JP2019097771A - Pulse oximeter and probe for biological information measurement - Google Patents

Pulse oximeter and probe for biological information measurement Download PDF

Info

Publication number
JP2019097771A
JP2019097771A JP2017230651A JP2017230651A JP2019097771A JP 2019097771 A JP2019097771 A JP 2019097771A JP 2017230651 A JP2017230651 A JP 2017230651A JP 2017230651 A JP2017230651 A JP 2017230651A JP 2019097771 A JP2019097771 A JP 2019097771A
Authority
JP
Japan
Prior art keywords
light
transmitted
photodetector
near infrared
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017230651A
Other languages
Japanese (ja)
Inventor
翔 成瀬
Sho Naruse
翔 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Denshi Co Ltd
Original Assignee
Fukuda Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Denshi Co Ltd filed Critical Fukuda Denshi Co Ltd
Priority to JP2017230651A priority Critical patent/JP2019097771A/en
Publication of JP2019097771A publication Critical patent/JP2019097771A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

To provide a pulse oximeter which can improve measurement accuracy and can simplify an operation circuit.SOLUTION: A pulse oximeter has: an LED 103 that simultaneously emits red light and near infrared light; a first photodetector 104 for receiving transmitted light of light of a light emitting unit, which has been transmitted through a measurement site, and detecting red light contained in the transmitted light; a second photodetector 105 for receiving the transmitted light of the light of the light emitting unit, which has been transmitted through the measurement site, and detecting near infrared light contained in the transmitted light; and a signal processing unit 203 that obtains SpObased on detection results of the first and second photodetectors 104, 105.SELECTED DRAWING: Figure 2

Description

本発明は、パルスオキシメータ及び生体情報測定用プローブに関する。   The present invention relates to a pulse oximeter and a biological information measuring probe.

パルスオキシメータは、動脈血における総ヘモグロビンに対する酸素化ヘモグロビンの割合を表す動脈血酸素飽和度(以下、単にSpOあるいは酸素飽和度という)を非侵襲的に測定することができる医療機器である(例えば特許文献1、2参照)。 A pulse oximeter is a medical device that can non-invasively measure arterial blood oxygen saturation (hereinafter simply referred to as SpO 2 or oxygen saturation) that represents the ratio of oxygenated hemoglobin to total hemoglobin in arterial blood (eg, patented) Reference 1 and 2).

パルスオキシメータは、指、足趾又は耳朶等の測定部位にプローブを装着するように構成されている。このプローブには、発光ダイオード等の発光素子と、フォトダイオード等のフォトディテクターとが設けられている。   The pulse oximeter is configured to attach a probe to a measurement site such as a finger, a foot pad or an earlobe. The probe is provided with a light emitting element such as a light emitting diode and a photodetector such as a photodiode.

そして、赤色光を発光する発光素子と近赤外光を発光する発光素子を交互に発光させることにより、測定部位に向けて赤色光と近赤外光とを交互に照射し、測定部位を透過し又は測定部位から反射した光をフォトディテクターによって検出する。パルスオキシメータは、フォトディテクターにより得た透過光又は反射光の検出信号を用いて酸素飽和度を算出する。具体的には、動脈血の脈拍に同期する光検出レベルの変動を赤色光の場合と近赤外光の場合とで対比し、その比から酸素飽和度を算出する。パルスオキシメータは、算出した動脈血酸素飽和度を表示部に表示する。   Then, by alternately emitting a light emitting element emitting red light and a light emitting element emitting near infrared light, the red light and the near infrared light are alternately irradiated toward the measurement site, and the light is transmitted through the measurement site Or light reflected from the measurement site is detected by a photodetector. The pulse oximeter calculates the oxygen saturation using a detection signal of transmitted light or reflected light obtained by a photodetector. Specifically, the fluctuation of the light detection level synchronized with the pulse of arterial blood is compared between the case of red light and the case of near infrared light, and the oxygen saturation is calculated from the ratio. The pulse oximeter displays the calculated arterial blood oxygen saturation on the display unit.

特開2001−78990号公報JP, 2001-78990, A 特開2015−107152号公報JP, 2015-107152, A

ところで、従来のパルスオキシメータにおいては、発光部は赤色光を発光するLEDと近赤外光を発光するLEDとで構成され、受光部は生体を透過してきたこれらの光を検出する1つのPD(Photo-Diode)で構成されている。このように受光部が1つのPDで構成されているため、赤色光と近赤外光が同時にPDへ入射すると赤色光と近赤外光との区別ができなくなるので、赤色光と近赤外光を交互(正確には赤色光→消灯→近赤外光→消灯→・・・)に光らせている。   By the way, in the conventional pulse oximeter, the light emitting unit is composed of an LED for emitting red light and an LED for emitting near infrared light, and the light receiving unit is a single PD for detecting these lights transmitted through the living body. (Photo-Diode) is configured. As described above, since the light receiving unit is configured of one PD, when red light and near infrared light simultaneously enter the PD, it becomes impossible to distinguish between red light and near infrared light, so red light and near infrared light can not be distinguished. The light is alternated (precisely red light → off → near infrared light → off → ...).

その結果、従来のパルスオキシメータにおいては、赤色光と近赤外光のLEDを交互に発光させるため、各色での測定は同時には行えず、例えば数m秒の遅延が生じるので、その分だけ測定精度が低下する欠点がある。また、赤色光と近赤外光のLEDを所定のタイミングで交互に光らせる必要があるので、LEDの動作回路が複雑になる欠点がある。   As a result, in the conventional pulse oximeter, since red light and near infrared light LEDs are alternately emitted, measurement in each color can not be performed at the same time, and a delay of, for example, several milliseconds is generated. There is a drawback that the measurement accuracy is reduced. In addition, since it is necessary to light the LEDs of red light and near infrared light alternately at predetermined timing, there is a drawback that the operation circuit of the LED becomes complicated.

本発明は、以上の点を考慮してなされたものであり、測定精度を向上し得、かつ、動作回路を簡単化し得るパルスオキシメータ及び生体情報測定用プローブを提供する。   The present invention has been made in consideration of the above points, and provides a pulse oximeter and a biological information measuring probe which can improve measurement accuracy and can simplify an operation circuit.

本発明のパルスオキシメータの一つの態様は、
赤色光及び近赤外光を同時に発光する発光部と、
測定部位を透過した前記発光部の光の透過光を受光し、当該透過光に含まれる赤色光を検出する第1のフォトディテクターと、
測定部位を透過した前記発光部の光の透過光を受光し、当該透過光に含まれる近赤外光を検出する第2のフォトディテクターと、
前記第1及び第2のフォトディテクターの検出結果に基づいて、動脈血酸素飽和度を得る信号処理部と、
を具備する。
One aspect of the pulse oximeter of the present invention is
A light emitting unit that simultaneously emits red light and near infrared light;
A first photodetector for receiving transmitted light of the light of the light emitting portion transmitted through the measurement site and detecting red light contained in the transmitted light;
A second photodetector which receives transmitted light of the light of the light emitting part transmitted through the measurement site and detects near infrared light contained in the transmitted light;
A signal processing unit for obtaining arterial blood oxygen saturation based on detection results of the first and second photodetectors;
Equipped with

本発明の生体情報測定用プローブの一つの態様は、
赤色光及び近赤外光を同時に発光する発光部と、
測定部位を透過した前記発光部の光の透過光を受光し、当該透過光に含まれる赤色光を検出する第1のフォトディテクターと、
測定部位を透過した前記発光部の光の透過光を受光し、当該透過光に含まれる近赤外光を検出する第2のフォトディテクターと、
前記第1及び第2のフォトディテクターの検出結果を出力する出力部と、
を具備する。
One embodiment of the biological information measuring probe of the present invention is
A light emitting unit that simultaneously emits red light and near infrared light;
A first photodetector for receiving transmitted light of the light of the light emitting portion transmitted through the measurement site and detecting red light contained in the transmitted light;
A second photodetector which receives transmitted light of the light of the light emitting part transmitted through the measurement site and detects near infrared light contained in the transmitted light;
An output unit that outputs detection results of the first and second photodetectors;
Equipped with

本発明によれば、発光部が赤色光及び近赤外光を同時に発光し、その透過光をそれぞれ赤色光及び近赤外光を検出する2つのフォトディテクターによって検出するので、各色の検出には遅延が生じないので測定精度が向上するとともに、赤色光と近赤外光を同時に発光させればよいので動作回路を簡単化し得る。   According to the present invention, the light emitting unit simultaneously emits red light and near infrared light, and the transmitted light is detected by the two photodetectors that detect red light and near infrared light, respectively. Since the delay does not occur, the measurement accuracy is improved, and the red light and the near infrared light may be emitted simultaneously, so that the operation circuit can be simplified.

実施の形態に係るパルスオキシメータの全体構成を示す図The figure which shows the whole structure of the pulse oximeter which concerns on embodiment. 実施の形態のプローブ部の構成の説明に供する断面図Cross section for explaining the configuration of a probe unit of the embodiment 第1のフォトディテクターの構成を示す断面図Sectional view showing the configuration of the first photodetector 第2のフォトディテクターの構成を示す断面図Sectional view showing the configuration of the second photodetector プローブ部の他の構成例を示す断面図Sectional view showing another configuration example of the probe unit 実施の形態によるLEDの発光動作を示す図The figure which shows the light emission operation of LED by embodiment プローブ部の他の構成例を示す平面図A plan view showing another configuration example of the probe unit 一般的なフォトダイオードの感度特性を示す図Diagram showing the sensitivity characteristics of a common photodiode

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本実施の形態に係るパルスオキシメータの全体構成を示す図である。パルスオキシメータ10は、プローブ部100と、本体部200と、を有する。プローブ部100と本体部200とはケーブル300を介して接続されている。プローブ部100は被検者の指に装着可能とされており、本体部200は図示しないリストバンドを用いて被検者の手首付近に装着可能とされている。   FIG. 1 is a diagram showing an entire configuration of a pulse oximeter according to the present embodiment. The pulse oximeter 10 has a probe unit 100 and a main body unit 200. The probe unit 100 and the main unit 200 are connected via a cable 300. The probe unit 100 is attachable to the subject's finger, and the main body unit 200 is attachable to the subject's wrist using a wrist band (not shown).

本体部200は、プローブ部100のフォトディテクター104、105(図2)から入力される透過光の検出信号を用いて酸素飽和度の計測処理を行う信号処理部203(図2)、表示部201及び操作部202等を有する。   The main unit 200 uses the detection signal of the transmitted light input from the photodetectors 104 and 105 (FIG. 2) of the probe unit 100 to perform the measurement processing of the oxygen saturation degree (FIG. 2), the display unit 201 And an operation unit 202 and the like.

図2は、本実施の形態のプローブ部100の構成の説明に供する断面図である。図2は指にプローブ部100を装着した状態において指の側面方向から見たプローブ部100の断面図である。   FIG. 2 is a cross-sectional view for explaining the configuration of the probe unit 100 according to the present embodiment. FIG. 2 is a cross-sectional view of the probe unit 100 as viewed from the side direction of the finger in a state where the probe unit 100 is attached to the finger.

プローブ部100はケース101を有し、ケース101はできるだけ内部に外光が進入しないように指先を包み込む形状となっている。   The probe unit 100 has a case 101, and the case 101 is shaped so as to wrap the fingertip so as to prevent external light from entering the inside as much as possible.

ケース101内にはLED103が設けられている。LED103は、酸素飽和度の測定部位に対向する位置に設けられている。図2の例の場合、LED103は爪に対向する位置に設けられている。   An LED 103 is provided in the case 101. The LED 103 is provided at a position facing the measurement site of oxygen saturation. In the example of FIG. 2, the LED 103 is provided at a position facing the nail.

LED103は、赤色光を発光するチップと、近赤外光を発光するチップとを有し、SpOの測定時にはこれらのチップから赤色光と近赤外光とを同時に発光させるようになっている。なお、LED103は必ずしも赤色光を発光するチップと近赤外光を発光するチップとを有する必要はなく、要は赤色光と近赤外光とを同時に発光させることができるようなものであればよく、例えば赤色光成分と近赤外線光成分とを含む白色光を発光する白色LEDによって構成されていてもよい。 The LED 103 has a chip that emits red light and a chip that emits near infrared light, and at the time of measuring SpO 2 , these chips simultaneously emit red light and near infrared light. . Note that the LED 103 does not necessarily have to have a chip that emits red light and a chip that emits near infrared light, and in short, as long as it can simultaneously emit red light and near infrared light. For example, it may be configured by a white LED that emits white light including a red light component and a near infrared light component.

なお、一般にSpO測定における赤色光とは660nm±5nmで定義され、近赤外光とは800〜950nmで定義される。よって、本明細書における赤色光及び近赤外光はこの範囲の光を意味するものとする。 Generally, red light in SpO 2 measurement is defined as 660 nm ± 5 nm, and near infrared light is defined as 800 to 950 nm. Thus, red light and near infrared light in the present specification mean light in this range.

また、ケース101内にはフォトディテクター104、105が設けられている。フォトディテクター104、105は、測定部位を挟んでLED103とは反対側のケース101内の位置に設けられている。フォトディテクター104、105は、プローブ部100が指に装着された際に、被検者の指の腹部分に当接する位置に配置される。   In the case 101, photodetectors 104 and 105 are provided. The photodetectors 104 and 105 are provided at positions in the case 101 opposite to the LED 103 with respect to the measurement site. The photodetectors 104 and 105 are disposed at positions abutted against the belly of the subject's finger when the probe unit 100 is attached to the finger.

図3Aに示すように、フォトディテクター104は、フォトダイオード104aと、透過光に含まれる赤色光(例えば、波長660[nm])を通過させるカラーフィルタ104bとから構成されている。また、図3Bに示すように、フォトディテクター105は、フォトダイオード105aと、透過光に含まれる近赤外光(例えば、波長940[nm])を通過させるカラーフィルタ105bとから構成されている。これにより、フォトディテクター104は測定部位の透過光に含まれる赤色光を検出するとともに、フォトディテクター105は測定部位の透過光に含まれる近赤外光を検出する。   As shown in FIG. 3A, the photodetector 104 is composed of a photodiode 104a and a color filter 104b that transmits red light (for example, a wavelength of 660 [nm]) contained in transmitted light. Further, as shown in FIG. 3B, the photodetector 105 is composed of a photodiode 105a and a color filter 105b for transmitting near infrared light (for example, wavelength 940 [nm]) contained in the transmitted light. Thus, the photodetector 104 detects red light contained in the transmitted light of the measurement site, and the photodetector 105 detects near infrared light contained in the transmitted light of the measurement site.

なお、フォトディテクター104、105は、図2に示したように指の長手方向に並んで配置されてもよく、指にプローブ部100を装着した状態において指先方向から見たプローブ部100の断面図である図4に示したように指の幅方向に並んで配置されてもよい。ただし、フォトディテクター104、105は、互いに隣接して配置されていることが好ましい。換言すれば、フォトディテクター104、105は、SpOの測定精度を考慮すると、ほぼ同じ経路の透過光を受光できる位置に設けられることが好ましい。 The photodetectors 104 and 105 may be arranged side by side in the longitudinal direction of the finger as shown in FIG. 2, and the cross-sectional view of the probe unit 100 seen from the fingertip direction in a state where the probe unit 100 is attached to the finger. It may be arranged side by side in the width direction of the finger as shown in FIG. However, it is preferable that the photodetectors 104 and 105 be disposed adjacent to each other. In other words, in consideration of the measurement accuracy of SpO 2 , it is preferable that the photodetectors 104 and 105 be provided at positions that can receive transmitted light of substantially the same path.

信号処理部203は、本体部200(図1)に設けられており、フォトディテクター104、105から赤色光の検出結果及び近赤外光の検出結果を入力し、この赤色光と近赤外光との比に基づいて酸素飽和度を算出する。なお、図2では、各フォトディテクター104、105から1本の線が出ているように示したが、実際には各フォトディテクター104、105からプラスとマイナスの線を含む複数の導線が出ている。   The signal processing unit 203 is provided in the main unit 200 (FIG. 1), receives the detection result of the red light and the detection result of the near infrared light from the photodetectors 104 and 105, and the red light and the near infrared light Calculate the oxygen saturation based on the ratio of In FIG. 2, it is shown that one line is emitted from each of the photodetectors 104 and 105, but actually, a plurality of conducting wires including plus and minus lines are emitted from each of the photodetectors 104 and 105. There is.

図5は、本実施の形態によるLED103の発光動作を示す図である。LED103は、1m秒の期間に赤色光と近赤外光とを同時に発光し、次の1m秒の期間は消灯するといった動作を繰り返す。勿論、例えば3m秒の期間に赤色光と近赤外光とを同時に発光し、次の3m秒の期間は消灯するといった動作を繰り返してもよい。また、SpOの測定が終了するまで赤色光と近赤外光とを同時に発光し続けてもよい。 FIG. 5 is a diagram showing the light emitting operation of the LED 103 according to the present embodiment. The LED 103 repeats the operation of simultaneously emitting red light and near-infrared light in a period of 1 ms and turning off the next period of 1 ms. Of course, for example, the red light and the near infrared light may be simultaneously emitted in a period of 3 msec, and the operation of extinguishing the next 3 msec may be repeated. Alternatively, the red light and the near infrared light may be continuously emitted at the same time until the measurement of SpO 2 is completed.

以上説明したように、本実施の形態によれば、赤色光及び近赤外光を同時に発光する発光部(LED103)と、測定部位を透過した発光部の光の透過光を受光し、当該透過光に含まれる赤色光を検出する第1のフォトディテクター104と、測定部位を透過した発光部の光の透過光を受光し、当該透過光に含まれる近赤外光を検出する第2のフォトディテクター105と、第1及び第2のフォトディテクター104、105の検出結果に基づいてSpOを得る信号処理部203と、を設けたので、各色の検出には遅延が生じないので測定精度が向上するとともに、赤色光と近赤外光を同時に発光させればよいので動作回路を簡単化し得る。 As described above, according to the present embodiment, the transmitted light of the light of the light emitting unit that transmits the red light and the near infrared light at the same time and the light emitting unit that has transmitted the measurement site is received, A first photo-detector 104 for detecting red light contained in the light, and a second photo for receiving transmitted light of light from the light emitting portion transmitted through the measurement site and detecting near-infrared light contained in the transmitted light Since the detector 105 and the signal processing unit 203 for obtaining SpO 2 based on the detection results of the first and second photodetectors 104 and 105 are provided, there is no delay in the detection of each color, so the measurement accuracy is improved. At the same time, the operation circuit can be simplified since red light and near infrared light may be emitted simultaneously.

上述の実施の形態は、本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することの無い範囲で、様々な形で実施することができる。   The above-described embodiment is merely an example of embodying the present invention, and the technical scope of the present invention should not be interpreted in a limited manner by these. That is, the present invention can be implemented in various forms without departing from the scope of the present invention or the main features thereof.

上述の実施の形態では、プローブ部100がケース101により構成されている場合について述べたが、本発明はこれに限らず、指に巻き付けるテープにより構成されているプローブにも適用可能である。この場合、図6に示すように、テープ300の内側(つまりテープ300を巻き付けたときに指に対向する面側)の所定位置にLED103及びフォトディテクター104、105を設ければよい。   Although the above-mentioned embodiment described the case where probe part 100 was constituted by case 101, the present invention is applicable not only to this but to the probe constituted by the tape wound around a finger. In this case, as shown in FIG. 6, the LED 103 and the photodetectors 104 and 105 may be provided at predetermined positions inside the tape 300 (that is, on the side facing the finger when the tape 300 is wound).

また、上述の実施の形態では、プローブ部100を指に装着するタイプのパルスオキシメータ10を例に説明したが、本発明は、プローブ部を足趾又は耳朶等の測定部位に装着するタイプのパルスオキシメータにも同様に適用可能である。   In the above embodiment, the pulse oximeter 10 of the type in which the probe unit 100 is attached to a finger is described as an example, but in the present invention, the probe unit is attached to a measurement site such as a foot or earlobe It is equally applicable to pulse oximeters.

また、上述の実施の形態では、プローブ部100と本体部200とが分かれた別体型のパルスオキシメータを例に取って説明したが、本発明はこれに限らず、一体型のパルスオキシメータに適用することもできる。   In the above-described embodiment, although the separate type pulse oximeter in which the probe unit 100 and the main body unit 200 are separated has been described as an example, the present invention is not limited to this, and an integrated pulse oximeter It can also be applied.

また、上述の実施の形態では、プローブ部100によって得られた検出信号をパルスオキシメータ10の信号処理部203に出力した場合について述べたが、プローブ部100により得られる検出信号を他の生体情報処理装置に出力してもよい。つまり、上述の実施の形態のプローブ部100はパルスオキシメータ以外にも適用可能である。例えば、プローブ部100により得られた検出信号を、光電脈波を測定する生体情報処理装置に出力してもよい。実際上、プローブ部100は、フォトディテクター104、105の検出結果を出力するケーブルやコネクタ等の出力部を有するので、この出力部を介して外部の生体情報処理装置に接続される。このようにすれば、プローブ部100は、生体情報測定用プローブとして広く用いることができる。   In the above embodiment, the case where the detection signal obtained by the probe unit 100 is output to the signal processing unit 203 of the pulse oximeter 10 has been described, but the detection signal obtained by the probe unit 100 is another biological information You may output to a processing apparatus. That is, the probe unit 100 of the above-described embodiment is applicable to devices other than the pulse oximeter. For example, the detection signal obtained by the probe unit 100 may be output to a biological information processing apparatus that measures a photoelectric pulse wave. In practice, the probe unit 100 has an output unit such as a cable or a connector for outputting the detection result of the photodetectors 104 and 105, and therefore, the probe unit 100 is connected to an external biological information processing apparatus via the output unit. In this way, the probe unit 100 can be widely used as a biological information measurement probe.

さらに、上述の実施の形態に加えて、赤色光を検出するフォトディテクター104のカラーフィルタ104bの通過帯域を、近赤外光を検出するフォトディテクター105のカラーフィルタ105bの通過帯域よりも広くすることが好ましい。以下、この点について説明する。図7は、一般的なフォトダイオードの感度特性を示したものである。図から分かるように、フォトダイオードの赤色光(660nm付近)に対する感度は、近赤外光(900nm付近)に対する感度よりも低い。これを考慮して、赤色光を検出するフォトディテクター104のカラーフィルタ104bの通過帯域を、近赤外光を検出するフォトディテクター105のカラーフィルタ105bの通過帯域よりも広くすることにより、赤色光に対する感度の悪さを補って、フォトダイオード104bでの検出精度をフォトダイオード105bでの検出精度と同程度とすることができ、最終的なSpOの測定精度を向上させることができるようになる。また、そもそも測定部位を透過する赤色光の透過率は測定部位を透過する近赤外光の透過率よりも小さいので、所望の光量を確保する点においても、赤色光を検出するフォトディテクター104のカラーフィルタ104bの通過帯域を、近赤外光を検出するフォトディテクター105のカラーフィルタ105bの通過帯域よりも広くすることは効果的である。 Furthermore, in addition to the above embodiment, the passband of the color filter 104b of the photodetector 104 for detecting red light is made wider than the passband of the color filter 105b of the photodetector 105 for detecting near infrared light. Is preferred. Hereinafter, this point will be described. FIG. 7 shows the sensitivity characteristics of a general photodiode. As can be seen from the figure, the sensitivity of the photodiode to red light (around 660 nm) is lower than the sensitivity to near infrared light (around 900 nm). Taking this into consideration, the passband of the color filter 104b of the photodetector 104 for detecting red light is made wider than the passband of the color filter 105b of the photodetector 105 for detecting near infrared light. By compensating for the poor sensitivity, the detection accuracy of the photodiode 104b can be made approximately the same as the detection accuracy of the photodiode 105b, and the measurement accuracy of the final SpO 2 can be improved. In addition, since the transmittance of red light transmitted through the measurement site is smaller than the transmittance of near-infrared light transmitted through the measurement site, the photodetector 104 for detecting red light also ensures the desired amount of light. It is effective to make the pass band of the color filter 104 b wider than the pass band of the color filter 105 b of the photodetector 105 that detects near-infrared light.

また、上述の実施の形態では、例えば図5に示したように、赤色光を発光させる場合には常に同時に近赤外光を発光させる場合について述べたが、必ずしも赤外光と近赤外光とを常に同時に発光させなくてもよい。例えば最初の1秒間は赤色光と近赤外光とを同時に発光させ、続く1秒間は赤色光のみを発光させるようにしてもよい。つまり、赤色光と近赤外光とを同時に発光させて測定を行う期間と、赤色光又は近赤外光のいずれか一方のみを発光させて測定を行う期間とを有していてもよい。要は赤色光と近赤外光とを同時に発光させる期間を有すればよい。   In the above embodiment, for example, as shown in FIG. 5, when emitting red light, near infrared light is always emitted at the same time. However, infrared light and near infrared light are not always required. And may not always emit light simultaneously. For example, red light and near infrared light may be emitted simultaneously for the first one second, and only red light may be emitted for the subsequent one second. That is, it may have a period in which measurement is performed by simultaneously emitting red light and near infrared light, and a period in which measurement is performed by emitting only either red light or near infrared light. The point is to have a period for simultaneously emitting red light and near infrared light.

本発明は、測定精度を向上し得、かつ、動作回路を簡単化し得るといった効果を得ることができ、例えば携帯型のパルスオキシメータに好適である。   The present invention can achieve the effects of improving measurement accuracy and simplifying the operation circuit, and is suitable for, for example, a portable pulse oximeter.

10 パルスオキシメータ
100 プローブ部
101 ケース
103 LED
104、105 フォトディテクター
104a、105a フォトダイオード
104b、105b カラーフィルタ
200 本体部
203 信号処理部
10 pulse oximeter 100 probe unit 101 case 103 LED
DESCRIPTION OF SYMBOLS 104, 105 Photodetector 104a, 105a Photodiode 104b, 105b Color filter 200 Main-body part 203 Signal processing part

Claims (3)

赤色光及び近赤外光を同時に発光する発光部と、
測定部位を透過した前記発光部の光の透過光を受光し、当該透過光に含まれる赤色光を検出する第1のフォトディテクターと、
測定部位を透過した前記発光部の光の透過光を受光し、当該透過光に含まれる近赤外光を検出する第2のフォトディテクターと、
前記第1及び第2のフォトディテクターの検出結果に基づいて、動脈血酸素飽和度を得る信号処理部と、
を具備するパルスオキシメータ。
A light emitting unit that simultaneously emits red light and near infrared light;
A first photodetector for receiving transmitted light of the light of the light emitting portion transmitted through the measurement site and detecting red light contained in the transmitted light;
A second photodetector which receives transmitted light of the light of the light emitting part transmitted through the measurement site and detects near infrared light contained in the transmitted light;
A signal processing unit for obtaining arterial blood oxygen saturation based on detection results of the first and second photodetectors;
Pulse oximeter equipped with.
前記第1のフォトディテクターは前記透過光に含まれる赤色光を通過させるカラーフィルタを有するとともに、前記第2のフォトディテクターは前記透過光に含まれる近赤外光を通過させるカラーフィルタを有し、
前記第1のフォトディテクターのカラーフィルタの通過帯域は、前記第2のフォトディテクターのカラーフィルタの通過帯域よりも広い、
請求項1に記載のパルスオキシメータ。
The first photodetector has a color filter for transmitting red light contained in the transmitted light, and the second photodetector has a color filter for transmitting near-infrared light contained in the transmitted light.
The passband of the color filter of the first photodetector is wider than the passband of the color filter of the second photodetector,
The pulse oximeter according to claim 1.
赤色光及び近赤外光を同時に発光する発光部と、
測定部位を透過した前記発光部の光の透過光を受光し、当該透過光に含まれる赤色光を検出する第1のフォトディテクターと、
測定部位を透過した前記発光部の光の透過光を受光し、当該透過光に含まれる近赤外光を検出する第2のフォトディテクターと、
前記第1及び第2のフォトディテクターの検出結果を出力する出力部と、
を具備する生体情報測定用プローブ。
A light emitting unit that simultaneously emits red light and near infrared light;
A first photodetector for receiving transmitted light of the light of the light emitting portion transmitted through the measurement site and detecting red light contained in the transmitted light;
A second photodetector which receives transmitted light of the light of the light emitting part transmitted through the measurement site and detects near infrared light contained in the transmitted light;
An output unit that outputs detection results of the first and second photodetectors;
A probe for measuring biological information comprising the
JP2017230651A 2017-11-30 2017-11-30 Pulse oximeter and probe for biological information measurement Pending JP2019097771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017230651A JP2019097771A (en) 2017-11-30 2017-11-30 Pulse oximeter and probe for biological information measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017230651A JP2019097771A (en) 2017-11-30 2017-11-30 Pulse oximeter and probe for biological information measurement

Publications (1)

Publication Number Publication Date
JP2019097771A true JP2019097771A (en) 2019-06-24

Family

ID=66974690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017230651A Pending JP2019097771A (en) 2017-11-30 2017-11-30 Pulse oximeter and probe for biological information measurement

Country Status (1)

Country Link
JP (1) JP2019097771A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502716A (en) * 2007-11-14 2011-01-27 コンメッド コーポレイション Pulsating biometric signal processing method and apparatus
JP2013118978A (en) * 2011-12-08 2013-06-17 Sony Corp Measuring device, measuring method, program and recording medium
WO2014041742A1 (en) * 2012-09-14 2014-03-20 パナソニック株式会社 Solid-state imaging device and camera module
WO2016156341A1 (en) * 2015-04-02 2016-10-06 Koninklijke Philips N.V. Optical analysis system and method
JP2017000742A (en) * 2015-06-04 2017-01-05 パナソニックIpマネジメント株式会社 Human body detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502716A (en) * 2007-11-14 2011-01-27 コンメッド コーポレイション Pulsating biometric signal processing method and apparatus
JP2013118978A (en) * 2011-12-08 2013-06-17 Sony Corp Measuring device, measuring method, program and recording medium
WO2014041742A1 (en) * 2012-09-14 2014-03-20 パナソニック株式会社 Solid-state imaging device and camera module
WO2016156341A1 (en) * 2015-04-02 2016-10-06 Koninklijke Philips N.V. Optical analysis system and method
JP2017000742A (en) * 2015-06-04 2017-01-05 パナソニックIpマネジメント株式会社 Human body detection device

Similar Documents

Publication Publication Date Title
US8346330B2 (en) Reflection-detector sensor position indicator
US8126525B2 (en) Probe and a method for use with a probe
KR20160088127A (en) Apparatus for detecting information of the living body
US20100240973A1 (en) Blood oximeter
US10631741B2 (en) Heart activity measurement
CN107847167B (en) The method of the vital sign of vital sign sensors and measurement user
JP6431697B2 (en) Wrist-mounted pulse oximeter
CN113197553A (en) Electronic device and biological information detection method
US11185243B2 (en) Sensor device
US10743802B2 (en) Probe
EP3534775B1 (en) Device for physiological parameter detection
JP2019097771A (en) Pulse oximeter and probe for biological information measurement
US20220240858A1 (en) Apparatus for measuring optical or physiological parameters in scattering media featuring an optical contact detector
US20070129617A1 (en) Light source drive algorithm
KR20170064906A (en) Apparatus and method for measuring bio-signal
JP2017023262A (en) probe
JP6530892B2 (en) Biological information display device
JP7091090B2 (en) Pulse oximeter and blood characteristic measuring device
JP6917852B2 (en) Biological information measurement device and pulse oximeter
WO2023103485A1 (en) Photodetector, ppg sensor and electronic device
JP2019130070A (en) Biological information measurement device
WO2018180375A1 (en) Biological information measurement device
CN117918836A (en) Non-invasive photoelectric reflection type physiological parameter measurement sensor and wearable device
WO2018142865A1 (en) Pulse measurement device, wearable device, and pulse measurement method
JP2002051996A (en) Pulsimeter

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220802