JP2019052984A - Method for analysis - Google Patents

Method for analysis Download PDF

Info

Publication number
JP2019052984A
JP2019052984A JP2017178422A JP2017178422A JP2019052984A JP 2019052984 A JP2019052984 A JP 2019052984A JP 2017178422 A JP2017178422 A JP 2017178422A JP 2017178422 A JP2017178422 A JP 2017178422A JP 2019052984 A JP2019052984 A JP 2019052984A
Authority
JP
Japan
Prior art keywords
antigen
gold nanoparticles
antibody
electrochemiluminescence
biomolecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017178422A
Other languages
Japanese (ja)
Other versions
JP6999158B2 (en
Inventor
民谷 栄一
Eiichi Tamiya
栄一 民谷
祐衣 東
Yui Azuma
祐衣 東
ジョイオツ マズムダル
Joyotu Mazumder
ジョイオツ マズムダル
裕毅 井上
Hiroki Inoue
裕毅 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2017178422A priority Critical patent/JP6999158B2/en
Publication of JP2019052984A publication Critical patent/JP2019052984A/en
Application granted granted Critical
Publication of JP6999158B2 publication Critical patent/JP6999158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method for analysis for generating such active oxygen species as hydrogen peroxide in an aqueous solution at room temperature without fixing gold nano-particles to a carrier.SOLUTION: The method includes: a first step of preparing gold nano-particles with first biological molecules on the surface and a solution containing second biological molecules, which specifically bind with the first biological molecules; and a second step of detecting active oxygen species generated in the solution.SELECTED DRAWING: Figure 1

Description

本発明は、抗原等の生体分子を定量的に検出する分析方法に関する。   The present invention relates to an analysis method for quantitatively detecting a biomolecule such as an antigen.

抗原の抗原決定基と抗体との特異的結合反応、および抗体または抗原に標識した酵素による呈色反応を組み合わせて用いる免疫学的測定法(イムノアッセイ)の一種として、ELISA法(Enzyme−Linked ImmunoSorbent Assay;酵素結合免疫吸着法)が知られている。ELISA法では、特異性の高い抗原抗体反応を利用し、酵素反応に基づく発色をシグナルに変換して測定するため、高感度で検出でき、定量性にも優れている。また、標識物質として放射性物質を用いる放射免疫測定(ラジオイムノアッセイ、RIA)に比べて安全性が高く、安価で簡便である。そのため、ELISA法は、抗体、インフルエンザウイルス、血漿タンパク質、サイトカイン、DNA、ペプチド、リガンドなどの生体関連物質;食品などに含まれる残留農薬や環境ホルモンなどの化学物質;糖尿病、癌などの診断に用いられる血糖、腫瘍マーカーなどの診断用物質など、様々な被験物質の検出や定量に汎用されている。   As a kind of immunoassay (immunoassay) using a specific binding reaction between an antigenic determinant of an antigen and an antibody and a color reaction by an enzyme labeled with the antibody or antigen, an ELISA method (Enzyme-Linked Immunosorbent Assay) is used. Enzyme-linked immunosorbent method) is known. In the ELISA method, a highly specific antigen-antibody reaction is used, and the color development based on the enzyme reaction is converted into a signal for measurement, so that it can be detected with high sensitivity and has excellent quantitativeness. Moreover, it is safer, cheaper and simpler than radioimmunoassay (radioimmunoassay, RIA) using a radioactive substance as a labeling substance. Therefore, the ELISA method is used for diagnosis of biological substances such as antibodies, influenza viruses, plasma proteins, cytokines, DNA, peptides, ligands; chemical substances such as residual agricultural chemicals and environmental hormones contained in foods; diabetes, cancer, etc. It is widely used for detection and quantification of various test substances such as blood glucose and diagnostic substances such as tumor markers.

ELISA法は、酵素標識抗体などによって発色した色素を、比色計を用いて分光測定するものであるが、分光測定には回折格子、光学フィルター、高感度検出器など複数の装置が必要であり、装置が大型化し、高価であるという問題がある。   The ELISA method uses a colorimeter to spectroscopically measure a dye colored by an enzyme-labeled antibody or the like, but the spectroscopic measurement requires multiple devices such as a diffraction grating, an optical filter, and a high-sensitivity detector. There is a problem that the apparatus becomes large and expensive.

そこで、ELISA法に適用可能であり、従来の分光測定法に代替し得る新規な検出技術として、例えば、走査光源による導波管に基づく光学的検出システム(特許文献1)、円盤型分析チップ(特許文献2)、光導波路型抗体チップ(特許文献3)などが提案されている。   Therefore, as a novel detection technique that can be applied to the ELISA method and can be substituted for the conventional spectroscopic measurement method, for example, an optical detection system based on a waveguide using a scanning light source (Patent Document 1), a disk-type analysis chip ( Patent Document 2), an optical waveguide type antibody chip (Patent Document 3), and the like have been proposed.

特表2012−525595号公報Special table 2012-525595 gazette 特開2012−215515号公報JP 2012-215515 A 特開2008−224524号公報JP 2008-224524 A

上述したようにELISA法は、抗原抗体反応と標識酵素を利用し、微量の被験物質を定量的に検出、分析可能な手段として極めて有用である。しかし、酵素反応に基づく発色物質の吸光度の測定は、溶媒のpHや温度等による影響を受けやすく取扱いが難しいことなどの課題があり、また測定時間が長いという問題を抱えている。   As described above, the ELISA method is extremely useful as a means capable of quantitatively detecting and analyzing a trace amount of a test substance using an antigen-antibody reaction and a labeling enzyme. However, the measurement of the absorbance of the color-developing substance based on the enzyme reaction has problems such as being easily affected by the pH and temperature of the solvent and difficult to handle, and has a problem that the measurement time is long.

上記の問題は、ELISA法などのイムノアッセイに限定されず、酵素反応によって生成する発色物質の吸光度を測定してグルコースなどの被験物質を検出する方法(酵素を用いるという意味で、広義の酵素アッセイに含まれる。)においても同様に見られる。   The above problem is not limited to immunoassays such as ELISA, but a method for detecting a test substance such as glucose by measuring the absorbance of a chromogenic substance produced by an enzyme reaction (in the sense that an enzyme is used, in a broad sense enzyme assay) In the same manner).

本発明は上記事情に鑑みてなされたものであり、その目的は、抗原等の生体分子を定量的に検出する方法にあたり、該生体分子を迅速且つ感度良く定量的に検出可能な方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for quantitatively detecting a biomolecule such as an antigen, and a method capable of quantitatively detecting the biomolecule quickly and with high sensitivity. There is.

上記課題を解決し得た本発明の方法は、表面に第1の生体分子が形成されている金ナノ粒子と、前記第1の生体分子と特異的結合をする第2の生体分子を含む溶液とを準備する第1ステップと、前記溶液中で発生する活性酸素種を検出する第2ステップと、を含む点に特徴を有する。   The method of the present invention that has solved the above problem is a solution containing gold nanoparticles having a first biomolecule formed on the surface and a second biomolecule that specifically binds to the first biomolecule. And a second step of detecting active oxygen species generated in the solution.

本発明の方法において、前記第1の生体分子が抗体であり、前記第2の生体分子が抗原であることが好ましい。   In the method of the present invention, it is preferable that the first biomolecule is an antibody and the second biomolecule is an antigen.

本発明の方法において、前記抗原が、反応容器に固定されていることが好ましく、また、一部の金ナノ粒子が前記抗原に結合されており、他の一部の金ナノ粒子が前記抗原に結合されておらず、前記第1ステップと前記第2ステップとの間に、前記抗原に結合されていない金ナノ粒子を除去するステップを含むことが好ましい。   In the method of the present invention, the antigen is preferably immobilized on a reaction vessel, and some gold nanoparticles are bound to the antigen, and some other gold nanoparticles are bound to the antigen. It is preferable to include a step of removing gold nanoparticles that are not bound and are not bound to the antigen between the first step and the second step.

本発明の方法において、前記溶液が、アミノ基及びヒドロキシ基を有する化合物を含むことが好ましく、前記化合物が、トリスヒドロキシメチルアミノメタン、トリ(ヒドロキシメチル)メチルグリシン、及びトリス(ヒドロキシメチル)メチル−3−アミノプロパンスルフォン酸から選択される少なくとも1つであることが好ましい。   In the method of the present invention, the solution preferably contains a compound having an amino group and a hydroxy group, and the compound contains trishydroxymethylaminomethane, tri (hydroxymethyl) methylglycine, and tris (hydroxymethyl) methyl- It is preferably at least one selected from 3-aminopropanesulfonic acid.

本発明の方法において、前記溶液に対する前記化合物の濃度が1mM以上であることが好ましく、また、前記溶液のpH濃度が8以上であることが好ましい。   In the method of the present invention, the concentration of the compound with respect to the solution is preferably 1 mM or more, and the pH concentration of the solution is preferably 8 or more.

本発明の方法において、前記金ナノ粒子の粒径が1nm以上であることが好ましい。   In the method of the present invention, the gold nanoparticles preferably have a particle size of 1 nm or more.

本発明の方法において、前記第2ステップがルミノールを用いた電気化学発光法により行うことが好ましく、また、ペルオキシターゼを用いた蛍光法により行うことが好ましい。   In the method of the present invention, the second step is preferably performed by an electrochemiluminescence method using luminol, and is preferably performed by a fluorescence method using peroxidase.

また、上記課題を解決し得た本発明の活性酸素種の製造方法は、金ナノ粒子にアミノ基及びヒドロキシ基を有する化合物を混合する点に特徴を有する。   In addition, the method for producing reactive oxygen species of the present invention that has solved the above-described problems is characterized in that gold nanoparticles are mixed with a compound having an amino group and a hydroxy group.

本発明の方法によれば、金ナノ粒子を担体に固定することなく室温、水溶液中で過酸化水素等の活性酸素種を生成し、検出することができることから、被験物質を迅速且つ感度良く定量的に検出することができる。   According to the method of the present invention, active oxygen species such as hydrogen peroxide can be generated and detected in an aqueous solution at room temperature without immobilizing gold nanoparticles on a carrier. Can be detected automatically.

本発明の実施の形態に係る方法の概要図である。It is a schematic diagram of the method concerning an embodiment of the invention. 本発明の実施の形態に係る抗原抗体反応イメージ図である。It is an antigen antibody reaction image figure concerning an embodiment of the invention. 本発明の実施の形態に係る電気化学発光法の発光原理と装置の概念図である。1 is a conceptual diagram of a light emission principle and apparatus of an electrochemiluminescence method according to an embodiment of the present invention. 本発明の実施の形態に係る蛍光法の発光原理の概念図である。It is a conceptual diagram of the light emission principle of the fluorescence method which concerns on embodiment of this invention. 本発明の実施の形態に係る金ナノ粒子濃度に伴う電気化学発光強度の経時変化を示した図である。It is the figure which showed the time-dependent change of the electrochemiluminescence intensity accompanying the gold nanoparticle density | concentration which concerns on embodiment of this invention. 本発明の実施の形態に係るTris溶媒濃度に伴う電気化学発光強度の経時変化を示した図である。It is the figure which showed the time-dependent change of the electrochemiluminescence intensity accompanying the Tris solvent density | concentration which concerns on embodiment of this invention. 本発明の実施の形態に係る溶媒構造の相違による電気化学発光強度の経時変化を示した図である。It is the figure which showed the time-dependent change of the electrochemiluminescence intensity by the difference in the solvent structure which concerns on embodiment of this invention. 本発明の実施の形態に係る種々の溶媒における電気化学発光強度の経時変化を示した図である。It is the figure which showed the time-dependent change of the electrochemiluminescence intensity | strength in the various solvent which concerns on embodiment of this invention. 本発明の実施の形態に係る種々の溶媒における電気化学発光強度の経時変化を示した図である。It is the figure which showed the time-dependent change of the electrochemiluminescence intensity | strength in the various solvent which concerns on embodiment of this invention. 本発明の実施の形態に係る種々の溶媒のpH濃度相違による電気化学発光強度を示した図である。It is the figure which showed the electrochemiluminescence intensity by the pH concentration difference of the various solvent which concerns on embodiment of this invention. 本発明の実施の形態に係る金ナノ粒子の粒径相違による電気化学発光強度を示した図である。It is the figure which showed the electrochemiluminescence intensity by the particle size difference of the gold nanoparticle which concerns on embodiment of this invention. 本発明の実施の形態に係る残留酸素による電気化学発光強度を示した図である。It is the figure which showed the electrochemiluminescence intensity | strength by the residual oxygen which concerns on embodiment of this invention. 本発明の実施の形態に係る窒素置換前後における電気化学発光強度を示した図である。It is the figure which showed the electrochemiluminescence intensity before and behind nitrogen substitution which concerns on embodiment of this invention. 本発明の実施の形態に係る金ナノ粒子の表面状態相違による電気化学発光強度を示した図である。It is the figure which showed the electrochemiluminescence intensity | strength by the surface state difference of the gold nanoparticle which concerns on embodiment of this invention. 本発明の実施の形態に係る蛍光法を用いた場合の蛍光強度を示した図である。It is the figure which showed the fluorescence intensity at the time of using the fluorescence method which concerns on embodiment of this invention. 本発明の実施の形態に係る抗原抗体反応を行った場合の電気化学発光強度を示した図である。It is the figure which showed the electrochemiluminescence intensity at the time of performing the antigen antibody reaction which concerns on embodiment of this invention.

本発明者らは、従来知られている金ナノ粒子の触媒活性に基づき、金ナノ粒子を担体に固定することなく、室温、水溶液中で過酸化水素等の活性酸素種を生成するための反応条件を種々検討した結果、当該水溶液中において時間経過と共に活性酸素種を生成する方法を見出した。また、この触媒反応に関して、活性酸素種が明所、暗所にかかわらず室温状況下で発現することも見出した。これにより、表面に第1の生体分子が形成されている金ナノ粒子と、該第1の生体分子と特異的結合をする第2の生体分子を含む溶液の中で発生する活性酸素種を、該第2の生体分子の量に応じて定量的に検出することが可能となった。本発明の方法により、従来、酵素や蛍光材料等の標識材を用いて生体分析を行っていたものに代わり、金ナノ粒子の触媒活性を活用することが可能となり、例えば蛍光や発光を用いた高感度な分析方法等に用いることができる。   Based on the known catalytic activity of gold nanoparticles, the present inventors have developed a reaction for generating reactive oxygen species such as hydrogen peroxide in an aqueous solution at room temperature without fixing the gold nanoparticles to a support. As a result of various examinations of conditions, a method for generating reactive oxygen species with time in the aqueous solution was found. In addition, regarding this catalytic reaction, it has also been found that active oxygen species are expressed under room temperature conditions regardless of whether they are light or dark. Thereby, the reactive oxygen species generated in the solution containing the gold nanoparticle on which the first biomolecule is formed on the surface and the second biomolecule that specifically binds to the first biomolecule, It became possible to detect quantitatively according to the amount of the second biomolecule. According to the method of the present invention, it is possible to utilize the catalytic activity of gold nanoparticles instead of the conventional bioanalysis using a labeling material such as an enzyme or a fluorescent material. For example, fluorescence or luminescence is used. It can be used for highly sensitive analysis methods.

本発明の方法は、表面に第1の生体分子が形成されている金ナノ粒子と、前記第1の生体分子と特異的結合をする第2の生体分子を含む溶液とを準備する第1ステップと、前記溶液中で発生する活性酸素種を検出する第2ステップと、を含む。本発明の方法は、従来のように、金ナノ粒子の触媒活性が担体との相乗効果により出現するものではなく、室温、水溶液中で過酸化水素等の活性酸素種を生成する触媒反応に基づくものである。したがって、従来のように、安定したナノクラスターを生成するための高度な技術を必要としない。具体的には、金ナノ粒子単体の粒径を2nm程度まで制御する必要がなく、室温、水溶液中で容易に過酸化水素等の活性酸素種を生成することができる。ここで、本明細書で記載する「ナノ粒子」とは、物質をナノメートルのオーダー(1nm以上1000nm未満)の粒子にしたものである。また、本明細書で記載する「活性酸素種」とは、大気中に含まれる酸素分子がより反応性の高い化合物に変化したものの総称であり、一般的に、スーパーオキシドアニオンラジカル(通称スーパーオキシド)、ヒドロキシルラジカル、過酸化水素、一重項酸素の4種類とされるものである。   The method of the present invention provides a first step of preparing a gold nanoparticle having a first biomolecule formed on a surface thereof, and a solution containing a second biomolecule that specifically binds to the first biomolecule. And a second step of detecting active oxygen species generated in the solution. The method of the present invention is based on a catalytic reaction in which the catalytic activity of gold nanoparticles does not appear due to a synergistic effect with the carrier as in the prior art, and generates active oxygen species such as hydrogen peroxide in an aqueous solution at room temperature. Is. Therefore, it does not require an advanced technique for generating stable nanoclusters as in the prior art. Specifically, it is not necessary to control the particle size of the gold nanoparticle alone to about 2 nm, and active oxygen species such as hydrogen peroxide can be easily generated in an aqueous solution at room temperature. Here, the “nanoparticle” described in the present specification is a substance obtained by making a substance into a nanometer order particle (1 nm or more and less than 1000 nm). In addition, “active oxygen species” described in the present specification is a general term for a compound in which oxygen molecules contained in the atmosphere are changed to a more reactive compound, and is generally a superoxide anion radical (commonly referred to as a superoxide radical). ), Hydroxyl radical, hydrogen peroxide, and singlet oxygen.

本発明の活性酸素種の製造方法は、金ナノ粒子にアミノ基及びヒドロキシ基を有する化合物を混合する点に特徴を有する。本発明の製造方法によれば、金ナノ粒子にアミノ基及びヒドロキシ基を有する化合物を混合する操作を行うことにより、比較的容易に活性酸素種を生成することができる。   The method for producing reactive oxygen species of the present invention is characterized in that a compound having an amino group and a hydroxy group is mixed with gold nanoparticles. According to the production method of the present invention, reactive oxygen species can be generated relatively easily by performing an operation of mixing a compound having an amino group and a hydroxy group into gold nanoparticles.

なお、本発明における第1生体分子と第2生体分子は特異的結合をすることに特徴を有するものであり、第1生体分子と第2生体分子との結合する部位が決まっており、選択的または特異的に高い親和性を発揮するものである。具体的には、例えば、第1生体分子が
抗体、第2生体分子が抗原である抗原−抗体反応を挙げることができる。また、他の例としては、酵素タンパク質とその基質、ホルモンや神経伝達物質等のシグナル物質とその受容体等のような組み合わせで代表される特定の受容体(レセプター)と特異的に結合するリガンド、特定のDNA−DNA、特定のDNA−RNA等がある。本明細書の実施の形態では、第1生体分子として抗体,第2生体分子として抗原を例にして、以下説明するが、本発明はこれに限定する趣旨ではない。
Note that the first biomolecule and the second biomolecule in the present invention are characterized by specific binding, and the site where the first biomolecule and the second biomolecule are bound is determined, so that it can be selectively used. Alternatively, it exhibits a particularly high affinity. Specific examples include an antigen-antibody reaction in which the first biomolecule is an antibody and the second biomolecule is an antigen. As another example, a ligand that specifically binds to a specific receptor (receptor) represented by a combination such as an enzyme protein and its substrate, a signal substance such as a hormone or neurotransmitter and its receptor, etc. Specific DNA-DNA, specific DNA-RNA, and the like. In the embodiment of the present specification, an antibody is used as the first biomolecule and an antigen is used as the second biomolecule as an example. However, the present invention is not limited to this.

図1に本発明方法の概要図を示す。本発明の第1ステップでは、表面に第1の生体分子である抗体が形成されている金ナノ粒子と、該第1の生体分子と特異的結合をする第2の生体分子である抗原を含む溶液を準備する。続いて第2ステップでは、第1ステップで準備された金ナノ粒子に前記溶液を加えることで、第1の生体分子と第2の生体分子が特異的結合をする。この特異的結合において前記溶液中で活性酸素種が発生し、第2ステップではこの活性酸素種を検出する。   FIG. 1 shows a schematic diagram of the method of the present invention. In the first step of the present invention, a gold nanoparticle having an antibody as a first biomolecule formed on the surface and an antigen as a second biomolecule that specifically binds to the first biomolecule are included. Prepare the solution. Subsequently, in the second step, the first biomolecule and the second biomolecule are specifically bound by adding the solution to the gold nanoparticles prepared in the first step. In this specific binding, reactive oxygen species are generated in the solution, and this reactive oxygen species is detected in the second step.

次に、本発明の方法について、第1の生体分子を抗体、第2の生体分子を抗原とした場合を例にして、抗原抗体反応のイメージ図を用いて詳細に説明する。図2(a)〜図2(f)は、本発明における抗原抗体反応イメージ図である。図2(a)〜図2(e)は本発明の第1ステップ、図2(f)は本発明の第2ステップをそれぞれ説明したものである。   Next, the method of the present invention will be described in detail with reference to an image diagram of an antigen-antibody reaction, taking as an example the case where the first biomolecule is an antibody and the second biomolecule is an antigen. Fig.2 (a)-FIG.2 (f) are the antigen antibody reaction image diagrams in this invention. 2A to 2E illustrate the first step of the present invention, and FIG. 2F illustrates the second step of the present invention.

図2(a)に示すように、反応容器(図示せず)内において磁性粒子1に抗体2を結合させた後、図2(b)に示すように、抗原3を含む溶液を反応容器に加えることで、磁性粒子1の表面に形成された抗体2と抗原3との抗原抗体反応が起こり、該抗体2に該抗原3を結合させる。次に、図2(c)に示すように、抗体2、及び抗原3が結合した磁性粒子1を磁石4により所定の箇所に集めて洗浄する。このようにすることで、抗体2と結合する抗原3のみを残し、磁性粒子1の表面等に付着している抗原3(抗体2と結合しない未反応の抗原3)を除去することができる。次に、図2(d)に示すように、表面に抗体2が形成されている金ナノ粒子5を加える。このようにすることで、金ナノ粒子5の表面に形成された抗体2と、磁性粒子1の表面に形成された抗体2に結合した抗原3との抗原抗体反応が起こり、金ナノ粒子5の表面に形成された抗体2と該抗原3を結合させる。次に、図2(e)に示すように、磁性粒子1、抗原2、金ナノ粒子5を磁石4により所定の箇所に集めて洗浄する。このようにすることで、磁性粒子1の抗体2と結合する抗原3に対して特異的結合する金ナノ粒子5のみを残し、抗原3に対して結合していない余剰の金ナノ粒子5を除去することができる。次に、図2(f)に示すように、金ナノ粒子5に対して電子供与性、及び親水性を付与する溶液6を加えることにより、金ナノ粒子5の表面が電子リッチな状態になり、金ナノ粒子5の触媒作用により活性酸素種の過酸化水素7が発生する。この過酸化水素7に発光物質であるルミノール8を加えると、ルミノール8が励起状態となり、この励起状態から基底状態に戻る際に発光現象が起こる。本発明では、この発光現象に基づき、印刷電極9にルミノール8を滴下して抗原濃度の変化に伴う電気化学発光強度の変化を求めることにより、金ナノ粒子5の触媒活性を用いた抗原抗体反応に要する抗原量を定量することができる。   As shown in FIG. 2A, after binding the antibody 2 to the magnetic particles 1 in a reaction vessel (not shown), the solution containing the antigen 3 is put in the reaction vessel as shown in FIG. 2B. In addition, an antigen-antibody reaction between the antibody 2 formed on the surface of the magnetic particle 1 and the antigen 3 occurs, and the antigen 3 is bound to the antibody 2. Next, as shown in FIG. 2C, the magnetic particles 1 to which the antibody 2 and the antigen 3 are bound are collected by a magnet 4 at a predetermined location and washed. By doing so, only the antigen 3 that binds to the antibody 2 is left, and the antigen 3 (unreacted antigen 3 that does not bind to the antibody 2) attached to the surface of the magnetic particle 1 or the like can be removed. Next, as shown in FIG. 2 (d), gold nanoparticles 5 on which antibody 2 is formed on the surface are added. By doing so, an antigen-antibody reaction occurs between the antibody 2 formed on the surface of the gold nanoparticle 5 and the antigen 3 bound to the antibody 2 formed on the surface of the magnetic particle 1. The antibody 2 formed on the surface is bound to the antigen 3. Next, as shown in FIG. 2 (e), the magnetic particles 1, the antigens 2, and the gold nanoparticles 5 are collected at predetermined locations by the magnet 4 and washed. By doing so, only the gold nanoparticles 5 that specifically bind to the antigen 3 that binds to the antibody 2 of the magnetic particle 1 are left, and the excess gold nanoparticles 5 that are not bound to the antigen 3 are removed. can do. Next, as shown in FIG. 2 (f), the surface of the gold nanoparticle 5 becomes electron-rich by adding a solution 6 that imparts electron donating properties and hydrophilicity to the gold nanoparticle 5. The active oxygen species hydrogen peroxide 7 is generated by the catalytic action of the gold nanoparticles 5. When luminol 8, which is a luminescent substance, is added to hydrogen peroxide 7, luminol 8 enters an excited state, and a light emission phenomenon occurs when the excited state returns to the ground state. In the present invention, based on this luminescence phenomenon, luminol 8 is dropped on the printed electrode 9 to determine the change in the electrochemiluminescence intensity accompanying the change in the antigen concentration, whereby the antigen-antibody reaction using the catalytic activity of the gold nanoparticles 5 is obtained. The amount of antigen required for quantification can be quantified.

本発明の実施の形態において、抗原3が反応容器に固定されていることが好ましい。すなわち、本発明において、一部の金ナノ粒子5が容器に固定されている抗原3に結合されており、他の一部の金ナノ粒子5が前記抗原3に結合されておらず、第1ステップと第2ステップとの間に、抗原3に結合されていない金ナノ粒子5を除去するステップを含んでもよい。このように構成することで、抗原3と結合しない余剰の金ナノ粒子5を容器外へ除去して、抗原3と結合する金ナノ粒子5のみを容器内に残し、実際の抗原抗体反応を起こす抗原3の量を定量することができる。抗原3に結合されていない金ナノ粒子5を除去するステップとは、具体的には、溶液6中で浮遊する金ナノ粒子5を洗浄水にて洗浄し、反応容器外に排出するようにすればよい。   In the embodiment of the present invention, the antigen 3 is preferably fixed to the reaction vessel. That is, in the present invention, some of the gold nanoparticles 5 are bound to the antigen 3 fixed to the container, and the other part of the gold nanoparticles 5 are not bound to the antigen 3, Between the step and the second step, a step of removing the gold nanoparticles 5 not bound to the antigen 3 may be included. By configuring in this way, excess gold nanoparticles 5 that do not bind to the antigen 3 are removed to the outside of the container, leaving only the gold nanoparticles 5 that bind to the antigen 3 in the container, thereby causing an actual antigen-antibody reaction. The amount of antigen 3 can be quantified. Specifically, the step of removing the gold nanoparticles 5 not bound to the antigen 3 is performed by washing the gold nanoparticles 5 floating in the solution 6 with washing water and discharging them to the outside of the reaction vessel. That's fine.

また、本発明の実施の形態において、抗体2が二種類存在してもよい。すなわち、本発明において、予め抗原3を捕獲するための抗体(以下、抗体2Aという)を存在させておき、該抗体2Aに対して抗原3を添加して抗原抗体反応により該抗体2Aと該抗原3を結合させ、次に、抗体2Aとは異なる抗体(以下、抗体2Bという)を添加して、前記抗原抗体反応とは異なる部位で反応させてもよい。このようにすることで、抗体2A−抗原3−抗体2Bのサンドイッチ構造が形成され、二種類の抗体2A、抗体2Bを用いて抗原3を検出することができることから、一種類の抗体2を用いて検出する方法よりも特異性が高くなり、検出感度をより一層向上させることができる。   In the embodiment of the present invention, two types of antibodies 2 may exist. That is, in the present invention, an antibody for capturing antigen 3 (hereinafter referred to as antibody 2A) is present in advance, antigen 3 is added to antibody 2A, and antibody 2A and antigen are reacted by antigen-antibody reaction. Then, an antibody different from antibody 2A (hereinafter referred to as antibody 2B) may be added, and reacted at a site different from the antigen-antibody reaction. In this way, a sandwich structure of antibody 2A-antigen 3-antibody 2B is formed, and antigen 3 can be detected using two types of antibodies 2A and 2B. Therefore, one type of antibody 2 is used. Thus, the specificity is higher than the detection method and the detection sensitivity can be further improved.

また、本発明の実施の形態において、磁性粒子1に抗体2を結合させることと、金ナノ粒子5の表面に抗体2を結合させることをそれぞれ並行して行った後、両者を同一の容器に入れて抗原3を加えることで、磁性粒子1に結合した抗体2と抗原3、金ナノ粒子5に結合した抗体2と抗原3の各々の抗原抗体反応を同時に発生させるようにしてもよい。このようにすることで、前記抗原抗体反応に関与しない余剰の抗原3の量を抑えることができ、磁性粒子1の表面等に付着して抗体2と結合しない未反応の抗原3や、抗原3に対して結合していない余剰の金ナノ粒子5を減少させることができる。   In the embodiment of the present invention, the antibody 2 is bound to the magnetic particle 1 and the antibody 2 is bound to the surface of the gold nanoparticle 5 in parallel. By adding the antigen 3 and adding the antigen 3, the antigen-antibody reaction of the antibody 2 and the antigen 3 bound to the magnetic particle 1 and the antibody 2 and the antigen 3 bound to the gold nanoparticle 5 may be simultaneously generated. By doing so, the amount of surplus antigen 3 not involved in the antigen-antibody reaction can be suppressed, and the unreacted antigen 3 that adheres to the surface of the magnetic particles 1 and does not bind to the antibody 2 or antigen 3 It is possible to reduce the excess gold nanoparticles 5 that are not bonded to.

以下、本発明の実施の形態に係る各構成要素について説明する。   Hereinafter, each component according to the embodiment of the present invention will be described.

金ナノ粒子5は、公知のクエン酸還元法により作製することができる。金ナノ粒子5の粒径は、200nm以下が好ましく、150nm以下がより好ましく、100nm以下がよりさらに好ましく、1nm以上が好ましく、2nm以上がより好ましく、5nm以上がよりさらに好ましい、粒径が小さいほど金ナノ粒子5の表面における触媒作用を高めることができ、金ナノ粒子5表面から発生する過酸化水素7の量を増加させることができる。   The gold nanoparticles 5 can be prepared by a known citrate reduction method. The particle size of the gold nanoparticles 5 is preferably 200 nm or less, more preferably 150 nm or less, still more preferably 100 nm or less, more preferably 1 nm or more, more preferably 2 nm or more, and even more preferably 5 nm or more. The catalytic action on the surface of the gold nanoparticle 5 can be enhanced, and the amount of hydrogen peroxide 7 generated from the surface of the gold nanoparticle 5 can be increased.

磁性粒子1は、均一粒子径のポリマーコア粒子に超常磁性体層を導入した構造のものを用いることができる。このような構造のものを用いることで、磁場によるB/F分離[抗原抗体複合体を形成している結合型(B:Bound)と抗原抗体複合体を形成していない遊離型(F:Free)とに分離すること]、及び磁場を取り除いた後の再分散が容易であるという必要性から残留磁気をなくすことができる。   The magnetic particles 1 may have a structure in which a superparamagnetic layer is introduced into polymer core particles having a uniform particle size. By using a structure having such a structure, B / F separation by a magnetic field [a binding type forming an antigen-antibody complex (B: Bound) and a free type not forming an antigen-antibody complex (F: Free) ) And the need for easy redispersion after removing the magnetic field, the residual magnetism can be eliminated.

溶液6は、金ナノ粒子5表面より活性酸素種を発生できるものを用いる。具体的には、アミノ基及びヒドロキシ基を有する化合物を含むものを用いることが好ましい。アミノ基及びヒドロキシ基を含むことにより、結果的に、酸素から活性酸素種を生成する触媒活性を発現するための反応場(酸素が結合し、中間状態への安定化と活性酸素種の生成物への変換が行われる場)を提供することができるものと推察される。   As the solution 6, a solution capable of generating active oxygen species from the surface of the gold nanoparticle 5 is used. Specifically, it is preferable to use a compound containing a compound having an amino group and a hydroxy group. By including an amino group and a hydroxy group, as a result, a reaction field for expressing a catalytic activity to generate reactive oxygen species from oxygen (oxygen is bonded, stabilization to an intermediate state, and a product of reactive oxygen species It is surmised that it is possible to provide a place where conversion to

本発明の方法に用いることができる溶液6の溶媒の一例を下記[化1]〜[化14]に示す。アミノ基及びヒドロキシ基を有する化合物を含むものとして、トリスヒドロキシメチルアミノメタン、トリ(ヒドロキシメチル)メチルグリシン、及びトリス(ヒドロキシメチル)メチル−3−アミノプロパンスルフォン酸、グリシン、グリシンアミド、2−アミノ−2−メチル−1−プロパノール、2−アミノ−2メチル−1,3−プロパンジオール、4−(2−ヒドロキシエチル)−1−ピペラジンエタンスルフォン酸、ビス−トリスメタン、ピペラジン−N,N―ビス(2−エタンスルフォン酸)、4−(2−ヒドロキシエチル)−1−ピペラジンプロパンスルフォン酸、ビス−トリスプロパン、トリエタノールアミン、2−[1,3−ジヒドロキシ−2−(ヒドロキシメチル)プロパン−2−アミノ]エタンスルフォン酸が良い。特に、トリスヒドロキシメチルアミノメタン(以下、Trisという)、トリ(ヒドロキシメチル)メチルグリシン(以下、Tricineという)、及びトリス(ヒドロキシメチル)メチル−3−アミノプロパンスルフォン酸(以下
、TAPSという)から選択される少なくとも1つを用いることがより好ましい。
Examples of the solvent of the solution 6 that can be used in the method of the present invention are shown in the following [Chemical Formula 1] to [Chemical Formula 14]. Trishydroxymethylaminomethane, tri (hydroxymethyl) methylglycine, and tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid, glycine, glycinamide, 2-amino include compounds having an amino group and a hydroxy group 2-methyl-1-propanol, 2-amino-2methyl-1,3-propanediol, 4- (2-hydroxyethyl) -1-piperazine ethanesulfonic acid, bis-trismethane, piperazine-N, N-bis (2-ethanesulfonic acid), 4- (2-hydroxyethyl) -1-piperazinepropanesulfonic acid, bis-trispropane, triethanolamine, 2- [1,3-dihydroxy-2- (hydroxymethyl) propane- 2-Amino] ethanesulfonic acid is preferred. In particular, selected from trishydroxymethylaminomethane (hereinafter referred to as Tris), tri (hydroxymethyl) methylglycine (hereinafter referred to as Tricine), and tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (hereinafter referred to as TAPS) More preferably, at least one of the above is used.

溶液6に対する化合物の濃度は1mM以上であることが好ましく、5mM以上であることがより好ましく、10mM以上であることがさらに好ましく、50mM以上であることがよりさらに好ましい。当該濃度が1mM以上であれば、時間経過に伴う活性酸素種の発生量を増加させることができる。   The concentration of the compound with respect to the solution 6 is preferably 1 mM or more, more preferably 5 mM or more, further preferably 10 mM or more, and further preferably 50 mM or more. If the said density | concentration is 1 mM or more, the generation amount of the reactive oxygen species with time passage can be increased.

溶液6のpH濃度は8以上であることが好ましく、10以上であることがより好ましく、12以上であることがさらに好ましい。溶液のpH濃度が大きいほど活性酸素種の発生量を増加させることができる。   The pH concentration of the solution 6 is preferably 8 or more, more preferably 10 or more, and further preferably 12 or more. The amount of active oxygen species generated can be increased as the pH concentration of the solution increases.

第2ステップにおいて、溶液6で発生する過酸化水素7を検出する方法として、ルミノールを用いた電気化学発光法や、ペルオキシターゼを用いた蛍光法が好ましい。   In the second step, as a method for detecting the hydrogen peroxide 7 generated in the solution 6, an electrochemiluminescence method using luminol or a fluorescence method using peroxidase is preferable.

図3に電気化学発光法の発光原理と装置の概念図を示す。図3(a)は全体図、図3(b)は、(a)の点線部の拡大図である。電気化学発光法は電圧を印可することで酸化されたルミノールが過酸化水素等の活性酸素種と化学反応し、励起状態から基底状態に戻る際に発光する光をコンピュータに接続した光増幅器(フォトマルチプライヤーチューブ)で測定を行う方法である。この方法は、高い感度や実用性などに加え電極に印刷電極を用いることで少量のサンプルで計測が可能になるという利点を有する。   FIG. 3 shows a light emission principle of the electrochemiluminescence method and a conceptual diagram of the apparatus. FIG. 3A is an overall view, and FIG. 3B is an enlarged view of a dotted line portion in FIG. The electrochemiluminescence method is an optical amplifier (photophotograph) in which light emitted when a luminol oxidized by applying a voltage chemically reacts with active oxygen species such as hydrogen peroxide and returns to the ground state from an excited state is connected to a computer. This is a method of measuring with a multiplier tube. In addition to high sensitivity and practicality, this method has an advantage that measurement can be performed with a small amount of sample by using a printed electrode as an electrode.

図4に、蛍光法の発光原理を示す。蛍光法は、過酸化水素存在下でAmplite(基質)がペルオキシターゼ(酵素)によって酵素反応し、この酵素反応後のAmplite
TM Redに540nmの光を照射すると590nmの蛍光を発することを利用して、この蛍光値を測定するものである。当該蛍光値により、物質内に過酸化水素がどの程度含まれているかがわかる。
FIG. 4 shows the light emission principle of the fluorescence method. In the fluorescence method, Amplite (substrate) is enzymatically reacted with peroxidase (enzyme) in the presence of hydrogen peroxide, and the Amplite after this enzymatic reaction.
This fluorescence value is measured by utilizing the fact that 590 nm fluorescence is emitted when TM Red is irradiated with 540 nm light. The fluorescence value shows how much hydrogen peroxide is contained in the substance.

以下、実施例を用いて本発明をさらに具体的に説明するが、本発明は以下の実施例のみに限定されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited only to the following examples, and may be implemented with modifications within a range that can be adapted to the purpose described above and below. All of these are possible within the scope of the present invention.

(金ナノ粒子の作製)
濃度40mMのクエン酸50mLを70℃に加熱し、この水溶液が0.2mMとなるように調製した塩化金酸を加え、10分間激しく攪拌して赤紫色の金コロイドを作製した。その後、遠心分離と蒸留水での洗浄を3回繰り返し、加熱炉で焼成することにより金ナノ粒子を作製した。なお、金ナノ粒子は上記クエン酸還元法により作製したもの以外に、市販の15nm(SIGMA−ALDRICH社製)、市販の5nm、15nm、30nm、50nm、80nm、及び100nm(いずれも田中貴金属製)を用いた。
(Preparation of gold nanoparticles)
50 mL of 40 mM citric acid was heated to 70 ° C., chloroauric acid prepared so that the aqueous solution was 0.2 mM was added, and stirred vigorously for 10 minutes to prepare a red-purple gold colloid. Thereafter, centrifugation and washing with distilled water were repeated three times, and gold nanoparticles were produced by firing in a heating furnace. Gold nanoparticles other than those produced by the citric acid reduction method are commercially available 15 nm (manufactured by SIGMA-ALDRICH), commercially available 5 nm, 15 nm, 30 nm, 50 nm, 80 nm, and 100 nm (all manufactured by Tanaka Kikinzoku). Was used.

(トリスヒドロキシメチルアミノメタン溶液の調製)
トリスヒドロキシメチルアミノメタン(Tris)溶液は、所定のpHとなるように、蒸留水、塩酸(場合によって水酸化ナトリウム)の量により調製した。表1に、濃度1MのTris溶液1Lの構成を示す。
(Preparation of trishydroxymethylaminomethane solution)
The trishydroxymethylaminomethane (Tris) solution was prepared with distilled water and hydrochloric acid (in some cases, sodium hydroxide) so as to have a predetermined pH. Table 1 shows the configuration of 1 L of Tris solution having a concentration of 1M.

(ルミノールの作製方法)
常温固体のルミノール(Wako社製)17.716mgを0.1M−NaOHに溶解し、濃度10mMルミノールを作製した。その後、1mLずつ分注し、−20℃で冷凍保存した。電気化学発光確認時には、上記で冷凍した10mM−ルミノールを解凍後、200mM−Tris緩衝液、もしくは200mL−borate緩衝液で希釈し、0.2mM−ルミノールに調整後、発光試薬として用いた。
(Method for producing luminol)
Room temperature solid luminol (manufactured by Wako) (17.716 mg) was dissolved in 0.1 M NaOH to prepare a concentration of 10 mM luminol. Thereafter, 1 mL was dispensed and stored frozen at −20 ° C. At the time of confirming electrochemiluminescence, the frozen 10 mM luminol was thawed, diluted with 200 mM Tris buffer or 200 mL borate buffer, adjusted to 0.2 mM luminol, and used as a luminescent reagent.

(電気化学発光法による測定)
印可電圧は、0〜700mVの間を50mVずつ線形的に上げていくlinear sweep voltammetry(LSV)という方法を用いた。また、電気化学発光測定時はpH8に揃え、発光は500msecに1回毎に光検出器でカウントした。
(Measurement by electrochemiluminescence method)
As the applied voltage, a method called linear sweep voltammetry (LSV) in which the voltage is linearly increased from 0 to 700 mV by 50 mV is used. At the time of electrochemiluminescence measurement, the pH was adjusted to 8 and the luminescence was counted with a photodetector every 500 msec.

(蛍光法による測定)
蛍光試薬キットの指示通りに20U/ml−HRP stock solutionを200μL、Amplite red stock soltuionを50μL、アッセイバッファーを4.75mL混合し、蛍光用試薬を作製した。96ウェルのプレートリーダーに濃度56mg/Lの金ナノ粒子(SIGMA−ALDRICH社製)を25μLと、濃度1mM、10mMのTris、Tricine、TAPS、PBSを25μLずつ加えた。その後、上記のサンプルに蛍光試薬(AmpliteTM Fluorimetric Hydrogen Peroxide Assay Kit Red Fluorescene、−(−),ABD社製)を50μL加え、蛍光測定器で測定を行う。測定条件は、540nmの光をあて、590nmの光を測定するものである。一つの条件に対して3サンプルずつ用意し、測定を行った。
(Measurement by fluorescence method)
According to the instructions of the fluorescence reagent kit, 20 U / ml-HRP stock solution was mixed with 200 μL, Amplified red stack solution was mixed with 50 μL, and assay buffer was mixed with 4.75 mL to prepare a fluorescence reagent. To a 96-well plate reader, 25 μL of 56 mg / L gold nanoparticles (manufactured by SIGMA-ALDRICH) and 25 μL each of 1 mM, 10 mM Tris, Tricine, TAPS and PBS were added. Thereafter, 50 μL of a fluorescent reagent (Amplite Fluorogen Hydrogen Peroxide Assay Kit * Red Fluorescene * , − (−), manufactured by ABD) is added to the above sample, and measurement is performed with a fluorometer. Measurement conditions are to measure 590 nm light by applying light of 540 nm. Three samples were prepared for one condition and measured.

(基礎実験用サンプルの調製方法と測定・解析方法)
金ナノ粒子分散液500μLをTrisなどの溶媒500μLに加えた後、数分待機し、金ナノ粒子から活性酸素種を生成させた。その後、この金ナノ粒子サンプル100μLに濃度0.2mMのルミノール100μLを加え、電極上に20μL滴下し、電気化学発光測定を行った。1サンプルにつき3回ずつ測定を行いECL(Electrochemiluminescence)グラフが得られ、得られたグラフのピーク値をプロットし、解析した。
(Preparation method and measurement / analysis method of sample for basic experiment)
After adding 500 μL of the gold nanoparticle dispersion to 500 μL of a solvent such as Tris, the system waited for several minutes to generate active oxygen species from the gold nanoparticles. Then, 100 μL of luminol having a concentration of 0.2 mM was added to 100 μL of this gold nanoparticle sample, and 20 μL was dropped on the electrode, and electrochemiluminescence measurement was performed. Each sample was measured three times to obtain an ECL (Electrochemiluminescence) graph, and the peak value of the obtained graph was plotted and analyzed.

(抗原抗体反応用サンプルの調製方法)
(a)金ナノ粒子表面の抗体固定
濃度40mg/Lの金ナノ粒子(粒径15nm)分散液10mLに、濃度1mg/mLのIgA抗体(Human IgA antibody、Goat polyclonal Antigen、Affinity Purufied、BET社製)100μLを加えて1日放置し、遠心分離後、濃度200mMのPBS(pH7.4)で3回洗浄した。その後、1.5mLに濃縮して4℃に保存することによりIgA抗体を固定した。なお、遠心分離条件は、15000rpm、30分である。
(b)磁性粒子の抗体固定
濃度20mg/mLの磁性粒子(粒径180nm±30nm、NHSビーズ:多摩川精機製)の分散液250μLに、濃度1mg/mLのIgA抗体250μLと濃度200mMのPBS(pH7.4)250μLを加えて1日放置し、遠心分離後、濃度200mMのPBS(pH7.4)で3回洗浄し、1.5mLに濃縮した。なお、遠心分離条件は、12000rpm、10分である。続いて、1Mのアミノエタノール200μLを加え一晩放置した後、遠心分離後、濃度200mMのPBS(pH7.4)で3回洗浄し、3mLに希釈して4℃に保存してIgA抗体を固定した。なお、遠心分離条件は、12000rpm、10分である。
(Preparation method of antigen-antibody reaction sample)
(A) Immobilization of antibody on the surface of gold nanoparticles In a dispersion of gold nanoparticles (particle size: 15 nm) having a concentration of 40 mg / L, IgA antibody (Human IgA antibody, Goat polyantigen, Affinity Purified, manufactured by BET) with a concentration of 1 mg / mL ) 100 μL was added and allowed to stand for 1 day. After centrifugation, the plate was washed 3 times with 200 mM PBS (pH 7.4). Then, the IgA antibody was fixed by concentrating to 1.5 mL and storing at 4 ° C. The centrifugation conditions are 15000 rpm and 30 minutes.
(B) Antibody fixation of magnetic particles To 250 μL of a dispersion of 20 mg / mL magnetic particles (particle size 180 nm ± 30 nm, NHS beads: manufactured by Tamagawa Seiki), 250 μL of 1 mg / mL IgA antibody and 200 mM PBS (pH 7) .4) 250 μL was added and allowed to stand for 1 day. After centrifugation, the plate was washed 3 times with 200 mM PBS (pH 7.4) and concentrated to 1.5 mL. The centrifugation conditions are 12000 rpm and 10 minutes. Subsequently, 200 μL of 1M aminoethanol was added and allowed to stand overnight, then centrifuged, washed 3 times with 200 mM PBS (pH 7.4), diluted to 3 mL and stored at 4 ° C. to fix the IgA antibody. did. The centrifugation conditions are 12000 rpm and 10 minutes.

以下、実験例1〜実験例9は金ナノ粒子の触媒機構確認のための基礎実験例であり、実施例1〜実施例2は抗原抗体反応による実施例である。   Hereinafter, Experimental Examples 1 to 9 are basic experimental examples for confirming the catalytic mechanism of gold nanoparticles, and Examples 1 to 2 are examples based on an antigen-antibody reaction.

(実験例1)
(金ナノ粒子の濃度に伴う電気化学発光強度への影響)
濃度が0.56mg/L、5.6mg/L、56mg/Lの各金ナノ粒子の分散液500μLに、それぞれ200mM−Tris(pH8)を500μL加え、Trisを加えた時間から0分後、15分後、30分後の金ナノ粒子サンプル100μLを濃度0.2mM−ルミノール100μLと混合し、電気化学発光測定を行った。なお、金ナノ粒子は、15nmの金ナノ粒子(SIGMA−ALDRICH社製)を用いた。
(Experimental example 1)
(Effect on electrochemiluminescence intensity due to gold nanoparticle concentration)
500 μL of 200 mM Tris (pH 8) was added to 500 μL each of the gold nanoparticle dispersions having concentrations of 0.56 mg / L, 5.6 mg / L, and 56 mg / L, and after 0 minutes from the time Tris was added, After 30 minutes, 100 μL of the gold nanoparticle sample after 30 minutes was mixed with 100 μL of a concentration of 0.2 mM luminol, and electrochemiluminescence measurement was performed. As the gold nanoparticles, 15 nm gold nanoparticles (manufactured by SIGMA-ALDRICH) were used.

図5に、各金ナノ粒子の電気化学発光強度の経時変化を示す。図5に示すように、金ナノ粒子の濃度が大きいほど電気化学発光強度が増加することが確認された。   In FIG. 5, the time-dependent change of the electrochemiluminescence intensity | strength of each gold nanoparticle is shown. As shown in FIG. 5, it was confirmed that the electrochemiluminescence intensity increased as the concentration of the gold nanoparticles increased.

(実験例2)
(Tris溶媒濃度に伴う電気化学発光強度への影響)
濃度56mg/Lの金ナノ粒子の分散液500μLに、0.01mM−Tris、0.1mM−Tris、1mM−Tris、10mM−Trisを500μLそれぞれ加えた後(Trisは全てpH8を使用)、Trisを加えた時間から0分後、30分後、60分後の金ナノ粒子サンプル100μLを濃度0.2mM−ルミノール100μLと混合し、電気化学発光測定を行った。なお、金ナノ粒子は、15nmの金ナノ粒子(SIGMA−ALDRICH社製)を用いた。
(Experimental example 2)
(Influence on electrochemiluminescence intensity associated with Tris solvent concentration)
After adding 500 μL of 0.01 mM-Tris, 0.1 mM-Tris, 1 mM-Tris, 10 mM-Tris to 500 μL of a gold nanoparticle dispersion at a concentration of 56 mg / L (all Tris uses pH 8), Tris was added. From the added time, 100 μL of the gold nanoparticle sample after 0 minutes, 30 minutes, and 60 minutes was mixed with 100 μL of a concentration of 0.2 mM luminol, and electrochemiluminescence measurement was performed. As the gold nanoparticles, 15 nm gold nanoparticles (manufactured by SIGMA-ALDRICH) were used.

図6に、各Tris溶媒濃度における電気化学発光強度の経時変化を示す。図6に示すように、Tris溶媒濃度が大きいほど、電気化学発光強度が増大する傾向にあることが
わかった。
FIG. 6 shows the change with time of the electrochemiluminescence intensity at each Tris solvent concentration. As shown in FIG. 6, it was found that the electrochemiluminescence intensity tends to increase as the Tris solvent concentration increases.

(実験例3)
(金ナノ粒子の溶媒種に伴う電気化学発光強度への影響1)
Trisと類似の構造を持つ溶媒を2種用いて、金ナノ粒子から活性酸素種が生成されるかどうか検討した。なお、Trisと類似の構造を持つ溶媒は、ヒドロキシ基のみを有する1,1,1−トリスエタン、アミノ基のみを有する2−アミノ−2メチルプロパンを用いた。[化15]に1,1,1−トリスエタン、[化16]に2−アミノ−2メチルプロパンの溶媒構造図を示す。金ナノ粒子は、15nmの金ナノ粒子(SIGMA−ALDRICH社製)を用いた。まず、濃度56mg/Lの金ナノ粒子の分散液500μLに、1mMのTris、1mMの1,1,1−トリスエタン、1mMの2−アミノ−2メチルプロパンをそれぞれ加えた後、Tris等を加えた時間から0分後、15分後、30分後の金ナノ粒子サンプル100μLを濃度0.2mM−ルミノール100μLと混合し、電気化学発光測定を行った。なお、比較実験として、アミノ基を有する化合物とヒドロキシ基を有する化合物を混合した溶媒を使用した場合の効果を確認するため、1mMの1,1,1−トリスエタンと1mMの2−アミノ−2メチルプロパンを混合した溶媒について、上記と同様の方法で電気化学発光測定を行った。
(Experimental example 3)
(Effects of gold nanoparticles on the electrochemiluminescence intensity associated with solvent species 1)
Using two types of solvents having a structure similar to Tris, whether or not reactive oxygen species are generated from gold nanoparticles was examined. As the solvent having a structure similar to Tris, 1,1,1-trisethane having only a hydroxy group and 2-amino-2methylpropane having only an amino group were used. [Chemical 15] shows the solvent structure diagram of 1,1,1-trisethane, and [Chemical 16] shows the solvent structure of 2-amino-2methylpropane. As the gold nanoparticles, 15 nm gold nanoparticles (manufactured by SIGMA-ALDRICH) were used. First, 1 mM Tris, 1 mM 1,1,1-trisethane, 1 mM 2-amino-2methylpropane were added to 500 μL of a dispersion of gold nanoparticles having a concentration of 56 mg / L, and then Tris and the like were added. The gold nanoparticle samples 100 μL after 0 minutes, 15 minutes, and 30 minutes from the time were mixed with 100 μL of 0.2 mM luminol concentration, and electrochemiluminescence measurement was performed. As a comparative experiment, 1 mM 1,1,1-trisethane and 1 mM 2-amino-2-methyl were used to confirm the effect of using a solvent in which a compound having an amino group and a compound having a hydroxy group were mixed. Electrochemiluminescence measurement was performed on the solvent mixed with propane by the same method as described above.

図7に、各溶媒における電気化学発光強度の経時変化を示す。図7に示すように、アミノ基とヒドロキシ基の両方の構造を持つTris溶媒のみに電気化学発光強度の増加が認められ、アミノ基とヒドロキシ基の構造が活性酸素種の生成に寄与しているのが示唆された。なお、上記アミノ基及びヒドロキシ基のうち一方のみの基を有する化合物を含む溶媒や、両者を単純に混合した溶媒では電気化学発光強度の増加は確認されなかった。   In FIG. 7, the time-dependent change of the electrochemiluminescence intensity in each solvent is shown. As shown in FIG. 7, only the Tris solvent having both amino group and hydroxy group structures showed an increase in electrochemiluminescence intensity, and the amino group and hydroxy group structures contributed to the generation of reactive oxygen species. It was suggested. In addition, an increase in electrochemiluminescence intensity was not confirmed in a solvent containing a compound having only one of the amino group and the hydroxy group or a solvent obtained by simply mixing the two.

(実験例4)
(金ナノ粒子の溶媒種に伴う電気化学発光強度への影響2)
アミノ基とヒドロキシ基の構造が金ナノ粒子からの活性酸素種生成に関連していることをさらに調べるために上記の構造を有するTris、Tricine、TAPSと、上記の構造を有さないPBS(Phosphate buffered saline)、borate、KClの6種類の溶媒で検討した。この6種類は緩衝液として一般的に用いられるものである。なお、金ナノ粒子には15nm金ナノ粒子(SIGMA−ALDRICH社製)を用いた。
(Experimental example 4)
(Effect of gold nanoparticle on electrochemiluminescence intensity associated with solvent species 2)
In order to further investigate that the structure of amino group and hydroxy group is related to the generation of reactive oxygen species from gold nanoparticles, Tris, Tricine, TAPS having the above structure, and PBS (Phosphate not having the above structure) buffered saline), borate, and KCl. These six types are generally used as buffer solutions. In addition, 15 nm gold nanoparticles (manufactured by SIGMA-ALDRICH) were used as the gold nanoparticles.

まず、濃度56mg/Lの金ナノ粒子の分散液500μLに濃度100mMのTris、Tricine、TAPS、PBS、borate、KClをそれぞれ500μL加えた後、Trisなどの溶媒を加えた時間から0分後、10分後、20分後、30分後の金ナノ粒子サンプル100μLを0.2mM−ルミノール100μLと混合し、電気化学発光測定を行った。   First, after adding 500 μL of 100 mM Tris, Tricine, TAPS, PBS, borate, and KCl to 500 μL of a dispersion of gold nanoparticles having a concentration of 56 mg / L, 0 minutes after adding a solvent such as Tris, After minutes, 20 minutes and 30 minutes, 100 μL of the gold nanoparticle sample was mixed with 100 μL of 0.2 mM luminol, and electrochemiluminescence measurement was performed.

図8に、各溶媒における電気化学発光強度の経時変化を示す。図8に示すように、アミノ基とヒドロキシ基の両方の構造を持つTris、Tricine、TAPSのみ時間変化に伴う電気化学発光強度の増加が確認され、アミノ基とヒドロキ基の構造が活性酸素種の生成に寄与しているのが示唆された。   FIG. 8 shows the change over time of the electrochemiluminescence intensity in each solvent. As shown in FIG. 8, only Tris, Tricine, and TAPS having both amino group and hydroxy group structures were confirmed to increase in electrochemiluminescence intensity with time, and the structures of amino group and hydroxy group were reactive oxygen species. It was suggested that it contributed to the generation.

(実験例5)
(金ナノ粒子の溶媒種に伴う電気化学発光強度への影響3)
アミノ基とヒドロキシ基の構造が金ナノ粒子からの活性酸素種生成に関連していることをさらに調べるために、Trisと類似する構造を有する7種類の溶媒について検討した。この7種類は、[化6]の2−アミノ−2−メチル−1−プロパノール(以下、AMPという)、[化7]の2−アミノ−2メチル−1,3−プロパンジオール(以下、AMPDという)、[化13]のトリエタノールアミン(以下、TEAという)、[化11]のビス−トリスメタン、[化12]のビス−トリスプロパン、[化8]の4−(2−ヒドロキシエチル)−1−ピペラジンエタンスルフォン酸(以下、HEPESという)、[化10]の及び4−(2−ヒドロキシエチル)−1−ピペラジンプロパンスルフォン酸(以下、HEPPSという)である。
(Experimental example 5)
(Effect of gold nanoparticle on electrochemiluminescence intensity associated with solvent species 3)
In order to further investigate that the structure of amino groups and hydroxy groups is related to the generation of reactive oxygen species from gold nanoparticles, seven types of solvents having a structure similar to Tris were examined. These 7 types include 2-amino-2-methyl-1-propanol (hereinafter referred to as AMP) of [Chemical Formula 6], 2-amino-2methyl-1,3-propanediol (hereinafter referred to as AMPD) of [Chemical Formula 7]. ), [Chemical Formula 13] triethanolamine (hereinafter referred to as TEA), [Chemical Formula 11] bis-trismethane, [Chemical Formula 12] bis-trispropane, [Chemical Formula 8] 4- (2-hydroxyethyl) -1-piperazine ethanesulfonic acid (hereinafter referred to as HEPES), [Chemical Formula 10] and 4- (2-hydroxyethyl) -1-piperazinepropanesulfonic acid (hereinafter referred to as HEPPS).

まず、5nm金ナノ粒子(田中貴金属製)濃度0.04mg/mLと溶液(100mM、pH12)を1:1の割合で混合した後、0分後、10分後、20分後にルミノール(200μM、pH9のホウ酸緩衝液で希釈)と1:1の割合で混合して電気化学発光強度測定を行った。   First, a 5 nm gold nanoparticle (Tanaka Kikinzoku) concentration 0.04 mg / mL and a solution (100 mM, pH 12) were mixed at a ratio of 1: 1, and after 0 minutes, 10 minutes, and 20 minutes, luminol (200 μM, The mixture was diluted with a borate buffer solution of pH 9 at a ratio of 1: 1, and the electrochemiluminescence intensity was measured.

図9に、各溶媒における電気化学発光強度の経時変化を示す。図9に示すように、アミノ基とヒドロキシ基の両方の構造を持つ上記7種類の溶媒全てにおいて、経時変化に伴う電気化学発光の増幅が確認された。   FIG. 9 shows the change over time of the electrochemiluminescence intensity in each solvent. As shown in FIG. 9, amplification of electrochemiluminescence accompanying changes with time was confirmed in all of the above seven solvents having both amino group and hydroxy group structures.

(実験例6)
(溶媒のpHの違いに伴う電気化学発光強度への影響)
金ナノ粒子から生成される活性酸素種量についてのTris溶媒のpH依存性を調べた。なお、金ナノ粒子には30nm金ナノ粒子(田中貴金属製)を用いた。
(Experimental example 6)
(Effect on electrochemiluminescence intensity due to difference in solvent pH)
The pH dependence of the Tris solvent with respect to the amount of reactive oxygen species produced from the gold nanoparticles was investigated. As the gold nanoparticles, 30 nm gold nanoparticles (manufactured by Tanaka Kikinzoku) were used.

まず、濃度40mg/Lの金ナノ粒子の分散液500μLに、pH6、pH7、pH8、pH9、pH10、pH11、pH12の200mM濃度のTris500μLをそれぞれ加えた後、Tris溶媒を加えた時間から10分後の金ナノ粒子サンプル100μLを0.2mM−ルミノール100μL(pH8のborate緩衝液で希釈)と混合し、電気化学発光測定を行った。   First, 500 μL of 200 mM concentration of pH 6, pH 7, pH 8, pH 9, pH 10, pH 11, and pH 12 was added to 500 μL of a gold nanoparticle dispersion having a concentration of 40 mg / L, and 10 minutes after the time of adding the Tris solvent. 100 μL of the gold nanoparticle sample was mixed with 100 μL of 0.2 mM luminol (diluted with a borate buffer at pH 8), and electrochemiluminescence measurement was performed.

図10に各溶媒のpHにおける電気化学発光強度の値を示す。図9に示すように、溶媒のpH濃度が大きいほど、電気化学発光強度の値が増加することが確認された。   FIG. 10 shows the value of the electrochemiluminescence intensity at the pH of each solvent. As shown in FIG. 9, it was confirmed that the value of the electrochemiluminescence intensity increases as the pH concentration of the solvent increases.

(実験例7)
(金ナノ粒子の粒子径に伴う電気化学発光強度への影響)
金ナノ粒子の粒径と発光強度の関係を調べた。なお、金ナノ粒子は5nm、15nm、30nm、50nm、80nm、100nm(田中貴金属製)を用いた。
(Experimental example 7)
(Influence on electrochemiluminescence intensity associated with the particle size of gold nanoparticles)
The relationship between the particle size of gold nanoparticles and the emission intensity was investigated. In addition, 5 nm, 15 nm, 30 nm, 50 nm, 80 nm, and 100 nm (made by Tanaka Kikinzoku) were used for the gold nanoparticles.

まず、濃度40mg/Lの各金ナノ粒子の分散液500μLに、それぞれ濃度200mMのTris(pH8)を500μL加えた後、溶媒を加えた時間から30分後の金ナノ粒子サンプル100μLを濃度0.2mM−ルミノール100μLと混合し、電気化学発光測定を行った。   First, 500 μL of a 200 mM concentration of Tris (pH 8) was added to 500 μL of each gold nanoparticle dispersion having a concentration of 40 mg / L, and then 100 μL of a gold nanoparticle sample 30 minutes after the solvent was added. The mixture was mixed with 100 μL of 2 mM luminol, and electrochemiluminescence measurement was performed.

図11に各金ナノ粒子における電気化学発光強度の値を示す。図11に示すように、金ナノ粒子の粒径が小さくなるほど電気化学発光強度が大きくなる傾向が確認された。   FIG. 11 shows the value of electrochemiluminescence intensity in each gold nanoparticle. As shown in FIG. 11, it was confirmed that the electrochemiluminescence intensity tends to increase as the particle size of the gold nanoparticles decreases.

(実験例8)
(溶存酸素による電気化学発光強度への影響)
金ナノ粒子からの活性酸素種生成における溶存酸素の影響について調べるために窒素置換を行いながら測定した。なお、金ナノ粒子は15nm(田中貴金属製)を用いた。
(Experimental example 8)
(Effect of dissolved oxygen on electrochemiluminescence intensity)
In order to investigate the effect of dissolved oxygen on the generation of reactive oxygen species from gold nanoparticles, measurements were performed while nitrogen substitution was performed. In addition, 15 nm (made by Tanaka Kikinzoku) was used for the gold nanoparticles.

まず、濃度40mg/Lの金ナノ粒子の分散液500μLに濃度100mMのTris(pH8)を500μL加えた後、同サンプルを2つ調製し、片方は窒素置換を行いながら、0分後、10分後、20分後、30分後の金ナノ粒子サンプル100μLを0.2mM−ルミノール100μLと混合し、電気化学発光測定を行った。   First, 500 μL of 100 mM Tris (pH 8) was added to 500 μL of a gold nanoparticle dispersion having a concentration of 40 mg / L, and two samples were prepared. Thereafter, 100 μL of the gold nanoparticle sample after 20 minutes and 30 minutes was mixed with 100 μL of 0.2 mM luminol, and electrochemiluminescence measurement was performed.

図12に、窒素置換に伴う電気化学発光強度の経時変化、図13に、窒素置換前後における電気化学発光強度の経時変化を示す。図12に示すように、窒素置換を行わない場合、時間の経過と共に電気化学発光強度の増加が認められた。一方、窒素置換を行った場合、電気化学発光強度の増加は確認されなかった。また、図13に示すように、30経過時点で窒素置換を中止し、さらに時間を置くと電気化学発光強度の増加が確認された。以上の結果より、金ナノ粒子からの活性酸素種の生成には溶存酸素が必要であることが示唆された。   FIG. 12 shows the change over time in the electrochemiluminescence intensity associated with the nitrogen substitution, and FIG. 13 shows the change over time in the electrochemiluminescence intensity before and after the nitrogen substitution. As shown in FIG. 12, when nitrogen substitution was not performed, an increase in electrochemiluminescence intensity was observed over time. On the other hand, when nitrogen substitution was performed, an increase in electrochemiluminescence intensity was not confirmed. Further, as shown in FIG. 13, when the nitrogen substitution was stopped at 30 points and further time was taken, an increase in electrochemiluminescence intensity was confirmed. From the above results, it was suggested that dissolved oxygen is required for the generation of reactive oxygen species from gold nanoparticles.

(実験例9)
(金ナノ粒子表面状態による電気化学発光強度への影響)
金ナノ粒子の表面をBSA(Bovine Serum Albumin:ウシ血清アルブミン)でブロッキングすることにより、金ナノ粒子表面状態による電気化学発光強度への影響を調べた。なお、金ナノ粒子はクエン酸還元法によって作製したものを用いた。
(Experimental example 9)
(Effect of electrochemiluminescence intensity by the surface state of gold nanoparticles)
By blocking the surface of the gold nanoparticle with BSA (Bovine Serum Albumin: bovine serum albumin), the influence of the gold nanoparticle surface state on the electrochemiluminescence intensity was examined. Gold nanoparticles prepared by a citrate reduction method were used.

まず、濃度1mg/mLの金ナノ粒子の分散液10mLに濃度が0mg/L、0.66mg/L、66mg/L、6600mg/mLとなるようBSA(SIGMA−ALDRICH社製、分子量〜6600)を加え、4℃で1時間置き、金ナノ粒子の表面をBSAでブロッキングした。その後、遠心分離と洗浄を3回繰り返し、BSAブロッキングした金ナノ粒子を作製した。この作製したBSAブロッキング金ナノ粒子500μLに200mMのTris(pH8)を500μL加えた後、Tris等の溶媒を加えた時間から0分後、15分後、30分後の金ナノ粒子サンプル100μLを0.2mM−ルミノール100μLをと混合し、電気化学発光測定を行った。   First, BSA (manufactured by SIGMA-ALDRICH, molecular weight to 6600) was added to 10 mL of a gold nanoparticle dispersion having a concentration of 1 mg / mL so that the concentration would be 0 mg / L, 0.66 mg / L, 66 mg / L, 6600 mg / mL. In addition, the surface of the gold nanoparticles was blocked with BSA for 1 hour at 4 ° C. Thereafter, centrifugation and washing were repeated three times to produce BSA-blocked gold nanoparticles. After adding 500 μL of 200 mM Tris (pH 8) to 500 μL of the prepared BSA-blocking gold nanoparticles, 100 μL of the gold nanoparticle sample after 0 minutes, 15 minutes, and 30 minutes after adding the solvent such as Tris is 0 .2 mM-Luminol 100 μL was mixed with and electrochemiluminescence measurement was performed.

図14にBSA濃度による電気化学発光強度の値を示す。図14に示すように、BSA
の濃度が大きいほど電気化学発光強度の値の上昇が小さくなり、金ナノ粒子の表面を覆うと電気化学発光強度の値が下がることが確認された。この結果から、金ナノ粒子の表面で活性酸素種が生成されていることが示唆された。
FIG. 14 shows the value of the electrochemiluminescence intensity depending on the BSA concentration. As shown in FIG.
It was confirmed that the increase in the electrochemiluminescence intensity value was smaller as the concentration of was increased, and that the electrochemiluminescence intensity value decreased when the surface of the gold nanoparticle was covered. This result suggested that active oxygen species were generated on the surface of the gold nanoparticles.

(実験例10)
(ペルオキシターゼを用いた蛍光法による活性酸素種の検出)
電気化学発光法以外の活性酸素種の検出方法として、蛍光法を用いて確認した。図15に各溶媒における金ナノ粒子からの活性酸素種生成に伴う蛍光強度の値を示す。図15に示すように、Tris、Tricine、TAPSと金ナノ粒子の混合液において、蛍光強度値の増加が確認され、ルミノールを用いた電気化学発光法による結果と同様であった。この結果より、活性酸素種の検出としてルミノールを用いた電気化学発光法と同様に、ペルオキシターゼを用いた蛍光法が有用であることがわかった。
(Experimental example 10)
(Detection of reactive oxygen species by fluorescence method using peroxidase)
As a method for detecting reactive oxygen species other than the electrochemiluminescence method, it was confirmed using a fluorescence method. FIG. 15 shows the value of fluorescence intensity associated with the generation of active oxygen species from gold nanoparticles in each solvent. As shown in FIG. 15, in the mixed solution of Tris, Tricine, TAPS and gold nanoparticles, an increase in the fluorescence intensity value was confirmed, which was the same as the result by the electrochemiluminescence method using luminol. From this result, it was found that a fluorescence method using peroxidase was useful for detecting reactive oxygen species as well as an electrochemiluminescence method using luminol.

(実施例1)
(抗原抗体反応における金ナノ粒子の活性酸素種の検出)
抗体固定した磁性粒子(NHSビーズ、多摩川精機製)90μLに抗原(Secretory Immunoglobulin A、Human Colostrum、ART社製)を濃度が0ng/mL、1ng/mL、10ng/mL、100ng/mL、1μg/mL、10μg/mLをそれぞれ10μL加え、室温で1時間インキュベートした。次に、磁性粒子を磁石で集めて200mMのPBS(pH7.4)で2回洗浄した後、抗体固定後の金ナノ粒子を200μL加えた。続いて、磁性粒子、抗原、金ナノ粒子を磁石で集めて200mMのPBS(pH7.4)で2回洗浄した後、200mMのTris(pH12)を200μL加え、15分放置した。次に、Trisを加えた後のサンプル100μLにルミノール100μLを加え、このうち20μLを電極に滴下して電気化学発光測定を行った。
Example 1
(Detection of reactive oxygen species of gold nanoparticles in antigen-antibody reaction)
Antibody-fixed magnetic particles (NHS beads, manufactured by Tamagawa Seiki) 90 μL of antigen (Secretary Immunoglobulin A, Human Costruum, manufactured by ART) at concentrations of 0 ng / mL, 1 ng / mL, 10 ng / mL, 100 ng / mL, 1 μg / mL 10 μL each of 10 μg / mL was added and incubated at room temperature for 1 hour. Next, the magnetic particles were collected with a magnet and washed twice with 200 mM PBS (pH 7.4), and then 200 μL of gold nanoparticles after antibody fixation was added. Subsequently, magnetic particles, antigens, and gold nanoparticles were collected with a magnet and washed twice with 200 mM PBS (pH 7.4), and then 200 μL of 200 mM Tris (pH 12) was added and left for 15 minutes. Next, 100 μL of luminol was added to 100 μL of the sample after adding Tris, 20 μL of which was dropped onto the electrode, and electrochemiluminescence measurement was performed.

図16に各IgA抗原濃度における電気化学発光強度の値を示す。図16に示すように、抗原抗体反応において1ng/mLのIgA抗原濃度のレベルまで電気化学発光強度を検出できることが確認できた。この結果より、抗原抗体反応に用いるバイオセンサへの適用の有用性が示唆された。   FIG. 16 shows the value of electrochemiluminescence intensity at each IgA antigen concentration. As shown in FIG. 16, it was confirmed that the electrochemiluminescence intensity could be detected to the level of 1 ng / mL IgA antigen concentration in the antigen-antibody reaction. This result suggests the usefulness of application to a biosensor used for antigen-antibody reaction.

(実施例2)
(EM−CCDカメラによる発光測定)
電気化学発光強度の測定について、光増幅器(フォトマルチプライヤーチューブ)の代わりにEM−CCDカメラを用いて測定を行い、測定方法の違いによる影響を検討した。実施例1と同様の方法で、濃度10μg/mLの抗原で抗原抗体反応を行った後のサンプルからの発光をEM−CCDカメラによって測定した。その結果、金ナノ粒子の存在する部分でのみ発光が確認された。この結果より、EM−CCDカメラによる発光測定も有効であることが確認され、この技術を生体イメージング等の検査技術にも応用可能なことが示唆された。
(Example 2)
(Light emission measurement with EM-CCD camera)
About the measurement of electrochemiluminescence intensity, it measured using the EM-CCD camera instead of the optical amplifier (photomultiplier tube), and examined the influence by the difference in a measuring method. In the same manner as in Example 1, the luminescence from the sample after the antigen-antibody reaction with the antigen having a concentration of 10 μg / mL was measured with an EM-CCD camera. As a result, light emission was confirmed only in the portion where the gold nanoparticles were present. From this result, it was confirmed that the luminescence measurement by the EM-CCD camera was also effective, and it was suggested that this technique can be applied to inspection techniques such as biological imaging.

1 磁性粒子
2 抗体
3 抗原
4 磁石
5 金ナノ粒子
6 溶液
7 過酸化水素
8 ルミノール
9 印刷電極
DESCRIPTION OF SYMBOLS 1 Magnetic particle 2 Antibody 3 Antigen 4 Magnet 5 Gold nanoparticle 6 Solution 7 Hydrogen peroxide 8 Luminol 9 Printed electrode

Claims (12)

表面に第1の生体分子が形成されている金ナノ粒子と、前記第1の生体分子と特異的結合をする第2の生体分子を含む溶液とを準備する第1ステップと、
前記溶液中で発生する活性酸素種を検出する第2ステップと、を含むことを特徴とする方法。
A first step of preparing a gold nanoparticle having a first biomolecule formed on a surface thereof, and a solution containing a second biomolecule that specifically binds to the first biomolecule;
And a second step of detecting active oxygen species generated in the solution.
前記第1の生体分子が抗体であり、前記第2の生体分子が抗原である請求項1に記載の方法。   The method of claim 1, wherein the first biomolecule is an antibody and the second biomolecule is an antigen. 前記抗原が、反応容器に固定されている請求項2に記載の方法。   The method according to claim 2, wherein the antigen is immobilized in a reaction vessel. 一部の金ナノ粒子が前記抗原に結合されており、他の一部の金ナノ粒子が前記抗原に結合されておらず、
前記第1ステップと前記第2ステップとの間に、前記抗原に結合されていない金ナノ粒子を除去するステップを含む請求項2または3に記載の方法。
Some gold nanoparticles are bound to the antigen, and some other gold nanoparticles are not bound to the antigen,
4. The method according to claim 2 or 3, comprising a step of removing gold nanoparticles not bound to the antigen between the first step and the second step.
前記溶液が、アミノ基およびヒドロキシ基を有する化合物を含む請求項1〜4のいずれかに記載の方法。   The method according to claim 1, wherein the solution contains a compound having an amino group and a hydroxy group. 前記化合物が、トリスヒドロキシメチルアミノメタン、トリ(ヒドロキシメチル)メチルグリシン、及びトリス(ヒドロキシメチル)メチル−3−アミノプロパンスルフォン酸から選択される少なくとも1つである請求項1〜5のいずれかに記載の方法。   6. The compound according to claim 1, wherein the compound is at least one selected from trishydroxymethylaminomethane, tri (hydroxymethyl) methylglycine, and tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid. The method described. 前記溶液に対する前記化合物の濃度が1mM以上である請求項5または6のいずれかに記載の方法。   The method according to claim 5, wherein the concentration of the compound with respect to the solution is 1 mM or more. 前記溶液のpH濃度が8以上である請求項1〜7のいずれかに記載の方法。   The method according to claim 1, wherein the pH concentration of the solution is 8 or more. 前記金ナノ粒子の粒径が1nm以上である請求項1〜8のいずれかに記載の方法。   The method according to claim 1, wherein the gold nanoparticles have a particle size of 1 nm or more. 前記第2ステップがルミノールを用いた電気化学発光法により行う請求項1〜9のいずれかに記載の方法。   The method according to claim 1, wherein the second step is performed by an electrochemiluminescence method using luminol. 前記第2ステップがペルオキシターゼを用いた蛍光法により行う請求項1〜10のいずれかに記載の方法。   The method according to claim 1, wherein the second step is performed by a fluorescence method using peroxidase. 金ナノ粒子にアミノ基及びヒドロキシ基を有する化合物を混合することを特徴とする活性酸素種の製造方法。
A method for producing reactive oxygen species, comprising mixing gold nanoparticles with a compound having an amino group and a hydroxy group.
JP2017178422A 2017-09-16 2017-09-16 Analytical method Active JP6999158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017178422A JP6999158B2 (en) 2017-09-16 2017-09-16 Analytical method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017178422A JP6999158B2 (en) 2017-09-16 2017-09-16 Analytical method

Publications (2)

Publication Number Publication Date
JP2019052984A true JP2019052984A (en) 2019-04-04
JP6999158B2 JP6999158B2 (en) 2022-01-18

Family

ID=66014717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017178422A Active JP6999158B2 (en) 2017-09-16 2017-09-16 Analytical method

Country Status (1)

Country Link
JP (1) JP6999158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186971A (en) * 2019-05-13 2020-11-19 アイシン精機株式会社 Method of detecting minute substance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139419A1 (en) * 2007-05-14 2008-11-20 Koninklijke Philips Electronics N.V. Improved methods of se(r)rs detection using multiple labels

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008139419A1 (en) * 2007-05-14 2008-11-20 Koninklijke Philips Electronics N.V. Improved methods of se(r)rs detection using multiple labels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, H. ET AL: "Polydimethylsiloxane Microfluidic Chemiluminescence Immunodevice with the Signal Amplification Strat", TALANTA, vol. 147, JPN6021032446, 9 October 2016 (2016-10-09), pages 430 - 436, ISSN: 0004575884 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186971A (en) * 2019-05-13 2020-11-19 アイシン精機株式会社 Method of detecting minute substance

Also Published As

Publication number Publication date
JP6999158B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
Hwang et al. Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B
US7691648B2 (en) Target substance detecting element, target substance detection apparatus and target substance detection method
Hong et al. Electrochemiluminescence-incorporated lateral flow immunosensors using Ru (bpy) 32+-labeled gold nanoparticles for the full-range detection of physiological C-reactive protein levels
Liu et al. Upconversion nanoparticle as elemental tag for the determination of alpha-fetoprotein in human serum by inductively coupled plasma mass spectrometry
Zhou et al. Ultrasensitive point‐of‐care test for tumor marker in human saliva based on luminescence‐amplification strategy of lanthanide nanoprobes
Sabouri et al. A gold nanoparticle-based immunosensor for the chemiluminescence detection of the hepatitis B surface antigen
Zhao et al. Sandwich magnetically imprinted immunosensor for electrochemiluminescence ultrasensing diethylstilbestrol based on enhanced luminescence of Ru@ SiO2 by CdTe@ ZnS quantum dots
Guarrotxena et al. Antibody-functionalized SERS tags with improved sensitivity
US20230375547A1 (en) Methods, devices, and related aspects for detecting ebola virus
Akama et al. Multiplexed homogeneous digital immunoassay based on single-particle motion analysis
Wu et al. A novel electrochemiluminescence immunosensor via polymerization-assisted amplification
Attar et al. Label‐free electrochemical impedance detection of rotavirus based on immobilized antibodies on gold sononanoparticles
JP2009250960A (en) Detection method of biomolecule, biomolecule trapping substance, and biomolecule detection device
Haushalter et al. Multiplex flow assays
JP6999158B2 (en) Analytical method
Sciutto et al. Immunochemical micro imaging analyses for the detection of proteins in artworks
Chen et al. Osmotic processor for enabling sensitive and rapid biomarker detection via lateral flow assays
Momenbeitollahi et al. Methods for enhanced fluorescence detection of proteins by using entrapped gold nanoparticles in membranes
Liu et al. A Au@ Pt bimetallic nanoparticle and blue silica nanoparticle nanocomposite as a probe of immunochromatographic assay for HBsAg detection
US20220365092A1 (en) A method for detecting an analyte
Zhou et al. Design of Sensitive Biocompatible Quantum‐Dots Embedded in Mesoporous Silica Microspheres for the Quantitative Immunoassay of Human Immunodeficiency Virus‐1 Antibodies
Chen et al. A spatially resolved ratiometric electrochemiluminescence immunosensor for myoglobin detection using Au@ Ag 2 S as signal amplification tags
KR101492167B1 (en) Target-specific probe comprising ferritin protein and detecting for biomarker using the same
KR20130090174A (en) A biosensor using quenching system and a method for detecting using thereof
Nagano et al. Gold Nanocatalysts Towards Digital Sensing Probes with Electrochemiluminescence Based Micro Electrodes Array

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20171012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171012

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20171012

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211215

R150 Certificate of patent or registration of utility model

Ref document number: 6999158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150