浄化装置が提供される。 Further, in order to solve the above-mentioned problems, according to another aspect of the present invention, an NO X storage catalyst provided in an exhaust passage of an internal combustion engine and an exhaust passage downstream of the NO X storage catalyst are provided. and the NO X selective reducing catalyst, the NO X selective reducing the ammonia concentration sensor provided in an exhaust passage downstream of the catalyst, the diagnostic device and the internal combustion engine exhaust purification provided with a diagnosing abnormality of the NO X selective reducing catalyst in the device, the diagnostic device includes a downstream ammonia concentration estimating unit that calculates a downstream ammonia concentration estimated value is an estimated value of the ammonia concentration in the exhaust passage downstream of the NO X selective reducing catalyst, the NO X selective reducing catalyst The downstream ammonia concentration that is a detected value of the ammonia concentration in the exhaust passage downstream of the NO X selective reduction catalyst based on the sensor signal of the ammonia concentration sensor provided in the exhaust passage further downstream than the NOx selective reduction catalyst An internal combustion engine comprising: a downstream ammonia concentration detection unit for acquiring a degree detection value; and a determination unit for determining an abnormality of the NO X selective reduction catalyst based on the downstream ammonia concentration estimated value and the downstream ammonia concentration detection value. An exhaust purification device is provided.

以上説明したように本発明によれば、NOX吸蔵触媒よりも下流側の排気通路に備えられたNOX選択還元触媒の欠落や劣化等の異常の検出精度を向上させることができる。 As described above, according to the present invention, it is possible to improve the detection accuracy of abnormalities such as missing or deterioration of the NO X selective reduction catalyst provided in the exhaust passage downstream of the NO X storage catalyst.

本実施形態に係る排気浄化装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the exhaust gas purification device which concerns on this embodiment. 診断装置(制御装置)の構成例を示すブロック図である。It is a block diagram showing an example of composition of a diagnostic device (control device). 下流側アンモニア濃度検出値の積算値の変化を示す説明図である。It is an explanatory view showing change of an integrated value of downstream ammonia concentration detection value. 診断装置(制御装置)の動作例を示すフローチャートである。It is a flowchart which shows the operation example of a diagnostic apparatus (control apparatus).

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. In the present specification and the drawings, components having substantially the same functional configuration will be assigned the same reference numerals and redundant description will be omitted.

<1.内燃機関の排気浄化装置の全体構成>
本実施形態に係る内燃機関の排気浄化装置の構成例について説明する。図1は、排気浄化装置10の構成例を示す模式図である。
<1. Overall Configuration of Exhaust Purification System for Internal Combustion Engine>
A configuration example of an exhaust gas purification apparatus for an internal combustion engine according to the present embodiment will be described. FIG. 1 is a schematic view showing an example of the configuration of an exhaust purification system 10.

排気浄化装置10は、ディーゼルエンジン等に代表される内燃機関5の排気系に備えられる。本実施形態において、内燃機関5がディーゼルエンジンである例を説明する。内燃機関5は、各気筒に供給される燃料を噴射する燃料噴射システムを備える。燃料噴射システムは、例えば高圧の燃料を保持するコモンレールと、コモンレールに接続された複数の燃料噴射弁とを含むコモンレールシステムであってよい。ただし、内燃機関5は上記の構成例に限定されない。   The exhaust purification device 10 is provided in an exhaust system of an internal combustion engine 5 represented by a diesel engine or the like. In the present embodiment, an example in which the internal combustion engine 5 is a diesel engine will be described. The internal combustion engine 5 includes a fuel injection system that injects the fuel supplied to each cylinder. The fuel injection system may be, for example, a common rail system including a common rail holding high-pressure fuel and a plurality of fuel injection valves connected to the common rail. However, the internal combustion engine 5 is not limited to the above configuration example.

内燃機関5の運転状態は、制御装置100により制御される。内燃機関5では、燃焼される混合気の空燃比が、運転条件に応じてストイキ状態、燃料リーン状態又は燃料リッチ状態に切り換えられる。内燃機関5の排気には、NOX、粒子状物質(PM)、一酸化炭素(CO)又はHC等が含まれる。 The operating state of the internal combustion engine 5 is controlled by the control device 100. In the internal combustion engine 5, the air-fuel ratio of the air-fuel mixture to be burned is switched to the stoichiometric state, the fuel lean state or the fuel rich state according to the operating condition. The exhaust gas of the internal combustion engine 5 contains NO x , particulate matter (PM), carbon monoxide (CO), HC or the like.

排気浄化装置10は、内燃機関5の排気管11に配設された酸化触媒19と、NOX吸蔵触媒15と、パティキュレートフィルタ17と、NOX選択還元触媒13と、アンモニア濃度センサ23とを備える。酸化触媒19、NOX吸蔵触媒15、パティキュレートフィルタ17及びNOX選択還元触媒13は、排気の流れの上流側からこの順に排気管11に配設されている。 The exhaust purification device 10 includes an oxidation catalyst 19 disposed in an exhaust pipe 11 of the internal combustion engine 5, an NO X storage catalyst 15, a particulate filter 17, an NO X selective reduction catalyst 13, and an ammonia concentration sensor 23. Prepare. The oxidation catalyst 19, the NO x storage catalyst 15, the particulate filter 17 and the NO x selective reduction catalyst 13 are disposed in the exhaust pipe 11 in this order from the upstream side of the flow of the exhaust.

酸化触媒19は、排気中に含まれるHC、CO又はNO等を酸化する。例えば、HC、CO又はNOは、H2O、CO2又はNO2に酸化される。パティキュレートフィルタ17は、排気中のPMを捕集するフィルタである。パティキュレートフィルタ17に捕集されたPMは、適宜の時期に燃焼させられる。例えば内燃機関5の排気中に含まれる未燃のHCを増加させて酸化触媒19で当該HCが酸化する際に生じる酸化熱により排気温度を上昇させて、パティキュレートフィルタ17に捕集されたPMを燃焼させる。なお、パティキュレートフィルタ17に捕集されたPMを燃焼させる方法は、上記の例に限られない。 The oxidation catalyst 19 oxidizes HC, CO or NO contained in the exhaust gas. For example, HC, CO or NO are oxidized to H 2 O, CO 2 or NO 2 . The particulate filter 17 is a filter that collects PM in exhaust gas. The PM collected by the particulate filter 17 is burned at an appropriate time. For example, the amount of unburned HC contained in the exhaust gas of the internal combustion engine 5 is increased, and the exhaust heat temperature is raised by the oxidation heat generated when the HC is oxidized by the oxidation catalyst 19, and PM collected in the particulate filter 17 Burn the Note that the method of burning the PM collected by the particulate filter 17 is not limited to the above example.

NOX吸蔵触媒15は、排気中のNOXをHCと反応させることにより、NOXをN2に還元する。具体的に、NOX吸蔵触媒15は、内燃機関5がリーン燃焼状態のときに排気中のNOXを吸蔵し、内燃機関5がリッチ燃焼状態のときに吸蔵していたNOXを放出し、排気中のHC及びCOによってNOXをN2へと還元する。NOX吸蔵触媒15におけるNOXの還元時においては、NH3も生成される。 The NO x storage catalyst 15 reduces NO x to N 2 by reacting NO x in the exhaust with HC. Specifically, NO X storing catalyst 15 occludes NO X in the exhaust gas when the internal combustion engine 5 is lean combustion state, releasing NO X which the internal combustion engine 5 has been occluded during the rich combustion state, The HC and CO in the exhaust reduce NO x to N 2 . At the time of reduction of NO x in the NO x storage catalyst 15, NH 3 is also generated.

NOX選択還元触媒13は、排気中のNOXをNH3と反応させることにより、NOXをN2に還元する。具体的に、NOX選択還元触媒13は、NOX吸蔵触媒15で生成されたNH3を吸着し、流入する排気中のNOXをNH3によってN2へと還元する。NOX選択還元触媒13は、触媒温度が高いほどNH3の吸着可能量が減少する特性を有する。また、NOX選択還元触媒13は、NH3吸着量が多いほどNOXの還元効率が高くなる特性を有する。 The NO X selective reduction catalyst 13 reduces NO X to N 2 by reacting NO X in the exhaust gas with NH 3 . Specifically, the NO X selective reduction catalyst 13 adsorbs NH 3 generated by the NO X storage catalyst 15, and reduces NO X in the inflowing exhaust gas to N 2 by NH 3 . The NO X selective reduction catalyst 13 has a characteristic that the adsorption amount of NH 3 decreases as the catalyst temperature increases. Further, NO X selective reduction catalyst 13 has a reduction efficiency is high characteristic enough adsorbed NH 3 amount is large NO X.

アンモニア濃度センサ23は、NOX選択還元触媒13よりも下流の排気管11に設けられ、NOX選択還元触媒13から流出する排気中のアンモニア濃度を検出する。アンモニア濃度センサ23のセンサ信号S_nh3は、制御装置100に送信される。アンモニア濃度の情報は、NOX選択還元触媒13の異常診断に用いられる。 Ammonia concentration sensor 23 is provided downstream of the exhaust pipe 11 than the NO X selective reducing catalyst 13, for detecting the concentration of ammonia in the exhaust gas flowing out of the NO X selective reducing catalyst 13. The sensor signal S_nh 3 of the ammonia concentration sensor 23 is transmitted to the control device 100. The information on the ammonia concentration is used to diagnose an abnormality of the NO X selective reduction catalyst 13.

この他、排気管11の適宜の位置に、排気温度を検出する一つ又は複数の排気温度センサが備えられていてもよい。排気温度センサのセンサ信号S_tgは制御装置100に送信される。排気温度センサが設けられた位置での排気温度の情報は、NOX吸蔵触媒15又はNOX選択還元触媒13の温度の推定に用いることができる。 Besides, one or more exhaust temperature sensors for detecting the exhaust temperature may be provided at appropriate positions of the exhaust pipe 11. The sensor signal S_tg of the exhaust temperature sensor is transmitted to the control device 100. The information on the exhaust temperature at the position where the exhaust temperature sensor is provided can be used to estimate the temperature of the NO X storage catalyst 15 or the NO X selective reduction catalyst 13.

<2.診断装置(制御装置)>
次に、本実施形態に係る診断装置として機能する制御装置100の構成例について説明する。図2は、制御装置100の構成例を示すブロック図である。図示した制御装置100は、内燃機関5の運転状態を制御する制御装置100である。なお、制御装置100は、1つの制御装置から構成されていてもよく、あるいは、複数の制御装置が互いに通信可能に接続されて構成されていてもよい。
<2. Diagnostic device (control device)>
Next, a configuration example of the control device 100 that functions as a diagnostic device according to the present embodiment will be described. FIG. 2 is a block diagram showing a configuration example of the control device 100. As shown in FIG. The illustrated control device 100 is a control device 100 that controls the operating state of the internal combustion engine 5. Control device 100 may be configured of one control device, or a plurality of control devices may be communicably connected to each other.

制御装置100はそれぞれCPU(Central Processing Unit)又はMPU(Micro Processing Unit)等のプロセッサと電気回路等を備えて構成され、プロセッサがコンピュータプログラムを実行することにより種々の機能が実現される装置であってよい。なお、制御装置100の一部又は全部は、例えば、マイクロコンピュータ、マイクロプロセッサユニット等で構成されていてもよく、また、ファームウェア等の更新可能なもので構成されていてもよく、また、CPU等からの指令によって実行されるプログラムモジュール等であってもよい。   The control device 100 is a device including a processor such as a central processing unit (CPU) or a micro processing unit (MPU) and an electric circuit, and the processor executes a computer program to realize various functions. You may Note that a part or all of the control device 100 may be configured by, for example, a microcomputer, a microprocessor unit, or the like, or may be configured by an updatable item such as firmware, or a CPU May be a program module or the like that is executed by a command from

制御装置100は、上流側アンモニア濃度取得部112と、下流側アンモニア濃度推定部114と、下流側アンモニア濃度検出部116と、判定部118とを備えている。これらの各部は、プロセッサによるコンピュータプログラムの実行により実現される機能であってよい。また、制御装置100は、RAM(Random Access Memory)又はROM(Read Only Memory)等の1つ又は複数の記憶素子を含む記憶部を備えている。記憶部は、プロセッサにより実行されるコンピュータプログラム、演算に用いられる制御パラメータ、プロセッサによる演算結果、及び取得したセンサ値等を記憶する。記憶部は、HDD(Hard Disk Drive)やストレージ装置等を含んでいてもよい。   The control device 100 includes an upstream ammonia concentration acquisition unit 112, a downstream ammonia concentration estimation unit 114, a downstream ammonia concentration detection unit 116, and a determination unit 118. These units may be functions implemented by execution of a computer program by a processor. In addition, the control device 100 includes a storage unit including one or more storage elements such as a random access memory (RAM) or a read only memory (ROM). The storage unit stores a computer program executed by the processor, control parameters used for computations, computation results by the processor, acquired sensor values, and the like. The storage unit may include an HDD (Hard Disk Drive), a storage device, and the like.

(上流側アンモニア濃度取得部)
上流側アンモニア濃度取得部112は、NOX吸蔵触媒15よりも下流側、かつ、NOX選択還元触媒13よりも上流側の排気通路内のアンモニア濃度の推定値(上流側アンモニア濃度推定値)NH3_us_modを算出する。NOX選択還元触媒13よりも上流側の排気に含まれるNH3は、NOX吸蔵触媒15において生成されたNH3である。NOX吸蔵触媒15では、下記反応式(1)にしたがってNH3が生成される。
3.5H2+NO2→NH3+2H2O … (1)
(Upstream ammonia concentration acquisition unit)
The upstream ammonia concentration acquisition unit 112 is an estimated value of the ammonia concentration in the exhaust passage downstream of the NO X storage catalyst 15 and upstream of the NO X selective reduction catalyst 13 (upstream ammonia concentration estimated value) NH 3 Calculate _us_mod. NH contained in the upstream side exhaust than the NO X selective reducing catalyst 13 3 is NH 3 produced in the NO X storing catalyst 15. In the NO X storage catalyst 15, NH 3 is generated according to the following reaction formula (1).
3.5 H 2 + NO 2 → NH 3 + 2 H 2 O (1)

例えば、上流側アンモニア濃度取得部112は、NOX吸蔵触媒15の温度、内燃機関5がリッチ燃焼状態に切り換えられたときのNOX吸蔵量、内燃機関5のリッチ燃焼状態でのリッチ度合(空燃比)及び内燃機関5のリッチ燃焼時間等の情報に基づいて上流側アンモニア濃度NH3_us_modを算出する。NOX吸蔵触媒15の温度は、例えば排気温度に基づいて推定することができる。内燃機関5のリッチ燃焼状態におけるNOX吸蔵量、リッチ度合、及びリッチ燃焼時間は、例えば内燃機関5の運転条件に基づいて推定することができる。 For example, the upstream ammonia concentration acquisition unit 112 determines the temperature of the NO X storage catalyst 15, the NO X storage amount when the internal combustion engine 5 is switched to the rich combustion state, the rich degree in the rich combustion state of the internal combustion engine 5 The upstream ammonia concentration NH 3 _us_mod is calculated based on the information such as the fuel ratio and the rich combustion time of the internal combustion engine 5. The temperature of the NO X storage catalyst 15 can be estimated, for example, based on the exhaust temperature. The NO X storage amount, the rich degree, and the rich combustion time in the rich combustion state of the internal combustion engine 5 can be estimated based on the operating conditions of the internal combustion engine 5, for example.

なお、NOX吸蔵触媒15よりも下流側、かつ、NOX選択還元触媒13よりも上流側の排気通路内のアンモニア濃度を検出するアンモニア濃度センサを備える場合、上流側アンモニア濃度取得部112は、当該アンモニア濃度センサのセンサ信号に基づいて上流側アンモニア濃度NH3_us_modを取得してもよい。 When the ammonia concentration sensor for detecting the ammonia concentration in the exhaust passage downstream of the NO X storage catalyst 15 and upstream of the NO X selective reduction catalyst 13 is provided, the upstream ammonia concentration acquisition unit 112 The upstream ammonia concentration NH 3 _us_mod may be acquired based on the sensor signal of the ammonia concentration sensor.

(下流側アンモニア濃度推定部)
下流側アンモニア濃度推定部114は、NOX選択還元触媒13よりも下流側の排気通路内のアンモニア濃度の推定値(下流側アンモニア濃度推定値)NH3_ds_modを算出する。NOX選択還元触媒13よりも下流側の排気に含まれるNH3は、NOX吸蔵触媒15で生成されて流出するNH3のうち、NOX選択還元触媒13に吸着されるNH3を除いたNH3である。上述のとおり、NOX選択還元触媒13におけるNH3の最大吸着量は、NOX選択還元触媒13の温度によって変化する。また、NOX選択還元触媒13に吸着されたNH3量は、NOXと反応することによって減少する。NOX選択還元触媒13では、下記反応式(2)にしたがってNOXの還元反応が生じる。
4NH3+3NO2→3.5N2+6H2O … (2)
(Downstream ammonia concentration estimation unit)
The downstream side ammonia concentration estimation unit 114 calculates an estimated value (downstream side ammonia concentration estimated value) NH 3 _ds_mod of the ammonia concentration in the exhaust passage downstream of the NO X selective reduction catalyst 13. NH 3 contained in the exhaust downstream of the NO X selective reducing catalyst 13, of the NH 3 flowing out is generated by the NO X storing catalyst 15, except for the NH 3 adsorbed in the NO X selective reducing catalyst 13 It is NH 3 . As described above, the maximum amount of adsorption of NH 3 in the NO X selective reducing catalyst 13 varies depending on the temperature of the NO X selective reducing catalyst 13. Further, the amount of NH 3 adsorbed to the NO x selective reduction catalyst 13 is reduced by reacting with NO x . In the NO X selective reduction catalyst 13, the NO X reduction reaction occurs according to the following reaction formula (2).
4NH 3 + 3NO 2 → 3.5N 2 + 6H 2 O (2)

例えば、下流側アンモニア濃度推定部114は、所定の処理サイクルごとに、上流側アンモニア濃度NH3_us_mod、NOX選択還元触媒13の温度、及びNOX選択還元触媒13に流入する排気のNOX濃度に基づいて下流側アンモニア濃度NH3_ds_modを算出する。下流側アンモニア濃度推定値NH3_ds_modは、例えば下記式(3)にしたがって求めることができる。
NH3_ds_mod={Vn_in−(Vn_str_max−Vn_str_act)−Vn_red}/Vgas
… (3)
Vn_in:NOX選択還元触媒に流入するNH3
Vn_str_max:NOX選択還元触媒におけるNH3の最大吸着量
Vn_str_act:NOX選択還元触媒における現在のNH3吸着量
Vn_red:NOX選択還元触媒に流入するNOXの還元に必要なNH3
Vgas:排気量
For example, the downstream ammonia concentration estimating unit 114, for each predetermined processing cycle, upstream the ammonia concentration NH 3 _us_mod, the temperature of the NO X selective reducing catalyst 13, and concentration of NO X exhaust gas flowing to the NO X selective reducing catalyst 13 The downstream ammonia concentration NH 3 _ds_mod is calculated based on The downstream ammonia concentration estimated value NH 3 _ds_mod can be determined, for example, according to the following equation (3).
NH 3 _ds_mod = {Vn_in-(Vn_str_max-Vn_str_act)-Vn_red} / Vgas
... (3)
Vn_in: NH 3 amount flowing into the NO X selective reducing catalyst
Vn_str_max: maximum amount of adsorption of NH 3 in the NO X selective reducing catalyst
Vn_str_act: Current adsorbed NH 3 amount in the NO X selective reducing catalyst
Vn_red: the amount of NH 3 necessary for the reduction of NO x flowing into the NO x selective reduction catalyst
Vgas: displacement

NOX選択還元触媒13に流入するNH3量Vn_inは、上流側アンモニア濃度取得部112で取得された上流側アンモニア濃度NH3_us_modに、今回の処理サイクル中の排気量Vgasを乗じることにより算出することができる。排気量Vgasは、内燃機関5の運転条件の情報を用いることができる。NOX選択還元触媒13におけるNH3の最大吸着量Vn_str_maxは、NOX選択還元触媒13の温度に応じて設定することができる。NOX選択還元触媒13の温度は、排気温度に基づいて推定することができる。NOX選択還元触媒13における現在のNH3吸着量Vn_str_actは、流入NH3量Vn_inからNOXの還元に必要なNH3量Vn_redを引いた値を、前回の処理サイクルにおけるNH3吸着量Vn_str_actに加算することで求めることができる。 The amount of NH 3 Vn_in flowing into the NO X selective reduction catalyst 13 is calculated by multiplying the upstream ammonia concentration NH 3 _us_mod acquired by the upstream ammonia concentration acquisition unit 112 by the exhaust gas amount Vgas in the current processing cycle. be able to. Information on the operating conditions of the internal combustion engine 5 can be used as the displacement Vgas. Maximum adsorption amount Vn_str_max of NH 3 in the NO X selective reducing catalyst 13 can be set according to the temperature of the NO X selective reducing catalyst 13. The temperature of the NO X selective reduction catalyst 13 can be estimated based on the exhaust gas temperature. The present NH 3 adsorption amount Vn_str_act in the NO X selective reduction catalyst 13 is a value obtained by subtracting the NH 3 amount Vn_red necessary for reduction of NO X from the inflowing NH 3 amount Vn_in to the NH 3 adsorption amount Vn_str_act in the previous processing cycle. It can be determined by adding.

(下流側アンモニア濃度検出部)
下流側アンモニア濃度検出部116は、アンモニア濃度センサ23のセンサ信号S_nh3に基づいて下流側アンモニア濃度(下流側アンモニア濃度検出値)NH3_ds_detを検出する。
(Downstream ammonia concentration detector)
The downstream ammonia concentration detection unit 116 detects the downstream ammonia concentration (downstream ammonia concentration detection value) NH 3 _ds_det based on the sensor signal S_nh 3 of the ammonia concentration sensor 23.

(判定部)
判定部118は、少なくとも下流側アンモニア濃度推定値NH3_ds_mod及び下流側アンモニア濃度検出値NH3_ds_detに基づいてNOX選択還元触媒13の異常を判定する。本実施形態では、判定部118は、上流側アンモニア濃度推定値NH3_us_mod、下流側アンモニア濃度推定値NH3_ds_mod及び下流側アンモニア濃度検出値NH3_ds_detに基づいて、NOX選択還元触媒13の欠落及び劣化を判定する。
(Judgment unit)
The determination unit 118 determines the abnormality of the NO X selective reduction catalyst 13 based on at least the downstream ammonia concentration estimated value NH 3 _ds_mod and the downstream ammonia concentration detected value NH 3 _ds_det. In the present embodiment, the determination unit 118 is configured to select the NO X selective reduction catalyst 13 based on the upstream ammonia concentration estimated value NH 3 _us_mod, the downstream ammonia concentration estimated value NH 3 _ds_mod, and the downstream ammonia concentration detected value NH 3 _ds_det. Determine lack and deterioration.

NOX選択還元触媒13に欠落や劣化等の異常がない場合、アンモニア濃度センサ23のセンサ信号S_nh3に基づいて得られる下流側アンモニア濃度検出値NH3_ds_detは、下流側アンモニア濃度推定部114で推定される下流側アンモニア濃度推定値NH3_ds_modに近似する。一方、NOX選択還元触媒13に欠落や劣化等の異常が生じている場合、NOX選択還元触媒13に流入するNH3のうち、NOX選択還元触媒13に吸着されるNH3の量は減少し、また、NOXの還元反応に用いられるNH3の量も減少する。このため、下流側アンモニア濃度検出値NH3_ds_detは、下流側アンモニア濃度推定値NH3_ds_modよりも大きい値となる。したがって、判定部118は、下流側アンモニア濃度検出値NH3_ds_detと下流側アンモニア濃度推定値NH3_ds_modとを比較することにより、NOX選択還元触媒13の異常の有無を判定することができる。 When the NO X selective reduction catalyst 13 has no abnormality such as loss or deterioration, the downstream ammonia concentration detection value NH 3 _ds_det obtained based on the sensor signal S_nh 3 of the ammonia concentration sensor 23 is determined by the downstream ammonia concentration estimation unit 114 It approximates to the estimated downstream ammonia concentration estimated value NH 3 _ds_mod. On the other hand, when an abnormality such as missing or degraded to the NO X selective reducing catalyst 13 is generated, among the NH 3 flowing into the NO X selective reducing catalyst 13, the amount of NH 3 adsorbed in the NO X selective reducing catalyst 13 It also reduces the amount of NH 3 used for the NO x reduction reaction. Therefore, the downstream ammonia concentration detection value NH 3 _ds_det is a value larger than the downstream ammonia concentration estimated value NH 3 _ds_mod. Therefore, the determination unit 118 can determine the presence or absence of an abnormality in the NO X selective reduction catalyst 13 by comparing the downstream ammonia concentration detection value NH 3 _ds_det with the downstream ammonia concentration estimated value NH 3 _ds_mod.

さらに、NOX選択還元触媒13が欠落している場合、NOX選択還元触媒13に吸着されるNH3の量、及び、NOXとの還元反応に用いられるNH3の量はいずれもほぼゼロとなる。このため、下流側アンモニア濃度検出値NH3_ds_detは、上流側アンモニア濃度取得部112で推定される上流側アンモニア濃度推定値NH3_us_modに近似する。一方、NOX選択還元触媒13が劣化している場合、NOX選択還元触媒13に流入するNH3の一部は、NOX選択還元触媒13に吸着され、又は、NOXの還元反応に用いられる。このため、下流側アンモニア濃度検出値NH3_ds_detは、上流側アンモニア濃度推定値NH3_us_modよりも小さい値となる。したがって、判定部118は、NOX選択還元触媒13の異常時に、上流側アンモニア濃度推定値NH3_us_modと下流側アンモニア濃度検出値NH3_ds_detとを比較することにより、NOX選択還元触媒13の欠落又は劣化を判定することができる。 Furthermore, when the NO X selective reduction catalyst 13 is missing, the amount of NH 3 adsorbed to the NO X selective reduction catalyst 13 and the amount of NH 3 used for the reduction reaction with NO X are almost zero. It becomes. Therefore, the downstream ammonia concentration detection value NH 3 _ds_det approximates the upstream ammonia concentration estimated value NH 3 _us_mod estimated by the upstream ammonia concentration acquisition unit 112. On the other hand, if the NO X selective reducing catalyst 13 is deteriorated, a part of the NH 3 flowing into the NO X selective reducing catalyst 13, is adsorbed to the NO X selective reducing catalyst 13, or used in the reduction reaction of the NO X Be Therefore, the downstream ammonia concentration detection value NH 3 _ds_det is a value smaller than the upstream ammonia concentration estimated value NH 3 _us_mod. Therefore, when the NO x selective reduction catalyst 13 is abnormal, the determination unit 118 compares the upstream ammonia concentration estimated value NH 3 _us _ mod with the downstream ammonia concentration detected value NH 3 _ds _ det to obtain the NO x selective reduction catalyst 13. Missing or degraded can be determined.

また、判定部118は、所定期間における下流側アンモニア濃度検出値NH3_ds_detの積算値と、下流側アンモニア濃度推定値NH3_ds_modの積算値あるいは上流側アンモニア濃度推定値NH3_us_modの積算値とを比較してもよい。それぞれの積算値を比較することにより、下流側アンモニア濃度検出値NH3_ds_detと、下流側アンモニア濃度推定値NH3_ds_modあるいは上流側アンモニア濃度推定値NH3_us_modとの差をより判別しやすくすることができる。 Further, the determination unit 118 calculates the integrated value of the downstream ammonia concentration detection value NH 3 _ds_det in the predetermined period, the integrated value of the downstream ammonia concentration estimated value NH 3 _ds_mod, or the integrated value of the upstream ammonia concentration estimated value NH 3 _us_mod You may compare The difference between the downstream ammonia concentration detection value NH 3 _ds_det and the downstream ammonia concentration estimated value NH 3 _ds_mod or the upstream ammonia concentration estimated value NH 3 _us_mod can be more easily determined by comparing the respective integrated values. Can.

図3は、NOX選択還元触媒13の正常時、欠落時、及び劣化時における下流側アンモニア濃度検出値NH3_ds_detの違いを示す説明図である。図3は、時刻t1から時刻t2までの間に、下流側アンモニア濃度検出値NH3_ds_det、下流側アンモニア濃度推定値NH3_ds_mod、及び上流側アンモニア濃度推定値NH3_us_modを積算した例を示している。 FIG. 3 is an explanatory view showing the difference between the downstream side ammonia concentration detection value NH 3 _ds_det when the NO X selective reduction catalyst 13 is normal, missing, and deteriorated. Figure 3 shows the period from the time t1 to the time t2, the downstream ammonia concentration detection value NH 3 _Ds_det, downstream ammonia concentration estimated value NH 3 _Ds_mod, and an example of integrating the upstream ammonia concentration estimate NH 3 _Us_mod ing.

NOX選択還元触媒13が正常に機能している場合、下流側アンモニア濃度推定値NH3_ds_modの値は、上流側アンモニア濃度推定値NH3_us_modよりも小さくなる。このため、下流側アンモニア濃度推定値NH3_ds_modの積算値は、上流側アンモニア濃度推定値NH3_us_modの積算値よりも小さい値で推移する。そして、NOX選択還元触媒13の正常時には、下流側アンモニア濃度検出値NH3_ds_detの積算値は、下流側アンモニア濃度推定値NH3_ds_modの積算値とほぼ同じように推移する。 If the NO X selective reducing catalyst 13 is functioning properly, the value of the downstream ammonia concentration estimated value NH 3 _ds_mod is smaller than the upstream ammonia concentration estimate NH 3 _us_mod. Therefore, the integrated value of the downstream ammonia concentration estimated value NH 3 _ds_mod is to remain at a value smaller than the integrated value of the upstream ammonia concentration estimate NH 3 _us_mod. Then, when the NO X selective reduction catalyst 13 is normal, the integrated value of the downstream ammonia concentration detection value NH 3 _ds_det changes almost in the same manner as the integrated value of the downstream ammonia concentration estimated value NH 3 _ds_mod.

一方、NOX選択還元触媒13が欠落している場合、下流側アンモニア濃度検出値NH3_ds_detは、上流側アンモニア濃度推定値NH3_us_modの積算値とほぼ同じように推移する。また、NOX選択還元触媒13が劣化している場合、下流側アンモニア濃度検出値NH3_ds_detは、上流側アンモニア濃度推定値NH3_us_modと下流側アンモニア濃度推定値NH3_ds_modとの間を推移する。図3に示した例では、下流側アンモニア濃度検出値NH3_ds_detが、上流側アンモニア濃度推定値NH3_us_mod及び下流側アンモニア濃度推定値NH3_ds_modの中間値をとりつつ推移している。 On the other hand, when the NO X selective reduction catalyst 13 is missing, the downstream ammonia concentration detection value NH 3 _ds_det changes almost in the same manner as the integrated value of the upstream ammonia concentration estimated value NH 3 _us_mod. Further, when the NO X selective reducing catalyst 13 is deteriorated, the downstream ammonia concentration detection value NH 3 _ds_det may transition between the upstream ammonia concentration estimate NH 3 _us_mod and downstream ammonia concentration estimated value NH 3 _ds_mod Do. In the example shown in FIG. 3, the downstream ammonia concentration detection value NH 3 _ds_det shifts while taking an intermediate value between the upstream ammonia concentration estimated value NH 3 _us_mod and the downstream ammonia concentration estimated value NH 3 _ds_mod.

したがって、判定部118は、時刻t2における下流側アンモニア濃度検出値NH3_ds_detの積算値と下流側アンモニア濃度推定値NH3_ds_modの積算値との差が小さい場合には、NOX選択還元触媒13が正常に機能していると判定することができる。また、時刻t2における下流側アンモニア濃度検出値NH3_ds_detの積算値と下流側アンモニア濃度推定値NH3_ds_modの積算値との差が大きい場合、判定部118は、時刻t2における上流側アンモニア濃度推定値NH3_us_modの積算値と下流側アンモニア濃度検出値NH3_ds_detの積算値との差が小さい場合には、NOX選択還元触媒13が欠落していると判定することができる。 Therefore, if the difference between the integrated value of the downstream ammonia concentration detection value NH 3 _ds_det and the integrated value of the downstream ammonia concentration estimated value NH 3 _ds_mod at time t 2 is small, the determination unit 118 determines that the NO X selective reduction catalyst 13 is Can be determined to be functioning properly. Further, when the difference between the integrated value and the downstream ammonia concentration estimated value integrated value of NH 3 _ds_mod downstream ammonia concentration detection value NH 3 _ds_det at time t2 is larger, the determination section 118, upstream the ammonia concentration estimated at time t2 If the difference between the integrated value of the value NH 3 _us_mod and the integrated value of the downstream ammonia concentration detection value NH 3 _ds_det is small, it can be determined that the NO X selective reduction catalyst 13 is missing.

NOX選択還元触媒13の欠落時には、NOX選択還元触媒13が意図的に除去されていることも考えられるため、判定部118は、例えば内燃機関5を強制的に停止させる処置を取るようにしてもよい。また、NOX選択還元触媒13の劣化時には、判定部118は、例えば警告ランプを点灯させたり警報を鳴らしたりすることで、運転者等にNOX選択還元触媒13の交換を促すようにしてもよい。 When the NO X selective reduction catalyst 13 is missing, it is also considered that the NO X selective reduction catalyst 13 is intentionally removed, so that the determination unit 118 takes a treatment to forcibly stop the internal combustion engine 5, for example. May be Further, at the time of deterioration of the NO X selective reducing catalyst 13, the judgment unit 118, for example a warning lamp by sounding an alarm or turn it on, and also to urge the replacement of the NO X selective reducing catalyst 13 to the driver or the like Good.

<3.診断装置の動作例>
次に、図4のフローチャートを参照して、診断装置として機能する制御装置100の動作例を説明する。
<3. Operation example of diagnostic device>
Next, an operation example of the control device 100 functioning as a diagnostic device will be described with reference to the flowchart of FIG. 4.

まず、制御装置100の上流側アンモニア濃度取得部112、下流側アンモニア濃度推定部114及び下流側アンモニア濃度検出部116は、下流側アンモニア濃度検出値NH3_ds_det、下流側アンモニア濃度推定値NH3_ds_mod、及び上流側アンモニア濃度推定値NH3_us_modの積算を開始する(ステップS11)。次いで、上流側アンモニア濃度取得部112及び下流側アンモニア濃度推定部114は、それぞれ上流側アンモニア濃度推定値NH3_us_mod及び下流側アンモニア濃度推定値NH3_ds_modを算出し、下流側アンモニア濃度検出部116は下流側アンモニア濃度検出値NH3_ds_detを検出する(ステップS13)。 First, upstream the ammonia concentration acquisition unit 112 of the control apparatus 100, the downstream ammonia concentration estimating unit 114 and a downstream ammonia concentration detection unit 116, downstream ammonia concentration detection value NH 3 _ds_det, downstream ammonia concentration estimated value NH 3 _ds_mod And integration of the upstream ammonia concentration estimated value NH 3 _us_mod is started (step S11). Next, the upstream ammonia concentration acquisition unit 112 and the downstream ammonia concentration estimation unit 114 calculate the upstream ammonia concentration estimated value NH 3 _us_mod and the downstream ammonia concentration estimated value NH 3 _ds_mod, respectively, and the downstream ammonia concentration detection unit 116 Detects the downstream ammonia concentration detection value NH 3 _ds_det (step S13).

次いで、上流側アンモニア濃度取得部112、下流側アンモニア濃度推定部114及び下流側アンモニア濃度検出部116は、それぞれステップS13で得られた上流側アンモニア濃度推定値NH3_us_mod、下流側アンモニア濃度推定値NH3_ds_mod及び下流側アンモニア濃度検出値NH3_ds_detを積算する(ステップS15)。 Next, the upstream ammonia concentration acquisition unit 112, the downstream ammonia concentration estimation unit 114, and the downstream ammonia concentration detection unit 116 respectively calculate the upstream ammonia concentration estimated value NH 3 _us_mod and the downstream ammonia concentration estimated value obtained in step S13, respectively. NH 3 for integrating the _ds_mod and downstream ammonia concentration detection value NH 3 _Ds_det (step S15).

次いで、上流側アンモニア濃度取得部112、下流側アンモニア濃度推定部114及び下流側アンモニア濃度検出部116は、積算を開始してからの経過時間が、あらかじめ設定された所定時間を経過したか否かを判別する(ステップS17)。所定時間は、診断結果の信頼性の許容範囲等を考慮して、適宜の時間に設定されてよい。   Next, whether the upstream ammonia concentration acquisition unit 112, the downstream ammonia concentration estimation unit 114, and the downstream ammonia concentration detection unit 116 have elapsed a predetermined time set in advance has elapsed since the start of integration. Is determined (step S17). The predetermined time may be set to an appropriate time in consideration of the allowable range of the reliability of the diagnosis result and the like.

経過時間が所定時間を経過していない場合(S17/No)、上流側アンモニア濃度取得部112、下流側アンモニア濃度推定部114及び下流側アンモニア濃度検出部116は、ステップS13に戻って、上流側アンモニア濃度推定値NH3_us_mod、下流側アンモニア濃度推定値NH3_ds_mod及び下流側アンモニア濃度検出値NH3_ds_detの算出あるいは検出、及び積算を繰り返す。 When the elapsed time has not passed the predetermined time (S17 / No), the upstream ammonia concentration acquisition unit 112, the downstream ammonia concentration estimation unit 114, and the downstream ammonia concentration detection unit 116 return to step S13, and the upstream side The calculation or detection and integration of the ammonia concentration estimated value NH 3 _us_mod, the downstream ammonia concentration estimated value NH 3 _ds_mod and the downstream ammonia concentration detected value NH 3 _ds_det are repeated.

一方、経過時間が所定時間を経過した場合(S17/Yes)、制御装置100の判定部118は、下流側アンモニア濃度推定値NH3_ds_modの積算値∫NH3_ds_modと下流側アンモニア濃度検出値NH3_ds_detの積算値∫NH3_ds_detとの差の絶対値が閾値αを超えているか否かを判別する(ステップS19)。閾値αは、下流側アンモニア濃度推定値NH3_ds_modの誤差や、積算を行う所定時間の長さ等を考慮して、適切な値に設定することができる。 On the other hand, when the elapsed time has passed the predetermined time (S17 / Yes), the determination unit 118 of the control device 100 determines that the integrated value ∫NH 3 _ds _mod of the downstream ammonia concentration estimated value NH 3 _ds _ mod and the downstream ammonia concentration detection value NH 3 the absolute value of the difference between the integrated value ∫NH 3 _ds_det of _Ds_det it is determined whether it exceeds the threshold value alpha (step S19). The threshold value α can be set to an appropriate value in consideration of the error of the downstream ammonia concentration estimated value NH 3 _ds_mod, the length of a predetermined time for integration, and the like.

絶対値|∫NH3_ds_mod−∫NH3_ds_det|が閾値α以下の場合(S19/No)、判定部118は、NOX選択還元触媒23が正常に機能している(異常無し)と判定し(ステップS27)、本ルーチンを終了する。一方、絶対値|∫NH3_ds_mod−∫NH3_ds_det|が閾値αを超える場合(S19/Yes)、判定部118は、上流側アンモニア濃度推定値NH3_us_modの積算値∫NH3_us_modと下流側アンモニア濃度検出値NH3_ds_detの積算値∫NH3_ds_detとの差の絶対値が閾値β未満であるか否かを判別する(ステップS21)。閾値βは、下流側アンモニア濃度推定値NH3_ds_modの誤差や、積算を行う所定時間の長さ等を考慮して、適切な値に設定することができる。閾値βは、閾値αと同じ値であってもよく、異なる値であってもよい。 If the absolute value | ∫NH 3 _ds _mod-∫NH 3 _ds det det is less than or equal to the threshold value α (S19 / No), the determination unit 118 determines that the NO X selective reduction catalyst 23 is functioning normally (no abnormality). (Step S27), this routine ends. On the other hand, when the absolute value | ∫NH 3 _ds _mod-∫NH 3 _ds _det exceeds the threshold value α (S19 / Yes), the determination unit 118 determines that the integrated value ∫NH 3 _us _mod of the upstream ammonia concentration estimated value NH 3 _us _mod the absolute value of the difference between the integrated value ∫NH 3 _ds_det side ammonia concentration detection value NH 3 _ds_det it is determined whether or not less than the threshold value beta (step S21). The threshold value β can be set to an appropriate value in consideration of the error of the downstream ammonia concentration estimated value NH 3 _ds_mod, the length of a predetermined time for integration, and the like. The threshold value β may be the same value as the threshold value α or may be a different value.

絶対値|∫NH3_us_mod−∫NH3_ds_det|が閾値β未満の場合(S21/Yes)、判定部118は、NOX選択還元触媒23が欠落していると判定し(ステップS23)、本ルーチンを終了する。一方、絶対値|∫NH3_us_mod−∫NH3_ds_det|が閾値β以上の場合(S21/No)、判定部118は、NOX選択還元触媒23が劣化していると判定し(ステップS25)、本ルーチンを終了する。 If the absolute value | ∫NH 3 _us_mod-∫NH 3 _ds_det | is less than the threshold value β (S21 / Yes), the determination unit 118 determines that the NO X selective reduction catalyst 23 is missing (step S23). End the routine On the other hand, the absolute value | ∫NH 3 _us_mod-∫NH 3 _ds_det | is equal to or greater than the threshold value β (S21 / No), the determination unit 118 determines that the NO X selective reducing catalyst 23 is deteriorated (step S25) , End this routine.

以上説明したように、本実施形態に係る内燃機関5の排気浄化装置10は、排気通路の上流側から順にNOX吸蔵触媒15及びNOX選択還元触媒13を備えるとともに、NOX選択還元触媒13よりも下流側にアンモニア濃度センサ23を備えている。かかる排気浄化装置10のNOX選択還元触媒13の異常を診断する診断装置として機能する制御装置100は、下流側アンモニア濃度推定値NH3_ds_mod及び下流側アンモニア濃度検出値NH3_ds_detに基づいてNOX選択還元触媒13の異常の有無を判定する。したがって、制御装置100は、NOX選択還元触媒13が正常に機能していない異常状態を検知することができる。 As described above, the exhaust gas purifying device 10 for an internal combustion engine 5 according to the present embodiment includes a the NO X storing catalyst 15 and the NO X selective reducing catalyst 13 in order from the upstream side of the exhaust passage, the NO X selective reducing catalyst 13 An ammonia concentration sensor 23 is provided on the downstream side of the above. The control device 100 functioning as a diagnostic device that diagnoses the abnormality of the NO X selective reduction catalyst 13 of the exhaust purification device 10 performs NO based on the downstream side ammonia concentration estimated value NH 3 _ds_mod and the downstream side ammonia concentration detection value NH 3 _ds_det. It is determined whether there is an abnormality in the X selective reduction catalyst 13 or not. Therefore, the control device 100 can detect an abnormal state in which the NO X selective reduction catalyst 13 is not functioning properly.

また、本実施形態において、制御装置100は、NOX選択還元触媒13の異常時に、さらに上流側アンモニア濃度推定値NH3_us_mod及び下流側アンモニア濃度検出値NH3_ds_detに基づいて、NOX選択還元触媒13の欠落又は劣化を判定する。したがって、制御装置100は、NOX選択還元触媒13の異常の状態に応じた処理を実行することができる。 Further, in the present embodiment, the control unit 100, when an abnormality of the NO X selective reducing catalyst 13, further based on the upstream ammonia concentration estimate NH 3 _us_mod and downstream ammonia concentration detection value NH 3 _ds_det, NO X selective reducing The absence or deterioration of the catalyst 13 is determined. Therefore, the control device 100 can execute the processing according to the state of abnormality of the NO X selective reduction catalyst 13.

また、本実施形態において、制御装置100は、上流側アンモニア濃度推定値NH3_us_modの積算値∫NH3_us_mod、下流側アンモニア濃度推定値NH3_ds_modの積算値∫NH3_ds_mod及び下流側アンモニア濃度検出値NH3_ds_detの積算値∫NH3_ds_detを用いてNOX選択還元触媒13の異常を判定する。したがって、下流側アンモニア濃度検出値NH3_ds_detと、上流側アンモニア濃度推定値NH3_us_modあるいは下流側アンモニア濃度推定値NH3_ds_modとの差をより判別しやすくなって、NOX選択還元触媒13の異常診断結果の信頼性を向上させることができる。 Further, in the present embodiment, the control device 100, the integrated value ∫NH 3 _ds_mod and downstream ammonia concentration upstream integrated value of side ammonia concentration estimate NH 3 _us_mod ∫NH 3 _us_mod, downstream ammonia concentration estimated value NH 3 _ds_mod determining an abnormality of the NO X selective reducing catalyst 13 using the integrated value ∫NH 3 _ds_det detection values NH 3 _ds_det. Thus, a downstream ammonia concentration detection value NH 3 _ds_det, is the difference between the upstream ammonia concentration estimate NH 3 _us_mod or downstream ammonia concentration estimated value NH 3 _ds_mod easier to determine, in the NO X selective reducing catalyst 13 The reliability of the result of abnormality diagnosis can be improved.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that those skilled in the art to which the present invention belongs can conceive of various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also fall within the technical scope of the present invention.

5・・・内燃機関、10・・・排気浄化装置、11・・・排気管、13・・・NOX選択還元触媒、15・・・NOX吸蔵触媒、23・・・アンモニア濃度センサ、100・・・制御装置(診断装置)、112・・・上流側アンモニア濃度取得部、114・・・下流側アンモニア濃度推定部、116・・・下流側アンモニア濃度検出部、118・・・判定部
Reference 5: Internal combustion engine, 10: Exhaust gas purification device, 11: Exhaust pipe, 13: NO X selective reduction catalyst, 15: NO X storage catalyst, 23: Ammonia concentration sensor, 100 ... Control device (diagnostic device), 112 ... upstream ammonia concentration acquisition unit 114 ... downstream ammonia concentration estimation unit 116 ... downstream ammonia concentration detection unit, 118 ... determination unit

Claims (7)

内燃機関の排気通路に上流側から順にNOX吸蔵触媒とNOX選択還元触媒とを備えた排気浄化装置における前記NOX選択還元触媒の異常を診断する診断装置において、
前記NOX選択還元触媒よりも下流側の排気通路内のアンモニア濃度の推定値である下流側アンモニア濃度推定値を算出する下流側アンモニア濃度推定部と、
前記NOX選択還元触媒よりも下流側の排気通路に備えられたアンモニア濃度センサのセンサ信号に基づいて前記NOX選択還元触媒よりも下流側の排気通路内のアンモニア濃度の検出値である下流側アンモニア濃度検出値を取得する下流側アンモニア濃度検出部と、
前記下流側アンモニア濃度推定値及び前記下流側アンモニア濃度検出値に基づいて前記NOX選択還元触媒の異常を判定する判定部と、
を備える、診断装置。
A diagnostic device for diagnosing an abnormality of the NO x selective reduction catalyst in an exhaust gas purification apparatus provided with an NO x storage catalyst and an NO x selective reduction catalyst sequentially from the upstream side in an exhaust passage of an internal combustion engine,
A downstream ammonia concentration estimating unit that calculates a downstream ammonia concentration estimated value is an estimated value of the ammonia concentration in the exhaust passage downstream of the the NO X selective reducing catalyst,
Downstream is the detection value of the ammonia concentration downstream of the exhaust passage than the the NO X selective reducing catalyst on the basis of the sensor signals of the the NO X selective reducing ammonia concentration sensor provided in an exhaust passage downstream of the catalyst A downstream ammonia concentration detection unit that acquires an ammonia concentration detection value;
A determination unit that determines an abnormality of the NO X selective reduction catalyst based on the downstream side ammonia concentration estimated value and the downstream side ammonia concentration detection value;
A diagnostic device comprising:
前記判定部は、前記下流側アンモニア濃度推定値の積算値及び前記下流側アンモニア濃度検出値の積算値を用いて、前記NOX選択還元触媒の異常を判定する、請求項1に記載の診断装置。 The diagnostic device according to claim 1, wherein the determination unit determines the abnormality of the NO X selective reduction catalyst using the integrated value of the downstream side ammonia concentration estimated value and the integrated value of the downstream side ammonia concentration detection value. . 前記判定部は、前記NOX吸蔵触媒からアンモニアが流出する期間における前記下流側アンモニア濃度推定値及び前記下流側アンモニア濃度検出値を用いて前記NOX選択還元触媒の異常を判定する、請求項1又は2に記載の診断装置。 The determination unit determines abnormality of the the NO X selective reducing catalyst with the downstream ammonia concentration estimated value and the downstream ammonia concentration detection value in a period in which ammonia from the the NO X storage catalyst flows out, claim 1 Or the diagnostic apparatus as described in 2. 前記NOX吸蔵触媒よりも下流側、かつ、前記NOX選択還元触媒よりも上流側の排気通路内のアンモニア濃度の検出値又は推定値である上流側アンモニア濃度を求める上流側アンモニア濃度取得部をさらに備え、
前記判定部は、前記上流側アンモニア濃度、前記下流側アンモニア濃度推定値及び前記下流側アンモニア濃度検出値に基づいて、前記NOX選択還元触媒の欠落及び劣化を判定する、請求項1に記載の診断装置。
Wherein the NO X storage downstream of the catalyst, and the the NO X selective reducing upstream the ammonia concentration acquisition unit for obtaining the upstream ammonia concentration is detected values or estimated value of the ammonia concentration in the exhaust passage upstream of the catalyst In addition,
The determination unit, the upstream ammonia concentration, on the basis of the downstream ammonia concentration estimated value and the downstream ammonia concentration detection value, determines missing and deterioration of the the NO X selective reducing catalyst, according to claim 1 Diagnostic device.
前記判定部は、前記上流側アンモニア濃度の積算値、前記下流側アンモニア濃度推定値の積算値及び前記下流側アンモニア濃度検出値の積算値を用いて、前記NOX選択還元触媒の欠落及び劣化を判定する、請求項4に記載の診断装置。 The determination unit, the integrated value of the upstream ammonia concentration, using the integrated value of the integrated value and the downstream ammonia concentration detection value of the downstream ammonia concentration estimated value, the missing and deterioration of the the NO X selective reducing catalyst The diagnostic device according to claim 4, which determines. 前記判定部は、前記NOX吸蔵触媒からアンモニアが流出する期間における前記上流側アンモニア濃度、前記下流側アンモニア濃度推定値及び前記下流側アンモニア濃度検出値を用いて前記NOX選択還元触媒の欠落及び劣化を判定する、請求項4又は5に記載の診断装置。 The determination unit, the NO X the upstream ammonia concentration in the period ammonia storage catalyst flows out, missing the the NO X selective reducing catalyst with the downstream ammonia concentration estimated value and the downstream ammonia concentration detection value and The diagnostic device according to claim 4 or 5, wherein deterioration is determined. 内燃機関の排気通路に備えられたNOX吸蔵触媒と、
前記NOX吸蔵触媒よりも下流側の排気通路に備えられたNOX選択還元触媒と、
前記NOX選択還元触媒よりも下流側の排気通路に備えられたアンモニア濃度センサと、
前記NOX選択還元触媒の異常を診断する診断装置と、を備えた内燃機関の排気浄化装置において、
前記診断装置は、
前記NOX選択還元触媒よりも下流側の排気通路内のアンモニア濃度の推定値である下流側アンモニア濃度推定値を算出する下流側アンモニア濃度推定部と、
前記NOX選択還元触媒よりも下流側の排気通路に備えられたアンモニア濃度センサのセンサ信号に基づいて前記NOX選択還元触媒よりも下流側の排気通路内のアンモニア濃度の検出値である下流側アンモニア濃度検出値を取得する下流側アンモニア濃度検出部と、
前記下流側アンモニア濃度推定値及び前記下流側アンモニア濃度検出値に基づいて前記NOX選択還元触媒の異常を判定する判定部と、
を備える、内燃機関の排気浄化装置。
An NO X storage catalyst provided in an exhaust passage of an internal combustion engine;
An NO X selective reduction catalyst provided in an exhaust passage downstream of the NO X storage catalyst;
And the ammonia concentration sensor provided in an exhaust passage on the downstream side of the the NO X selective reducing catalyst,
In the exhaust purification system of an internal combustion engine and a diagnostic apparatus for diagnosing an abnormality of the the NO X selective reducing catalyst,
The diagnostic device
A downstream ammonia concentration estimating unit that calculates a downstream ammonia concentration estimated value is an estimated value of the ammonia concentration in the exhaust passage downstream of the the NO X selective reducing catalyst,
Downstream is the detection value of the ammonia concentration downstream of the exhaust passage than the the NO X selective reducing catalyst on the basis of the sensor signals of the the NO X selective reducing ammonia concentration sensor provided in an exhaust passage downstream of the catalyst A downstream ammonia concentration detection unit that acquires an ammonia concentration detection value;
A determination unit that determines an abnormality of the NO X selective reduction catalyst based on the downstream side ammonia concentration estimated value and the downstream side ammonia concentration detection value;
An exhaust purification system of an internal combustion engine, comprising:
JP2017236409A 2017-12-08 2017-12-08 Diagnostic device and exhaust purification device for internal combustion engine Active JP7002312B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017236409A JP7002312B2 (en) 2017-12-08 2017-12-08 Diagnostic device and exhaust purification device for internal combustion engine
DE102018215214.4A DE102018215214A1 (en) 2017-12-08 2018-09-07 Diagnostic device and exhaust gas purification device for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017236409A JP7002312B2 (en) 2017-12-08 2017-12-08 Diagnostic device and exhaust purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2019105170A true JP2019105170A (en) 2019-06-27
JP7002312B2 JP7002312B2 (en) 2022-01-20

Family

ID=66629758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017236409A Active JP7002312B2 (en) 2017-12-08 2017-12-08 Diagnostic device and exhaust purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP7002312B2 (en)
DE (1) DE102018215214A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019206873A1 (en) * 2019-05-13 2020-11-19 Robert Bosch Gmbh Monitoring the condition of a catalytic converter to reduce nitrogen oxide by comparing the nitrogen oxide sensor signal with a modeled value

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180535A (en) * 1993-12-22 1995-07-18 Fuji Heavy Ind Ltd Failure diagnostic device for exhaust emission control device
JPH09236569A (en) * 1996-03-01 1997-09-09 Hitachi Ltd Function diagnosing device of exhaust gas purifying apparatus of internal combustion engine
JP2006125323A (en) * 2004-10-29 2006-05-18 Nissan Diesel Motor Co Ltd Exhaust emission control device
JP2015151929A (en) * 2014-02-14 2015-08-24 いすゞ自動車株式会社 Exhaust emission control device, and control method for the same
JP2016079856A (en) * 2014-10-15 2016-05-16 トヨタ自動車株式会社 Abnormality determination system of exhaust emission control device of internal combustion engine
US20170248059A1 (en) * 2016-02-29 2017-08-31 Robert Bosch Gmbh Method for the diagnosis of an exhaust gas aftertreatment system for an internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10315593B4 (en) 2003-04-05 2005-12-22 Daimlerchrysler Ag Exhaust gas aftertreatment device and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180535A (en) * 1993-12-22 1995-07-18 Fuji Heavy Ind Ltd Failure diagnostic device for exhaust emission control device
JPH09236569A (en) * 1996-03-01 1997-09-09 Hitachi Ltd Function diagnosing device of exhaust gas purifying apparatus of internal combustion engine
JP2006125323A (en) * 2004-10-29 2006-05-18 Nissan Diesel Motor Co Ltd Exhaust emission control device
JP2015151929A (en) * 2014-02-14 2015-08-24 いすゞ自動車株式会社 Exhaust emission control device, and control method for the same
JP2016079856A (en) * 2014-10-15 2016-05-16 トヨタ自動車株式会社 Abnormality determination system of exhaust emission control device of internal combustion engine
US20170248059A1 (en) * 2016-02-29 2017-08-31 Robert Bosch Gmbh Method for the diagnosis of an exhaust gas aftertreatment system for an internal combustion engine

Also Published As

Publication number Publication date
JP7002312B2 (en) 2022-01-20
DE102018215214A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP6593374B2 (en) NOx sensor diagnostic device and diagnostic method
JP6287989B2 (en) Abnormality diagnosis device for NOx storage reduction catalyst
US20120023911A1 (en) Detection of exhaust particulate filter substrate failure
JP5993293B2 (en) Abnormality diagnosis device
JP5837197B2 (en) Abnormality diagnosis device and exhaust gas purification device for internal combustion engine
WO2012081463A1 (en) Dpf system
JP5604953B2 (en) Exhaust gas purification device and control method of exhaust gas purification device
JP2010031697A (en) Catalyst degradation diagnostic device for internal combustion engine, and method for diagnosing catalyst
JP2012036860A (en) Device for diagnosing catalyst degradation
US8336293B2 (en) Exhaust gas purification system of an internal combustion engine
JP7169826B2 (en) Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
KR20160066817A (en) A fault diagnosis method of scr system and an apparatus thereof
JP7197353B2 (en) Diagnostic device and exhaust purification device for internal combustion engine
JP7206756B2 (en) Exhaust gas purification system for internal combustion engine
JP2010236458A (en) Deterioration diagnostic device for nox catalyst
JP2018189056A (en) Exhaust emission control device for internal combustion engine
JP7002312B2 (en) Diagnostic device and exhaust purification device for internal combustion engine
US10519840B2 (en) Abnormality diagnosis system for exhaust gas purification apparatus
KR102451917B1 (en) Exhaust gas purification system and the control method thereof
JP2019214952A (en) Filer removal detection device
JP7124771B2 (en) Lambda sensor response diagnostic method and exhaust purification system
JP2019190360A (en) Exhaust emission control device of internal combustion engine
JP2017129037A (en) Abnormality diagnosis device of nox occlusion reduction-type catalyst
JP2019183814A (en) Abnormality diagnosis system of internal combustion engine
JP2019157671A (en) Abnormality detection device of exhaust emission purification catalyst

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227