JP2019033720A - Method and program for determining reaping schedule - Google Patents

Method and program for determining reaping schedule Download PDF

Info

Publication number
JP2019033720A
JP2019033720A JP2017158580A JP2017158580A JP2019033720A JP 2019033720 A JP2019033720 A JP 2019033720A JP 2017158580 A JP2017158580 A JP 2017158580A JP 2017158580 A JP2017158580 A JP 2017158580A JP 2019033720 A JP2019033720 A JP 2019033720A
Authority
JP
Japan
Prior art keywords
date
time
mowing
field
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017158580A
Other languages
Japanese (ja)
Other versions
JP6898589B2 (en
Inventor
康男 小柳
Yasuo Koyanagi
康男 小柳
憲応 窪田
Norimasa Kubota
憲応 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2017158580A priority Critical patent/JP6898589B2/en
Publication of JP2019033720A publication Critical patent/JP2019033720A/en
Application granted granted Critical
Publication of JP6898589B2 publication Critical patent/JP6898589B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To properly determine a reaping timing of plants, improve gain and efficiently utilize a reaping facility.SOLUTION: When determining a reaping schedule of plants grown in plural fields, a vacant period of a reaping facility, growth information of plants (number of stalk, plant height, ear information, grade or the like) and weather prediction information are taken, then based on the growth information of plants and weather prediction information, a reaping possible period for every field is predicted, then based on a vacant period of the reaping facility and reaping possible period for every field, reaping dates for plural fields are determined, then a reaping schedule indicating the reaping dates for plural fields is output. Then, when determining the reaping dates, based on at least one of an area of each field, breed, number of stalk, plant height, ear information and grade, priority for the plural fields is set, then, the reaping date is determined for the fields in the order of having higher priority in the vacant period of the reaping facility and in the reaping possible period for every field.SELECTED DRAWING: Figure 6

Description

本発明は、刈り取りスケジュール決定方法及び刈り取りスケジュール決定プログラムに関し、特に、複数の圃場に生育する植物の刈り取りスケジュールを決定する刈り取りスケジュール決定方法及び刈り取りスケジュール決定プログラムに関する。   The present invention relates to a mowing schedule determination method and a mowing schedule determination program, and more particularly, to a mowing schedule determination method and a mowing schedule determination program for determining a mowing schedule for plants growing in a plurality of fields.

稲などの植物を生育する場合、収益を最大にするために十分に生育した状態で刈り取りを行うことが求められる。これまでは、刈り取り機、生籾の乾燥施設、貯蔵施設などの刈り取り施設の空き期間、穂の色合いや刈り取り予定日前の天候状況などを考慮し、前年度等の過去の経験則に基づいて刈り取りタイミングを決定していた。例えば、下記特許文献1には、生籾サンプルの水分値と青籾混入率とを測定し、刈取時期の早遅を判定する刈取時期判定方法が提案されている。   When growing a plant such as rice, it is required to harvest the plant in a state of sufficient growth to maximize profits. So far, we have taken into account the past rules of experience such as the previous year, taking into account the availability of mowing facilities such as mowing machines, ginger drying facilities and storage facilities, the shade of the ears and the weather conditions prior to the date of mowing. The timing was determined. For example, the following Patent Document 1 proposes a cutting time determination method for measuring the moisture value and the blue wrinkle mixing rate of a ginger sample and determining whether the cutting time is early or late.

しかしながら、このような生籾サンプルを測定する方法では、個別の稲の生育情報を取得することはできるが、複数の圃場などの広い領域の生育情報を効率的に取得することができない。そこで、近年では、植物の生育度を光学的に測定することにより刈り取りタイミングを判定する方法が提案されており、そのための装置として、例えば、下記特許文献2には、植物により反射された太陽光を入射させて分光し、2種以上の特定波長の光の反射強度を測定する第1の受光部と、太陽光を直接入射させて前記第1の受光部と同一波長の光に分光し、参照光としてその受光強度を測定する第2の受光部と、前記第1の受光部で検出した特定波長の反射強度を前記第2の受光部で検出した参照光の受光強度を基に補正し、補正された反射強度を基に、測定植物の葉色(SPDA値)、草丈、乾物重、(草丈×茎数)、{草丈×葉色(SPDA値)}及び{草丈×茎数×葉色(SPDA値)}の少なくとも1つを求める演算部と、を備える生育度測定装置が開示されている。   However, such a method for measuring a ginger sample can acquire growth information of individual rice, but cannot efficiently acquire growth information of a wide area such as a plurality of fields. Therefore, in recent years, a method for determining the harvesting timing by optically measuring the degree of growth of a plant has been proposed. As an apparatus therefor, for example, Patent Document 2 below discloses sunlight reflected by a plant. A first light-receiving unit that measures the reflection intensity of light of two or more types of specific wavelengths, and directly enters sunlight to separate the light into the same wavelength as the first light-receiving unit, A second light receiving unit that measures the received light intensity as reference light, and the reflection intensity of the specific wavelength detected by the first light receiving part is corrected based on the received light intensity of the reference light detected by the second light receiving part. Based on the corrected reflection intensity, the measured plant leaf color (SPDA value), plant height, dry weight, (plant height x number of stems), {plant height x leaf color (SPDA value)} and {plant height x number of stems x leaf color (SPDA) Value)}, and an arithmetic unit for obtaining at least one of Growth measurement apparatus is disclosed.

特開2000−201528号公報JP 2000-201528 A 特許第4243014号公報Japanese Patent No. 4243014

上述した装置を利用することにより、複数の圃場などの広い領域の生育情報を効率的に取得することはできるが、複数の圃場に生育する植物の刈り取りタイミングは、やはり過去の経験則に基づいて決定するため、収益が最大になるように刈り取りタイミングを設定することは難しく、また、刈り取り機、乾燥施設、貯蔵施設などの刈り取り施設の有効利用を図ることは難しいという問題があった。   By using the above-mentioned apparatus, it is possible to efficiently acquire the growth information of a wide area such as a plurality of fields, but the cutting timing of the plants growing in the plurality of fields is also based on past empirical rules. Therefore, it is difficult to set the harvesting timing so that the profit is maximized, and it is difficult to effectively use the harvesting facilities such as a mower, a drying facility, and a storage facility.

本発明は、上記問題点に鑑みてなされたものであって、その主たる目的は、植物の刈り取りタイミングを適切に判断して、収益の向上を図ると共に刈り取り施設の有効利用を図ることができる刈り取りスケジュール決定方法及び刈り取りスケジュール決定プログラムを提供することにある。   The present invention has been made in view of the above-mentioned problems, and its main purpose is to appropriately determine the cutting timing of a plant to improve profits and to effectively use a cutting facility. To provide a schedule determination method and a cutting schedule determination program.

本発明の一側面は、複数の圃場に生育する植物の刈り取りスケジュールを決定する装置における刈り取りスケジュール決定方法であって、前記装置は、刈り取り設備の空き期間、前記植物の生育情報及び天候予測情報を取り込む入力処理と、前記植物の生育情報と前記天候予測情報とに基づいて、前記圃場毎の刈り取り可能期間を予測する期間予測処理と、前記刈り取り設備の空き期間と前記圃場毎の刈り取り可能期間とに基づいて、前記複数の圃場の刈り取り日時を決定する日時決定処理と、前記複数の圃場の刈り取り日時を明示した刈り取りスケジュールを出力する出力処理と、を実行することを特徴とする。   One aspect of the present invention is a mowing schedule determination method in an apparatus for determining a mowing schedule of a plant growing in a plurality of fields, wherein the apparatus includes an empty period of the mowing facility, the growth information of the plant, and weather prediction information. Based on the input process to be taken in, the growth information of the plant and the weather prediction information, the period prediction process for predicting the harvestable period for each field, the empty period of the harvesting facility, and the harvestable period for each field And a date determination process for determining the harvest date and time for the plurality of fields and an output process for outputting a harvest schedule that clearly shows the harvest date and time for the plurality of fields.

本発明の一側面は、複数の圃場に生育する植物の刈り取りスケジュールを決定する装置で動作する刈り取りスケジュール決定プログラムであって、前記装置に、刈り取り設備の空き期間、前記植物の生育情報及び天候予測情報を取り込む入力処理、前記植物の生育情報と前記天候予測情報とに基づいて、前記圃場毎の刈り取り可能期間を予測する期間予測処理、前記刈り取り設備の空き期間と前記圃場毎の刈り取り可能期間とに基づいて、前記複数の圃場の刈り取り日時を決定する日時決定処理、前記複数の圃場の刈り取り日時を明示した刈り取りスケジュールを出力する出力処理、を実行させることを特徴とする。   One aspect of the present invention is a mowing schedule determination program that operates with an apparatus that determines a mowing schedule of plants that grow in a plurality of fields, the apparatus including an empty period of mowing equipment, growth information of the plant, and weather prediction. Based on the input process for capturing information, the plant growth information and the weather prediction information, the period prediction process for predicting the harvestable period for each field, the empty period of the harvesting equipment, and the harvestable period for each field And a date determination process for determining the harvest date and time of the plurality of fields, and an output process for outputting a harvest schedule that clearly shows the harvest date and time of the plurality of fields.

本発明の刈り取りスケジュール決定方法及び刈り取りスケジュール決定プログラムによれば、植物の刈り取りタイミングを適切に判断して、収益の向上を図ると共に刈り取り施設の有効利用を図ることができる。   According to the mowing schedule determination method and the mowing schedule determination program of the present invention, it is possible to appropriately determine the mowing timing of plants, thereby improving profits and effectively using mowing facilities.

その理由は、複数の圃場に生育する植物の刈り取りスケジュールを決定する際に、刈り取り設備の空き期間、植物の生育情報及び天候予測情報を取り込み、生育情報と天候予測情報とに基づいて、圃場毎の刈り取り可能期間を予測し、刈り取り設備の空き期間と圃場毎の刈り取り可能期間とに基づいて、複数の圃場の刈り取り日時を決定し、複数の圃場の刈り取り日時を明示した刈り取りスケジュールを出力する制御を行うからである。   The reason for this is that when deciding the harvesting schedule for plants that grow on multiple fields, the vacant period of the harvesting equipment, the growth information of the plants, and the weather prediction information are taken in, and each field is selected based on the growth information and the weather prediction information. Control that predicts the harvesting period of each field, determines the harvesting date / time for multiple fields based on the free period of the harvesting equipment and the harvestable period for each field, and outputs a harvesting schedule that clearly shows the harvesting date / time for multiple fields It is because it performs.

本発明の一実施例に係る植物生育指標測定システムの一例を示す模式図である。It is a schematic diagram which shows an example of the plant growth parameter | index measurement system which concerns on one Example of this invention. 本発明の一実施例に係る植物生育指標測定システムの他の例を示す模式図である。It is a schematic diagram which shows the other example of the plant growth parameter | index measuring system which concerns on one Example of this invention. 本発明の一実施例に係る植物生育指標測定システムの他の例を示す模式図である。It is a schematic diagram which shows the other example of the plant growth parameter | index measuring system which concerns on one Example of this invention. 本発明の一実施例に係る植物生育指標測定システムの構成を示すブロック図である。It is a block diagram which shows the structure of the plant growth parameter | index measuring system which concerns on one Example of this invention. 本発明の一実施例に係る太陽光測定部の外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure of the sunlight measuring part which concerns on one Example of this invention. 本発明の一実施例に係る制御部の動作(刈り取りスケジュール決定処理)を示すフローチャー卜図である。It is a flowchart figure which shows operation | movement (a mowing schedule determination process) of the control part which concerns on one Example of this invention. 本発明の一実施例に係る制御部の動作(生育情報算出処理)を示すフローチャー卜図である。It is a flowchart figure which shows the operation | movement (growth information calculation process) of the control part which concerns on one Example of this invention. 本発明の一実施例に係る刈り取りスケジュール決定方法を説明する図である。It is a figure explaining the mowing schedule determination method which concerns on one Example of this invention. 植物生育指標測定システムの利用例を示す模式図である。It is a schematic diagram which shows the usage example of a plant growth parameter | index measurement system. 熱画像と穂数との相関を示す図である。It is a figure which shows the correlation with a thermal image and the number of spikes. 熱画像と草丈との相関を示す図である。It is a figure which shows the correlation with a thermal image and plant height.

背景技術で示したように、稲などの植物を生育する場合、収益を最大にするために十分に生育した状態で刈り取りを行う必要があり、例えば、特許文献1のように、生籾サンプルの水分値と青籾混入率とを測定し、刈取時期の早遅を判定する方法が用いられている。しかしながら、生籾サンプルを測定する方法では、複数の圃場などの広い領域の生育情報を効率的に取得することができないことから、特許文献2のように、植物の生育度を光学的に測定する装置が提案されている。   As shown in the background art, when growing a plant such as rice, it is necessary to carry out cutting in a sufficiently grown state in order to maximize profits. A method is used in which the moisture value and the blue wrinkle contamination rate are measured to determine the early or late cutting time. However, since the method for measuring a ginger sample cannot efficiently acquire the growth information of a wide area such as a plurality of fields, the growth degree of the plant is optically measured as in Patent Document 2. A device has been proposed.

上記装置を利用して植物の生育を管理する場合、例えば、図9に示すように、遠隔操縦又はGPS(Global Positioning System)を用いて自律航行する飛行体に設置され、飛行体の下側に設置された撮像部で圃場を撮影して葉色や茎数を測定し、飛行体の上側に設置された測定装置で太陽光補正を行ってNDVI(Normalized Difference Vegetation Index)画像を生成する。そして、位置をずらして撮影したNDVI画像を貼り合わせて、圃場の各部の生育状態を示す生育ばらつきマップを作成し、これらの生育ばらつきマップを用いて施肥量マップ(可変基肥マップや可変追肥マップ)を作成し、施肥量マップに基づいてトラクターやヘリコプターなどを用いて施肥を行い、圃場内で植物が均一に生育するように管理する。   When managing the growth of a plant using the above device, for example, as shown in FIG. 9, it is installed in a flying vehicle that autonomously navigates using remote control or GPS (Global Positioning System), and is located below the flying vehicle. A field is photographed by an installed image pickup unit to measure the leaf color and the number of stems, and a NDVI (Normalized Difference Vegetation Index) image is generated by correcting sunlight with a measuring device installed on the upper side of the flying object. Then, NDVI images taken at different positions are pasted together to create a growth variation map indicating the growth state of each part of the field, and using these growth variation maps, fertilizer application maps (variable basic fertilization map and variable topdressing map) And applying fertilizer using a tractor, helicopter, etc. based on the fertilization amount map, and managing so that the plants grow uniformly in the field.

上述した装置を利用することにより、複数の圃場などの広い領域の生育情報を効率的に取得することはできるが、複数の圃場に生育する植物の刈り取りタイミングは過去の経験則に基づいて決定するため、収益が最大になるように刈り取りタイミングを設定することは難しく、また、刈り取り施設の有効利用を図ることは難しい。   By using the above-described apparatus, it is possible to efficiently acquire the growth information of a wide area such as a plurality of fields, but the cutting timing of the plants growing on the plurality of fields is determined based on past empirical rules. Therefore, it is difficult to set the mowing timing so that the profit is maximized, and it is difficult to effectively use the mowing facility.

図10は、上述した装置を利用して複数の圃場から取得した熱画像を解析して、生育情報として1m当たりの穂数(m穂数と呼ぶ。)を算出した結果を示している。図10(a)、(b)の丸で囲んだ領域は稲葉の温度が高く、還元障害によってm穂数が少なくなった領域を示しており、m穂数が少ない領域は穂数が多くなった時点で刈り取りを行うことが求められるが、いつ刈り取りを行えば良いかは過去の経験則に基づいて決定するため、最大に収益を上げ、刈り取り施設の有効利用を図ることは難しい。また、図11は、上述した装置を利用して複数の圃場から取得した熱画像を解析して、生育情報として稲草丈を算出した結果を示している。図11(b)のハッチングで示した領域は稲葉の温度が高く、還元障害によって稲草丈が低くなった領域を示しており、稲草丈が低い領域は稲草丈が高くなった時点で刈り取りを行うことが求められるが、いつ刈り取りを行えば良いかは過去の経験則に基づいて決定するため、最大に収益を上げ、刈り取り施設の有効利用を図ることは難しい。 Figure 10 shows the results of analyzing the thermal image acquired from a plurality of fields by using the apparatus described above, (referred to as m 2 number of ears.) Growth number of ears per 1 m 2 as the information to calculate the . The regions surrounded by circles in FIGS. 10A and 10B show regions where the temperature of the rice leaves is high and the number of m 2 spikes has decreased due to reduction failure, and the region where the number of m 2 spikes is small has the number of spikes. Although it is required to carry out mowing when it increases, it is difficult to increase profits and make effective use of the mowing facility because it is determined based on past experience rules when mowing is necessary. FIG. 11 shows a result of calculating the rice height as growth information by analyzing thermal images acquired from a plurality of fields using the above-described apparatus. The area shown by hatching in FIG. 11 (b) shows the area where the temperature of the rice leaves is high and the rice plant height is lowered due to the reduction failure, and the area where the rice plant height is low is trimmed when the rice plant height becomes high. However, it is difficult to increase the profits and make effective use of the mowing facility because it is determined on the basis of past empirical rules when mowing is necessary.

そこで、本発明の一実施の形態では、最大に収益を上げ、刈り取り施設の有効利用を図ることができるように、各種情報に基づいて刈り取り日時を自動的に設定/調整する。具体的には、複数の圃場に生育する植物の刈り取りスケジュールを決定する際に、刈り取り施設の空き期間(利用可能日)、植物の生育情報(品種、茎数、草丈、穂情報、等級など)、天候予測情報を取り込み、植物の生育情報と天候予測情報とに基づいて、圃場毎の刈り取り可能期間(植物を十分に生育させた最適な状態で刈り取ることができる期間)を予測し、刈り取り施設の空き期間と圃場毎の刈り取り可能期間とに基づいて、複数の圃場の刈り取り日時を決定し、複数の圃場の刈り取り日時を明示した刈り取りスケジュールを出力する。また、刈り取り日時の決定に際して、複数のパラメータ(圃場の面積、品種、茎数、草丈、穂情報、等級の少なくとも1つ)に基づいて、複数の圃場の優先順位を設定(収益が相対的に高くなると推定される圃場の優先順位を相対的に高く設定)し、優先順位が相対的に高い圃場から、刈り取り設備の空き期間内かつ当該圃場の刈り取り可能期間内で、刈り取り日時を決定する。また、圃場毎の排水情報を取り込み、刈り取り日時の決定に際して、刈り取り日時が重なる圃場が生じる場合に、優先順位が相対的に低い圃場の水抜き日時をずらすことによって、刈り取り日時を調整する。   Therefore, in one embodiment of the present invention, the harvesting date and time is automatically set / adjusted based on various types of information so that profits can be maximized and the harvesting facility can be used effectively. Specifically, when determining the harvesting schedule for plants growing in multiple fields, the free period of the harvesting facility (available days), plant growth information (variety, number of stems, plant height, ear information, grade, etc.) Incorporating weather forecast information, predicting the harvestable period (period in which plants can be harvested in an optimal state with sufficient growth) for each field based on plant growth information and weather forecast information, and harvesting facilities Based on the vacant period and the harvestable period for each field, the cutting date and time of a plurality of fields are determined, and a cutting schedule that clearly indicates the cutting date and time of the plurality of fields is output. In addition, when deciding the date and time of harvesting, priorities of a plurality of fields are set based on a plurality of parameters (at least one of field area, variety, number of stems, plant height, ear information, grade) (revenue is relatively The priority of the field estimated to be higher is set relatively high), and the date and time of cutting is determined from the field with the higher priority within the vacant period of the mowing facility and within the mowing period of the field. In addition, when drainage information for each field is taken in and a field with the same harvesting date is generated when the harvesting date is determined, the harvesting date is adjusted by shifting the draining date of the field with a relatively low priority.

これにより、植物の刈り取りタイミングを適切に判断して、収益の向上を図ると共に刈り取り施設の有効利用を図ることができる。   Thereby, it is possible to appropriately determine the harvesting timing of the plant, thereby improving profits and effectively using the harvesting facility.

上記した本発明の実施の形態についてさらに詳細に説明すべく、本発明の一実施例に係る刈り取りスケジュール決定方法及び刈り取りスケジュール決定プログラムについて、図1乃至図8を参照して説明する。図1乃至図3は、本実施例の植物生育指標測定システムの一例を示す模式図であり、図4は、本実施例の植物生育指標測定システムの構成を示すブロック図、図5は、太陽光測定部の外観構成を示す斜視図である。また、図6及び図7は、本実施例の制御部の動作を示すフローチャー卜図であり、図8は、本実施例の刈り取りスケジュール決定方法を説明する模式図である。   In order to describe the above-described embodiment of the present invention in further detail, a mowing schedule determination method and a mowing schedule determination program according to an embodiment of the present invention will be described with reference to FIGS. FIGS. 1 to 3 are schematic diagrams showing an example of the plant growth index measurement system of the present embodiment, FIG. 4 is a block diagram showing the configuration of the plant growth index measurement system of the present embodiment, and FIG. It is a perspective view which shows the external appearance structure of a light measurement part. FIGS. 6 and 7 are flowchart diagrams showing the operation of the control unit of the present embodiment, and FIG. 8 is a schematic diagram for explaining a mowing schedule determination method of the present embodiment.

図1に示すように、本実施例の刈り取りスケジュールの決定で利用する植物生育指標測定システムは、第1波長及び第1波長とは異なる第2波長で複数の葉を持つ測定対象の反射光の光強度を測定する反射光測定装置11と、第3波長及び第3波長とは異なる第4波長で太陽光の光強度を測定する太陽光測定装置12と、測定対象の反射光の光強度情報と太陽光の光強度情報とに基づいて、測定対象の生育指標を求める制御装置13と、を含み、これらが、遠隔操縦又は自律式のマルチコプター又は無人航空機(いわゆるドローン)などの飛行体に搭載されて構成される。   As shown in FIG. 1, the plant growth index measurement system used in the determination of the mowing schedule according to the present embodiment uses the first wavelength and the reflected light of the measurement target having a plurality of leaves at a second wavelength different from the first wavelength. Reflected light measurement device 11 that measures light intensity, solar light measurement device 12 that measures the light intensity of sunlight at a fourth wavelength different from the third wavelength and the third wavelength, and light intensity information of the reflected light of the measurement target And a control device 13 for obtaining a growth index to be measured based on the light intensity information of the sunlight, and these are used for a flying object such as a remote control or an autonomous multicopter or an unmanned aircraft (so-called drone). Installed and configured.

なお、図1では、反射光測定装置11と太陽光測定装置12と制御装置13とが飛行体に搭載されるシステムを例示したが、図2に示すように、反射光測定装置11と太陽光測定装置12とが飛行体に搭載され、制御装置13が独立した装置として構成されるシステムとしてもよい。図2の構成の場合、反射光測定装置11は、制御装置13の指示に基づいて測定対象の反射光の光強度を測定し、太陽光測定装置12は、制御装置13の指示に基づいて太陽光の光強度を測定し、制御装置13は、反射光測定部20から測定対象の反射光強度情報を取得すると共に、太陽光測定部30から太陽光強度情報を取得し、これらを用いて測定対象の生育指標を算出する。   1 illustrates a system in which the reflected light measurement device 11, the sunlight measurement device 12, and the control device 13 are mounted on the flying object, but as shown in FIG. 2, the reflected light measurement device 11 and the sunlight It is good also as a system by which the measuring apparatus 12 is mounted in a flying body and the control apparatus 13 is comprised as an independent apparatus. In the case of the configuration of FIG. 2, the reflected light measurement device 11 measures the light intensity of the reflected light to be measured based on an instruction from the control device 13, and the solar light measurement device 12 measures the sun based on the instruction from the control device 13. The light intensity of the light is measured, and the control device 13 acquires the reflected light intensity information of the measurement target from the reflected light measurement unit 20 and also acquires the sunlight intensity information from the solar light measurement unit 30 and measures using these. The target growth index is calculated.

また、図3に示すように、反射光測定装置11と太陽光測定装置12と制御装置13とが別々の装置として構成されるシステムとしてもよい。図3の構成の場合、反射光測定装置11が飛行体に搭載され、制御装置13の指示に基づいて測定対象の反射光の光強度を測定し、太陽光測定装置12が地上に設置され、制御装置13の指示に基づいて太陽光の光強度を測定(好ましくは、太陽光を直達成分と散乱成分とに分離できるように測定)する。また、制御装置13は、反射光測定部20から測定対象の反射光強度情報を取得すると共に、太陽光測定部30から太陽光強度情報を取得し、これらを用いて測定対象の生育指標を算出する。   Moreover, as shown in FIG. 3, it is good also as a system by which the reflected light measuring device 11, the sunlight measuring device 12, and the control apparatus 13 are comprised as a separate apparatus. In the case of the configuration of FIG. 3, the reflected light measurement device 11 is mounted on the flying object, the light intensity of the reflected light of the measurement target is measured based on an instruction from the control device 13, and the solar light measurement device 12 is installed on the ground. The light intensity of the sunlight is measured based on an instruction from the control device 13 (preferably measured so that the sunlight can be separated into a directly achieved component and a scattering component). Further, the control device 13 acquires the reflected light intensity information of the measurement target from the reflected light measurement unit 20, acquires the sunlight intensity information from the solar light measurement unit 30, and calculates the growth index of the measurement target using these. To do.

以下、図1の構成を前提にして、植物生育指標測定システム10の各部の動作について説明する。図4に示すように、本実施例の植物生育指標測定システム10は、反射光測定部20と、GPS部21と、方位計22と、傾斜計23と、太陽光測定部30と、制御部40と、記憶部50と、時計部60と、I/F部70と、表示操作部80と、電源部90などで構成される。   Hereinafter, the operation of each part of the plant growth index measurement system 10 will be described based on the configuration of FIG. As shown in FIG. 4, the plant growth index measurement system 10 of the present embodiment includes a reflected light measurement unit 20, a GPS unit 21, an azimuth meter 22, an inclinometer 23, a sunlight measurement unit 30, and a control unit. 40, a storage unit 50, a clock unit 60, an I / F unit 70, a display operation unit 80, a power supply unit 90, and the like.

反射光測定部20は、制御部40に接続され、制御部40の制御に従い、測定対象の反射光の光強度を互いに異なる第1波長及び第2波長で測定する装置であり、その測定結果を制御部40へ出力する。この第1波長及び第2波長は、求める植物生育指標に応じて適宜設定可能であり、例えば、NDVI値を求める場合には、650nm近辺の可視光の波長及び750nm以上の赤外光の波長とすることができる。   The reflected light measurement unit 20 is connected to the control unit 40, and is a device that measures the light intensity of the reflected light to be measured at different first and second wavelengths according to the control of the control unit 40. Output to the control unit 40. The first wavelength and the second wavelength can be appropriately set according to the plant growth index to be obtained. For example, when obtaining the NDVI value, the wavelength of visible light near 650 nm and the wavelength of infrared light of 750 nm or more are used. can do.

具体的には、反射光測定部20は、可視光の画像(可視画像)を生成する第1可視撮像部と、赤外光の画像(赤外画像)を生成する第1赤外撮像部と、を備える。第1可視撮像部は、いわゆる可視カメラ等であり、例えば、波長650nmを中心波長とする比較的狭帯域で光を透過する第1バンドパスフィルタ、第1バンドパスフィルタを透過した測定対象の可視光の光学像を所定の結像面上に結像する第1結像光学系、第1結像面に受光面が一致するように配置され、測定対象の可視光の光学像を電気的な信号に変換する第1イメージセンサ、第1イメージセンサの出力に対して公知の画像処理を施して可視光での第1画像データRvを生成する第1デジタルシグナルプロセツサ(DSP)などで構成され、第1画像データRvを制御部40へ出力する。また、第2赤外撮像部は、いわゆる赤外カメラ等であり、例えば、波長800nmを中心波長とする比較的狭帯域で光を透過する第2バンドパスフィルタ、第2バンドパスフィルタを透過した測定対象の赤外光の光学像を所定の結像面上に結像する第2結像光学系、第2結像面に受光面が一致するように配置され、測定対象の赤外光の光学像を電気的な信号に変換する第2イメージセンサ、第2イメージセンサの出力に対して公知の画像処理を施して赤外光での第2画像データRiを生成する第2DSPなどで構成され、第2画像データRiを制御部40へ出力する。   Specifically, the reflected light measurement unit 20 includes a first visible imaging unit that generates a visible light image (visible image), and a first infrared imaging unit that generates an infrared light image (infrared image). . The first visible imaging unit is a so-called visible camera or the like, for example, a first bandpass filter that transmits light in a relatively narrow band having a wavelength of 650 nm as a center wavelength, and a visible object to be measured that has passed through the first bandpass filter. A first imaging optical system that forms an optical image of light on a predetermined imaging surface; and a light-receiving surface that coincides with the first imaging surface, and the optical image of the visible light to be measured is electrically A first image sensor that converts the signal into a signal, a first digital signal processor (DSP) that performs known image processing on the output of the first image sensor to generate first image data Rv in visible light, and the like. The first image data Rv is output to the control unit 40. The second infrared imaging unit is a so-called infrared camera or the like, for example, transmitted through a second band-pass filter and a second band-pass filter that transmit light in a relatively narrow band centered at a wavelength of 800 nm. A second image-forming optical system that forms an optical image of the infrared light to be measured on a predetermined image-forming surface, and is arranged so that the light-receiving surface coincides with the second image-forming surface; A second image sensor that converts an optical image into an electrical signal, a second DSP that performs known image processing on the output of the second image sensor to generate second image data Ri with infrared light, and the like. The second image data Ri is output to the control unit 40.

なお、上記では、反射光測定部20が第1可視撮像部及び第1赤外撮像部を備える構成としたが、反射光測定部20は、赤色の光を受光するR画素、緑色の光を受光するG画素、青色の光を受光するB画素及び赤外の光を受光するIR画素を2行2列に配列した単位配列を持つイメージセンサ(RGBIrイメージセンサ)や、白色の光を受光するW画素、黄色の光を受光するY画素、赤色の光を受光するR画素及び赤外の光を受光するIR画素を2行2列に配列した単位配列を持つイメージセンサ(WYRIrイメージセンサ)等の1つの撮像部を備える構成としてもよい。また、反射光測定部20は、分光器を備える構成としてもよい。   In the above description, the reflected light measurement unit 20 includes the first visible imaging unit and the first infrared imaging unit. However, the reflected light measurement unit 20 receives the R pixel that receives red light and the green light. An image sensor (RGBIr image sensor) having a unit arrangement in which G pixels that receive light, B pixels that receive blue light, and IR pixels that receive infrared light are arranged in 2 rows and 2 columns, or white light is received. Image sensor (WYRIr image sensor) having a unit arrangement in which W pixels, Y pixels that receive yellow light, R pixels that receive red light, and IR pixels that receive infrared light are arranged in 2 rows and 2 columns, etc. It is good also as a structure provided with one imaging part. The reflected light measurement unit 20 may include a spectroscope.

GPS部21は、制御部40に接続され、制御部40の制御に従い、地球上の現在位置を測定するための衛星測位システムによって、当該植物生育指標測定システム10の位置(図2及び図3の構成の場合は反射光測定装置11の位置)を測定する装置であり、その測位結果(緯度X、経度Y、高度Z)を制御部40へ出力する。なお、GPS部21は、DGSP(Differential GSP)等の誤差を補正する補正機能を持ったGPSとしてもよい。   The GPS unit 21 is connected to the control unit 40 and, according to the control of the control unit 40, the position of the plant growth index measurement system 10 (see FIGS. 2 and 3) by a satellite positioning system for measuring the current position on the earth. In the case of the configuration, it is a device that measures the position of the reflected light measuring device 11) and outputs the positioning result (latitude X, longitude Y, altitude Z) to the control unit 40. The GPS unit 21 may be a GPS having a correction function for correcting errors such as DGSP (Differential GSP).

方位計(コンパス)22は、制御部40に接続され、制御部40の制御に従い、地磁気等に基づいて方位を測定することによって、当該植物生育指標測定システム10の測定方向の方位を測定する装置であり、測定した方位φCを制御部40へ出力する。この方位φCは、北を0度、東を90度、南を180度、西を270度として表される。   An azimuth meter (compass) 22 is connected to the control unit 40, and measures the azimuth in the measurement direction of the plant growth index measurement system 10 by measuring the azimuth based on geomagnetism or the like under the control of the control unit 40. The measured azimuth φC is output to the control unit 40. This azimuth φC is expressed as 0 degrees north, 90 degrees east, 180 degrees south, and 270 degrees west.

傾斜計23は、制御部40に接続され、制御部40の制御に従い、傾斜を測定することによって、当該植物生育指標測定システム10の測定方向の角度を測定する装置であり、測定した角度βを制御部40へ出力する。   The inclinometer 23 is a device that is connected to the control unit 40 and measures the angle in the measurement direction of the plant growth index measurement system 10 by measuring the inclination in accordance with the control of the control unit 40. Output to the control unit 40.

太陽光測定部30は、制御部40に接続され、制御部40の制御に従い、太陽光の光強度を互いに異なる第3波長及び第4波長で測定する装置であり、その測定結果を制御部40へ出力する。この第3波長及び第4波長は、求める植物生育指標に応じて適宜設定することができるが、本実施例では、第3波長は前記した第1波長、第4波長は前記した第2波長としている。また、太陽光測定部30は、反射光測定部20の第1可視撮像部と同様の構成の第2可視撮像部と、反射光測定部20の第1赤外撮像部と同様の構成の第2赤外撮像部と、を備え、第2可視撮像部は、可視光での第3画像データSvを生成して制御部40へ出力し、第2赤外撮像部は、赤外光での第4画像データSiを生成して制御部40へ出力する。   The sunlight measuring unit 30 is connected to the control unit 40 and is a device that measures the light intensity of sunlight at a third wavelength and a fourth wavelength different from each other according to the control of the control unit 40, and the measurement result is displayed on the control unit 40. Output to. The third wavelength and the fourth wavelength can be appropriately set according to the desired plant growth index. In this embodiment, the third wavelength is the first wavelength, and the fourth wavelength is the second wavelength. Yes. Further, the sunlight measuring unit 30 includes a second visible imaging unit having a configuration similar to that of the first visible imaging unit of the reflected light measuring unit 20 and a first configuration having the same configuration as that of the first infrared imaging unit of the reflected light measuring unit 20. A second infrared imaging unit, wherein the second visible imaging unit generates third image data Sv in visible light and outputs the third image data Sv to the control unit 40, and the second infrared imaging unit is in infrared light. Fourth image data Si is generated and output to the control unit 40.

この太陽光測定部30は、図3のように地上に設置される場合は、図5に示すような構造として、太陽光の光強度を直達成分と散乱成分とに分離することができる。具体的には、太陽光測定部30は、入射した太陽光を散乱反射する(好ましくは理想的なランバート反射特性を有する)散乱反射板31と、散乱反射板31に対して所定の位置に設置された受光部32(第2可視撮像部及び第2赤外撮像部)と、散乱反射板31に対して入射する太陽光を遮蔽することができる光遮蔽部33と、これらを保持する筐体34及び支柱35などを備える。散乱反射板31は筐体34に支持され、受光部32は支柱35に支持され、これらは中心軸が一致するように対向配置(各々の面が水平になるように対向配置)される。また、光遮蔽部33(対向する2つの部位)は、筐体34及び支柱35によって、散乱反射板31及び受光部32の中心軸を回転軸として回転可能に支持され、筐体34の内部に配置されたモータ(図示せず)によって等速で回転する(好ましくは180度の正回転/逆回転を繰り返す)。   When the sunlight measuring unit 30 is installed on the ground as shown in FIG. 3, the light intensity of sunlight can be separated into a directly achieved component and a scattered component as a structure as shown in FIG. Specifically, the sunlight measuring unit 30 scatters and reflects incident sunlight (preferably has an ideal Lambertian reflection characteristic), and is installed at a predetermined position with respect to the scattering reflector 31. Light receiving unit 32 (second visible imaging unit and second infrared imaging unit), a light shielding unit 33 that can shield sunlight incident on the scattering reflector 31, and a housing that holds them 34 and the support | pillar 35 etc. are provided. The scattering reflection plate 31 is supported by the casing 34, and the light receiving unit 32 is supported by the support column 35, and these are opposed to each other so that the central axes coincide (the respective surfaces are arranged to be horizontal). Further, the light shielding part 33 (two opposing parts) is supported by the casing 34 and the support column 35 so as to be rotatable about the central axes of the scattering reflector 31 and the light receiving part 32 as the rotation axis. The motor is rotated at a constant speed by an arranged motor (not shown) (preferably 180 ° forward / reverse rotation is repeated).

そして、光遮蔽部33の一方の部位が略北側になるように設置し、光遮蔽部33を回転させながら散乱反射板31で反射した光を受光部32で撮像する。具体的には、第3波長及び第4波長の各々に対して、散乱反射板31に入射する太陽光が光遮蔽部33によって遮蔽された状態で受光部32に入射する太陽光の光量Aと、散乱反射板31に入射する太陽光が光遮蔽部33によって遮蔽されない状態で受光部32に入射する太陽光の光量Bとを測定する。ここで、光量Bから光量Aを減算した値を光量Cとすると、光量Aは、受光部32に入射する光量のうちの散乱成分となり、光量Cは、受光部32に入射する光量のうちの直達成分となる。   Then, the light shielding unit 33 is installed so that one part thereof is substantially on the north side, and the light reflected by the scattering reflector 31 is imaged by the light receiving unit 32 while the light shielding unit 33 is rotated. Specifically, with respect to each of the third wavelength and the fourth wavelength, the amount of sunlight A incident on the light receiving unit 32 in a state where the sunlight incident on the scattering reflector 31 is shielded by the light shielding unit 33 and The amount of sunlight B incident on the light receiving unit 32 in a state where the sunlight incident on the scattering reflector 31 is not shielded by the light shielding unit 33 is measured. Here, when a value obtained by subtracting the light amount A from the light amount B is a light amount C, the light amount A becomes a scattering component of the light amount incident on the light receiving unit 32, and the light amount C is the light amount incident on the light receiving unit 32. Directly achieved.

制御部40は、植物生育指標測定システム10の各部を制御して生育指標を求める。制御部40は、例えば、図示しないCPU(Central Processing Unit)及びその周辺回路を備えて構成され、CPUで制御プログラムが実行されることにより、制御部40は、入力部41、期間予測部42、日時決定部43、情報取得部44、太陽角度演算部45、太陽方向演算部46、拡散度演算部47、葉密度演算部48及び生育指標演算部49として機能する。特に、CPUで刈り取りスケジュール決定プログラムが実行されることにより、制御部40は、入力部41、期間予測部42、日時決定部43として機能する。   The control unit 40 obtains a growth index by controlling each part of the plant growth index measurement system 10. The control unit 40 includes, for example, a CPU (Central Processing Unit) (not shown) and its peripheral circuits. When the control program is executed by the CPU, the control unit 40 includes an input unit 41, a period prediction unit 42, Functions as a date determination unit 43, an information acquisition unit 44, a sun angle calculation unit 45, a sun direction calculation unit 46, a diffusivity calculation unit 47, a leaf density calculation unit 48, and a growth index calculation unit 49. In particular, when the mowing schedule determination program is executed by the CPU, the control unit 40 functions as the input unit 41, the period prediction unit 42, and the date / time determination unit 43.

入力部41は、刈り取り可能期間の予測、刈り取り日時や水抜き日時の決定に使用する各種情報を取り込む。具体的には、圃場の面積や排水情報(各圃場の排水に要する時間)、圃場で生育する植物の品種、植え付け日などの圃場に関する基本情報(圃場情報)を記憶部50(圃場情報記憶部51)などから取り込む。また、刈り取りに使用する施設(刈り取り機、乾燥施設、保管施設など)の空き期間を記憶部50(施設情報記憶部52)などから取り込む。また、植物の品種、茎数、草丈、穂情報(籾数や籾色など)、等級など生育情報を生育指標演算部49や記憶部50(生育情報記憶部53)などから取り込む。また、今後の天候などの天候予測情報を外部のサーバや記憶部50(天候情報記憶部54)などから取り込む。   The input unit 41 captures various types of information used for prediction of a harvestable period, determination of a mowing date and time, and a draining date and time. Specifically, the storage unit 50 (field information storage unit) stores basic information (field information) on the field such as the field area and drainage information (the time required for draining each field), the type of plant growing in the field, and the planting date. 51). In addition, a free period of a facility (such as a mower, a drying facility, or a storage facility) used for harvesting is taken from the storage unit 50 (facility information storage unit 52) or the like. Further, growth information such as plant varieties, number of stems, plant height, ear information (number of pods, scarlet color, etc.) and grade is taken from the growth index calculation unit 49, the storage unit 50 (growth information storage unit 53), and the like. Further, weather forecast information such as future weather is fetched from an external server, the storage unit 50 (weather information storage unit 54), or the like.

期間予測部42は、上記生育情報と天候予測情報とに基づいて、植物の生育状態を推定することによって、圃場毎の刈り取り可能期間を予測する。なお、刈り取り可能期間とは、植物を十分に生育させた最適な(市場価値が最も高い)状態で刈り取ることができる期間であり、例えば、茎数や草丈、籾数が予め定めた閾値を超えると推定される期間、籾色が予め定めた色の範囲に入ると推定される期間などとすることができる。   The period prediction unit 42 predicts a harvestable period for each farm field by estimating the growth state of the plant based on the growth information and the weather prediction information. In addition, the mowable period is a period during which the plant can be mowed in an optimal (highest market value) state in which the plant is sufficiently grown. For example, the number of stems, the plant height, and the number of pods exceed a predetermined threshold. Or a period in which the dark blue color is estimated to fall within a predetermined color range.

日時決定部43は、上記刈り取り施設の空き期間と圃場毎の刈り取り可能期間とに基づいて、複数の圃場の刈り取り日時を決定する。例えば、複数のパラメータ(圃場の面積、植物の品種、茎数、草丈、穂情報、等級の少なくとも1つ)に基づいて、複数の圃場の優先順位を設定(収益が相対的に高くなると推定される圃場の優先順位を相対的に高く設定)し、優先順位が相対的に高い圃場から、刈り取り設備の空き期間内かつ当該圃場の刈り取り可能期間内で、刈り取り日時を決定する。その際、刈り取り日時が重なる圃場が生じる場合は、いずれかの圃場の水抜き日時をずらす(例えば、優先順位が相対的に低い圃場の水抜き日時を後ろにずらす)ことによって、刈り取り日時を調整する。また、複数の圃場の全収穫高と、刈り取り施設の1日あたりの処理能力と、刈り取り施設の空き期間と、に基づいて、複数の圃場の刈り取りの所要日数を算定し、所要日数に基づいて刈り取りの初期日を決定することができ、刈り取り日時が刈り取り可能期間から外れる圃場が生じる場合は、刈り取りの初期日を早めて、刈り取り遅れにならないようにすることができる。そして、複数の圃場の刈り取り日時(必要に応じて、水抜き日時)を明示した刈り取りスケジュールを表示操作部80に表示させてユーザに通知したり、I/F部70を介して外部の装置に出力したり(例えば、画像形成装置に出力して印刷させたり)する。   The date and time determination unit 43 determines the date and time for cutting a plurality of farm fields based on the empty period of the harvest facility and the harvestable period for each field. For example, based on a plurality of parameters (at least one of the field area, plant variety, number of stems, plant height, ear information, grade), the priority order of a plurality of fields is set (it is estimated that the profit will be relatively high). The priority of the farm field is set relatively high), and the harvest date and time is determined from the farm field having the relatively high priority within the vacant period of the harvesting equipment and within the harvestable period of the farm field. At that time, if there is a field where the harvesting date and time overlap, adjust the harvesting date and time by shifting the draining date and time of one of the fields (for example, shifting the draining date and time of the field with relatively low priority) To do. In addition, based on the total yield of multiple fields, the processing capacity of the mowing facility per day, and the vacant period of the mowing facility, the number of days required for mowing the fields is calculated, and based on the number of days required. The initial date of mowing can be determined, and when the field where the mowing date and time is out of the mowing possible period occurs, the initial date of mowing can be advanced so that the mowing is not delayed. Then, a mowing schedule that clearly shows the mowing date and time (if necessary, draining date and time) of a plurality of fields is displayed on the display operation unit 80 and notified to the user, or via an I / F unit 70 to an external device. Output (for example, output to an image forming apparatus and print it).

情報取得部44は、反射光測定部20から可視光での第1画像データRv及び赤外光での第2画像データRiを取得する。また、情報取得部44は、太陽光測定部30から可視光での第3画像データSv及び赤外光での第4画像データSiを取得する。その際、太陽光測定部30が図5に示す構造の場合は、情報取得部44は、第3画像データSv及び第4画像データSiの各画素の光強度を、散乱反射板31に入射する太陽光が光遮蔽部33によって遮蔽された状態で受光部32に入射する太陽光の光量Aと、散乱反射板31に入射する太陽光が光遮蔽部33によって遮蔽されない状態で受光部32に入射する太陽光の光量Bと、に分離して取得する。   The information acquisition unit 44 acquires the first image data Rv with visible light and the second image data Ri with infrared light from the reflected light measurement unit 20. Further, the information acquisition unit 44 acquires the third image data Sv with visible light and the fourth image data Si with infrared light from the sunlight measurement unit 30. At that time, when the sunlight measuring unit 30 has the structure shown in FIG. 5, the information acquiring unit 44 makes the light intensity of each pixel of the third image data Sv and the fourth image data Si incident on the scattering reflector 31. The amount of sunlight A incident on the light receiving unit 32 in a state where the sunlight is shielded by the light shielding unit 33 and the sunlight incident on the scattering reflector 31 are incident on the light receiving unit 32 without being shielded by the light shielding unit 33. To obtain the light quantity B of sunlight.

太陽角度演算部45は、GPS部21で取得した緯度X及び経度Yと、時計部60で計測した年月日時分(日時情報Tと呼ぶ。)と、に基づいて、公知の手法によって、太陽角度αを求める。例えば、まず、1月1日からの通し日数dnからθ0=2π(dn−1)/365によってθ0を求める。次に、下記の式1によって太陽赤緯δを求め、式2によって均時差Eqを求める。次に、式3によって、日本標準時間JSTから太陽の時角hを求める。そして、式4によって太陽高度Aを求め、太陽角度α=π/2−太陽高度Aから太陽角度αを求める。   The sun angle calculation unit 45 uses a known method based on the latitude X and longitude Y acquired by the GPS unit 21 and the year / month / day / hour / minute (referred to as date / time information T) measured by the clock unit 60. Find the angle α. For example, first, θ0 is obtained from the number of consecutive days dn from January 1 by θ0 = 2π (dn−1) / 365. Next, the solar declination δ is obtained by the following equation 1, and the equality difference Eq is obtained by the equation 2. Next, the sun hour angle h is obtained from the Japan Standard Time JST by Equation 3. And the solar height A is calculated | required by Formula 4, and the solar angle (alpha) is calculated | required from the solar angle (alpha) = (pi) / 2-solar height A. FIG.

δ=0.006918−0.399912cos(θ0)+0.070257sin(θ0)−0.006758cos(2θ0)−0.000907sin(2θ0)−0.002697cos(3θ0)−0.001480sin(3θ0) … (式1)
Eq=0.000075+0.001868cos(θ0)+0.032077sin(θ0)−0.0014615cos(2θ0)−0.040849sin(2θ0) … (式2)
h=(JST−12)π/12+標準子午線からの経度差+均時差Eq … (式3)
A=arcsin[sin(Y)sin(δ)+cos(Y)cos(δ)cos(h)] … (式4)
δ = 0.006918−0.399912 cos (θ0) +0.070257 sin (θ0) −0.006758 cos (2θ0) −0.000907 sin (2θ0) −0.002697 cos (3θ0) −0.001480 sin (3θ0) (Formula 1) )
Eq = 0.000075 + 0.001868cos (θ0) + 0.032077sin (θ0) −0.0014615cos (2θ0) −0.040849sin (2θ0) (Equation 2)
h = (JST-12) π / 12 + longitude difference from standard meridian + equal time difference Eq (Equation 3)
A = arcsin [sin (Y) sin (δ) + cos (Y) cos (δ) cos (h)] (Formula 4)

太陽方向演算部46は、GPS部21で取得した緯度X及び経度Yと、時計部60で計った日時情報Tと、に基づいて、公知の手法によって、太陽方位φ1を求める。具体的には、下記の式5によって太陽方位φ1を求める。この求めた太陽方位φ1と方位計22で求めた反射光測定部20の測定方向の方位φCと、に基づいて、太陽方向φを求める。具体的には、太陽方向演算部46は、方位計22で測定した方位φCと式5から求められる太陽方位φ1との差分として太陽方向φを求める(φ=φ1−φC)。   The sun direction calculation unit 46 obtains the sun azimuth φ1 by a known method based on the latitude X and longitude Y acquired by the GPS unit 21 and the date / time information T measured by the clock unit 60. Specifically, the sun azimuth φ1 is obtained by the following formula 5. Based on the obtained solar orientation φ1 and the orientation φC in the measurement direction of the reflected light measurement unit 20 obtained by the orientation meter 22, the solar direction φ is obtained. Specifically, the sun direction calculation unit 46 obtains the sun direction φ as a difference between the direction φC measured by the direction meter 22 and the sun direction φ1 obtained from Expression 5 (φ = φ1-φC).

φ1=arctan[cos(Y)cos(δ)sin(h)/[sin(Y)sin(α)−sin(δ)]] … (式5)   φ1 = arctan [cos (Y) cos (δ) sin (h) / [sin (Y) sin (α) −sin (δ)]] (Formula 5)

拡散度演算部47は、太陽光測定部30の測定結果に基づいて、拡散度Wを求める。例えば、拡散度演算部47は、第2可視撮像部で生成された可視光での第3画像データSvの標準偏差σsvを求め、この標準偏差σsvで所定係数Kを除算することで拡散度Wを求める。あるいは、例えば、拡散度演算部47は、第2赤外撮像部で生成された赤外光での第4画像データSiの標準偏差σsiを求め、この標準偏差σsiで所定係数Kを除算することで拡散度Wを求める。上記所定係数Kは、雲がない快晴の場合に拡散度Wが0となり、曇天の場合に拡散度Wが1となるように正規化するための係数である。また、例えば、拡散度演算部47は、反射光測定部20のシャッタースピード(例えば第1可視撮像部のシャッタースピード)ssを反射光測定部20から取得し、このシャッタースピードssをそのまま拡散度Wとすることもできる。また、太陽光測定部30が図5に示す構造の場合は、拡散度演算部47は、散乱反射板31に入射する太陽光が光遮蔽部33によって遮蔽された状態で受光部32に入射する太陽光の光量Aと、散乱反射板31に入射する太陽光が光遮蔽部33によって遮蔽されない状態で受光部32に入射する太陽光の光量Bとを用い、光量Bから光量Aを減算して光量Cを求める。光量Aは、受光部32に入射する光量のうちの散乱成分となり、光量Cは、受光部32に入射する光量のうちの直達成分となり、拡散度Wは、光量A/光量B又は光量A/光量Cとなる。   The diffusivity calculating unit 47 obtains the diffusivity W based on the measurement result of the sunlight measuring unit 30. For example, the diffusivity calculating unit 47 obtains the standard deviation σsv of the third image data Sv with visible light generated by the second visible image capturing unit, and divides the predetermined coefficient K by this standard deviation σsv to thereby determine the diffusivity W Ask for. Alternatively, for example, the diffusivity calculating unit 47 obtains the standard deviation σsi of the fourth image data Si with the infrared light generated by the second infrared imaging unit, and divides the predetermined coefficient K by this standard deviation σsi. To obtain the diffusivity W. The predetermined coefficient K is a coefficient for normalization so that the diffusivity W is 0 when clear and there is no cloud, and the diffusivity W is 1 when it is cloudy. Further, for example, the diffusivity calculating unit 47 acquires the shutter speed (for example, the shutter speed of the first visible imaging unit) ss of the reflected light measuring unit 20 from the reflected light measuring unit 20, and uses the shutter speed ss as it is as the diffusivity W. It can also be. When the sunlight measuring unit 30 has the structure shown in FIG. 5, the diffusivity calculating unit 47 enters the light receiving unit 32 in a state where sunlight incident on the scattering reflector 31 is shielded by the light shielding unit 33. The amount of sunlight A is subtracted from the amount of light B using the amount of sunlight A and the amount of sunlight B incident on the light receiving unit 32 in a state where the sunlight incident on the scattering reflector 31 is not shielded by the light shielding unit 33. The amount of light C is obtained. The light amount A is a scattering component of the light amount incident on the light receiving unit 32, the light amount C is a direct achievement of the light amount incident on the light receiving unit 32, and the diffusivity W is the light amount A / light amount B or the light amount A / The amount of light C.

葉密度演算部48は、後述する生育情報記憶部53に記憶された生育情報に基づいて葉密度を求める。例えば、生育情報が植え付け(例えば田植え)からの日数と葉密度Lとの対応関係を示す情報である場合は、葉密度演算部48は、I/F部70を介して取得された植え付けからの日数に対応する葉密度を生育情報記憶部53に記憶された生育情報から求める。   The leaf density calculation unit 48 obtains the leaf density based on the growth information stored in the growth information storage unit 53 described later. For example, when the growth information is information indicating the correspondence between the number of days since planting (for example, rice planting) and the leaf density L, the leaf density calculation unit 48 uses the planting information acquired via the I / F unit 70. The leaf density corresponding to the number of days is obtained from the growth information stored in the growth information storage unit 53.

生育指標演算部49は、情報取得部44が取得した第1波長及び第2波長の反射光の光強度情報、第3波長及び第4波長の太陽光の光強度情報、太陽角度演算部45で求めた太陽高度A又は太陽角度αに基づいて、測定対象における生育の度合いを表す生育指標を求める。好ましくは、生育指標演算部49は、更に、太陽方向演算部46で求めた太陽方向φ、傾斜計23で取得した測定角度β、葉密度演算部48で求めた葉密度Lに基づいて、測定対象における生育の度合いを表す生育指標を求める。   The growth index calculation unit 49 is the light intensity information of reflected light of the first wavelength and the second wavelength acquired by the information acquisition unit 44, the light intensity information of sunlight of the third wavelength and the fourth wavelength, and the sun angle calculation unit 45. Based on the obtained solar altitude A or sun angle α, a growth index representing the degree of growth in the measurement object is obtained. Preferably, the growth index calculation unit 49 further measures based on the solar direction φ obtained by the sun direction calculation unit 46, the measurement angle β obtained by the inclinometer 23, and the leaf density L obtained by the leaf density calculation unit 48. A growth index representing the degree of growth in the subject is obtained.

また、太陽光測定部30が図5に示す構造の場合は、生育指標演算部49は、直達成分及び散乱成分(若しくは、拡散度演算部47が算出した拡散度W)に基づいて反射光の光強度情報を補正することにより、生育指標を算出することもできる。例えば、生育指標としてNDVIを求める場合、
NDVI=(赤外反射率−可視反射率)/(赤外反射率+可視反射率) … (式6)
反射率=反射光強度/入射光強度 … (式7)
より、
NDVI=(Ri/Si−Rv/Sv)/(Ri/Si+Rv/Sv)
=(Ri−Rv×Si/Sv)/(Ri+Rv×Si/Sv) … (式8)
となる。
In the case where the solar light measuring unit 30 has the structure shown in FIG. 5, the growth index calculating unit 49 calculates the reflected light based on the direct achievement and the scattering component (or the diffusivity W calculated by the diffusivity calculating unit 47). A growth index can also be calculated by correcting the light intensity information. For example, when obtaining NDVI as a growth index,
NDVI = (infrared reflectance-visible reflectance) / (infrared reflectance + visible reflectance) (Expression 6)
Reflectivity = reflected light intensity / incident light intensity (Formula 7)
Than,
NDVI = (Ri / Si-Rv / Sv) / (Ri / Si + Rv / Sv)
= (Ri−Rv × Si / Sv) / (Ri + Rv × Si / Sv) (Equation 8)
It becomes.

ここで、
Si=直達成分Sid+散乱成分Sis … (式9)
Sv=直達成分Svd+散乱成分Svs … (式10)
であるから、太陽高度Aを用いると、
NDVI=(Ri−Rv×(Sid×A+Sis)/(Svd×A+Svs))/(Ri+Rv×(Sid×A+Sis)/(Svd×A+Svs)) … (式11)
となる。
here,
Si = direct achievement Sid + scattering component Sis (Equation 9)
Sv = directly achieved component Svd + scattering component Svs (Equation 10)
So, using the solar altitude A,
NDVI = (Ri−Rv × (Sid × A + Sis) / (Svd × A + Svs)) / (Ri + Rv × (Sid × A + Sis) / (Svd × A + Svs)) (Formula 11)
It becomes.

記憶部50は、制御部40に接続され、制御部40の制御に従い、各種プログラム及び各種データを記憶する。上記各種プログラムには、例えば、当該植物生育指標測定システム10の各部を制御する制御プログラムや、刈り取りスケジュールを決定する刈り取りスケジュール決定制御プログラム、測定対象の生育指標を求める生育指標演算プログラム等が含まれる。また、上記各種データには、圃場情報や施設情報、生育情報、天候予測情報等が含まれる。記憶部50は、例えば不揮発性の記憶素子であるROM(Read Only Memory)や書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)等を備える。また、記憶部50は、上記プログラムの実行中に生じるデータ等を記憶する、いわゆる制御部40のワーキングメモリとなるRAM(Random Access Memory)等を備える。なお、記憶部50は、比較的大容量のHDD(Hard Disk Drive)やSSD(Solid State Drive)等を備えても良い。   The storage unit 50 is connected to the control unit 40 and stores various programs and various data under the control of the control unit 40. The various programs include, for example, a control program that controls each part of the plant growth index measurement system 10, a cutting schedule determination control program that determines a cutting schedule, a growth index calculation program that calculates a growth index to be measured, and the like. . The various data includes field information, facility information, growth information, weather prediction information, and the like. The storage unit 50 includes, for example, a ROM (Read Only Memory) that is a nonvolatile storage element, an EEPROM (Electrically Erasable Programmable Read Only Memory) that is a rewritable nonvolatile storage element, and the like. In addition, the storage unit 50 includes a RAM (Random Access Memory) that serves as a working memory of the control unit 40 and stores data generated during the execution of the program. The storage unit 50 may include a relatively large capacity HDD (Hard Disk Drive), SSD (Solid State Drive), or the like.

上記記憶部50は、上記情報を記憶するために、圃場情報記憶部51、施設情報記憶部52、生育情報記憶部53、天候情報記憶部54を機能的に備える。圃場情報は、圃場の面積や排水情報(各圃場の排水に要する時間)、圃場で生育する植物の品種、植え付け日などの圃場に関する基本情報であり、表示操作部80等を用いて入力されて圃場情報記憶部51に記憶される。施設情報は、刈り取り機、乾燥施設、保管施設などの刈り取り施設の空き期間であり、表示操作部80等を用いて入力されて施設情報記憶部52に記憶される。また、生育情報は、植物の品種、茎数、草丈、穂情報(籾数や籾色など)、等級などの情報であり、生育指標演算部49によって算出されて生育情報記憶部53に記憶される。天候予測情報は、今後の天候に関する情報であり、例えば、通信ネットワークを介して気象庁や天気情報を提供する企業のサーバなどから取得して天候情報記憶部54に記憶される。   The storage unit 50 functionally includes an agricultural field information storage unit 51, a facility information storage unit 52, a growth information storage unit 53, and a weather information storage unit 54 in order to store the information. The field information is basic information about the field such as the area of the field and drainage information (the time required for draining each field), the type of plant growing in the field, and the planting date, and is input using the display operation unit 80 or the like. It is stored in the field information storage unit 51. The facility information is a free period of a mowing facility such as a mower, a drying facility, or a storage facility, and is input using the display operation unit 80 or the like and stored in the facility information storage unit 52. The growth information is information such as plant varieties, number of stems, plant height, ear information (number of pods, scarlet color, etc.), grade, etc., and is calculated by the growth index calculation unit 49 and stored in the growth information storage unit 53. The The weather prediction information is information regarding future weather, and is acquired from, for example, the Meteorological Agency or a company server that provides weather information via a communication network and stored in the weather information storage unit 54.

時計部60は、制御部40に接続され、制御部40の制御に従い、年月日時分を計測し、計測した現在の日時情報Tを制御部40へ出力する。   The clock unit 60 is connected to the control unit 40, measures the year / month / date / time according to the control of the control unit 40, and outputs the measured current date / time information T to the control unit 40.

I/F部70は、制御部40に接続され、制御部40の制御に従い、外部装置との間(図2の構成の場合は、反射光測定装置11及び太陽光測定装置12と制御装置13との間、図3の構成の場合は、反射光測定装置11と制御装置13、及び、太陽光測定装置12と制御装置13との間)でデータの入出力を行う回路である。例えば、シリアル通信方式であるRS232Cのインターフェース回路、Bluetooth(登録商標)規格を用いたインターフェース回路、IrDA(Infrared Data Association)規格等の赤外線通信を行うインターフェース回路、USB(Universal Serial Bus)規格を用いたインターフェース回路等である。また、I/F部70は、有線又は無線によって通信する通信カード等であり、例えば、イーサネット(登録商標)環境等の通信ネットワークを介して外部装置との通信を可能にする。   The I / F unit 70 is connected to the control unit 40, and is connected to an external device (in the case of the configuration of FIG. 2, the reflected light measurement device 11, the solar light measurement device 12, and the control device 13) under the control of the control unit 40. 3 is a circuit that inputs and outputs data between the reflected light measurement device 11 and the control device 13 and between the solar light measurement device 12 and the control device 13. For example, an RS232C interface circuit that is a serial communication system, an interface circuit that uses the Bluetooth (registered trademark) standard, an interface circuit that performs infrared communication such as the IrDA (Infrared Data Association) standard, and the USB (Universal Serial Bus) standard are used. Interface circuit and the like. The I / F unit 70 is a communication card or the like that communicates by wire or wireless, and enables communication with an external device via a communication network such as an Ethernet (registered trademark) environment, for example.

表示操作部80は、液晶表示装置(LCD:Liquid Crystal Display)や有機EL(electroluminescence)表示装置などの表示部上に、電極が格子状に配列された、抵抗膜方式や静電容量方式等で操作位置を検出して入力するタッチセンサなどの操作部を備えるタッチパネルなどであり、各種画面(Web画面、刈り取りスケジュール通知画面など)を表示すると共に、各種操作(刈り取りスケジュールの確認操作など)を可能にする。なお、ここでは表示部と操作部とが一体となった表示操作部80を例示したが、表示部と操作部とは別々の装置としてもよい。   The display operation unit 80 is a resistive film type or a capacitive type in which electrodes are arranged in a lattice pattern on a display unit such as a liquid crystal display (LCD) or an organic EL (electroluminescence) display. It is a touch panel equipped with an operation unit such as a touch sensor that detects and inputs the operation position, and displays various screens (Web screen, mowing schedule notification screen, etc.) and various operations (e.g., mowing schedule confirmation operation). To. Although the display operation unit 80 in which the display unit and the operation unit are integrated is illustrated here, the display unit and the operation unit may be separate devices.

電源部90は、植物生育指標測定システム10の各部へ、各部に応じた電圧で電力を供給する回路である。   The power supply unit 90 is a circuit that supplies power to each unit of the plant growth index measurement system 10 at a voltage corresponding to each unit.

なお、図1乃至図5は、本実施例の植物生育指標測定システム10の一例であり、その構成や制御は適宜変更可能である。   1 to 5 show an example of the plant growth index measurement system 10 according to the present embodiment, and the configuration and control thereof can be changed as appropriate.

次に、本実施例の植物生育指標測定システム10の制御部40(図2及び図3のシステム構成の場合は制御装置13)の動作について説明する。制御部40のCPUは、記憶部50(ROM、EEPROM、HDD、SSD等)に記憶した制御プログラム(刈り取りスケジュール決定プログラムを含む。)を記憶部50(RAM)に展開して実行することにより、図6及び図7のフローチャート図に示す各ステップの処理を実行する。   Next, operation | movement of the control part 40 (in the case of the system structure of FIG.2 and FIG.3, control apparatus 13) of the plant growth parameter | index measurement system 10 of a present Example is demonstrated. The CPU of the control unit 40 expands and executes a control program (including a mowing schedule determination program) stored in the storage unit 50 (ROM, EEPROM, HDD, SSD, etc.) in the storage unit 50 (RAM). The processing of each step shown in the flowcharts of FIGS. 6 and 7 is executed.

[刈り取りスケジュール決定処理]
まず、ユーザ(オペレータ)によって植物生育指標測定システム10の電源スイッチがオンされると、制御部40は、必要な各部の初期化を実行する。そして、撮影スケジュール決定制御プログラムの実行によって、制御部40は、入力部41、期間予測部42、日時決定部43として機能し、次のように動作する。
[Mowing schedule decision processing]
First, when the power switch of the plant growth index measurement system 10 is turned on by the user (operator), the control unit 40 executes necessary initialization of each unit. And by execution of a photography schedule determination control program, control part 40 functions as input part 41, period prediction part 42, and date determination part 43, and operates as follows.

図6に示すように、制御部40(入力部41)は、記憶部50(圃場情報記憶部51)などから、圃場の基本情報(面積、排水情報、品種、植え付け日など)を取り込む(S101)。次に、制御部40(入力部41)は、記憶部50(施設情報記憶部52)などから、刈り取り施設の空き期間を取り込む(S102)。次に、制御部40(入力部41)は、記憶部50(生育情報記憶部53)などから、稲穂の生育情報(品種、茎数、草丈、穂情報、等級など)を取り込む(S103)。次に、制御部40(入力部41)は、記憶部50(天候情報記憶部54)などから、天候予測情報を取り込む(S104)。   As shown in FIG. 6, the control unit 40 (input unit 41) captures basic field information (area, drainage information, variety, planting date, etc.) from the storage unit 50 (field information storage unit 51) or the like (S101). ). Next, the control unit 40 (input unit 41) takes in an empty period of the mowing facility from the storage unit 50 (facility information storage unit 52) or the like (S102). Next, the control unit 40 (input unit 41) fetches rice growth information (variety, number of stems, plant height, ear information, grade, etc.) from the storage unit 50 (growth information storage unit 53) or the like (S103). Next, the control unit 40 (input unit 41) takes in the weather prediction information from the storage unit 50 (weather information storage unit 54) or the like (S104).

次に、制御部40(期間予測部42)は、生育情報と天候予測情報とに基づいて、圃場毎の刈り取り可能期間を算出する(S105)。次に、制御部40(日時決定部43)は、圃場の面積、植物の品種、茎数、草丈、穂情報、等級の少なくとも1つに基づいて、収益が最大となるように、複数の圃場の優先順位を決定する(S106)。この優先順位の決定に際して、圃場の面積、植物の品種、茎数、草丈、穂情報、等級の中のどのパラメータを使用しても良いが、質を表すパラメータ(品種、草丈、籾色、等級など)と量を表すパラメータ(圃場の面積、茎数、籾数など)とを組み合わせることによって、収益を適切に推定することができる。   Next, the control unit 40 (period prediction unit 42) calculates a harvestable period for each field based on the growth information and the weather prediction information (S105). Next, the control unit 40 (the date and time determination unit 43) includes a plurality of fields so that the profit is maximized based on at least one of the field area, plant variety, number of stems, plant height, ear information, and grade. Is determined (S106). In determining the priority, any of the following parameters may be used: field area, plant variety, number of stems, plant height, ear information, and grade, but parameters indicating quality (variety, plant height, scarlet color, grade) Etc.) and parameters representing the amount (field area, number of stems, number of eaves, etc.) can be appropriately estimated.

次に、制御部40(日時決定部43)は、優先順位が相対的に高い圃場から、刈り取り設備の空き期間内かつ当該圃場の刈り取り可能期間内で、刈り取り日時を決定し(S107)、全圃場の刈り取り日時が刈り取り可能期間内であるかを判断する(S108)。刈り取り日時が刈り取り可能期間から外れる圃場がある場合は(S108のNo)、S105に戻り、S105の刈り取り可能期間の予測条件やS106の優先順位の設定条件を変更するなどして、刈り取り日時の決定をやり直す。なお、刈り取り可能期間の予測条件や優先順位の設定条件を変更しても刈り取り日時が刈り取り可能期間から外れる圃場が生じる場合は、特定の圃場を除外したり、刈り取りの初期日を早めて、刈り取り遅れにならないようにしたりすることができる。   Next, the control unit 40 (date and time determination unit 43) determines the cutting date and time within the vacant period of the reaping equipment and the reaperable period of the field from the relatively high priority field (S107). It is determined whether the date and time of harvesting the field is within the harvestable period (S108). When there is a field where the harvesting date and time is out of the harvestable period (No in S108), the process returns to S105 and the harvesting date and time is determined by changing the prediction condition of the harvestable period in S105 and the priority setting condition in S106. Try again. If there are fields where the date and time of cutting is outside the mowing period even after changing the prediction conditions and priority setting conditions for the mowing period, exclude certain fields or advance the initial date of mowing, You can make sure that you don't get late.

一方、全圃場の刈り取り日時が刈り取り可能期間内であれば(S108のYes)、制御部40(日時決定部43)は、S107で決定した刈り取り日時とS101で取り込んだ排水情報とに基づいて各圃場の水抜き日時を決定する(S109)。   On the other hand, if the harvesting date / time of all the fields is within the harvestable period (Yes in S108), the control unit 40 (date determination unit 43) determines each date based on the harvesting date / time determined in S107 and the drainage information captured in S101. The date and time for draining the field is determined (S109).

次に、制御部40(日時決定部43)は、S107で決定した刈り取り日時が重なる圃場があるかを判断し(S110)、刈り取り日時が重なる圃場がある場合は、優先順位が相対的に低い圃場の水抜き日時をずらすことによって、刈り取り日時を調整する(S111)。その後、制御部40(日時決定部43)は、各圃場の刈り取り日時と水抜き日時とを記載した刈り取りスケジュールを作成して出力する(S112)。例えば、刈り取りスケジュールを表示操作部80に表示してユーザに通知したり、刈り取りスケジュールを画像形成装置に出力して印刷させたりする。   Next, the control unit 40 (date determination unit 43) determines whether or not there is a field where the cutting date and time determined in S107 overlap (S110). If there is a field where the cutting date and time overlap, the priority is relatively low. The cutting date is adjusted by shifting the draining date of the farm (S111). Thereafter, the control unit 40 (date and time determination unit 43) creates and outputs a mowing schedule that describes the mowing date and time and the draining date and time of each field (S112). For example, the mowing schedule is displayed on the display operation unit 80 to notify the user, or the mowing schedule is output to the image forming apparatus and printed.

図8は、上記刈り取りスケジュールの一例であり、圃場毎に、圃場情報(面積、排水情報、品種、植え付け日)と、天候情報(過去の天候、今後の天候予測)と、生育情報(茎数、草丈、穂情報、等級)と、これらの情報から決定された刈り取り日時(刈り取り予定日、刈り取り調整日)と、水抜き開始日と、が記述される。ここで、圃場Aは圃場Bよりも5日前に植え付けが行われているが、圃場Aの過去の天候はあまり良くなかったために生育が遅れ、その結果、刈り取り予定日が同日になっている。この場合は、優先順位が相対的に低い圃場(ここでは圃場A)の水抜きの開始日を1日ずらすことによって刈り取り日時が同日にならないように調整する。また、圃場Cと圃場Dとは植え付け日が同日であり、過去の天候は同等であったため、刈り取り予定日も同日になっている。この場合は、優先順位が相対的に低い圃場(ここでは圃場C)の水抜きの開始日を2日ずらすことによって刈り取り日時が同日にならないように調整する。   FIG. 8 shows an example of the above mowing schedule. For each field, field information (area, drainage information, variety, planting date), weather information (past weather, future weather prediction), and growth information (number of stems) , Plant height, ear information, grade), the date and time of cutting (scheduled date of trimming, date of trimming adjustment) determined from these pieces of information, and the date of starting draining are described. Here, the plantation of the field A is carried out five days before the field B, but the past weather of the field A was not so good, so the growth was delayed, and as a result, the scheduled cutting date was the same day. In this case, the cutting date is adjusted so as not to be the same day by shifting the draining start date of the field (here, field A) having a relatively low priority by one day. In addition, the field C and the field D have the same planting date and the same weather in the past, so the scheduled cutting date is also the same day. In this case, the date of cutting is adjusted so as not to be the same day by shifting the draining start date of the field (here, field C) having a relatively low priority by two days.

[生育情報算出処理]
次に、S103で取り込む生育情報を算出する手順について説明する。制御プログラムの実行によって、制御部40は、情報取得部44、太陽角度演算部45、太陽方向演算部46、拡散度演算部47、葉密度演算部48及び生育指標演算部49として機能し、次のように動作する。なお、以下では、太陽光測定部30が図5に示すような構造であり、太陽光が光遮蔽部33によって遮蔽された状態における光量と、太陽光が光遮蔽部33によって遮蔽されない状態における光量とを測定するものとする。
[Growth information calculation process]
Next, the procedure for calculating the growth information captured in S103 will be described. By executing the control program, the control unit 40 functions as an information acquisition unit 44, a sun angle calculation unit 45, a sun direction calculation unit 46, a diffusivity calculation unit 47, a leaf density calculation unit 48, and a growth index calculation unit 49. Behaves like In the following, the solar light measurement unit 30 has a structure as shown in FIG. 5, and the light amount in the state where the sunlight is shielded by the light shielding unit 33 and the light amount in the state where the sunlight is not shielded by the light shielding unit 33. And shall be measured.

図7に示すように、制御部40(情報取得部44)は、反射光測定部20及び太陽光測定部30から光強度情報を取得する(S201)。具体的には、制御部40(情報取得部44)は、反射光測定部20に測定対象の反射光の光強度を測定させ、反射光測定部20から可視光での第1画像データRv及び赤外光での第2画像データRiを取得する。また、制御部40(情報取得部44)は、太陽光測定部30に太陽光の光強度を測定させ、太陽光測定部30から可視光での第3画像データSv及び赤外光での第4画像データSiを取得する。その際、制御部40(情報取得部44)は、第3画像データSv及び第4画像データSiの各画素の光強度として、散乱反射板31に入射する太陽光が光遮蔽部33によって遮蔽された状態で受光部32に入射する太陽光の光量Aと、散乱反射板31に入射する太陽光が光遮蔽部33によって遮蔽されない状態で受光部32に入射する太陽光の光量Bと、を取得する。   As shown in FIG. 7, the control unit 40 (information acquisition unit 44) acquires light intensity information from the reflected light measurement unit 20 and the sunlight measurement unit 30 (S201). Specifically, the control unit 40 (information acquisition unit 44) causes the reflected light measurement unit 20 to measure the light intensity of the reflected light to be measured, and the first image data Rv in visible light from the reflected light measurement unit 20 and Second image data Ri with infrared light is acquired. In addition, the control unit 40 (information acquisition unit 44) causes the solar light measurement unit 30 to measure the light intensity of sunlight, and from the solar light measurement unit 30, the third image data Sv in visible light and the first in infrared light. 4 image data Si is acquired. At that time, the control unit 40 (information acquisition unit 44) shields the sunlight incident on the scattering reflector 31 by the light shielding unit 33 as the light intensity of each pixel of the third image data Sv and the fourth image data Si. The amount of sunlight A incident on the light receiving unit 32 in a state where the light is incident and the amount of sunlight B incident on the light receiving unit 32 without being blocked by the light shielding unit 33 are acquired. To do.

次に、制御部40(情報取得部44)は、GPS部21、方位計22及び傾斜計23から各種情報を取得する(S202)。具体的には、制御部40(情報取得部44)は、GPS部21から緯度X及び経度Yを取得する。また、制御部40(情報取得部44)は、方位計22から方位φCを取得する。また、制御部40(情報取得部44)は、傾斜計23から測定角度βを取得する。   Next, the control unit 40 (information acquisition unit 44) acquires various types of information from the GPS unit 21, the azimuth meter 22, and the inclinometer 23 (S202). Specifically, the control unit 40 (information acquisition unit 44) acquires the latitude X and the longitude Y from the GPS unit 21. Further, the control unit 40 (information acquisition unit 44) acquires the direction φC from the direction meter 22. In addition, the control unit 40 (information acquisition unit 44) acquires the measurement angle β from the inclinometer 23.

次に、制御部40(情報取得部44)は、時計部60から日時情報Tを取得する(S203)。   Next, the control unit 40 (information acquisition unit 44) acquires the date information T from the clock unit 60 (S203).

次に、制御部40(情報取得部44)は、散乱反射板31に入射する太陽光が光遮蔽部33によって遮蔽された状態で受光部32に入射する太陽光の光量Aと、散乱反射板31に入射する太陽光が光遮蔽部33によって遮蔽されない状態で受光部32に入射する太陽光の光量Bと、を用い、光量Bから光量Aを減算した光量Cを算出することによって、第3画像データSv及び第4画像データSiを直達成分(Svd、Sid)と散乱成分(Svs、Sis)に分離する(S204)。   Next, the control unit 40 (information acquisition unit 44) includes a light amount A of sunlight incident on the light receiving unit 32 in a state where the sunlight incident on the scattering reflection plate 31 is blocked by the light shielding unit 33, and the scattering reflection plate. And calculating the light amount C obtained by subtracting the light amount A from the light amount B using the light amount B of the sunlight incident on the light receiving unit 32 in a state in which the sunlight incident on 31 is not shielded by the light shielding unit 33. The image data Sv and the fourth image data Si are separated into a directly achieved component (Svd, Sid) and a scattering component (Svs, Sis) (S204).

次に、制御部40(拡散度演算部47)は、拡散度Wを求める(S205)。具体的には、制御部40(拡散度演算部47)は、光量Aを光量Bで除算、又は、光量Aを光量Cで除算して拡散度Wを求める。   Next, the control part 40 (diffusivity calculating part 47) calculates | requires the diffusivity W (S205). Specifically, the control unit 40 (diffusivity calculating unit 47) obtains the diffusivity W by dividing the light amount A by the light amount B or dividing the light amount A by the light amount C.

次に、制御部40(太陽角度演算部45)は、GPS部21で取得した緯度X及び経度Y、ならびに、時計部60で計った日時情報Tに基づいて、太陽高度A又は太陽角度αを求める(S206)。   Next, the control unit 40 (sun angle calculation unit 45) calculates the solar altitude A or the sun angle α based on the latitude X and longitude Y acquired by the GPS unit 21 and the date / time information T measured by the clock unit 60. Obtain (S206).

次に、制御部40(太陽方向演算部46)は、必要に応じて、方位計22で測定した方位φC、ならびに、時計部60で計った日時情報Tに基づいて、太陽とカメラの相対方向φを求める(S207)。   Next, the control unit 40 (solar direction calculation unit 46), if necessary, based on the direction φC measured by the direction meter 22 and the date / time information T measured by the clock unit 60, the relative direction of the sun and the camera. φ is obtained (S207).

次に、制御部40(葉密度演算部48)は、必要に応じて、生育情報記憶部53に記憶された生育情報Gと時計部60で計った日時情報Tとに基づいて、植え付けからの日数に対応する葉密度Lを算出する(S208)。   Next, the control unit 40 (leaf density calculation unit 48), as necessary, from planting based on the growth information G stored in the growth information storage unit 53 and the date and time information T measured by the clock unit 60. The leaf density L corresponding to the number of days is calculated (S208).

次に、制御部40(生育指標演算部49)は、S201で取得した測定対象の反射光強度と、S204で求めた太陽光強度の直達成分及び散乱成分(又はS205で計算した拡散度W)と、S206で求めた太陽高度A(又は太陽角度α)と、必要に応じて、S207で算出した太陽とカメラの相対方向φ及びS208で算出した葉密度Lに基づいて、生育指標を算出する(S209)。例えば、式11に従い、測定対象の反射光強度と太陽光強度の直達成分及び散乱成分と太陽高度Aとを用いて生育指標を算出することができる。   Next, the control unit 40 (growth index calculation unit 49) calculates the reflected light intensity of the measurement object acquired in S201, the direct achievement of the sunlight intensity obtained in S204, and the scattering component (or the diffusivity W calculated in S205). A growth index is calculated based on the solar altitude A (or sun angle α) obtained in S206 and, if necessary, the relative direction φ of the sun and camera calculated in S207 and the leaf density L calculated in S208. (S209). For example, according to Expression 11, the growth index can be calculated using the directly achieved portion of the reflected light intensity and the sunlight intensity to be measured, the scattering component, and the solar altitude A.

次に、制御部40(生育指標演算部49)は、S209で算出した生育指標をS203で取得した日時情報Tに対応付けて記憶部50(生育情報記憶部53)に記憶する(S210)。   Next, the control unit 40 (growth index calculation unit 49) stores the growth index calculated in S209 in the storage unit 50 (growth information storage unit 53) in association with the date / time information T acquired in S203 (S210).

上記フローでは、測定対象の反射光強度と太陽光強度の直達成分及び散乱成分(又は拡散度W)と太陽高度A(又は太陽角度α)と必要に応じて太陽とカメラの相対方向φ及び葉密度Lとに基づいて生育指標を算出したが、生育指標の算出方法は上記記載に限定されない。例えば、太陽光測定部30で測定した第3及び第4波長の太陽光の各光強度に基づいて、反射光測定部20で測定した第1及び第2波長の反射光の各光強度の比率が所定値となるように正規化しつつ、反射光測定部20で測定した第1及び第2波長の反射光の各光強度に基づいて、補正前の生育指標を求め、太陽角度、太陽方向及び拡散度Wに対応する補正値で補正前の生育指標を補正してもよい。また、反射光測定部20で測定した第1及び第2波長の反射光の各光強度、太陽角度、太陽方向、太陽光測定部30で測定した第3及び第4波長の太陽光の各光強度、拡散度、測定角度、並びに、葉密度に基づいて、生育指標を求めてもよい。更に、太陽光測定部30で測定した第3及び第4波長の太陽光の各光強度に基づいて、反射光測定部20で測定した第1及び第2波長の反射光の各光強度の比率が所定値となるように正規化しつつ、反射光測定部20で測定した第1及び第2波長の反射光の各光強度に基づいて、補正前の生育指標を求め、太陽角度、太陽方向、拡散度、測定角度、及び、葉密度に対応する補正値で補正前の生育指標を補正してもよい。   In the above flow, the direct achievement of the reflected light intensity and the sunlight intensity of the measurement object, the scattering component (or diffusivity W), the solar altitude A (or the sun angle α), and the relative direction φ and the leaf of the sun and the camera as necessary. Although the growth index is calculated based on the density L, the method of calculating the growth index is not limited to the above description. For example, based on the light intensity of the third and fourth wavelengths of sunlight measured by the sunlight measurement unit 30, the ratio of the light intensity of the reflected light of the first and second wavelengths measured by the reflected light measurement unit 20 Is determined to be a predetermined value, and based on each light intensity of the reflected light of the first and second wavelengths measured by the reflected light measurement unit 20, a growth index before correction is obtained, and the sun angle, the sun direction, and The growth index before correction may be corrected with a correction value corresponding to the diffusivity W. Moreover, each light intensity of the reflected light of the 1st and 2nd wavelength measured with the reflected light measurement part 20, a solar angle, a solar direction, and each light of the 3rd and 4th wavelength sunlight measured with the sunlight measuring part 30 The growth index may be obtained based on the intensity, the diffusivity, the measurement angle, and the leaf density. Further, the ratio of the light intensities of the reflected light of the first and second wavelengths measured by the reflected light measuring unit 20 based on the light intensities of the third and fourth wavelengths of sunlight measured by the sunlight measuring unit 30. Is determined to be a predetermined value, and based on each light intensity of the reflected light of the first and second wavelengths measured by the reflected light measurement unit 20, a growth index before correction is obtained, the sun angle, the sun direction, The growth index before correction may be corrected with correction values corresponding to the diffusivity, the measurement angle, and the leaf density.

以上説明したように、本実施例では、複数の圃場に生育する植物の刈り取りスケジュールを決定する際に、刈り取り設備の空き期間、生育情報及び天候予測情報を取り込み、生育情報と天候予測情報とに基づいて、圃場毎の刈り取り可能期間を予測し、刈り取り設備の空き期間と圃場毎の刈り取り可能期間とに基づいて、複数の圃場の刈り取り日時を決定し、複数の圃場の刈り取り日時や水抜き日時を明示した刈り取りスケジュールを出力することにより、植物の刈り取りタイミングを適切に判断して、収益の向上を図ると共に刈り取り施設の有効利用を図ることができる。   As described above, in this embodiment, when determining the harvesting schedule of plants growing in a plurality of fields, the free period of the harvesting equipment, the growth information and the weather prediction information are taken in, and the growth information and the weather prediction information are converted into the growth information and the weather prediction information. Based on this, the mowing period for each field is predicted, and the mowing date / time for multiple fields is determined based on the mowing period of the mowing facility and the mowing period for each field. By outputting a mowing schedule clearly indicating the above, it is possible to appropriately determine the mowing timing of the plant, thereby improving profits and effectively using the mowing facility.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて、その構成や制御は適宜変更可能である。   In addition, this invention is not limited to the said Example, The structure and control can be changed suitably, unless it deviates from the meaning of this invention.

例えば、上記実施例では、稲穂を刈り取る場合について例示したが、圃場に生育可能な任意の植物を刈り取る場合に対して、本発明の手法を同様に適用することができる。   For example, in the above embodiment, the case of harvesting rice is illustrated, but the method of the present invention can be similarly applied to the case of harvesting any plant that can grow on a field.

また、上記実施例では、植物生育指標測定システム10を用いて刈り取りスケジュールを作成する場合を示したが、植物生育指標測定システム10が取得した生育指標を利用可能な任意の装置(例えば、植物生育指標測定システム10とは別に設けられたコンピュータ装置)を用いて刈り取りスケジュールを作成する場合に対しても、本発明の手法を同様に適用することができる。   Moreover, although the case where the cutting schedule was created using the plant growth index measurement system 10 was shown in the above embodiment, any device that can use the growth index acquired by the plant growth index measurement system 10 (for example, plant growth) The method of the present invention can be similarly applied to the case of creating a mowing schedule using a computer apparatus provided separately from the index measurement system 10.

また、上記実施例では、生育指標としてNDVI値を求める場合を示したが、例えば、RVI(Rati0 Vegetation Index、比植生指標)やDVI(Difference Vegetation Index、差植生指標)、TVI(Transformed Vegetation Index)、IPVI(Infrared Percentage Vegetation Index)を求める場合に対しても、本発明の手法を同様に適用することができる。   Moreover, in the said Example, although the case where NDVI value was calculated | required as a growth index was shown, RVI (Rati0 Vegetation Index, a specific vegetation index), DVI (Difference Vegetation Index, difference vegetation index), TVI (Transformed Vegetation Index), for example. The method of the present invention can be similarly applied to the case of obtaining IPVI (Infrared Percentage Vegetation Index).

本発明は、複数の圃場に生育する植物の刈り取りスケジュールを決定する刈り取りスケジュール決定方法、刈り取りスケジュール決定プログラム及び当該刈り取りスケジュール決定プログラムを記録した記録媒体に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for a cutting schedule determination method for determining a cutting schedule for plants growing in a plurality of fields, a cutting schedule determination program, and a recording medium on which the cutting schedule determination program is recorded.

10 植物生育指標測定システム
11 反射光測定装置
12 太陽光測定装置
13 制御装置
20 反射光測定部
21 GPS部
22 方位計
23 傾斜計
30 太陽光測定部
31 散乱反射板
32 受光部
33 光遮蔽部
34 筐体
35 支柱
40 制御部
41 入力部
42 期間予測部
43 日時決定部
44 情報取得部
45 太陽角度演算部
46 太陽方向演算部
47 拡散度演算部
48 葉密度演算部
49 生育指標演算部
50 記憶部
51 圃場情報記憶部
52 施設情報記憶部
53 生育情報記憶部
54 天候情報記憶部
60 時計部
70 I/F部
80 表示操作部
90 電源部
DESCRIPTION OF SYMBOLS 10 Plant growth index measurement system 11 Reflected light measuring device 12 Sunlight measuring device 13 Control device 20 Reflected light measuring unit 21 GPS unit 22 Direction meter 23 Inclinometer 30 Sunlight measuring unit 31 Scattering reflector 32 Light receiving unit 33 Light shielding unit 34 Case 35 Support 40 Control unit 41 Input unit 42 Period prediction unit 43 Date and time determination unit 44 Information acquisition unit 45 Solar angle calculation unit 46 Solar direction calculation unit 47 Diffusivity calculation unit 48 Leaf density calculation unit 49 Growth index calculation unit 50 Storage unit DESCRIPTION OF SYMBOLS 51 Farm information storage part 52 Facility information storage part 53 Growth information storage part 54 Weather information storage part 60 Clock part 70 I / F part 80 Display operation part 90 Power supply part

Claims (14)

複数の圃場に生育する植物の刈り取りスケジュールを決定する装置における刈り取りスケジュール決定方法であって、
前記装置は、
刈り取り設備の空き期間、前記植物の生育情報及び天候予測情報を取り込む入力処理と、
前記植物の生育情報と前記天候予測情報とに基づいて、前記圃場毎の刈り取り可能期間を予測する期間予測処理と、
前記刈り取り設備の空き期間と前記圃場毎の刈り取り可能期間とに基づいて、前記複数の圃場の刈り取り日時を決定する日時決定処理と、
前記複数の圃場の刈り取り日時を明示した刈り取りスケジュールを出力する出力処理と、を実行する、
ことを特徴とする刈り取りスケジュール決定方法。
A mowing schedule determination method in an apparatus for determining a mowing schedule of plants growing in a plurality of fields,
The device is
Input process to capture the free period of the mowing facility, the growth information of the plant and the weather prediction information,
Based on the growth information of the plant and the weather prediction information, a period prediction process for predicting a harvestable period for each field,
A date and time determination process for determining the date and time of harvesting of the plurality of fields based on an empty period of the mowing facility and a mowing possible period for each of the fields;
An output process for outputting a mowing schedule specifying the mowing date and time of the plurality of fields, and
A mowing schedule determination method characterized by the above.
前記日時決定処理では、複数のパラメータに基づいて、前記複数の圃場の優先順位を設定し、前記優先順位が相対的に高い圃場から、前記刈り取り設備の空き期間内かつ当該圃場の刈り取り可能期間内で、前記刈り取り日時を決定する、
ことを特徴とする請求項1に記載の刈り取りスケジュール決定方法。
In the date and time determination process, priorities of the plurality of fields are set on the basis of a plurality of parameters, and from a field having a relatively high priority, the reaping equipment is within a vacant period and within the harvestable period of the field. Then, the date and time of cutting is determined.
The mowing schedule determination method according to claim 1.
前記日時決定処理では、前記圃場の面積、前記植物の品種、茎数、草丈、穂情報、等級の少なくとも1つに基づいて、収益が相対的に高くなると推定される圃場の優先順位を相対的に高くする、
ことを特徴とする請求項2に記載の刈り取りスケジュール決定方法。
In the date and time determination process, based on at least one of the area of the field, the variety of the plant, the number of stems, the plant height, the ear information, and the grade, the priority order of the field that is estimated to be relatively high in profit is relatively To be high,
The mowing schedule determination method according to claim 2.
前記入力処理では、前記圃場毎の排水情報を取り込み、
前記日時決定処理では、前記刈り取り日時と前記排水情報とに基づいて前記圃場毎の水抜き日時を決定し、前記刈り取り日時が重なる圃場が生じる場合は、いずれかの圃場の前記水抜き日時をずらすことによって、前記刈り取り日時を調整する、
ことを特徴とする請求項1乃至3のいずれか一に記載の刈り取りスケジュール決定方法。
In the input process, the drainage information for each field is captured,
In the date and time determination process, a draining date and time for each field is determined based on the harvesting date and time and the drainage information, and when there is a field where the cutting date and time overlap, the draining date and time of any field is shifted. Adjusting the mowing date and time,
The mowing schedule determination method according to any one of claims 1 to 3.
前記出力処理では、前記複数の圃場の刈り取り日時及び前記水抜き日時を明示した刈り取りスケジュールを出力する、
ことを特徴とする請求項4に記載の刈り取りスケジュール決定方法。
In the output process, a mowing schedule specifying the mowing date and time and the draining date and time of the plurality of fields is output.
The mowing schedule determination method according to claim 4.
前記日時決定処理では、前記複数の圃場の全収穫高と、前記刈り取り施設の1日あたりの処理能力と、前記刈り取り施設の空き期間と、に基づいて、前記複数の圃場の刈り取りの所要日数を算定し、前記所要日数に基づいて刈り取りの初期日を決定する、
ことを特徴とする請求項1乃至5のいずれか一に記載の刈り取りスケジュール決定方法。
In the date and time determination process, the number of days required for harvesting of the plurality of fields is calculated based on the total yield of the plurality of fields, the processing capacity of the harvesting facility per day, and the free period of the harvesting facility. Calculate and determine an initial date of mowing based on the required number of days;
The mowing schedule determination method according to any one of claims 1 to 5.
前記日時決定処理では、前記刈り取り日時が前記刈り取り可能期間から外れる圃場が生じる場合は、前記刈り取りの初期日を早めて、刈り取り遅れにならないようにする、
ことを特徴とする請求項6に記載の刈り取りスケジュール決定方法。
In the date and time determination process, when there is a field in which the harvest date and time is out of the harvestable period, the initial date of the harvest is advanced so as not to delay the harvest.
The mowing schedule determination method according to claim 6.
複数の圃場に生育する植物の刈り取りスケジュールを決定する装置で動作する刈り取りスケジュール決定プログラムであって、
前記装置に、
刈り取り設備の空き期間、前記植物の生育情報及び天候予測情報を取り込む入力処理、
前記植物の生育情報と前記天候予測情報とに基づいて、前記圃場毎の刈り取り可能期間を予測する期間予測処理、
前記刈り取り設備の空き期間と前記圃場毎の刈り取り可能期間とに基づいて、前記複数の圃場の刈り取り日時を決定する日時決定処理、
前記複数の圃場の刈り取り日時を明示した刈り取りスケジュールを出力する出力処理、を実行させる、
ことを特徴とする刈り取りスケジュール決定プログラム。
A cutting schedule determination program that operates with a device that determines a cutting schedule for plants growing in a plurality of fields,
In the device,
Input processing to capture the vacant period of the mowing facility, the growth information of the plant and the weather prediction information,
Based on the growth information of the plant and the weather prediction information, a period prediction process for predicting a harvestable period for each field,
Date and time determination processing for determining the harvest date and time of the plurality of fields based on the vacant period of the harvesting equipment and the harvestable period for each field.
An output process for outputting a mowing schedule specifying the mowing date and time of the plurality of fields is executed.
A mowing schedule determination program characterized by this.
前記日時決定処理では、複数のパラメータに基づいて、前記複数の圃場の優先順位を設定し、前記優先順位が相対的に高い圃場から、前記刈り取り設備の空き期間内かつ当該圃場の刈り取り可能期間内で、前記刈り取り日時を決定する、
ことを特徴とする請求項8に記載の刈り取りスケジュール決定プログラム。
In the date and time determination process, priorities of the plurality of fields are set on the basis of a plurality of parameters, and from a field having a relatively high priority, the reaping equipment is within a vacant period and within the harvestable period of the field. Then, the date and time of cutting is determined.
The reap schedule determination program according to claim 8.
前記日時決定処理では、前記圃場の面積、前記植物の品種、茎数、草丈、穂情報、等級の少なくとも1つに基づいて、収益が相対的に高くなると推定される圃場の優先順位を相対的に高くする、
ことを特徴とする請求項9に記載の刈り取りスケジュール決定プログラム。
In the date and time determination process, based on at least one of the area of the field, the variety of the plant, the number of stems, the plant height, the ear information, and the grade, the priority order of the field that is estimated to be relatively high in profit is relatively To be high,
The cutting schedule determination program according to claim 9, wherein:
前記入力処理では、前記圃場毎の排水情報を取り込み、
前記日時決定処理では、前記刈り取り日時と前記排水情報とに基づいて前記圃場毎の水抜き日時を決定し、前記刈り取り日時が重なる圃場が生じる場合は、いずれかの圃場の前記水抜き日時をずらすことによって、前記刈り取り日時を調整する、
ことを特徴とする請求項8乃至10のいずれか一に記載の刈り取りスケジュール決定プログラム。
In the input process, the drainage information for each field is captured,
In the date and time determination process, a draining date and time for each field is determined based on the harvesting date and time and the drainage information, and when there is a field where the cutting date and time overlap, the draining date and time of any field is shifted. Adjusting the mowing date and time,
The cutting schedule determination program according to any one of claims 8 to 10, wherein the cutting schedule is determined.
前記出力処理では、前記複数の圃場の刈り取り日時及び前記水抜き日時を明示した刈り取りスケジュールを出力する、
ことを特徴とする請求項11に記載の刈り取りスケジュール決定プログラム。
In the output process, a mowing schedule specifying the mowing date and time and the draining date and time of the plurality of fields is output.
The cutting schedule determination program according to claim 11, wherein
前記日時決定処理では、前記複数の圃場の全収穫高と、前記刈り取り施設の1日あたりの処理能力と、前記刈り取り施設の空き期間と、に基づいて、前記複数の圃場の刈り取りの所要日数を算定し、前記所要日数に基づいて刈り取りの初期日を決定する、
ことを特徴とする請求項8乃至12のいずれか一に記載の刈り取りスケジュール決定プログラム。
In the date and time determination process, the number of days required for harvesting of the plurality of fields is calculated based on the total yield of the plurality of fields, the processing capacity of the harvesting facility per day, and the free period of the harvesting facility. Calculate and determine an initial date of mowing based on the required number of days;
The cutting schedule determination program according to any one of claims 8 to 12, characterized in that
前記日時決定処理では、前記刈り取り日時が前記刈り取り可能期間から外れる圃場が生じる場合は、前記刈り取りの初期日を早めて、刈り取り遅れにならないようにする、
ことを特徴とする請求項13に記載の刈り取りスケジュール決定プログラム。
In the date and time determination process, when there is a field in which the harvest date and time is out of the harvestable period, the initial date of the harvest is advanced so as not to delay the harvest.
The cutting schedule determination program according to claim 13, wherein
JP2017158580A 2017-08-21 2017-08-21 Cutting schedule determination method and cutting schedule determination program Active JP6898589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017158580A JP6898589B2 (en) 2017-08-21 2017-08-21 Cutting schedule determination method and cutting schedule determination program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017158580A JP6898589B2 (en) 2017-08-21 2017-08-21 Cutting schedule determination method and cutting schedule determination program

Publications (2)

Publication Number Publication Date
JP2019033720A true JP2019033720A (en) 2019-03-07
JP6898589B2 JP6898589B2 (en) 2021-07-07

Family

ID=65635890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017158580A Active JP6898589B2 (en) 2017-08-21 2017-08-21 Cutting schedule determination method and cutting schedule determination program

Country Status (1)

Country Link
JP (1) JP6898589B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199453A1 (en) * 2019-03-29 2020-10-08 上海交通大学 Seedbed scheduling method and system capable of precisely predicting illumination, and medium
WO2021125285A1 (en) * 2019-12-19 2021-06-24 キヤノン株式会社 Information processing device, computer program, and information processing method
JP7041794B1 (en) * 2020-11-27 2022-03-24 楽天グループ株式会社 Sensing system, sensing data acquisition method, and control device
WO2022070232A1 (en) * 2020-09-29 2022-04-07 株式会社サタケ Method for acquiring protein content in cereal
WO2022145373A1 (en) * 2020-12-28 2022-07-07 株式会社クボタ Reaping planning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346578A (en) * 1998-06-03 1999-12-21 Hitachi Ltd Equipment for backing up farm work
JP2002068422A (en) * 2000-08-31 2002-03-08 Mitsubishi Electric Corp Perishables preserving and distributing device and method
JP2005151851A (en) * 2003-11-21 2005-06-16 Mayekawa Mfg Co Ltd Farm-crop demand-and-supply management system, processed food acceptance-and-sending order system, and farming support system
JP2012175920A (en) * 2011-02-25 2012-09-13 Iseki & Co Ltd Priority management device for harvesting crops
US20140358486A1 (en) * 2014-08-19 2014-12-04 Iteris, Inc. Continual crop development profiling using dynamical extended range weather forecasting with routine remotely-sensed validation imagery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346578A (en) * 1998-06-03 1999-12-21 Hitachi Ltd Equipment for backing up farm work
JP2002068422A (en) * 2000-08-31 2002-03-08 Mitsubishi Electric Corp Perishables preserving and distributing device and method
JP2005151851A (en) * 2003-11-21 2005-06-16 Mayekawa Mfg Co Ltd Farm-crop demand-and-supply management system, processed food acceptance-and-sending order system, and farming support system
JP2012175920A (en) * 2011-02-25 2012-09-13 Iseki & Co Ltd Priority management device for harvesting crops
US20140358486A1 (en) * 2014-08-19 2014-12-04 Iteris, Inc. Continual crop development profiling using dynamical extended range weather forecasting with routine remotely-sensed validation imagery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199453A1 (en) * 2019-03-29 2020-10-08 上海交通大学 Seedbed scheduling method and system capable of precisely predicting illumination, and medium
WO2021125285A1 (en) * 2019-12-19 2021-06-24 キヤノン株式会社 Information processing device, computer program, and information processing method
CN114828619A (en) * 2019-12-19 2022-07-29 佳能株式会社 Information processing apparatus, computer program, and information processing method
WO2022070232A1 (en) * 2020-09-29 2022-04-07 株式会社サタケ Method for acquiring protein content in cereal
JP7041794B1 (en) * 2020-11-27 2022-03-24 楽天グループ株式会社 Sensing system, sensing data acquisition method, and control device
WO2022145373A1 (en) * 2020-12-28 2022-07-07 株式会社クボタ Reaping planning device

Also Published As

Publication number Publication date
JP6898589B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP6898589B2 (en) Cutting schedule determination method and cutting schedule determination program
JP7088277B2 (en) Plant growth index measuring device, plant growth index calculation program and plant growth index measuring system
JP2019040383A (en) Photographing schedule determination method, and photographing schedule determination control program
US10339639B2 (en) Method and system of calibrating a multispectral camera on an aerial vehicle
Ballesteros et al. Combined use of agro-climatic and very high-resolution remote sensing information for crop monitoring
JP2016049102A (en) Farm field management system, farm field management method, and program
US11953872B2 (en) Methods and systems for the management of precise agricultural irrigation
CN111432628B (en) Fertilization design method and fertilization design device
Chea et al. Sugar yield parameters and fiber prediction in sugarcane fields using a multispectral camera mounted on a small unmanned aerial system (UAS)
US11721008B2 (en) Multispectral filters
JP2020140347A (en) Crop management system and crop management method
WO2021162998A1 (en) Upward facing light sensor for plant detection
Hama et al. Examination of appropriate observation time and correction of vegetation index for drone-based crop monitoring
JP6988898B2 (en) Plant growth index calculation method, plant growth index calculation program and plant growth index calculation system
Zhang et al. Evaluation of a UAV-mounted consumer grade camera with different spectral modifications and two handheld spectral sensors for rapeseed growth monitoring: performance and influencing factors
JP7218365B2 (en) Information processing equipment
CN115023134B (en) Growth diagnosis system, growth diagnosis server, and growth diagnosis method
JP2008258679A (en) Color correcting method for line sensor observation image
Ferțu et al. The revolution of traditional agriculture toward intelligent agriculture with the help of agricultural drones
Bloodgood Analyzing the Effect of Seasonal Variation on Aerial Imagery-Based Vegetation Indices
ANGLE et al. Sahameh SHAFIEE1, Ingunn BURUD2, Morten LILLEMO1
Sinha et al. An assessment of the potential of remote sensing based irrigation scheduling for sugarcane in Australia
Sinha et al. An assessment of the potential of remote sensing based irrigation scheduling for sugarcane in Australia: Final report 2015/082

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R150 Certificate of patent or registration of utility model

Ref document number: 6898589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150