JP2019026817A - Photoresponsive adhesive - Google Patents

Photoresponsive adhesive Download PDF

Info

Publication number
JP2019026817A
JP2019026817A JP2017151303A JP2017151303A JP2019026817A JP 2019026817 A JP2019026817 A JP 2019026817A JP 2017151303 A JP2017151303 A JP 2017151303A JP 2017151303 A JP2017151303 A JP 2017151303A JP 2019026817 A JP2019026817 A JP 2019026817A
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer compound
crystal polymer
adherend
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017151303A
Other languages
Japanese (ja)
Inventor
祥太郎 伊藤
Shotaro Ito
祥太郎 伊藤
陽久 秋山
Akihisa Akiyama
陽久 秋山
秀元 木原
Hidemoto Kihara
秀元 木原
吉田 勝
Masaru Yoshida
勝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017151303A priority Critical patent/JP2019026817A/en
Publication of JP2019026817A publication Critical patent/JP2019026817A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

To provide a photoresponsive adhesive which has pressure-sensitive adhesiveness when fluidized by light irradiation and recovers adhesive force when cured again by light irradiation with a different wavelength.SOLUTION: The photoresponsive adhesive comprises as an active ingredient a liquid crystal polymer represented by the general formula (1) in the figure, where l is an integer from 1 to 20, m is an integer from 1 to 20, n is from 2 to 200, Ris H or a methyl group, Ris S, O, secondary or tertiary N, or an ester group.SELECTED DRAWING: Figure 2

Description

本発明は、光で可逆的に軟化固化することで、粘着状態と接着状態を制御し、これを繰り返すことが可能な光応答性粘接着剤に関する。   The present invention relates to a photoresponsive adhesive which can be reversibly softened and solidified with light to control an adhesive state and an adhesive state and to repeat this.

光照射により材料を可逆的に流動化−非流動化させる方法として、糖アルコール骨格をもつ液晶性アゾベンゼン化合物(特許文献1参照)に紫外光と可視光を照射する方法が知られている(特許文献2、非特許文献1、および非特許文献2)。この液晶性アゾベンゼン化合物の流動化−非流動化は、光応答性を有するアゾベンゼン構造が、光照射により相転移することに基づく。   As a method for reversibly fluidizing and de-fluidizing a material by light irradiation, a method of irradiating a liquid crystalline azobenzene compound having a sugar alcohol skeleton (see Patent Document 1) with ultraviolet light and visible light is known (patent). Document 2, Non-Patent Document 1, and Non-Patent Document 2). The fluidization-non-fluidization of this liquid crystalline azobenzene compound is based on the fact that an azobenzene structure having photoresponsiveness undergoes phase transition by light irradiation.

図1は、この方法による液晶性アゾベンゼン化合物の流動化−非流動化を示す写真である。図1に示すように、固体粉末状のアゾベンゼン化合物(画像左)に紫外光を照射すると、この化合物が液状化して球状の滴となる(画像中央)。この液状物に可視光を照射すると、スプーンで持ち上げても球状の形状を保つ固形物となる(画像右)。この固形物に再度、紫外光を照射すると、球状の液滴(画像中央)に戻る。   FIG. 1 is a photograph showing fluidization-non-fluidization of a liquid crystalline azobenzene compound by this method. As shown in FIG. 1, when a solid powdery azobenzene compound (image left) is irradiated with ultraviolet light, the compound is liquefied into spherical droplets (image center). When this liquid is irradiated with visible light, it becomes a solid that maintains a spherical shape even when lifted with a spoon (right image). When this solid material is irradiated again with ultraviolet light, it returns to a spherical droplet (center of the image).

可逆的に流動化−非流動化するこのような化合物の用途として、光照射によって可逆的に接着・剥離できる接着剤が提案されている。一般の接着剤では、基材に被着物を一度接着した後は、熱や機械的な衝撃を与えずに被着物を剥離することが難しい。また、被着物を剥離した後に、残った接着剤を再接着に利用することも難しかった。光で可逆的に接着・剥離を繰り返すことができる材料を用いることで、これらの問題が解決できる。   As an application of such a reversibly fluidized-non-fluidized compound, an adhesive that can be reversibly adhered and peeled by light irradiation has been proposed. With a general adhesive, it is difficult to peel the adherend without applying heat or mechanical shock after the adherend is once bonded to the substrate. In addition, it was difficult to use the remaining adhesive for re-adhesion after the adherend was peeled off. These problems can be solved by using a material that can be repeatedly bonded and peeled reversibly with light.

これに加えて、側鎖にアゾベンゼン構造を有する高分子であるアゾベンゼン高分子化合物は、特許文献1等に記載された低分子のアゾベンゼン化合物と同様に、光照射によって可逆的に流動化−非流動化する性質を保持しながら、さらに接着時の接着力が大きくなることが知られている(特許文献3および非特許文献3)。また、光照射により可逆的に軟化−固化する材料として、高分子化合物、液晶化合物、および光応答性化合物からなる組成物が報告されている(特許文献4)。この組成物に紫外光を照射すると、光応答性化合物の分子形状が変化して組成物が軟化する。軟化したこの組成物に可視光をさらに照射すると、組成物が再び硬化する。この現象を利用した光応答性粘接着剤が提案されている。   In addition, the azobenzene polymer compound, which is a polymer having an azobenzene structure in the side chain, is reversibly fluidized and non-flowed by light irradiation in the same manner as the low-molecular azobenzene compound described in Patent Document 1 and the like. It is known that the adhesive force at the time of bonding is further increased while maintaining the property to be converted (Patent Document 3 and Non-Patent Document 3). In addition, a composition comprising a polymer compound, a liquid crystal compound, and a photoresponsive compound has been reported as a material that is reversibly softened and solidified by light irradiation (Patent Document 4). When this composition is irradiated with ultraviolet light, the molecular shape of the photoresponsive compound changes and the composition softens. When the softened composition is further irradiated with visible light, the composition is cured again. A photoresponsive adhesive which utilizes this phenomenon has been proposed.

特許第5360794号公報Japanese Patent No. 5360794 特許第5561728号公報Japanese Patent No. 5561728 国際公開第WO2013/168712号International Publication No. WO2013 / 168712 国際公開第WO2016/121651号International Publication No. WO2016 / 121651

Advanced. Materials, 24, 2353-2356 (2012)Advanced. Materials, 24, 2353-2356 (2012) ACS Appl. Mater. Interfaces, 6, 7933-7941 (2014)ACS Appl. Mater. Interfaces, 6, 7933-7941 (2014) J. Adhesion in press. (DOI: 10.1080/00218464.2016.1219255)J. Adhesion in press. (DOI: 10.1080 / 00218464.2016.1219255)

特許文献1から特許文献3に記載された光応答性化合物は、光照射で液化させて剥離する際に接着力が全くなくなる。このため、この光応答性化合物は剥離直前に被着体を保持できない。また、接着する際には、液状のこの光応答性化合物に光を照射して接着力が発現するまで、被着体の固定が必要である。このため、基材に被着体を接着するときの作業性に欠点がある。   The photoresponsive compounds described in Patent Literature 1 to Patent Literature 3 have no adhesive force when liquefied by light irradiation and peeled off. For this reason, this photoresponsive compound cannot hold | maintain an adherend just before peeling. In adhering, it is necessary to fix the adherend until the liquid photoresponsive compound is irradiated with light to develop an adhesive force. For this reason, there exists a fault in workability | operativity when adhere | attaching a to-be-adhered body to a base material.

特許文献4に記載された光応答性化合物は、紫外光照射により軟化した際に粘着性を示すので上記欠点がない。しかし、再硬化時に接着力が復元しないため、光応答性接着剤として繰り返し利用できない。本発明は、従来の光応答性化合物のこのような欠点を改善し、光照射による流動化時に粘着性を示し、さらに、再硬化時に接着力が復元する光応答性粘接着剤を提供することを課題とする。   The photoresponsive compound described in Patent Document 4 does not have the above-mentioned disadvantage because it exhibits adhesiveness when softened by ultraviolet light irradiation. However, since the adhesive strength is not restored at the time of recuring, it cannot be repeatedly used as a photoresponsive adhesive. The present invention provides a photoresponsive adhesive that improves such drawbacks of conventional photoresponsive compounds, exhibits tackiness when fluidized by light irradiation, and further restores adhesive strength when re-cured. This is the issue.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、光相転移を示す部位としての光応答性基と、凝集力を高めるための水素結合性の官能基を含む高分子液晶性化合物を用い、光照射によって可逆的に軟化および固化させることで、粘着状態および接着状態が制御できる光応答性粘接着剤を得ることができることを見出し、本発明の完成に至った。本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。   As a result of intensive studies to achieve the above object, the present inventors have found that a polymer liquid crystal containing a photoresponsive group as a site exhibiting a photo phase transition and a hydrogen bonding functional group for increasing cohesive force. It has been found that a photoresponsive adhesive which can control the adhesive state and the adhesive state can be obtained by reversibly softening and solidifying by light irradiation using a photosensitive compound, and the present invention has been completed. The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.

本発明の液晶高分子化合物は下記の一般式(1)で表される。   The liquid crystal polymer compound of the present invention is represented by the following general formula (1).

Figure 2019026817
ただし、式中、lは1〜20の整数、mは1〜20の整数、nは2〜200であり、R1はHまたはメチル基であり、R2は、S、O、2級もしくは3級のN、またはエステル基である。
Figure 2019026817
In the formula, l is an integer of 1 to 20, m is an integer of 1 to 20, n is 2 to 200, R 1 is H or a methyl group, and R 2 is S, O, secondary or Tertiary N or an ester group.

本発明の液晶高分子化合物の製造方法は、下記の一般式(2)で表されるポリ(メタクリル酸グリシジル)と、下記の一般式(3)で表されるアゾベンゼンを含むメルカプタン、アルコール、1級もしくは2級アミン、またはカルボン酸とを反応させる。   The method for producing a liquid crystal polymer compound of the present invention comprises a poly (glycidyl methacrylate) represented by the following general formula (2) and a mercaptan, an alcohol, 1 an azobenzene represented by the following general formula (3), Reaction with a secondary or secondary amine or carboxylic acid.

Figure 2019026817
Figure 2019026817

Figure 2019026817
ただし、式中、l、m、n、およびR1は上記の一般式(1)と同じであり、R3は、メルカプト基、ヒドロキシ基、1級もしくは2級アミノ基、またはカルボキシ基である。
Figure 2019026817
In the formula, l, m, n, and R 1 are the same as those in the general formula (1), and R 3 is a mercapto group, a hydroxy group, a primary or secondary amino group, or a carboxy group. .

本発明の光応答性粘接着剤は、本発明の液晶高分子化合物を有効成分とする。本発明の被着物の剥離方法は、本発明の光応答性粘接着剤を介して被着物が基材に接着されている状態で、光応答性粘接着剤に波長300〜400nmの紫外光を照射して粘着状態にし、被着物を基材から剥離する。本発明の被着物の接着方法は、本発明の光応答性粘接着剤を介して被着物が基材に粘着されている状態で、光応答性粘接着剤に波長420〜600nmの可視光を照射して固体状態にし、被着物を基材に接着する。   The photoresponsive adhesive of the present invention contains the liquid crystal polymer compound of the present invention as an active ingredient. The method for peeling an adherend according to the present invention includes an ultraviolet light having a wavelength of 300 to 400 nm applied to the photoresponsive adhesive with the adherend adhered to the substrate via the photoresponsive adhesive of the present invention. Irradiate light to make it sticky and peel the adherend from the substrate. The adhesion method of the adherend of the present invention is such that the adherend is adhered to the substrate via the photoresponsive adhesive of the present invention, and the visible light having a wavelength of 420 to 600 nm is applied to the photoresponsive adhesive. Light is irradiated to form a solid state, and the adherend is bonded to the substrate.

本発明の光応答性粘接着剤は光照射によって粘着性を示す。このため、本発明の光応答性粘接着剤を介して基材に被着物を接着するときや基材から被着物を剥離するときの作業性に優れる。   The photoresponsive adhesive of the present invention exhibits tackiness when irradiated with light. For this reason, it is excellent in workability | operativity when adhering an adherend to a base material through the photoresponsive adhesive agent of this invention, or peeling an adherend from a base material.

光照射により、液晶性アゾベンゼン化合物が流動状態と非流動状態を示す写真。A photograph showing a liquid crystalline azobenzene compound in a fluidized state and a non-fluidized state by light irradiation. 製造例3で得られた液晶高分子化合物の1H NMRスペクトル。 1 H NMR spectrum of the liquid crystal polymer compound obtained in Production Example 3. 製造例3で得られた液晶高分子化合物を用いた接着強度試験を示す図。The figure which shows the adhesive strength test using the liquid crystal polymer compound obtained by manufacture example 3. FIG.

本発明の実施形態に係る液晶高分子化合物は下記の一般式(1)で表される。   The liquid crystal polymer compound according to the embodiment of the present invention is represented by the following general formula (1).

Figure 2019026817
ただし、式中、lは1〜20の整数、mは1〜20の整数、nは2〜200であり、R1はH(水素原子)またはメチル基であり、R2は、S(硫黄原子)、O(酸素原子)、2級もしくは3級のN(窒素原子)、またはエステル基(OCOもしくはCOO)である。なお、本願では、2つの数値の間に「〜」を入れて数値範囲を表わす場合は、これらの2つの数値が含まれる。
Figure 2019026817
In the formula, l is an integer of 1 to 20, m is an integer of 1 to 20, n is 2 to 200, R 1 is H (hydrogen atom) or a methyl group, and R 2 is S (sulfur). Atom), O (oxygen atom), secondary or tertiary N (nitrogen atom), or ester group (OCO or COO). In the present application, when a numerical range is expressed by putting “˜” between two numerical values, these two numerical values are included.

本実施形態の液晶高分子化合物は、アゾベンゼンを含み、2以上の光応答性側鎖を備える側鎖型液晶高分子化合物である。すなわち、本実施形態の液晶高分子化合物は、光照射により相転移を誘起する光応答性基を備えている。また、本実施形態の液晶高分子化合物は、分子間力を強めることで粘着性を付与する水素結合性のヒドロキシ基を有する。このため、本実施形態の液晶高分子化合物は、従来の光応答性高分子化合物と異なり、軟化したときに完全に液化せず粘着性を示す。すなわち、本実施形態の液晶高分子化合物は、被着体を基材に接着するときに初期接着力が発揮される。したがって、本実施形態の液晶高分子化合物を粘接着剤として用いれば、被着体の接着時の作業性が向上する。本実施形態の液晶高分子化合物は、光照射によって可逆的に軟化・固化でき、可逆的に被着体の接着および剥離が可能である。   The liquid crystal polymer compound of this embodiment is a side chain type liquid crystal polymer compound containing azobenzene and having two or more photoresponsive side chains. That is, the liquid crystal polymer compound of this embodiment includes a photoresponsive group that induces a phase transition by light irradiation. In addition, the liquid crystal polymer compound of the present embodiment has a hydrogen-bonding hydroxy group that imparts tackiness by increasing the intermolecular force. For this reason, unlike the conventional photoresponsive polymer compound, the liquid crystal polymer compound of the present embodiment does not completely liquefy when softened and exhibits adhesiveness. That is, the liquid crystal polymer compound of the present embodiment exhibits an initial adhesive force when the adherend is bonded to the substrate. Therefore, if the liquid crystal polymer compound of this embodiment is used as an adhesive, the workability at the time of adhesion of the adherend is improved. The liquid crystal polymer compound of this embodiment can be reversibly softened and solidified by light irradiation, and can adhere and peel off the adherend reversibly.

本実施形態の液晶高分子化合物は常温で固体であり、接着時に流動性がない状態になるが、所定の波長の光照射によって、軟化して接着力が低下するとともに粘着性を示す。また、軟化した本実施形態の液晶高分子化合物に他の所定の波長の光を照射すれば、固化して接着力が回復する。すなわち、本実施形態の液晶高分子化合物は、好適な波長の光を選択して照射することで、可逆的に光軟化・固化できる。本実施形態の液晶高分子化合物では、側鎖に存在するアゾベンゼン構造が照射される光に応じて、下記に示すように光異性化する。   The liquid crystal polymer compound of the present embodiment is solid at normal temperature and has no fluidity at the time of bonding. However, the liquid crystal polymer compound is softened by irradiation with light having a predetermined wavelength, and adhesive strength is reduced and adhesiveness is exhibited. Further, when the softened liquid crystal polymer compound of the present embodiment is irradiated with light of another predetermined wavelength, the liquid crystal polymer compound is solidified and the adhesive force is recovered. That is, the liquid crystal polymer compound of the present embodiment can be softened and solidified reversibly by selecting and irradiating light with a suitable wavelength. In the liquid crystal polymer compound of this embodiment, the azobenzene structure present in the side chain is photoisomerized as shown below according to the light irradiated.

Figure 2019026817
Figure 2019026817

本実施形態の液晶高分子化合物が軟化するためには、アゾベンゼンがトランス体からシス体に異性化する必要がある。この異性化率を高めるためには、シス体が吸収しない波長の光を照射することが好ましい。トランス体の主な吸収領域である波長300〜400nmの紫外光を本実施形態の液晶高分子化合物に照射すれば軟化する。すなわち、本実施形態の液晶高分子化合物は、例えば、波長300〜400nmの紫外光を照射すると軟化して粘着性を示す。ただし、より効率的に軟化させるためには、波長350〜390nmの紫外光を照射することが好ましく、波長365nm付近の紫外光を照射することがより好ましい。   In order to soften the liquid crystal polymer compound of this embodiment, it is necessary to isomerize azobenzene from a trans isomer to a cis isomer. In order to increase the isomerization rate, it is preferable to irradiate light having a wavelength that is not absorbed by the cis isomer. When the liquid crystal polymer compound of this embodiment is irradiated with ultraviolet light having a wavelength of 300 to 400 nm, which is the main absorption region of the transformer, it softens. That is, the liquid crystal polymer compound of this embodiment is softened and exhibits adhesiveness when irradiated with ultraviolet light having a wavelength of 300 to 400 nm, for example. However, in order to soften more efficiently, it is preferable to irradiate ultraviolet light having a wavelength of 350 to 390 nm, and it is more preferable to irradiate ultraviolet light having a wavelength of around 365 nm.

一方、本実施形態の液晶高分子化合物を固化させるためには、波長420〜600nmの可視光を照射することが好ましく、波長500nm付近の可視光を照射することがより好ましい。この光照射により、本実施形態の液晶高分子化合物は、シス体からトランス体に異性化する。すなわち、本実施形態の液晶高分子化合物は、例えば、波長420〜600nmの可視光を照射すると固化する。なお、本実施形態の液晶高分子化合物に照射する光の最適な波長は、アゾベンゼン構造の周りの分子構造によって異なる。本実施形態の液晶高分子化合物に光照射するときの露光量は、光源の種類や接着剤の厚さなどによっても異なるものの、0.1〜200J/cm2が好ましく、0.5〜100J/cm2がより好ましい。 On the other hand, in order to solidify the liquid crystal polymer compound of the present embodiment, it is preferable to irradiate visible light having a wavelength of 420 to 600 nm, and more preferably to irradiate visible light having a wavelength of around 500 nm. By this light irradiation, the liquid crystal polymer compound of this embodiment is isomerized from the cis form to the trans form. That is, the liquid crystal polymer compound of this embodiment is solidified when irradiated with visible light having a wavelength of 420 to 600 nm, for example. In addition, the optimal wavelength of the light irradiated to the liquid crystal polymer compound of the present embodiment varies depending on the molecular structure around the azobenzene structure. The amount of exposure when the liquid crystal polymer compound of this embodiment is irradiated with light varies depending on the type of light source and the thickness of the adhesive, but is preferably 0.1 to 200 J / cm 2 , and preferably 0.5 to 100 J / cm 2. cm 2 is more preferred.

本実施形態の液晶高分子化合物は、異なる波長の光照射により、軟化・固化を可逆的に制御できる。本実施形態の液晶高分子化合物は、側鎖に光異性化可能なアゾベンゼン構造を備えており、固化した状態でも光異性化が可能である。本実施形態の液晶高分子化合物は、固化した状態での光異性化反応によって分子構造が大きく変化し、軟化して粘着性を示す状態に転移する。粘着状態の本実施形態の液晶高分子化合物に、波長を変えた光を再び照射することで、または粘粘着状態の本実施形態の液晶高分子化合物を単に放置することで、逆反応が起きて再び固化する。本実施形態の液晶高分子化合物では、このような軟化・固化の操作を繰り返して行うことができる。   The liquid crystal polymer compound of this embodiment can reversibly control softening and solidification by irradiation with light having different wavelengths. The liquid crystal polymer compound of this embodiment has a photoisomerizable azobenzene structure in the side chain, and can be photoisomerized even in a solidified state. In the liquid crystal polymer compound of the present embodiment, the molecular structure is largely changed by the photoisomerization reaction in a solidified state, and is softened and transitions to a state showing adhesiveness. By irradiating the liquid crystal polymer compound of the present embodiment in an adhesive state with light having a different wavelength, or simply leaving the liquid crystal polymer compound of the present embodiment in an adhesive state, a reverse reaction occurs. Solidify again. In the liquid crystal polymer compound of this embodiment, such softening / solidification operations can be repeated.

本実施形態の液晶高分子化合物は、室温付近の温度および通常の光照射の環境下で固体である。このため、本実施形態の液晶高分子化合物を接着剤として用いる場合、本実施形態の液晶高分子化合物に紫外光を照射して軟化させた状態で基材と被着物の間に挟み込んだ後、可視光を照射して固化させて被着物を基材に接着させる。また、本実施形態の液晶高分子化合物を加熱して融かして基材と被着物の間に挟み込んだ後、冷却して固化して接着させることもできる。   The liquid crystal polymer compound of the present embodiment is a solid under a temperature around room temperature and in a normal light irradiation environment. Therefore, when using the liquid crystal polymer compound of the present embodiment as an adhesive, after sandwiching between the substrate and the adherend in a state of being softened by irradiating the liquid crystal polymer compound of the present embodiment with ultraviolet light, Visible light is irradiated and solidified to adhere the adherend to the substrate. Further, the liquid crystal polymer compound of the present embodiment can be heated and melted and sandwiched between the substrate and the adherend, and then cooled and solidified to be bonded.

さらに、シート状またはテープ状にあらかじめ加工した本実施形態の液晶高分子化合物を、基材と被着物の間に挟み込んだ後、光照射や加熱・冷却によって軟化後に固化させて、被着物を基材に接着させてもよい。また、溶媒に溶かした本実施形態の液晶高分子化合物を被着物の表面に塗布して乾燥させ、その後接着剤を軟化させて基材に貼り付け、接着剤を固化させて被着物を基材に接着させることもできる。本実施形態の液晶高分子化合物を加熱で軟化させる場合には、分子量や化学構造によって異なる融点、ガラス転移点、または軟化点以上の温度(例えば90℃以上)に加熱する。   Further, the liquid crystal polymer compound of the present embodiment, which has been processed into a sheet shape or a tape shape in advance, is sandwiched between the base material and the adherend, and then solidified after being softened by light irradiation, heating or cooling, and the adherend is then used as a base. It may be adhered to the material. Further, the liquid crystal polymer compound of the present embodiment dissolved in a solvent is applied to the surface of the adherend and dried, then the adhesive is softened and attached to the base material, and the adhesive is solidified to make the adherend the base material. It can also be adhered to. When the liquid crystal polymer compound of the present embodiment is softened by heating, the liquid crystal polymer compound is heated to a melting point, a glass transition point, or a temperature equal to or higher than the softening point (for example, 90 ° C. or higher) depending on the molecular weight or chemical structure.

特許文献2、非特許文献1、および非特許文献2に記載された光応答性高分子化合物は、紫外光を照射して液化させると、接着力が全くなくなり被着体を保持することができない。光応答性高分子化合物の大部分が非極性の長鎖アルキル鎖で構成されており、分子間力が弱く、粘着性を示さないからである。そこで、極性官能基であるヒドロキシ基と、光相転移を誘起するアゾベンゼン部位を化学的に結合した本実施形態の液晶高分子化合物を設計した。本実施形態の液晶高分子化合物のように、極性官能基を導入して分子間力をより大きくすることで、紫外光照射して軟化させたときに粘着性を示す。このため、本実施形態の液晶高分子化合物を接着剤として用いれば、被着体の保持が可能となり、接着・剥離操作の作業性が改善される。   When the photoresponsive polymer compound described in Patent Document 2, Non-Patent Document 1, and Non-Patent Document 2 is liquefied by irradiation with ultraviolet light, the adhesive force is completely lost and the adherend cannot be held. . This is because most of the photoresponsive polymer compound is composed of a non-polar long alkyl chain, has a weak intermolecular force, and does not exhibit adhesiveness. In view of this, the liquid crystal polymer compound of this embodiment in which a hydroxy group that is a polar functional group and an azobenzene moiety that induces a photo phase transition are chemically bonded was designed. Like the liquid crystal polymer compound of this embodiment, by introducing a polar functional group to increase the intermolecular force, it exhibits adhesiveness when softened by ultraviolet light irradiation. For this reason, if the liquid crystal polymer compound of this embodiment is used as an adhesive, the adherend can be held, and the workability of the adhesion / peeling operation is improved.

本実施形態の液晶高分子化合物は、繰り返し単位に極性のヒドロキシ基を備えているため、分子間力が向上し、紫外光を照射して軟化した際に粘着性を示す。なお、高分子化合物の分子量が大きくなるとその粘性も大きくなる。軟化したときに粘着性を示すため、本実施形態の液晶高分子化合物の数平均分子量は、1000〜100000であることが好ましい。   Since the liquid crystal polymer compound of the present embodiment has a polar hydroxy group in the repeating unit, the intermolecular force is improved, and exhibits adhesiveness when softened by irradiation with ultraviolet light. In addition, the viscosity increases as the molecular weight of the polymer compound increases. In order to show adhesiveness when softened, the number average molecular weight of the liquid crystal polymer compound of this embodiment is preferably 1000 to 100,000.

本発明の実施形態に係る液晶高分子化合物の製造方法は、下記の一般式(2)で表されるポリ(メタクリル酸グリシジル)と、下記の一般式(3)で表されるアゾベンゼンを含むメルカプタン、アルコール、1級もしくは2級アミン、またはカルボン酸とを反応させる。   A method for producing a liquid crystal polymer compound according to an embodiment of the present invention includes a mercaptan containing poly (glycidyl methacrylate) represented by the following general formula (2) and azobenzene represented by the following general formula (3). , Alcohol, primary or secondary amine, or carboxylic acid.

Figure 2019026817
Figure 2019026817

Figure 2019026817
ただし、式中、l、m、n、およびR1は上記の一般式(1)と同じであり、R3は、メルカプト基、ヒドロキシ基、1級もしくは2級アミノ基、またはカルボキシ基である。
Figure 2019026817
In the formula, l, m, n, and R 1 are the same as those in the general formula (1), and R 3 is a mercapto group, a hydroxy group, a primary or secondary amino group, or a carboxy group. .

この反応は無触媒下で行うこともできるが、適当な触媒を用いて行うことが好ましい。具体的には、上記の一般式(3)の化合物の活性水素を引き抜く塩基として働き、エポキシ基への求核付加反応を促進する触媒が好ましい。このような触媒として、トリエチルアミン等の3級アミン、水酸化リチウム等のアルカリ金属水酸化物、水素化ナトリウム等のアルカリ金属水素化物、リチウム等のアルカリ金属、およびフッ化テトラブチルアンモニウム等の4級アンモニウム塩などが挙げられる。   Although this reaction can be carried out in the absence of a catalyst, it is preferably carried out using a suitable catalyst. Specifically, a catalyst that works as a base for extracting active hydrogen of the compound of the general formula (3) and promotes a nucleophilic addition reaction to an epoxy group is preferable. Such catalysts include tertiary amines such as triethylamine, alkali metal hydroxides such as lithium hydroxide, alkali metal hydrides such as sodium hydride, alkali metals such as lithium, and quaternary compounds such as tetrabutylammonium fluoride. An ammonium salt etc. are mentioned.

また、この反応は適当な溶媒中で行うことが好ましい。溶媒として、テトラヒドロフラン等のエーテル類、およびジメチルホルムアミドやジメチルスルホキシド等の非プロトン性極性溶媒などが好適に挙げられる。これらの溶媒を単独で用いてもよいし、他の溶媒と混合して用いてもよい。溶媒の使用量は、全原料の質量1gに対して、1〜100mL程度が好ましく、5〜50mL程度がより好ましい。   In addition, this reaction is preferably performed in a suitable solvent. Preferred examples of the solvent include ethers such as tetrahydrofuran and aprotic polar solvents such as dimethylformamide and dimethyl sulfoxide. These solvents may be used alone or in combination with other solvents. About 1-100 mL is preferable with respect to 1 g of mass of all the raw materials, and, as for the usage-amount of a solvent, about 5-50 mL is more preferable.

この反応温度は特に制限されないが、0℃から溶媒の沸点までであることが好ましい。また、この反応圧力も特に制限されず、常圧、加圧、減圧のいずれの条件でもよい。この反応時間は通常1〜24時間である。この反応により得られる化合物は、溶媒を留去することにより精製することなく使用できるが、非溶媒への再沈殿、カラムクロマトグラフィー、高速液体クロマトグラフィー、半透膜を用いた透析などの常法により精製して使用してもよい。   The reaction temperature is not particularly limited but is preferably from 0 ° C. to the boiling point of the solvent. Also, the reaction pressure is not particularly limited, and any of normal pressure, pressurization, and reduced pressure may be used. This reaction time is usually 1 to 24 hours. The compound obtained by this reaction can be used without purification by distilling off the solvent, but conventional methods such as reprecipitation into a non-solvent, column chromatography, high performance liquid chromatography, dialysis using a semipermeable membrane, etc. You may refine | purify and use.

上記の一般式(2)の化合物の合成法として、アニオン重合法(Hild, G., Polymer 1993, 34, 2875-2882.等)およびラジカル重合法(Krishnan, R., Macromolecules 2003, 36, 1769-1771.等)が知られている。より簡便なラジカル重合による合成法として、下記の一般式(4)で表わされる化合物を開始剤として用い、銅触媒存在下で、下記の一般式(5)で表わされるモノマーを重合させる方法が例示できる。   As a synthesis method of the compound of the general formula (2), an anionic polymerization method (Hild, G., Polymer 1993, 34, 2875-2882. Etc.) and a radical polymerization method (Krishnan, R., Macromolecules 2003, 36, 1769). -1771 etc.) is known. An example of a simpler synthesis method by radical polymerization is a method of polymerizing a monomer represented by the following general formula (5) in the presence of a copper catalyst using a compound represented by the following general formula (4) as an initiator. it can.

Figure 2019026817
Figure 2019026817

Figure 2019026817
Figure 2019026817

式中、R1はH(水素原子)またはメチル基であり、R4はメチル基またはエチル基であり、R5はCl(塩素原子)またはBr(臭素原子)である。 In the formula, R 1 is H (hydrogen atom) or a methyl group, R 4 is a methyl group or an ethyl group, and R 5 is Cl (chlorine atom) or Br (bromine atom).

本発明の実施形態に係る光応答性粘接着剤は、本実施形態の液晶高分子化合物を有効成分とする。本実施形態の光応答性粘接着剤には、有効成分以外に、本発明の目的を損なわない範囲内で、アセトンなどの溶剤、テルペン樹脂などの粘着付与剤、液状石油由来樹脂などの希釈剤、炭酸カルシウムやシリカなどの充填剤または増量剤、メチルセルロースやビニルアルコールなどの増粘剤、アジピン酸エステル類などの可塑剤、酸化チタンなどの顔料、水酸化アルミニウムなどの難燃剤、ホスフィン類などの酸化防止剤等が含まれていてもよい。   The photoresponsive adhesive according to the embodiment of the present invention includes the liquid crystal polymer compound of the present embodiment as an active ingredient. In the photo-responsive adhesive of the present embodiment, in addition to the active ingredient, a solvent such as acetone, a tackifier such as a terpene resin, and a liquid petroleum-derived resin are diluted within a range that does not impair the object of the present invention. Agents, fillers or extenders such as calcium carbonate and silica, thickeners such as methylcellulose and vinyl alcohol, plasticizers such as adipates, pigments such as titanium oxide, flame retardants such as aluminum hydroxide, phosphines, etc. An antioxidant or the like may be contained.

本発明の実施形態に係る被着物の剥離方法は、本実施形態の光応答性粘接着剤を介して被着物が基材に接着されている状態で、光応答性粘接着剤に波長300〜400nmの紫外光を照射して粘着状態にし、被着物を基材から剥離する。また、本発明の実施形態に係る被着物の接着方法は、本実施形態の光応答性粘接着剤を介して被着物が基材に粘着されている状態で、光応答性粘接着剤に波長420〜600nmの可視光を照射して固体状態にし、被着物を基材に接着する。   The method for peeling the adherend according to the embodiment of the present invention has a wavelength applied to the photoresponsive adhesive with the adherend adhered to the substrate via the photoresponsive adhesive of the present embodiment. 300 to 400 nm of ultraviolet light is irradiated to make it adhere, and the adherend is peeled off from the substrate. Further, the adhesion method of the adherend according to the embodiment of the present invention is a photoresponsive adhesive with the adherend being adhered to the substrate via the photoresponsive adhesive of the present embodiment. The substrate is irradiated with visible light having a wavelength of 420 to 600 nm to form a solid state, and the adherend is bonded to the substrate.

光照射により接着と剥離を行うため、被着体と基材の間に存在する本実施形態の光応答性粘接着剤に所定の波長の光が届くような被着体を選択することが好ましい。このような被着体としては、例えば、ガラス、PET、ポリカーボネイト、およびポリスチレン板などが挙げられる。ただし、被着体は無色である必要はない。また、基材の光透過性は必要ない。基材としては、例えば、アルミニウム、鉄、着色ガラス、および陶器が挙げられる。   Since adhesion and peeling are performed by light irradiation, it is possible to select an adherend that allows light of a predetermined wavelength to reach the photoresponsive adhesive of the present embodiment existing between the adherend and the substrate. preferable. Examples of such an adherend include glass, PET, polycarbonate, and a polystyrene plate. However, the adherend need not be colorless. Moreover, the light transmittance of a base material is not required. Examples of the substrate include aluminum, iron, colored glass, and earthenware.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to this Example.

製造例1:ポリ(メタクリル酸グリシジル)の合成
下記の化学反応式に示すように、論文(Macromolecules 36, 1769-1771 (2003))に記載された方法に従って、ポリ(メタクリル酸グリシジル)を合成した。
Production Example 1: Synthesis of poly (glycidyl methacrylate) Poly (glycidyl methacrylate) was synthesized according to the method described in the paper (Macromolecules 36, 1769-1771 (2003)) as shown in the following chemical reaction formula. .

Figure 2019026817
Figure 2019026817

メタクリル酸グリシジル5g、塩化銅(I)11.6mg、N,N,N’,N”,N”−ペンタメチルジエチレントリアミン20.4mg、およびジフェニルエーテル4.7mLの混合物を凍結脱気した後、2−ブロモイソ酪酸エチル458mgを加え、30℃で4時間重合した。アルミナカラム処理とメタノールへの再沈殿によりポリマーを精製し、白色固体2.58gを得た(収率54%)。Mn,NMR=6240、Mw/Mn=1.20であった。   A mixture of 5 g of glycidyl methacrylate, 11.6 mg of copper (I) chloride, N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine 20.4 mg, and 4.7 mL of diphenyl ether was frozen and degassed. 458 mg of ethyl bromoisobutyrate was added and polymerized at 30 ° C. for 4 hours. The polymer was purified by alumina column treatment and reprecipitation into methanol to obtain 2.58 g of a white solid (yield 54%). Mn, NMR = 6240, Mw / Mn = 1.20.

製造例2:10−(4−(4−ヘキシルフェニルアゾ)フェノキシ)デカンチオールの合成
下記の化学反応式に示すように、論文(J. Phys. Chem. B 105, 2255-2260 (2002))に記載された方法に従って、10−(4−(4−ヘキシルフェニルアゾ)フェノキシ)デカンチオールを合成した。
Production Example 2: Synthesis of 10- (4- (4-hexylphenylazo) phenoxy) decanethiol As shown in the following chemical reaction formula, a paper (J. Phys. Chem. B 105, 2255-2260 (2002)) 10- (4- (4-hexylphenylazo) phenoxy) decanethiol was synthesized according to the method described in 1).

Figure 2019026817
Figure 2019026817

4−ヘキシル−4’−ヒドロキシアゾベンゼン9.40g、1,10−ジブロモデカン50g、炭酸カリウム10.0g、ヨウ化カリウム0.50g、およびアセトン300mLの混合物を16時間還流した。600mLの水を加え、ろ過した後、水100mLとエタノール50mLで洗浄し、減圧乾燥した。加熱したクロロホルム100mLとメタノール40mLの混合溶媒に溶解させ、再結晶させることで、9.14gの黄色固体を得た(収率54%)。   A mixture of 9.40 g of 4-hexyl-4'-hydroxyazobenzene, 50 g of 1,10-dibromodecane, 10.0 g of potassium carbonate, 0.50 g of potassium iodide, and 300 mL of acetone was refluxed for 16 hours. After adding 600 mL of water and filtering, it was washed with 100 mL of water and 50 mL of ethanol, and dried under reduced pressure. It was dissolved in a mixed solvent of 100 mL of heated chloroform and 40 mL of methanol and recrystallized to obtain 9.14 g of a yellow solid (yield 54%).

得られた物質3.07g、チオウレア0.70g、および脱気したエタノール200mLの混合物を18時間還流した後、エタノールを減圧留去し、ヘキサン100mLを加えてろ過した。脱気したエタノール200mLに再び溶解させ、水酸化ナトリウム水溶液(0.43g/5mL)を加えて、6時間還流した。濃塩酸1mL加えて中和し、濃縮した後、エーテルに溶解させ、水で洗浄し、溶媒を留去することで黄色固体1.63gを得た(収率58%)。   A mixture of the obtained substance (3.07 g), thiourea (0.70 g), and degassed ethanol (200 mL) was refluxed for 18 hours, and then the ethanol was distilled off under reduced pressure. It was dissolved again in 200 mL of degassed ethanol, an aqueous sodium hydroxide solution (0.43 g / 5 mL) was added, and the mixture was refluxed for 6 hours. After neutralizing with 1 mL of concentrated hydrochloric acid and concentrating, it was dissolved in ether, washed with water, and the solvent was distilled off to obtain 1.63 g of a yellow solid (yield 58%).

製造例3:ポリ(メタクリル酸 3−(4−(4−ヘキシルフェニルアゾ)フェノキシデシルチオ)−2−ヒドロキシプロピル)の合成
下記の化学反応式に示すように、液晶高分子化合物ポリ(メタクリル酸 3−(4−(4−ヘキシルフェニルアゾ)フェノキシデシルチオ)−2−ヒドロキシプロピル)を合成した。
Production Example 3: Synthesis of poly (methacrylic acid 3- (4- (4-hexylphenylazo) phenoxydecylthio) -2-hydroxypropyl) As shown in the following chemical reaction formula, a liquid crystal polymer compound poly (methacrylic acid) 3- (4- (4-Hexylphenylazo) phenoxydecylthio) -2-hydroxypropyl) was synthesized.

Figure 2019026817
Figure 2019026817

製造例1で得られたポリ(メタクリル酸グリシジル)94mg、製造例2で得られた10−(4−(4−ヘキシルフェニルアゾ)フェノキシ)デカンチオール0.63g、水酸化リチウム一水和物14mg、テトラヒドロフラン6.0mL、および水75μLの混合物を脱気し、室温で18時間攪拌した。メタノール/水(体積比95/5)の混合溶媒に再沈殿した後、分取カラムクロマトグラフィーにより精製し、黄色固体0.32gを得た(収率78%)。Mn,GPC−LS=28100(n=45.2)、Mw/Mn=1.09であった。得られた液晶性高分子化合物の構造は、核磁気共鳴分光法(JEOL RESONANCE製、JNM−ECS400、重クロロホルム溶媒)により確認した。その結果を図2に示す。   94 mg of poly (glycidyl methacrylate) obtained in Production Example 1, 0.63 g of 10- (4- (4-hexylphenylazo) phenoxy) decanethiol obtained in Production Example 2, 14 mg of lithium hydroxide monohydrate , Tetrahydrofuran (6.0 mL), and water (75 μL) were degassed and stirred at room temperature for 18 hours. After reprecipitation in a mixed solvent of methanol / water (volume ratio 95/5), the mixture was purified by preparative column chromatography to obtain 0.32 g of a yellow solid (yield 78%). Mn, GPC-LS = 28100 (n = 45.2), Mw / Mn = 1.09. The structure of the obtained liquid crystalline polymer compound was confirmed by nuclear magnetic resonance spectroscopy (manufactured by JEOL RESONANCE, JNM-ECS400, deuterated chloroform solvent). The result is shown in FIG.

実施例1
製造例3で得られた液晶高分子化合物をごく微量ガラス基板に載せ、LED光源(CCS製HLV−24UV365−4WNRBTNJ)を用いて、中心波長約365nmの紫外光を室温(約25℃)下で5分間照射(15J/cm2)した。黄色粉末状の高分子化合物から、橙色粘着性の高分子化合物に変化した。
Example 1
The liquid crystal polymer compound obtained in Production Example 3 is placed on a very small amount of glass substrate, and an ultraviolet light having a center wavelength of about 365 nm is used at room temperature (about 25 ° C.) using an LED light source (CLV HLV-24UV365-4WNRBTNJ). Irradiated for 5 minutes (15 J / cm 2 ). The polymer compound changed from a yellow powdery polymer to an orange sticky polymer.

実施例2
製造例3で得られた液晶高分子化合物の示差走査熱量測定(パーキンエルマー製Pyris、10K/minで降温)を行うと、等方相−液晶相転移が130℃、液晶−液晶相転移が119℃、ガラス転移温度が86℃であった。一方、実施例1で得られた紫外光照射後の液晶高分子化合物のガラス転移温度は−20℃であり、この液晶高分子化合物は、室温では粘着性を示す流動体だった。
Example 2
When the differential scanning calorimetry of the liquid crystal polymer compound obtained in Production Example 3 (Pyris manufactured by PerkinElmer, temperature drop at 10 K / min) is performed, the isotropic phase-liquid crystal phase transition is 130 ° C., and the liquid crystal-liquid crystal phase transition is 119. The glass transition temperature was 86 ° C. On the other hand, the glass transition temperature of the liquid crystal polymer compound obtained in Example 1 after irradiation with ultraviolet light was −20 ° C., and this liquid crystal polymer compound was a fluid exhibiting adhesiveness at room temperature.

実施例3
紫外光未照射の製造例3で得られた液晶高分子化合物約1mgをガラス基板に載せ、加熱溶融させた後、他のガラス基板で挟み込んで15mm×5mmの大きさに広げた。これを冷却したところ、ガラス基板が接着された。このガラス基板2枚を逆方向に引っ張っても剥離しなかった。引張強度試験で機械的に260N/cm2(5回測定した平均値)の力をかけたときに剥離した。接着強度試験の様子を図3に示す。
Example 3
About 1 mg of the liquid crystal polymer compound obtained in Production Example 3 that was not irradiated with ultraviolet light was placed on a glass substrate, heated and melted, and then sandwiched between other glass substrates to expand to a size of 15 mm × 5 mm. When this was cooled, the glass substrate was bonded. Even when these two glass substrates were pulled in the opposite direction, they did not peel off. Peeling occurred when a force of 260 N / cm 2 (average value measured five times) was mechanically applied in the tensile strength test. The state of the adhesive strength test is shown in FIG.

実施例4
実施例3と同様にして作製した2枚のガラス基板に挟み込んだ液晶高分子化合物に、LED光源を用いて、中心波長約365nmの紫外光を室温(約25℃)下で5分間照射(15J/cm2)した。接着面が軟化して黄色から橙色に変化した。引張強度試験で機械的に123N/cm2(5回測定した平均値)の力をかけたときに剥離した。
Example 4
A liquid crystal polymer compound sandwiched between two glass substrates produced in the same manner as in Example 3 was irradiated with ultraviolet light having a center wavelength of about 365 nm for 5 minutes at room temperature (about 25 ° C.) using an LED light source (15 J / Cm 2 ). The adhesive surface softened and changed from yellow to orange. Peeling occurred when a force of 123 N / cm 2 (average value measured five times) was mechanically applied in the tensile strength test.

実施例5
実施例4と同様にして、2枚のガラス基板に挟み込んだ液晶高分子化合物に紫外光を照射した。さらに、LED光源(CCS製HLV2−22GR−3W)を用いて、液晶高分子化合物に中心波長約520nmの可視光を5分間照射(12J/cm2)した。接着面が固化して橙色から黄色に変化した。引張強度試験で機械的に352N/cm2(5回測定した平均値)の力をかけたときに剥離した。実施例3から5の結果から、製造例3で得られた液晶高分子化合物を軟化させた後に固化させると、接着力が復元することがわかった。
Example 5
In the same manner as in Example 4, the liquid crystal polymer compound sandwiched between two glass substrates was irradiated with ultraviolet light. Furthermore, using a LED light source (CLV HLV2-22GR-3W), the liquid crystal polymer compound was irradiated with visible light having a central wavelength of about 520 nm (12 J / cm 2 ). The adhesive surface solidified and changed from orange to yellow. The film was peeled when a force of 352 N / cm 2 (average value measured five times) was mechanically applied in the tensile strength test. From the results of Examples 3 to 5, it was found that the adhesive strength was restored when the liquid crystal polymer compound obtained in Production Example 3 was softened and then solidified.

実施例6
製造例1から3と同様にして、分子量が異なる4種類の液晶高分子化合物を製造した。なお、原料のポリ(メタクリル酸グリシジル)の重合度nは、1H NMR解析の結果、それぞれ15、27、43、および60であった。得られた各種液晶高分子化合物について、実施例3から5と同様の方法で引張強度試験を行った。剥離したときの試験力を5回測定した。液晶高分子化合物の数平均分子量と平均剥離強度の関係を表1に示す。
Example 6
In the same manner as in Production Examples 1 to 3, four types of liquid crystal polymer compounds having different molecular weights were produced. The polymerization degree n of the raw material poly (glycidyl methacrylate) was 15, 27, 43, and 60, respectively, as a result of 1 H NMR analysis. The various liquid crystal polymer compounds obtained were subjected to a tensile strength test in the same manner as in Examples 3 to 5. The test force when peeled was measured five times. Table 1 shows the relationship between the number average molecular weight of the liquid crystal polymer compound and the average peel strength.

Figure 2019026817
Figure 2019026817

表1に示すように、数平均分子量の違いに関わらず、液晶高分子化合物に紫外光を照射すると剥離強度が低下して粘着性を示し、紫外光照射によって粘着性を示している液晶高分子化合物に可視光を照射すると固化して剥離強度が向上した。また、液晶高分子化合物は、加熱溶融後の冷却によっても接着力を有することがわかった。   As shown in Table 1, regardless of the difference in the number average molecular weight, when the liquid crystal polymer compound is irradiated with ultraviolet light, the peel strength is lowered to exhibit adhesiveness, and the liquid crystal polymer exhibits adhesiveness by ultraviolet light irradiation. When the compound was irradiated with visible light, it solidified and the peel strength was improved. Moreover, it turned out that a liquid crystal polymer compound has adhesive force also by cooling after heat-melting.

Claims (8)

下記の一般式(1)で表される液晶高分子化合物。
Figure 2019026817
ただし、式中、lは1〜20の整数、mは1〜20の整数、nは2〜200であり、R1はHまたはメチル基であり、R2は、S、O、2級もしくは3級のN、またはエステル基である。
A liquid crystal polymer compound represented by the following general formula (1).
Figure 2019026817
In the formula, l is an integer of 1 to 20, m is an integer of 1 to 20, n is 2 to 200, R 1 is H or a methyl group, and R 2 is S, O, secondary or Tertiary N or an ester group.
前記lが10であり、前記mが6であり、前記R1がメチル基であり、前記R2がSである請求項1に記載の液晶高分子化合物。 2. The liquid crystal polymer compound according to claim 1, wherein l is 10, m is 6, R 1 is a methyl group, and R 2 is S. 波長300〜400nmの紫外光を照射すると粘着性を示す請求項1または2に記載の液晶高分子化合物。   The liquid crystal polymer compound according to claim 1 or 2, which exhibits tackiness when irradiated with ultraviolet light having a wavelength of 300 to 400 nm. 粘着状態で波長420〜600nmの可視光を照射すると固化する請求項1から3のいずれかに記載の液晶高分子化合物。   The liquid crystal polymer compound according to any one of claims 1 to 3, which solidifies when irradiated with visible light having a wavelength of 420 to 600 nm in an adhesive state. 請求項1から4のいずれかに記載の液晶高分子化合物を有効成分とする光応答性粘接着剤。   The photoresponsive adhesive which uses the liquid crystal polymer compound in any one of Claim 1 to 4 as an active ingredient. 下記の一般式(2)で表されるポリ(メタクリル酸グリシジル)と、下記の一般式(3)で表されるアゾベンゼンを含むメルカプタン、アルコール、1級もしくは2級アミン、またはカルボン酸とを反応させる液晶高分子化合物の製造方法。
Figure 2019026817
Figure 2019026817
ただし、式中、l、m、n、およびR1は上記の一般式(1)と同じであり、R3は、メルカプト基、ヒドロキシ基、1級もしくは2級アミノ基、またはカルボキシ基である。
Reaction of poly (glycidyl methacrylate) represented by the following general formula (2) with mercaptan, alcohol, primary or secondary amine or carboxylic acid containing azobenzene represented by the following general formula (3) A method for producing a liquid crystal polymer compound.
Figure 2019026817
Figure 2019026817
In the formula, l, m, n, and R 1 are the same as those in the general formula (1), and R 3 is a mercapto group, a hydroxy group, a primary or secondary amino group, or a carboxy group. .
請求項5に記載の光応答性粘接着剤を介して被着物が基材に接着されている状態で、前記光応答性粘接着剤に波長300〜400nmの紫外光を照射して粘着状態にし、前記被着物を前記基材から剥離する被着物の剥離方法。   In the state where the adherend is adhered to the base material via the photoresponsive adhesive of claim 5, the photoresponsive adhesive is irradiated with ultraviolet light having a wavelength of 300 to 400 nm to adhere to the substrate. A method for peeling the adherend, wherein the adherend is peeled from the substrate. 請求項5に記載の光応答性粘接着剤を介して被着物が基材に粘着されている状態で、前記光応答性粘接着剤に波長420〜600nmの可視光を照射して固体状態にし、前記被着物を前記基材に接着する被着物の接着方法。   In a state where the adherend is adhered to the substrate via the photoresponsive adhesive of claim 5, the photoresponsive adhesive is irradiated with visible light having a wavelength of 420 to 600 nm to form a solid. A method for bonding an adherend, wherein the adherend is bonded to the substrate.
JP2017151303A 2017-08-04 2017-08-04 Photoresponsive adhesive Pending JP2019026817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017151303A JP2019026817A (en) 2017-08-04 2017-08-04 Photoresponsive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017151303A JP2019026817A (en) 2017-08-04 2017-08-04 Photoresponsive adhesive

Publications (1)

Publication Number Publication Date
JP2019026817A true JP2019026817A (en) 2019-02-21

Family

ID=65477723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017151303A Pending JP2019026817A (en) 2017-08-04 2017-08-04 Photoresponsive adhesive

Country Status (1)

Country Link
JP (1) JP2019026817A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845849A (en) * 2021-10-18 2021-12-28 北京化工大学 Thermotropic liquid crystal polymer doped heat-peelable photocuring pressure-sensitive adhesive
WO2022168217A1 (en) 2021-02-04 2022-08-11 三菱電機株式会社 Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device
WO2022201469A1 (en) * 2021-03-25 2022-09-29 株式会社エンプラス Liquid handling device, liquid handling system and liquid handling method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168217A1 (en) 2021-02-04 2022-08-11 三菱電機株式会社 Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device
WO2022201469A1 (en) * 2021-03-25 2022-09-29 株式会社エンプラス Liquid handling device, liquid handling system and liquid handling method
CN113845849A (en) * 2021-10-18 2021-12-28 北京化工大学 Thermotropic liquid crystal polymer doped heat-peelable photocuring pressure-sensitive adhesive

Similar Documents

Publication Publication Date Title
JP6334072B2 (en) Photoreversible adhesive
JP5822369B2 (en) Photoresponsive adhesive
JP2019026817A (en) Photoresponsive adhesive
JP5561728B2 (en) Method of fluidizing and defluidizing compounds with light
JP6449340B2 (en) PHOTOSENSITIVE COMPOSITE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND METHOD OF USING PHOTOSENSITIVE COMPOSITE FILM
WO2004103949A1 (en) (meth)acrylic ester compound and use thereof
JP2018009150A (en) Side-chain liquid crystal polymer, liquid crystal composition, retardation film, method for manufacturing retardation film, laminate for transfer, optical member, method for manufacturing optical member, and display device
JP6695567B2 (en) 9,10-Bis {2- (substituted aminocarbonyloxy) alkoxy} anthracene compound, its production method and its use
JP5136956B2 (en) Polymerizable composition and polymer thereof
JP6284184B2 (en) π-conjugated compound, adhesive using π-conjugated compound, method of using adhesive, method of peeling joint, and method of producing π-conjugated compound
JP5246469B2 (en) Novel acrylate compound having anthracene dimer skeleton and process for producing the same
CN106367080B (en) Composition, optical film comprising composition, and method for producing optical film
WO2020213641A1 (en) Photoresponsive poly(vinyl ether) compound and optically reversible adhesive
JP6343610B2 (en) Polyfunctional (meth) acrylate and method for producing the same
JP2017149793A (en) Polymer material whose form is capable of form control by photic stimulation
JP7240671B2 (en) Triphenylene-type liquid crystalline compound and adhesive and adhesive body using triphenylene-type liquid crystalline compound
JP6351074B2 (en) Amorphous form of binaphthalene derivative and method for producing the same
TWI660992B (en) Photocurable composition and anthracene derivative used in the composition
Li Synthesis and Characterization of Photoresponsive Polyacrylates for Pressure Sensitive Adhesives Application
JPH07206770A (en) (meth)acrylic ester
JP2012520260A5 (en)
JP2003268049A (en) Photo-setting resin composition
JP2019031471A (en) Reactive photopolymerization sensitizer
JP2017137413A (en) Photopolymerization sensitizer