JP2019029785A - Optical receiving apparatus and optical communication system - Google Patents

Optical receiving apparatus and optical communication system Download PDF

Info

Publication number
JP2019029785A
JP2019029785A JP2017146043A JP2017146043A JP2019029785A JP 2019029785 A JP2019029785 A JP 2019029785A JP 2017146043 A JP2017146043 A JP 2017146043A JP 2017146043 A JP2017146043 A JP 2017146043A JP 2019029785 A JP2019029785 A JP 2019029785A
Authority
JP
Japan
Prior art keywords
optical
voltage level
threshold
determining
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017146043A
Other languages
Japanese (ja)
Other versions
JP6863854B2 (en
Inventor
吉文 土井
Yoshifumi Doi
吉文 土井
本田 真
Makoto Honda
真 本田
克嘉 原澤
Katsuyoshi Harasawa
克嘉 原澤
重人 圷
Shigeto Akutsu
重人 圷
健司 細井
Kenji Hosoi
健司 細井
荻野 義明
Yoshiaki Ogino
義明 荻野
森谷 篤
Atsushi Moriya
篤 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Information and Telecommunication Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Information and Telecommunication Engineering Ltd filed Critical Hitachi Information and Telecommunication Engineering Ltd
Priority to JP2017146043A priority Critical patent/JP6863854B2/en
Publication of JP2019029785A publication Critical patent/JP2019029785A/en
Application granted granted Critical
Publication of JP6863854B2 publication Critical patent/JP6863854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an optical receiving apparatus and an optical communication system in which the phase shift between a received signal and a threshold signal is kept within a practically sufficient range with a simple circuit configuration.SOLUTION: In an optical receiving apparatus for receiving a signal transmitted by modulating data into an optical signal by using optical communication quantum cryptography by multilevel intensity modulation, a relationship between the number of thresholds for determining the upper and lower limits of a voltage level of an electric signal obtained by converting the received optical signal is set to satisfy 2≤threshold number≤base number-1 correspondingly to the base of the optical signal that encrypts the data. In addition, the assignment is made such that the threshold value for determining the upper and lower limits of the voltage level on the lower voltage level side than the threshold value for determining the upper and lower limits of the voltage level is used to make a pair of voltage levels corresponding to the same or more bases as compared with the threshold value for determining the upper and lower limits of the voltage level on the higher voltage level side.SELECTED DRAWING: Figure 4

Description

本発明は、光受信装置及び光通信システムに係り、特に、多値強度変調によりデータを光信号に変調して送受信する際に、伝送特性の劣化を抑えつつ、受信装置を簡易な構成にすることのできる光受信装置及び光通信システムに関する。   The present invention relates to an optical receiving apparatus and an optical communication system, and in particular, when data is modulated into an optical signal by multi-value intensity modulation and transmitted / received, the receiving apparatus has a simple configuration while suppressing deterioration in transmission characteristics. The present invention relates to an optical receiving device and an optical communication system that can perform the same.

Yuen量子暗号は光通信量子暗号(Y−00)通信とも呼ばれ、光の量子ゆらぎ(量子ショット雑音)を特殊な変調方式によって拡散させ、盗聴者によって光信号を正確に受信できなくする通信技術であり、2値の送信データを搬送する2値の光信号を一つのセット(基底という)とし、この基底を複数M個用意し、いずれの基底を使ってデータを送るかは暗号鍵に従う擬似乱数によって不規則に決める。現実的にはM値の光信号は量子ゆらぎによって識別ができないほど信号間距離が小さく設計されているため、盗聴者は全く受信信号からデータ情報を読みとることができない。   Yuen quantum cryptography, also called optical communication quantum cryptography (Y-00) communication, is a communication technology that spreads optical quantum fluctuations (quantum shot noise) using a special modulation method, making it impossible for an eavesdropper to receive an optical signal accurately. A binary optical signal carrying binary transmission data is set as one set (referred to as a base), a plurality of M bases are prepared, and which base is used to send data is a pseudo-in accordance with an encryption key. Randomly determined by random numbers. Actually, the optical signal of M value is designed so that the distance between the signals is so small that it cannot be identified by the quantum fluctuation, so that the eavesdropper cannot read the data information from the received signal at all.

正規の送受信者の光変復調装置は、2値のM個の基底を共通の擬似乱数にしたがって切り換えて通信するため、正規の受信者は信号間距離の大きな2値の信号判定によってデータを読みとることができる。量子ゆらぎによるエラーは無視でき、正規の送受信者間では正確な通信が可能となる。この光変調方式による暗号は、Yuen−2000暗号通信プロトコル(Y−00プロトコルと略称される)によるYuen量子暗号と呼ばれる。   Since the optical modulator / demodulator of the authorized transmitter / receiver switches the binary M bases in accordance with a common pseudo-random number and communicates, the authorized receiver reads data by binary signal determination with a large inter-signal distance. Can do. Errors due to quantum fluctuations can be ignored, and accurate communication is possible between authorized senders and receivers. The encryption based on this optical modulation method is called Yuen quantum encryption based on Yuen-2000 encryption communication protocol (abbreviated as Y-00 protocol).

Yuen量子暗号を用いた通信では、特許文献1に記載された光受信装置のように暗号化した光信号を電気信号に変換して、基底に対応する閾値により0/1のビット情報を読み取っている。この際に、従来の光受信装置では、基底の数だけ閾値を用意していた。   In communication using Yuen quantum cryptography, an optical signal encrypted as in the optical receiver described in Patent Document 1 is converted into an electrical signal, and 0/1 bit information is read by a threshold corresponding to the base. Yes. At this time, in the conventional optical receiving apparatus, thresholds are prepared as many as the number of bases.

しかしながら、高速伝送を行う場合は、受信信号と閾値信号の位相のずれが無視できなくなるため、ビットレートの高い信号を扱う場合、エラーが発生してしまうという問題がある。   However, when high-speed transmission is performed, a phase shift between the received signal and the threshold signal cannot be ignored. Therefore, when a signal with a high bit rate is handled, an error occurs.

特許文献2は、そのような位相のずれを補正するために、PLL(Phase Locked Loop)回路を設けることより、位相のずれを補正し、受信データの誤りを防止している。   In Patent Document 2, in order to correct such a phase shift, a PLL (Phase Locked Loop) circuit is provided to correct the phase shift and prevent an error in received data.

特開2006−303927号公報JP 2006-303927 A 特開2011−188073号公報JP 2011-1888073 A

上記従来技術の特許文献2の受信装置においては、受信信号と閾値信号の位相のずれを吸収するために、PLL回路により位相を一致させていた。しかしながら、そのために受信装置にPLL回路を設けなければならず、回路規模が大きくなる。   In the receiving apparatus of Patent Document 2 of the above-described prior art, the phase is matched by a PLL circuit in order to absorb the phase shift between the received signal and the threshold signal. However, for this purpose, a PLL circuit must be provided in the receiving apparatus, which increases the circuit scale.

本発明の目的は、簡易な回路構成で、受信信号と閾値信号の位相のずれを実用上十分な範囲におさえた光受信装置及び光通信システムを提供することにある。   An object of the present invention is to provide an optical receiving apparatus and an optical communication system which have a simple circuit configuration and can suppress a phase shift between a received signal and a threshold signal within a practically sufficient range.

本発明の光受信装置の構成は、好ましくは、多値強度変調による光通信量子暗号を用いて、データを光信号に変調して送信される信号を受信する光受信装置であって、データを暗号化する光信号の基底に対応して、受信した光信号を変換した電気信号の電圧レベルの上下を判定する閾値の数の関係が、2≦閾値数≦基底数−1であるようにしたものである。   The configuration of the optical receiver according to the present invention is preferably an optical receiver that receives a signal that is transmitted by modulating data into an optical signal using optical communication quantum cryptography based on multilevel intensity modulation. Corresponding to the base of the optical signal to be encrypted, the relation of the number of thresholds for determining the upper and lower of the voltage level of the electric signal converted from the received optical signal is 2 ≦ threshold number ≦ base number−1. Is.

本発明によれば、簡易な回路構成で、受信信号と閾値信号の位相のずれを実用上十分な範囲におさえた光受信装置及び光通信システムを提供することができる。   According to the present invention, it is possible to provide an optical receiving apparatus and an optical communication system in which a phase shift between a received signal and a threshold signal is kept within a practically sufficient range with a simple circuit configuration.

Y−00プロトコルによる光通信システムの構成図である。It is a block diagram of the optical communication system by a Y-00 protocol. 本実施形態における光通信システムと基底と閾値の関係を示す図である。It is a figure which shows the relationship between the optical communication system in this embodiment, a base, and a threshold value. 閾値数=nの場合の光受信装置の構成図である。It is a block diagram of the optical receiver in case the number of thresholds = n. 基底数=8、閾値数=2の場合の光受信装置の構成図である。It is a block diagram of the optical receiver in the case of base number = 8 and threshold value = 2. 基底数=8、閾値数=2の場合の基底と閾値の関係を示す図である。It is a figure which shows the relationship between a base and a threshold value when the number of bases = 8 and the number of threshold values = 2. 基底数=8、閾値数=2の場合のBasis Selector5の真理値表である。It is a truth table of Basis Selector 5 in the case of base number = 8 and threshold number = 2. 基底数=8、閾値数=3の場合の光受信装置の構成図である。It is a block diagram of an optical receiver in the case of base number = 8 and threshold number = 3. 基底数=8、閾値数=3の場合の基底と閾値の関係を示す図である。It is a figure which shows the relationship between a base and a threshold value when the number of bases = 8 and the number of threshold values = 3. 基底数=8、閾値数=3の場合のBasis Selector5の真理値表である。It is a truth table of Basis Selector 5 in the case of base number = 8 and threshold number = 3. 基底数=8、閾値数=4の場合の光受信装置の構成図である。It is a block diagram of an optical receiver in the case of base number = 8 and threshold number = 4. 基底数=8、閾値数=4の場合の基底と閾値の関係を示す図である。It is a figure which shows the relationship between a base and a threshold value when the number of bases = 8 and the number of threshold values = 4. 基底数=8、閾値数=4の場合のBasis Selector5の真理値表である。It is a truth table of Basis Selector5 when the number of bases = 8 and the number of thresholds = 4. 閾値数を変化させたときのPower Penaltyの関係を示したグラフである。It is the graph which showed the relationship of Power Penalty when changing the threshold number.

以下、本発明に係る各実施形態を、図1ないし図13を用いて説明する。   Embodiments according to the present invention will be described below with reference to FIGS.

〔光通信システム概要と構成〕
先ず、図1を用いてY−00プロトコルによる光通信システムの概要と構成について説明する。
Y−00プロトコルによる光通信システムでは、電気信号を光信号に変換し、光送信装置100と光受信装置200の間の光ファイバなどの伝送路を暗号化して送信するシステムである。なお、図1には示されていないが、実際のシステムには、電気信号として送信データを光送信装置100に入力する板送信装置と、光受信装置200が出力するデータを入力するデータ受信装置が接続される。
[Outline and configuration of optical communication system]
First, the outline and configuration of an optical communication system based on the Y-00 protocol will be described with reference to FIG.
In the optical communication system based on the Y-00 protocol, an electric signal is converted into an optical signal, and a transmission path such as an optical fiber between the optical transmission device 100 and the optical reception device 200 is encrypted and transmitted. Although not shown in FIG. 1, in an actual system, a plate transmission device that inputs transmission data as an electrical signal to the optical transmission device 100 and a data reception device that inputs data output from the optical reception device 200 Is connected.

光送信装置100は、図1に示されるように、Running鍵生成部104、多値信号生成部106、光源発生部108、光変調部110からなる。   As illustrated in FIG. 1, the optical transmission device 100 includes a running key generation unit 104, a multilevel signal generation unit 106, a light source generation unit 108, and an optical modulation unit 110.

暗号鍵102は、光送信装置100と光受信装置200(暗号鍵202)の間で共有され、多値信号の遷移パターンを決めるための元になるデジタルデータである。   The encryption key 102 is digital data that is shared between the optical transmission device 100 and the optical reception device 200 (encryption key 202) and serves as a basis for determining the transition pattern of the multilevel signal.

Running鍵生成部104は、暗号鍵102を元データとして、擬似乱数(ランダムパターン)の性質を有するRunning鍵を生成する。   The running key generation unit 104 generates a running key having a pseudo random number (random pattern) property using the encryption key 102 as original data.

多値信号生成部106は、送信データ(デジタルデータ)をRunning鍵に従って多値信号に変換する。   The multilevel signal generation unit 106 converts transmission data (digital data) into a multilevel signal according to the Running key.

一方、光源発生部108は、例えば、レーザダイオードなどから構成され、一定レベルの強度を有する光を発生する。そして、光変調部110により、光源発生部108の出力光を多値変調し、光多値信号を生成する。光多値信号は、例えば、強度変調の場合は、光の強度の違いより表現される。
この暗号化された光多値信号は、伝送路を介して、光受信装置200に送られる。
On the other hand, the light source generator 108 is composed of, for example, a laser diode and generates light having a certain level of intensity. Then, the light modulator 110 multi-value modulates the output light of the light source generator 108 to generate an optical multi-value signal. For example, in the case of intensity modulation, the optical multilevel signal is expressed by a difference in light intensity.
This encrypted optical multilevel signal is sent to the optical receiver 200 via the transmission path.

次に、光受信装置200は、図1に示されるように、Running鍵生成部204、閾値生成部206、O/E変換部208、識別器210からなる。   Next, as illustrated in FIG. 1, the optical receiving device 200 includes a running key generation unit 204, a threshold generation unit 206, an O / E conversion unit 208, and a discriminator 210.

光受信装置200では、伝送路を介して、送られてきた光多値信号をO/E変換部208により、電気多値信号に変換する。   In the optical receiver 200, the optical multilevel signal sent via the transmission path is converted into an electrical multilevel signal by the O / E converter 208.

ここで、詳細は省くが、光送信装置100と光受信装置200の間の同期プロセスにより、共通のRunning鍵が使われて、閾値生成部206より、識別器210に入力される閾値が生成される。   Here, although not described in detail, a threshold value to be input to the discriminator 210 is generated by the threshold generation unit 206 using a common Running key by a synchronization process between the optical transmission device 100 and the optical reception device 200. The

識別器210では、入力されてきた閾値を用いて、O/E変換部から出力される電気多値信号を識別して、送信データを復元する。   The discriminator 210 identifies the electrical multilevel signal output from the O / E conversion unit using the input threshold value, and restores the transmission data.

〔本発明の基本的な考えと基底と閾値の関係〕
次に、図2を用いて本発明の基本的な考えと基底と閾値の関係を示す図である。
本実施形態における光通信システムは、光送信装置100から光受信装置200が光ファイバを介して光信号により情報を伝送する構成である。図2に示されように、光送信装置100は、電気信号を光信号に変換するE/O変換機構を有し、光受信装置200は、光信号を電気信号に変換するO/E変換機構と識別器を有する。
[Basic idea of the present invention and relationship between base and threshold]
Next, it is a figure which shows the basic idea of this invention, and the relationship between a base and a threshold value using FIG.
The optical communication system according to the present embodiment has a configuration in which the optical transmission device 100 to the optical reception device 200 transmit information using an optical signal via an optical fiber. As illustrated in FIG. 2, the optical transmission device 100 includes an E / O conversion mechanism that converts an electrical signal into an optical signal, and the optical reception device 200 includes an O / E conversion mechanism that converts an optical signal into an electrical signal. And a discriminator.

光通信量子暗号(Y−00)通信では、上で説明したように、強度変調をするにあたり2値の光信号のセットである基底により、暗号化をする。   In optical communication quantum cryptography (Y-00) communication, as described above, encryption is performed using a base that is a set of binary optical signals for intensity modulation.

基底がN個あるとすると、図2に示されるように、i番目の基底は、ロー側の光パワーをPol(i)、ハイ側の光パワーをPoh(i)として、(Pol(i),Poh(i))(i=1,…,N)と表現される。 When the base is is N is, as shown in FIG. 2, i-th basis is the optical power of the low side P ol (i), the optical power of the high side as P oh (i), (P ol (I) , P oh (i) ) (i = 1,..., N).

光受信装置200側では、O/E変換機構により、光信号を電気信号に変換するが、そのときの基底(Pol(i),Poh(i))(i=1,…,N)を、電気信号に変換したときの電圧レベルのペアが、(Vl(i),Vh(i))(i=1,…,N)となる。 On the optical receiver 200 side, an optical signal is converted into an electrical signal by an O / E conversion mechanism. The basis (P ol (i) , P oh (i) ) (i = 1,..., N) at that time Is converted into an electric signal, a pair of voltage levels becomes (V l (i) , V h (i) ) (i = 1,..., N).

ここで、Vl(i)が、ロー側の光パワーPol(i)に対応するO/E変換機構により出力されるロー側電圧であり、Vh(i)が、ハイ側の光パワーPol(i)に対応するO/E変換機構により出力されるハイ側電圧である。そして、光受信装置200側の識別器により、送信されてきたデータがロー側にあるかハイ側にあるかを、暗号化により定まるいずれかの基底に対応する電圧を識別する閾値によって、判別する。 Here, V l (i) is the low-side voltage output by the O / E conversion mechanism corresponding to the low-side optical power Pol (i) , and V h (i) is the high-side optical power. This is a high-side voltage output by the O / E conversion mechanism corresponding to Pol (i) . Then, the discriminator on the optical receiving device 200 side determines whether the transmitted data is on the low side or the high side by a threshold value that identifies a voltage corresponding to any base determined by encryption. .

ここで、電圧レベルのペア(Vl(i),Vh(i))に対応する閾値を、Vth(i)とすると、Vth(i)は、Vl(i)とVh(i)のほぼ中間になる電圧レベルになる。 Here, when the threshold corresponding to the voltage level pair (V l (i) , V h (i) ) is V th (i) , V th (i) is V l (i) and V h ( The voltage level is approximately in the middle of i) .

従来の光受信装置では、基底の数Nだけ閾値を用意して、データの識別を行なっていたが、本実施形態の光受信装置では、図2に示されように、いくつかの電圧ペアをグループとして捉え、一つの閾値で基底に対応する電圧ペアに対するデータ識別を行なおうとするものである。すなわち、閾値を、Vth(j)(j=1,…,n)、nは、閾値の数としたときに、n<Nとするものである。 In the conventional optical receiving apparatus, thresholds are prepared by the number N of bases, and data identification is performed. However, in the optical receiving apparatus of this embodiment, as shown in FIG. It is regarded as a group, and data identification is performed for a voltage pair corresponding to the base with one threshold. That is, when the threshold value is V th (j) (j = 1,..., N) and n is the number of threshold values, n <N.

〔閾値数=nの場合の光受信装置の構成〕
次に、図3を用いて本実施形態の閾値数=nの場合の光受信装置の構成について説明する。
光受信装置200は、図3に示されるように、O/E変換部1、線形増幅部2、Comparator3(比較器)、Multiplexer4、Basis Selector5、Seed Key6、LFSR(Liner Feedback Sift Register)7、S/P変換部8、Decoder9からなる。
[Configuration of Optical Receiving Device when Threshold Number = n]
Next, the configuration of the optical receiving apparatus when the threshold number = n in this embodiment will be described with reference to FIG.
As shown in FIG. 3, the optical receiver 200 includes an O / E converter 1, a linear amplifying unit 2, a comparator 3 (comparator), a multiplexer 4, a base selector 5, a seed key 6, an LFSR (linear feedback shift register) 7, S / P converter 8 and Decoder 9.

O/E変換部1では、光送信装置100からの光信号を電気信号に変換する。次に、線形増幅部2では、O/E変換部1から出力される電気信号を線形増幅する。   The O / E converter 1 converts the optical signal from the optical transmission device 100 into an electrical signal. Next, the linear amplification unit 2 linearly amplifies the electric signal output from the O / E conversion unit 1.

次に、Comparator3(比較器)では、線形増幅部2で線形増幅された電気信号と閾値Vth(j)を比較する。
ここで、Comparator3のVth(1),Vth(2),…,Vth(n)の閾値は固定(固定閾値)で、Vth(1)は、電圧レベルが低い電圧レベルペアに対する閾値(以下、「LSB側の閾値」という)、Vth(n)は、電圧レベルが高い電圧レベルペアに対する閾値(以下、「MSB側の閾値」という)とする。
Next, the comparator 3 (comparator) compares the electric signal linearly amplified by the linear amplifier 2 with the threshold value V th (j) .
Here, the threshold values of V th (1) , V th (2) ,..., V th (n) of the comparator 3 are fixed (fixed threshold values ), and V th (1) is a threshold value for a voltage level pair having a low voltage level. Vth (n) is a threshold for a voltage level pair with a high voltage level (hereinafter referred to as an “MSB side threshold”).

Seed Key6は、暗号鍵であり、光送信装置100が所有する暗号鍵と同一のものが用いられる。LFSR7では、暗号鍵を伸長したRunning鍵を生成する。LFSR7は、光送信装置100のRunning鍵生成部104で用いられるLFSRと同一のものでなければならない。S/P変換部8では、LFSR7の出力信号をSerial−Parallel変換する。   Seed Key 6 is an encryption key, and the same encryption key as that owned by optical transmission apparatus 100 is used. In LFSR7, a Running key obtained by expanding the encryption key is generated. The LFSR 7 must be the same as the LFSR used in the running key generation unit 104 of the optical transmission device 100. The S / P converter 8 performs serial-parallel conversion on the output signal of the LFSR 7.

Basis Selector5では、Seed Key6及びLFSR7にて作成された基底に対応するComparator出力を選択し、固定閾値と比較された出力がDecoder9に入力されるようにMultiplexer4を制御する。   In Basis Selector 5, the Comparator output corresponding to the base created by Seed Key 6 and LFSR 7 is selected, and Multiplexer 4 is controlled so that the output compared with the fixed threshold is input to Decoder 9.

Multiplexer4では、基底に対応するComparator出力をDecoder9に割り当てる。   Multiplexer 4 assigns a comparator output corresponding to the base to decoder 9.

Decoder9では、光送信装置100で施したランダマイゼーションを元に戻し、データを復調する。   The decoder 9 restores the randomization performed by the optical transmission device 100 and demodulates the data.

〔基底数=8、閾値数=2の場合の光受信装置の構成と閾値の選択〕
次に、図4ないし図6を用いて基底数=8、閾値数=2の場合の光受信装置の構成と閾値の選択について説明する。
基底数=8、閾値数=2の場合の光受信装置200の構成は、図4に示されるように、図3において、n=2とした場合に該当する。S/P変換部8では、A,B,Cの信号を出力し、Basis Selector5の第1基底選択部51では、Sを出力し、第2基底選択部52では、Sを出力する。
[Configuration of Optical Receiver and Selection of Threshold when Base Number = 8 and Threshold Number = 2]
Next, the configuration of the optical receiving apparatus and the selection of the threshold when the number of bases is 8 and the number of thresholds is 2 will be described with reference to FIGS.
The configuration of the optical receiver 200 when the number of bases = 8 and the number of thresholds = 2 corresponds to the case where n = 2 in FIG. 3, as shown in FIG. In the S / P converter 8 outputs A, B, and C of the signal, the first basis selection unit 51 of the Basis Selector5, it outputs S 1, the second base selector 52, and outputs the S 2.

LSFR7の出力と、基底の関係と、Basis Selector5の出力は、図6に示されるようになる。ここで、基底番号は、♯0〜♯7の8個としている。
ここで、LSFR7の出力とBasis Selector5の出力は、以下の(式1)で表現される。
The output of LSFR7, the relationship between the bases, and the output of Basis Selector 5 are as shown in FIG. Here, eight base numbers are # 0 to # 7.
Here, the output of LSFR 7 and the output of Basis Selector 5 are expressed by the following (Equation 1).

Figure 2019029785
Figure 2019029785

基底数=8、閾値数=2の場合の基底と閾値の関係は、図5に示されるように、LSB側の基底番号♯0〜♯3の四つの基底が、Vth(1)で、0/1の判断をされ、MSB側の基底番号♯4〜♯7の四つの基底が、Vth(2)で、0/1の判断をされることになる。 As shown in FIG. 5, when the number of bases = 8 and the number of thresholds = 2, the four bases of base numbers # 0 to # 3 on the LSB side are V th (1) as shown in FIG. The determination of 0/1 is made, and the four bases of the base numbers # 4 to # 7 on the MSB side are determined to be 0/1 with Vth (2) .

〔基底数=8、閾値数=3の場合の光受信装置の構成と閾値の選択〕
次に、図7ないし図9を用いて基底数=8、閾値数=3の場合の光受信装置の構成と閾値の選択について説明する。
基底数=8、閾値数=3の場合の光受信装置200の構成は、図7に示されるように、図3において、n=3とした場合に該当する。S/P変換部8では、A,B,Cの信号を出力し、Basis Selector5の第1基底選択部51では、Sを出力し、第2基底選択部52では、Sを出力し、第3基底選択部53では、Sを出力する。
[Configuration of Optical Receiver and Selection of Threshold when Base Number = 8 and Threshold Number = 3]
Next, the configuration of the optical receiving apparatus and the selection of the threshold when the number of bases is 8 and the number of thresholds is 3 will be described with reference to FIGS.
The configuration of the optical receiver 200 when the number of bases = 8 and the number of thresholds = 3 corresponds to the case where n = 3 in FIG. 3, as shown in FIG. In the S / P converter 8, and outputs A, B, and C of the signal, the first basis selection unit 51 of the Basis Selector5, it outputs S 1, the second base selector 52, and outputs a S 2, In the third basis selection unit 53, and outputs the S 3.

LSFR7の出力と、基底の関係と、Basis Selector5の出力は、図9に示されるようになる。ここで、基底番号は、♯0〜♯7の8個としている。
ここで、LSFR7の出力とBasis Selector5の出力は、以下の(式2)で表現される。
The output of LSFR7, the relationship between the bases, and the output of Basis Selector 5 are as shown in FIG. Here, eight base numbers are # 0 to # 7.
Here, the output of LSFR 7 and the output of Basis Selector 5 are expressed by the following (Formula 2).

Figure 2019029785
Figure 2019029785

基底数=8、閾値数=3の場合の基底と閾値の関係は、図8に示されるように、LSB側の基底番号♯0〜♯2の三つの基底が、Vth(1)で、0/1の判断をされ、MSB側の基底番号♯6〜♯7の二つの基底が、Vth(3)で、0/1の判断をされ、その中間にある基底番号♯3〜♯5の三つの基底が、Vth(2)で、0/1の判断をされることになる。 As shown in FIG. 8, when the number of bases = 8 and the number of thresholds = 3, the relationship between the bases # 0 to # 2 on the LSB side is V th (1) as shown in FIG. The bases # 6 to # 7 on the MSB side are determined to be 0/1 with V th (3) , and base numbers # 3 to # 5 in the middle are determined. Are determined to be 0/1 by V th (2) .

ここで、閾値を基底の割り当て方法について説明する。
先ず、基底数を閾値数で割り、商の数(整数)の基底を、各閾値に割り当てる。基底を閾値に割り当てるということは、その基底における0/1の判断がその閾値に基づいて行なわれることを意味する。そして、余りの割当てられなかった基底は、LSB側(電圧レベルが低い側の基底)からMSB側(電圧レベルが高い側の基底)に向かって、順次割り当てる。
Here, a method for assigning a threshold to a base will be described.
First, the base number is divided by the threshold number, and a quotient number (integer) base is assigned to each threshold value. Assigning a base to a threshold means that a 0/1 decision on that base is made based on that threshold. The bases that have not been assigned so much are sequentially assigned from the LSB side (base on the low voltage level side) to the MSB side (base on the high voltage level side).

これを基底数=8、閾値数=3の場合に具体的に説明すると以下のようになる。
先ず、基底数/閾値数の商=int(8/3)=2であり、Vth(1),Vth(2),Vth(3)に共に二つの基底を割り当てる。
This will be specifically described below when the base number = 8 and the threshold number = 3.
First, the quotient of base number / threshold number = int (8/3) = 2, and two bases are assigned to V th (1) , V th (2) , and V th (3) .

次に、基底数/閾値数の余り=基底数mod閾値数=8mod3=2を計算する。
そして、LSB側の閾値Vth(1)と中間の閾値Vth(2)に、さらに各々一つの基底を割り当てる。
Next, the base number / the remainder of the threshold number = the base number mod threshold number = 8 mod 3 = 2 is calculated.
Further, one base is assigned to each of the threshold value V th (1) on the LSB side and the intermediate threshold value V th (2) .

したがって、LSB側の閾値Vth(1)に割当てられた基底の数は、三つ、中間の閾値Vth(2)に割当てられた基底の数は、三つ,MSB側の閾値Vth(3)に割当てられた基底の数は、二つになる。 Therefore, the number of bases assigned to the threshold value V th (1) on the LSB side is three, the number of bases assigned to the intermediate threshold value V th (2) is three, and the threshold value V th ( The number of bases assigned to 3) is two.

〔基底数=8、閾値数=4の場合の光受信装置の構成と閾値の選択〕
次に、図10ないし図12を用いて基底数=8、閾値数=4の場合の光受信装置の構成と閾値の選択について説明する。
基底数=8、閾値数=4の場合の光受信装置200の構成は、図10に示されるように、図3において、n=4とした場合に該当する。S/P変換部8では、A,B,Cの信号を出力し、Basis Selector5の第1基底選択部51では、Sを出力し、第2基底選択部52では、S、第3基底選択部53では、Sを出力し、第2基底選択部54では、Sを出力する。
[Configuration of Optical Receiver and Selection of Threshold when Base Number = 8 and Threshold Number = 4]
Next, the configuration of the optical receiving apparatus and the selection of the threshold when the base number = 8 and the threshold number = 4 will be described with reference to FIGS.
The configuration of the optical receiver 200 when the number of bases = 8 and the number of thresholds = 4 corresponds to the case where n = 4 in FIG. 3, as shown in FIG. The S / P conversion unit 8 outputs A, B, and C signals, the first basis selection unit 51 of the Basis Selector 5 outputs S 1 , and the second basis selection unit 52 outputs S 2 and the third basis. the selection unit 53 outputs the S 3, the second basis selection unit 54, and outputs the S 4.

LSFR7の出力と、基底の関係と、Basis Selector5の出力は、図12に示されるようになる。ここで、基底番号は、♯0〜♯7の8個としている。
ここで、LSFR7の出力とBasis Selector5の出力は、以下の(式3)で表現される。
The output of LSFR7, the relationship between the bases, and the output of Basis Selector5 are as shown in FIG. Here, eight base numbers are # 0 to # 7.
Here, the output of LSFR 7 and the output of Basis Selector 5 are expressed by the following (Equation 3).

Figure 2019029785
Figure 2019029785

基底数=8、閾値数=4の場合の基底と閾値の関係は、図11に示されるように、LSB側の基底番号♯0,♯1の二つの基底が、Vth(1)で、0/1の判断をされ、MSB側の基底番号♯6,♯7の二つの基底が、Vth(4)で、0/1の判断をされ、その中間の基底番号♯2,♯3の二つの基底が、Vth(2)で、0/1の判断をされ、基底番号♯4,♯5の二つの基底が、Vth(3)で、0/1の判断をされることになる。 As shown in FIG. 11, when the number of bases = 8 and the number of thresholds = 4, the relationship between the bases # 0 and # 1 on the LSB side is V th (1) as shown in FIG. The two bases of base numbers # 6 and # 7 on the MSB side are determined to be 0/1 with V th (4) , and the base numbers # 2 and # 3 in between are determined. Two bases are determined to be 0/1 at V th (2) , and two bases of base numbers # 4 and # 5 are determined to be 0/1 at V th (3). Become.

〔基底数と閾値数の関係の考察と本実施形態の光受信装置の特徴〕
次に、図13の計算結果を用いて基底数と閾値数の関係について説明する。
基底数=2048、BER(Bit Error Rate)=1E−12の条件の基で、閾値数=2048の光受信装置の光入出力パワーを基準(0[dB])としたときのPower Penaltyは、図13に示されるようになる。このグラフによると閾値数>10以上は、0.1[dB]以下であり、十分よい結果が得られており、閾値数=2では、2.65[dB]、閾値数=3では1.42[dB]である。したがって、発明者は、この条件の基で、閾値数2以上の閾値数をとれば問題ないと思料する。
[Consideration of relationship between base number and threshold number and characteristics of optical receiver of this embodiment]
Next, the relationship between the base number and the threshold number will be described using the calculation result of FIG.
Based on the condition of base number = 2048 and BER (Bit Error Rate) = 1E-12, the power penalty when the optical input / output power of the optical receiver with threshold number = 2048 is set as a reference (0 [dB]) is As shown in FIG. According to this graph, the threshold number> 10 or more is 0.1 [dB] or less, and a sufficiently good result is obtained. When the threshold number = 2, 2.65 [dB], and when the threshold number = 3, 1. 42 [dB]. Therefore, the inventor thinks that there is no problem if a threshold number of 2 or more is taken under this condition.

以上の述べてきたように、本実施形態の光受信装置では、基底数と閾値数の関係を以下の(式4)のようにとる。   As described above, in the optical receiving apparatus of this embodiment, the relationship between the base number and the threshold number is as shown in the following (formula 4).

Figure 2019029785
Figure 2019029785

従来技術に係る光受信装置では、基底数=閾値数ととり、かつ、閾値をDA(Digital Analog)コンバータにより生成していた。   In the optical receiving apparatus according to the prior art, the base number = the threshold number, and the threshold value is generated by a DA (Digital Analog) converter.

本実施形態の光受信装置では、閾値は、上記の(式4)の条件の下で、Comparator3内で固定の閾値Vth(j)(j=1,…,n)を有しているために、簡単な回路構成で、高速伝送においても受信信号と閾値信号の位相のずれが生じることは少ない。 In the optical receiving apparatus of the present embodiment, the threshold value has a fixed threshold value V th (j) (j = 1,..., N) in the comparator 3 under the condition of the above (formula 4). In addition, with a simple circuit configuration, a phase shift between the received signal and the threshold signal hardly occurs even in high-speed transmission.

かつ、基底と閾値の割当てを、LSB側の基底に多く割当てることにしている。これにより、消光比が大きい所で0/1を判断する基底の数が多くなるために、伝送特性の向上を見込むことができる。
また、暗号化方法や光送信装置の構造を変更することもないので、従来技術と比較して、暗号強度が低下することは生じない。
In addition, many bases and thresholds are assigned to the bases on the LSB side. As a result, the number of bases for determining 0/1 increases where the extinction ratio is large, so that improvement in transmission characteristics can be expected.
In addition, since the encryption method and the structure of the optical transmission device are not changed, the encryption strength does not decrease as compared with the prior art.

100…光送信装置、102…暗号鍵(送信装置側)、200…光受信装置、202…暗号鍵(受信装置側)、104…Running鍵生成部(送信装置側)、204…Running鍵生成部(受信装置側)、106…多値信号生成部、108…光源発生部、110…光変調部、206…閾値生成部、208…O/E変換部、210…識別器、
1…O/E変換部、2…線形増幅部、3…Comparator、4…Multiplexer、5…Basis Selector、6…Seed Key、7…LFSR、8…S/P変換部、9…Decoder
DESCRIPTION OF SYMBOLS 100 ... Optical transmission apparatus, 102 ... Encryption key (transmission apparatus side), 200 ... Optical reception apparatus, 202 ... Encryption key (reception apparatus side), 104 ... Running key generation part (transmission apparatus side), 204 ... Running key generation part (Receiving device side) 106 ... multi-value signal generation unit 108 108 light source generation unit 110 light modulation unit 206 threshold generation unit 208 O / E conversion unit 210 discriminator
DESCRIPTION OF SYMBOLS 1 ... O / E conversion part, 2 ... Linear amplification part, 3 ... Comparator, 4 ... Multiplexer, 5 ... Basis Selector, 6 ... Seed Key, 7 ... LFSR, 8 ... S / P conversion part, 9 ... Decoder

Claims (8)

多値強度変調による光通信量子暗号を用いて、データを光信号に変調して送信される信号を受信する光受信装置であって、
データを暗号化する光信号の基底に対応して、受信した光信号を変換した電気信号の電圧レベルの上下を判定する閾値の数と基底の数との関係が、2≦閾値数≦基底数−1であることを特徴する光受信装置。
An optical receiver that receives a signal transmitted by modulating data into an optical signal using optical communication quantum cryptography based on multilevel intensity modulation,
Corresponding to the base of the optical signal for encrypting data, the relationship between the number of thresholds and the number of bases for determining the voltage level of the electrical signal converted from the received optical signal is 2 ≦ threshold number ≦ base number An optical receiver characterized by being -1.
前記電圧レベルの上下を判定する閾値に対して、電圧レベルが低い側の電圧レベルのペアの上下を判定する閾値が、電圧レベルが高い側の電圧レベルのペアの上下を判定する閾値よりも、同じか多くの基底に対応した電圧レベルのペアの判定を行うように割当てることを特徴とする請求項1記載の光受信装置。   The threshold for determining the upper and lower of the voltage level pair on the lower voltage level relative to the threshold for determining the upper and lower of the voltage level is higher than the threshold for determining the upper and lower of the voltage level pair on the higher voltage level. 2. The optical receiving apparatus according to claim 1, wherein a pair of voltage levels corresponding to the same or many bases is assigned so as to be determined. 前記電圧レベルの上下を判定する比較器を有し、前記比較器は、閾値の数だけの固定した電圧発生手段により電圧レベルの判定を行うことを特徴とする請求項1記載の光受信装置。   2. The optical receiving apparatus according to claim 1, further comprising a comparator for determining whether the voltage level is higher or lower, wherein the comparator performs voltage level determination using a fixed number of voltage generation means equal to the number of thresholds. マルチプレクサを有し、前記マルチプレクサは、閾値数だけのスイッチを有し、前記スイッチにより電圧レベルを判定する閾値を選択することを特徴とする請求項1記載の光受信装置。   The optical receiving apparatus according to claim 1, further comprising: a multiplexer, wherein the multiplexer includes a threshold number of switches, and selects a threshold value for determining a voltage level by the switch. 多値強度変調による光通信量子暗号を用いて、データを光信号に変調して送信する光送信装置と前記光送信装置から伝送される信号を受信する光受信装置が光通信路より接続された光通信システムであって、
前記光受信装置において、データを暗号化する光信号の基底に対応して、受信した光信号を変換した電気信号の電圧レベルの上下を判定する閾値の数と基底の数との関係が、2≦閾値数≦基底数−1であることを特徴する光通信システム。
An optical transmission device that modulates data into an optical signal and transmits it using an optical communication quantum cryptography based on multilevel intensity modulation and an optical reception device that receives a signal transmitted from the optical transmission device are connected via an optical communication path An optical communication system,
In the optical receiver, the relationship between the number of thresholds and the number of bases for determining the rise and fall of the voltage level of the electrical signal converted from the received optical signal corresponding to the base of the optical signal for encrypting data is 2 An optical communication system, wherein ≦ threshold number ≦ base number−1.
前記光受信装置において、前記電圧レベルの上下を判定する閾値に対して、電圧レベルが低い側の電圧レベルのペアの上下を判定する閾値が、電圧レベルが高い側の電圧レベルのペアの上下を判定する閾値よりも、同じか多くの基底に対応した電圧レベルのペアの判定を行うように割当てることを特徴とする請求項5記載の光通信システム。   In the optical receiver, the threshold for determining the up / down of the voltage level pair on the lower voltage level relative to the threshold for determining the up / down of the voltage level is higher or lower than the voltage level pair on the higher voltage level side. 6. The optical communication system according to claim 5, wherein a voltage level pair corresponding to the same or more bases than the threshold value for determination is assigned so as to be determined. 前記光受信装置において、前記電圧レベルの上下を判定する比較器を有し、前記比較器は、閾値の数だけの固定した電圧発生手段により電圧レベルの判定を行うことを特徴とする請求項5記載の光通信システム。   6. The optical receiver according to claim 5, further comprising a comparator for determining whether the voltage level is higher or lower, wherein the comparator performs voltage level determination using a fixed number of voltage generating means equal to the number of thresholds. The optical communication system described. 前記光受信装置において、マルチプレクサを有し、前記マルチプレクサは、閾値数だけのスイッチを有し、前記スイッチにより電圧レベルを判定する閾値を選択することを特徴とする請求項5記載の光通信システム。   6. The optical communication system according to claim 5, wherein the optical receiver includes a multiplexer, and the multiplexer has a switch corresponding to the threshold number, and selects a threshold value for determining a voltage level by the switch.
JP2017146043A 2017-07-28 2017-07-28 Optical receiver and optical communication system Active JP6863854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017146043A JP6863854B2 (en) 2017-07-28 2017-07-28 Optical receiver and optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017146043A JP6863854B2 (en) 2017-07-28 2017-07-28 Optical receiver and optical communication system

Publications (2)

Publication Number Publication Date
JP2019029785A true JP2019029785A (en) 2019-02-21
JP6863854B2 JP6863854B2 (en) 2021-04-21

Family

ID=65476682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017146043A Active JP6863854B2 (en) 2017-07-28 2017-07-28 Optical receiver and optical communication system

Country Status (1)

Country Link
JP (1) JP6863854B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141716A1 (en) * 2003-09-29 2005-06-30 Prem Kumar Coherent-states based quantum data-encryption through optically-amplified WDM communication networks
US20070234051A1 (en) * 2006-03-31 2007-10-04 Akutsu Shigeto Method for synchronization in encrypted communications using shared key
US20070255679A1 (en) * 2006-04-27 2007-11-01 Takeshi Hosoi Method and system for encrypted communications using multi-valued modulation
JP2008079297A (en) * 2006-08-23 2008-04-03 Matsushita Electric Ind Co Ltd Data transmitter and data receiver
JP2008092443A (en) * 2006-10-04 2008-04-17 Matsushita Electric Ind Co Ltd Data transmitting apparatus, and data receiving apparatus
US20080247547A1 (en) * 2006-08-23 2008-10-09 Tsuyoshi Ikushima Data transmitting apparatus and data receiving apparatus
JP2016116121A (en) * 2014-12-16 2016-06-23 株式会社日立情報通信エンジニアリング Optical communication randomization device
US20170005789A1 (en) * 2015-06-30 2017-01-05 Massachusetts Institute Of Technology Optical Cryptography for High Speed Coherent Systems

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050141716A1 (en) * 2003-09-29 2005-06-30 Prem Kumar Coherent-states based quantum data-encryption through optically-amplified WDM communication networks
US20070234051A1 (en) * 2006-03-31 2007-10-04 Akutsu Shigeto Method for synchronization in encrypted communications using shared key
JP2007274300A (en) * 2006-03-31 2007-10-18 Hitachi Information & Communication Engineering Ltd Synchronization processing method in common key cipher communication
US20070255679A1 (en) * 2006-04-27 2007-11-01 Takeshi Hosoi Method and system for encrypted communications using multi-valued modulation
JP2007295461A (en) * 2006-04-27 2007-11-08 Hitachi Information & Communication Engineering Ltd Multi-level encryption communicating method and system
JP2008079297A (en) * 2006-08-23 2008-04-03 Matsushita Electric Ind Co Ltd Data transmitter and data receiver
US20080247547A1 (en) * 2006-08-23 2008-10-09 Tsuyoshi Ikushima Data transmitting apparatus and data receiving apparatus
JP2008092443A (en) * 2006-10-04 2008-04-17 Matsushita Electric Ind Co Ltd Data transmitting apparatus, and data receiving apparatus
JP2016116121A (en) * 2014-12-16 2016-06-23 株式会社日立情報通信エンジニアリング Optical communication randomization device
US20170005789A1 (en) * 2015-06-30 2017-01-05 Massachusetts Institute Of Technology Optical Cryptography for High Speed Coherent Systems

Also Published As

Publication number Publication date
JP6863854B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
US8867742B2 (en) Optical transmission device and reception device for Yuen encryption, optical transmission method and reception method for Yuen encryption, and encrypted communication system
US7986783B2 (en) Data transmitting apparatus
US8107628B2 (en) Data transmitting apparatus and data receiving apparatus
JP4906732B2 (en) Data transmission device, data reception device, and data communication device
JP5377934B2 (en) Optical transmitter
Harasawa et al. Quantum encryption communication over a 192-km 2.5-Gbit/s line with optical transceivers employing Yuen-2000 protocol based on intensity modulation
WO2019180770A1 (en) Method and device for adjusting drive timing of photon detector, and optical communication system
JP5064011B2 (en) Data transmitting apparatus and data receiving apparatus
Ohhata et al. 10-Gb/s optical transceiver using the Yuen 2000 encryption protocol
US7869600B2 (en) Optical transmitter and transmitting method for transmitting cryptogram
US20100158249A1 (en) Data transmitting apparatus and data receiving apparatus
JP6863854B2 (en) Optical receiver and optical communication system
US7835524B2 (en) Encrypting of communications using a transmitting/receiving apparatus via key information based on a multi-level code signal and a pseudo-random number sequence for modulation with an information signal
JP2014093764A (en) Optical secret communication system and optical secret transmission device, and optical secret communication method
US7907670B2 (en) Data transmitting apparatus and data receiving apparatus
JP5631136B2 (en) Optical transmission apparatus and method
US7839946B2 (en) Data communication apparatus and data communication method
Nakazawa et al. Secure transmission using QAM quantum noise stream cipher with continuous variable QKD
JP5062642B2 (en) ENCRYPTED OPTICAL TRANSMITTING DEVICE AND RECEIVING DEVICE, ENCRYPTED OPTICAL TRANSMITTING METHOD AND RECEIVING METHOD, AND ENCRYPTED COMMUNICATION SYSTEM
Kanter et al. Exploiting quantum and classical noise for securing high-speed optical communication networks
JP6560862B2 (en) Optical transmitter
JP2008079297A (en) Data transmitter and data receiver
JP7257103B2 (en) Optical transmission device and optical transmission method
JP2008300971A (en) Data receiving device
JP6367644B2 (en) Optical transmitter, optical receiver, and optical communication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210401

R150 Certificate of patent or registration of utility model

Ref document number: 6863854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350