JP2018207097A - Substrate for semiconductor and manufacturing method of the same - Google Patents

Substrate for semiconductor and manufacturing method of the same Download PDF

Info

Publication number
JP2018207097A
JP2018207097A JP2018089007A JP2018089007A JP2018207097A JP 2018207097 A JP2018207097 A JP 2018207097A JP 2018089007 A JP2018089007 A JP 2018089007A JP 2018089007 A JP2018089007 A JP 2018089007A JP 2018207097 A JP2018207097 A JP 2018207097A
Authority
JP
Japan
Prior art keywords
substrate
transfer
sori
shape
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018089007A
Other languages
Japanese (ja)
Other versions
JP7035777B2 (en
Inventor
上田 修平
Shuhei Ueda
修平 上田
竹内 正樹
Masaki Takeuchi
正樹 竹内
大雄 岡藤
Daiyu Okafuji
大雄 岡藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to CN201810553227.7A priority Critical patent/CN108987413B/en
Publication of JP2018207097A publication Critical patent/JP2018207097A/en
Application granted granted Critical
Publication of JP7035777B2 publication Critical patent/JP7035777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a substrate for a semiconductor without deformation or with less deformation even when deposition or high-temperature heat treatment is performed; and provide a manufacturing method of the substrate for a semiconductor.SOLUTION: The substrate for a semiconductor comprises one surface having a convex SORI and another surface having a concave SORI of similar degree, in which thickness variation is equal to or less than 3 μm.SELECTED DRAWING: Figure 1

Description

本発明は、半導体用基板およびその製造方法に関する。   The present invention relates to a semiconductor substrate and a method for manufacturing the same.

半導体集積回路(LSI:Large Scale Integration)やTFT−LCD(Thin Film Transistor−Liquid Crystal Display)においては、微細化、高速動作の要求が高まっており、半導体用基板上に作製される膜は、より緻密になってきている。   In semiconductor integrated circuits (LSIs: Large Scale Integration) and TFT-LCDs (Thin Film Transistor-Liquid Crystal Displays), there is an increasing demand for miniaturization and high-speed operation. It is getting more precise.

ポリシリコンTFT用の基板は、その平坦性が損なわれると、液晶表示装置製造工程においてガラスウェーハをチャックする場合や、ロボット搬送する場合に、吸着しないまたは把持できない等の不都合が生じたり、ポリシリコンTFTを形成する過程の微細なパターンを施すフォトリソグラフィ工程において、パターンの重ね合わせが悪くなったりする等の不都合が生じる。
また、液晶パネルでは、2枚の透明ガラス体同士の平坦度が合わないと、その中に挟まれる液晶の膜厚も均一になりにくく、色ムラ等が生じて品質上の不都合も生じる。
さらに、ポリシリコン薄膜を用いてTFT−LCDを製造する場合、処理温度が1000℃以上に達するため、基板が粘性変形を起こして反り変形が生じる。
If the flatness of the substrate for the polysilicon TFT is impaired, inconveniences such as non-adsorption or gripping may occur when the glass wafer is chucked or transported by the robot in the manufacturing process of the liquid crystal display device. In a photolithography process for applying a fine pattern in the process of forming a TFT, there arises a disadvantage that pattern superposition is deteriorated.
Further, in the liquid crystal panel, if the flatness of the two transparent glass bodies does not match, the film thickness of the liquid crystal sandwiched between the transparent glass bodies is difficult to be uniform, and color unevenness or the like occurs, resulting in inconvenience in quality.
Further, when a TFT-LCD is manufactured using a polysilicon thin film, the processing temperature reaches 1000 ° C. or higher, so that the substrate undergoes viscous deformation and warpage deformation occurs.

これらの問題を解決すべく、例えば、特許文献1では、水酸基濃度および塩素濃度の含有量を抑えることで、耐熱性に優れ、かつ高純度な石英ガラス材料からなる能動素子基板を提供する方法が提案されている。
また、特許文献2では、基板の表裏面に窒化珪素膜を形成することにより、窒化珪素膜の応力が基板の裏表面で相殺され、基板の反りを発生させない方法が提案されている。
さらに、特許文献3では、フッ素濃度を一定範囲内にし、かつアルカリ金属酸化物を実質的に含有しない石英ガラスを用いることで、仮想温度による密度変化を小さくして、高温処理前後の寸法安定性に優れたポリシリコンTFT式LCD用石英ガラス基板を得る手法が開示されている。
In order to solve these problems, for example, Patent Document 1 discloses a method of providing an active element substrate made of a quartz glass material having excellent heat resistance and high purity by suppressing the content of hydroxyl group concentration and chlorine concentration. Proposed.
Further, Patent Document 2 proposes a method in which the silicon nitride film is formed on the front and back surfaces of the substrate, so that the stress of the silicon nitride film is canceled by the back surface of the substrate and the substrate is not warped.
Furthermore, in Patent Document 3, by using quartz glass that has a fluorine concentration within a certain range and substantially does not contain an alkali metal oxide, the density change due to fictive temperature is reduced, and dimensional stability before and after high-temperature treatment. A method for obtaining a quartz glass substrate for a polysilicon TFT LCD excellent in the above is disclosed.

特開平6−11705号公報JP-A-6-11705 特開平11−121760号公報Japanese Patent Laid-Open No. 11-121760 特開2005−215319号公報JP 2005-215319 A

しかし、特許文献1の方法では、石英ガラス材料の平坦性を向上させたとしても、その後のポリシリコン薄膜の膜応力による変形を抑制することはできない。
また、特許文献2の方法では、基板の表裏面に同じ膜を構成しない限り、反りの発生を解消することができないが、TFT側およびカラーフィルター側の両面が同じ膜で構成されることは一般的ではないため、この方法でも変形を抑制することは難しい。
さらに、特許文献3の手法でも、高温処理前後の寸法安定性には優れるものの、膜応力による変形を抑制できるものではない。
However, in the method of Patent Document 1, even if the flatness of the quartz glass material is improved, the subsequent deformation of the polysilicon thin film due to the film stress cannot be suppressed.
Further, in the method of Patent Document 2, it is impossible to eliminate the occurrence of warping unless the same film is formed on the front and back surfaces of the substrate. However, it is common that both the TFT side and the color filter side are formed of the same film. Therefore, it is difficult to suppress deformation even with this method.
Furthermore, the method of Patent Document 3 is excellent in dimensional stability before and after high-temperature processing, but cannot suppress deformation due to film stress.

本発明は、上記事情に鑑みなされたものであり、成膜や高温加熱処理を行った場合でも、変形のない、または変形の少ない半導体用基板およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor substrate that is not deformed or has little deformation even when film formation or high-temperature heat treatment is performed, and a method for manufacturing the same.

本発明者らは、上記目的を達成するため鋭意検討した結果、半導体用基板の製造において通常使われる両面ラップ装置、片面ラップ装置、両面研磨装置または片面研磨装置のような製造装置を用いて、低コストで再現性良く、SORIやBOWが任意にコントロールされ、かつ厚みばらつきが少ない半導体用基板を製造できること、より具体的には、上記装置により、膜応力や高温加熱処理により半導体用基板が変形することを前提とし、予めこれらの変形量を考慮して意図的にこれらの変形と逆の方向に反った形状の基板を作製することで、成膜や高温加熱処理を行った場合でも、変形のない、または変形の少ない半導体用基板が得られることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above object, the present inventors have used a manufacturing apparatus such as a double-sided lapping apparatus, a single-sided lapping apparatus, a double-side polishing apparatus, or a single-side polishing apparatus that is usually used in the manufacture of semiconductor substrates. It is possible to manufacture a semiconductor substrate with low cost, good reproducibility, SORI and BOW arbitrarily controlled, and small variations in thickness. More specifically, the above-described apparatus deforms the semiconductor substrate by film stress or high-temperature heat treatment. Assuming that the amount of deformation is taken into consideration in advance, a substrate having a shape that is intentionally warped in the opposite direction of these deformations can be deformed even when film formation or high-temperature heat treatment is performed. The present invention has been completed by finding that a semiconductor substrate with little or no deformation can be obtained.

すなわち、本発明は、
1. 凸状のSORIを有する一方の面と、前記SORIと同程度の凹状のSORIを有する他方の面とを備え、かつ厚みばらつきが3μm以下であることを特徴とする半導体用基板、
2. 前記各面のSORIが、50〜600μmである1の半導体用基板、
3. 前記凸状のSORIを有する一方の面のBOWが、+25〜+300である1または2の半導体用基板、
4. 前記凹状のSORIを有する他方の面のBOWが、−25〜−300である1〜3のいずれかの半導体用基板、
5. 厚みが、0.5〜3mmである1〜4のいずれかの半導体用基板、
6. 前記半導体用基板の形状が、平面視で直径100〜450mmの円形状または対角長100〜450mmの矩形状である1〜5のいずれかの半導体用基板、
7. 合成石英ガラス製である1〜6のいずれかの半導体用基板、
8. ポリシリコンTFT用基板である1〜7のいずれかの半導体用基板、
9. 表面および裏面を有し、これら表裏面の中心点を結んだ中心線上の中間点を通り、前記中心線と直交する面に対して前記表面および裏面が対称に向き合うようなSORIと厚みばらつきを有する転写用原盤を準備する準備工程と、前記転写用原盤を挟み込むようにして2枚の原料基板を両面ラップ装置に設置し、前記各原料基板における前記転写用原盤と接しない面を加工して前記転写用原盤の形状がそれぞれ片面に転写された2枚の転写基板を作製する転写工程と、前記転写基板の両面をラップすることにより、または前記転写基板における前記転写工程で前記転写用原盤の形状が転写されていない面のみをラップすることによりラップ加工基板を作製するラップ工程と、前記ラップ加工基板の両面または片面を研磨することを特徴とする半導体用基板の製造方法、
10. 表面および裏面を有し、これら表裏面の中心点を結んだ中心線上の中間点を通り、前記中心線と直交する面に対して前記表裏面のうちのいずれか一方の面が平行であり、かつ前記表裏面のうち原料基板と接する他方の面が、前記中心線に対して直交するとともに前記中心線に対して対称である転写用原盤を準備する準備工程と、前記転写用原盤の前記他方の面と接するようにして原料基板を片面ラップ装置に設置し、前記原料基板における前記転写用原盤と接しない面を加工して前記転写用原盤の形状が片面に転写された転写基板を作製する転写工程と、前記転写基板の両面をラップすることにより、または前記転写基板における前記転写工程で前記転写用原盤の形状が転写されていない面のみをラップすることによりラップ加工基板を作製するラップ工程と、前記ラップ加工基板の両面または片面を研磨することを特徴とする半導体用基板の製造方法
を提供する。
That is, the present invention
1. A semiconductor substrate comprising one surface having a convex SORI and the other surface having a concave SORI of the same degree as the SORI, and having a thickness variation of 3 μm or less,
2. 1 a semiconductor substrate having a SORI of 50 to 600 μm on each surface;
3. 1 or 2 semiconductor substrates, wherein the BOW of one surface having the convex SORI is +25 to +300;
4). The semiconductor substrate according to any one of 1 to 3, wherein the BOW on the other surface having the concave SORI is −25 to −300,
5. The semiconductor substrate according to any one of 1 to 4 having a thickness of 0.5 to 3 mm,
6). The semiconductor substrate according to any one of 1 to 5, wherein the semiconductor substrate has a circular shape with a diameter of 100 to 450 mm or a rectangular shape with a diagonal length of 100 to 450 mm in plan view,
7). Any one of the semiconductor substrates 1 to 6 made of synthetic quartz glass;
8). A semiconductor substrate according to any one of 1 to 7 which is a polysilicon TFT substrate;
9. It has a front surface and a back surface, passes through an intermediate point on the center line connecting the center points of the front and back surfaces, and has a thickness variation such as SORI in which the front surface and the back surface face each other symmetrically with respect to a plane orthogonal to the center line. A preparation step for preparing a transfer master, and two raw material substrates are installed in a double-sided lapping apparatus so as to sandwich the transfer master, and a surface of each raw material substrate that is not in contact with the transfer master is processed. The transfer process for producing two transfer substrates each having the transfer master shape transferred to one side, and the shape of the transfer master by wrapping both surfaces of the transfer substrate or in the transfer step on the transfer substrate A lapping process for producing a lapping substrate by lapping only a surface to which no transfer is made, and polishing both surfaces or one surface of the lapping substrate Method of manufacturing a conductor substrate,
10. It has a front surface and a back surface, passes through an intermediate point on the center line connecting the center points of these front and back surfaces, and either one of the front and back surfaces is parallel to a surface orthogonal to the center line, And a preparation step of preparing a transfer master in which the other surface in contact with the raw material substrate is orthogonal to the center line and symmetrical with respect to the center line, and the other of the transfer masters The raw material substrate is placed in a single-sided lapping machine so as to be in contact with the surface, and the surface of the raw material substrate that is not in contact with the transfer master is processed to produce a transfer substrate in which the shape of the transfer master is transferred to one surface. A lapping substrate is produced by wrapping both sides of the transfer substrate and the transfer substrate, or by wrapping only the surface of the transfer substrate where the shape of the master for transfer is not transferred in the transfer step. A lapping step that provides a method for manufacturing a semiconductor substrate, characterized by polishing the both sides or one side of the lapping board.

本発明によれば、膜応力や高温加熱処理による半導体用基板の変形を予め考慮した所定のSORIおよび厚みばらつきを有する半導体用基板を提供できる。このため、その後に成膜や高温加熱処理を行った場合でも、所望の形状の半導体用基板が得られる。
また、本発明の半導体用基板は、半導体用基板の製造において通常使われる両面ラップ装置や片面ラップ装置、または両面研磨装置や片面研磨装置を用いて低コストで再現性良く製造することができる。
ADVANTAGE OF THE INVENTION According to this invention, the semiconductor substrate which has predetermined | prescribed SORI and thickness variation which considered the deformation | transformation of the semiconductor substrate by a film stress or high temperature heat processing previously can be provided. Therefore, a semiconductor substrate having a desired shape can be obtained even when film formation or high-temperature heat treatment is subsequently performed.
In addition, the semiconductor substrate of the present invention can be manufactured with low cost and good reproducibility using a double-sided lapping device or a single-sided lapping device, or a double-sided polishing device or a single-sided polishing device that is usually used in the production of a semiconductor substrate.

本発明の半導体用基板のSORIの態様を示し、(A)は中心対称に凸状に反った状態を示し、(B)は凸状の頂点が中心からY軸方向にずれた凸状に反った状態を示し、(C)は線対称な凸状に反った状態を示す。なお、面上内部の曲線は高さを表す等高線を示す。FIG. 4 shows the SORI mode of the semiconductor substrate of the present invention, where (A) shows a state in which the convex shape is bent symmetrically with respect to the center, and (B) shows a convex shape in which the convex vertex is shifted from the center in the Y-axis direction. (C) shows a state of warping in a line-symmetric convex shape. In addition, the curve inside a surface shows the contour line showing height. 本発明の半導体用基板のSORIの説明図であり、Sは最小二乗平面を示し、aは面Sと半導体用基板Aの表面との距離の最小値を、bは面Sと半導体用基板Aの表面との距離の最大値を示す。It is explanatory drawing of SORI of the semiconductor substrate of this invention, S shows a least squares plane, a is the minimum value of the distance of the surface S and the surface of the semiconductor substrate A, b is the surface S and the semiconductor substrate A The maximum value of the distance to the surface. 本発明の半導体用基板のBOWの説明図であり、eは表裏中間面を示し、S2はeから得られる基準面を示し、fは基板中心線を示し、fと交差するS2とeとの距離において、S2よりeが上側なら+d、S2より下側なら−dというように符合をdに付けたものがBOWと定義される。It is explanatory drawing of BOW of the board | substrate for semiconductors of this invention, e shows a front-back intermediate surface, S2 shows the reference plane obtained from e, f shows a board | substrate centerline, S2 and e which cross | intersect f In terms of distance, if e is above S2, + d is defined, and if it is below S2, −d is defined as BOW. 本発明の半導体用基板の厚みばらつきcを示す図である。It is a figure which shows the thickness dispersion | variation c of the board | substrate for semiconductors of this invention. 本発明の第1実施形態に係る両面ラップ装置を用いた転写工程を示す概略図である。It is the schematic which shows the transfer process using the double-sided lapping apparatus which concerns on 1st Embodiment of this invention. 第1実施形態で用いられる中心対称なSORIを有する転写用原盤を示す側面図である。FIG. 3 is a side view showing a transfer master having a centrally symmetric SORI used in the first embodiment. 第1実施形態に係る両面ラップ装置を用いたラップ工程を示す概略図である。It is the schematic which shows the lapping process using the double-sided lapping apparatus which concerns on 1st Embodiment. 本発明の第2実施形態に係る片面ラップ装置を用いた転写工程を示す概略図である。It is the schematic which shows the transcription | transfer process using the single-sided lapping apparatus which concerns on 2nd Embodiment of this invention. 第2実施形態で用いられる中心対称なSORIを有する転写用原盤を示す側面図である。FIG. 10 is a side view showing a transfer master having a centrally symmetric SORI used in the second embodiment. 第2実施形態に係る片面ラップ装置を用いたラップ工程を示す概略図である。It is the schematic which shows the lapping process using the single-sided lapping apparatus which concerns on 2nd Embodiment. 第1実施形態の変形例に係る、中心対称ではないSORIを有する転写用原盤を示す側面図である。FIG. 9 is a side view showing a transfer master having an SORI that is not centrally symmetric according to a modification of the first embodiment. 第2実施形態の変形例に係る、中心対称ではないSORIを有する転写用原盤を示す側面図である。FIG. 10 is a side view showing a transfer master having an SORI that is not centrally symmetric according to a modification of the second embodiment. 第1実施形態の他の変形例に係る転写用原盤を示す上面図および側面図である。It is the upper side figure and side view which show the master for transcription | transfer which concerns on the other modification of 1st Embodiment.

以下、本発明について具体的に説明する。
本発明に係る半導体用基板は、凸状のSORIを有する一方の面と、このSORIと同程度の凹状のSORIを有する他方の面とを備え、かつ厚みばらつきが3μm以下であることを特徴とする。
このように、成膜や高温加熱処理を行った後に生じる変形と逆の方向に反った形状の半導体用基板を、成膜や高温加熱処理前に意図的に製造することにより、デバイスが作り込まれた段階や、組み立ての段階において、所望の形状の半導体用基板を得ることができるようになる。具体的には、成膜や高温加熱工程により凸に変化する場合は同程度の凹に、凹に変化する場合は同程度の凸に予め反った形状の半導体用基板を製造する。
Hereinafter, the present invention will be specifically described.
A semiconductor substrate according to the present invention has one surface having a convex SORI and the other surface having a concave SORI of the same degree as this SORI, and has a thickness variation of 3 μm or less. To do.
In this way, the device is built by intentionally manufacturing a semiconductor substrate having a shape that is warped in the opposite direction to the deformation that occurs after film formation or high-temperature heat treatment before film formation or high-temperature heat treatment. In a rare stage or assembly stage, a semiconductor substrate having a desired shape can be obtained. Specifically, a semiconductor substrate having a shape that is warped in advance when it changes to a convex shape by a film forming process or a high-temperature heating process and that is warped in advance when it changes to a concave shape is manufactured.

本発明の半導体用基板におけるSORIは、最終的に得られる半導体用基板を所望の形状にし得るものであれば特に限定されるものではないが、ハンドリングの観点から、好ましくは50〜600μm、より好ましくは100〜400μm、より一層好ましくは100〜200μmである。
本発明におけるSORIの態様としては、特に限定されるものではなく、例えば成膜や高温加熱工程により、半導体用基板が中心対称に凸状に変形する場合には、中心対称な凹状の半導体用基板を製造すればよく(図1(A)参照)、半導体用基板が凸状で頂点の中心がY軸方向にずれた凸状に変形する場合は、そのずれに合わせた凹状の半導体用基板を製造すればよく(図1(B)参照)、半導体用基板が中心を通る線に対して線対称な凸状に変形する場合は、線対称な凹状の半導体用基板を製造すればよい(図1(C)参照)。
The SORI in the semiconductor substrate of the present invention is not particularly limited as long as the finally obtained semiconductor substrate can be formed into a desired shape, but is preferably 50 to 600 μm, more preferably from the viewpoint of handling. Is 100 to 400 μm, more preferably 100 to 200 μm.
The aspect of the SORI in the present invention is not particularly limited. For example, when the semiconductor substrate is deformed into a convex shape with a central symmetry by film formation or a high-temperature heating process, a concave semiconductor substrate with a central symmetry is formed. (See FIG. 1A), and when the semiconductor substrate is convex and deforms into a convex shape with the center of the apex shifted in the Y-axis direction, a concave semiconductor substrate corresponding to the shift is formed. What is necessary is just to manufacture (refer FIG.1 (B)), and when a semiconductor substrate deform | transforms into the convex shape symmetrical with respect to the line which passes along a center, what is necessary is just to manufacture a concave semiconductor substrate with line symmetry (FIG. 1 (C)).

ここで、本発明におけるSORIは、図2に示されるように、最小二乗平面Sと半導体用基板Aの表面との距離の最小値(絶対値)aと、最小値(絶対値)bとの和(SORI=|a|+|b|)をいう。
なお、基板表面が光を十分に反射して、装置リファレンス面との干渉縞が得られる場合、光干渉式フラットネステスターを用いてSORIを測定することができる。逆に、基板表面が粗面で干渉縞が得られない場合、基板表裏を挟み込むようにレーザ変位計を走査してSORIを求めることができる。
Here, as shown in FIG. 2, the SORI according to the present invention includes a minimum value (absolute value) a and a minimum value (absolute value) b between the least square plane S and the surface of the semiconductor substrate A. Sum (SORI = | a | + | b |).
If the substrate surface sufficiently reflects light and interference fringes with the apparatus reference surface are obtained, the SORI can be measured using an optical interference flatness tester. Conversely, if the substrate surface is rough and interference fringes cannot be obtained, the SORI can be obtained by scanning the laser displacement meter so as to sandwich the front and back of the substrate.

一方、本発明の半導体用基板において、厚みばらつき(TTV)は、露光時の合焦を容易にし、パターン太さを一定とすることを考慮して、3μm以下、好ましくは2μm以下、より好ましくは1μm以下である。
ここで、厚みばらつきとは、図4に示されるように、基板Aの面内で最も厚い部分の厚みから最も薄い部分の厚みを引いた値Cを意味する。なお、厚みばらつきは、SORIと同様にして、光干渉式フラットネステスターやレーザ変位計を用いて測定することができる。
On the other hand, in the semiconductor substrate of the present invention, the thickness variation (TTV) is 3 μm or less, preferably 2 μm or less, more preferably in consideration of facilitating focusing during exposure and making the pattern thickness constant. 1 μm or less.
Here, the thickness variation means a value C obtained by subtracting the thickness of the thinnest portion from the thickness of the thickest portion in the plane of the substrate A, as shown in FIG. The thickness variation can be measured using an optical interference flatness tester or a laser displacement meter in the same manner as SORI.

また、本発明の半導体用基板は、上記凸状のSORIを有する一方の面のBOWが+25〜+300であることが好ましく、さらに、上記凹状のSORIを有する他方の面のBOWが、−25〜−300であることが好ましい。
本発明において、BOWは基板表面の中心と表面基準として得られた最小二乗平均面との高さの差を数値化し、基準面より上側にある場合は+符号を、下側にある場合は−符合を付けることと定義する。これにより、少なくとも基板中央において、基板の形状が凸か凹かを判断することができる。
SORIが凸状の場合は、その一方の面のBOWが、好ましくは+25〜+300、より好ましくは+25〜+200、より一層好ましくは+25〜+100であり、他方の面のBOWが、好ましくは−25〜−300、より好ましくは−25〜−200、より一層好ましくは−25〜−100である。
一方、SORIが凹状の場合は、その一方の面のBOWが、好ましくは−25〜−300、より好ましくは−50〜−200、より一層好ましくは−50〜−100であり、他方の面のBOWが、好ましくは+25〜+300、より好ましくは+50〜+200、より一層好ましくは+50〜+100である。
このように、上述した所定のSORIに加えて、BOWのように基板中央の高さを規定することにより、凸と凹を数値としてより明確にすることができ、所望の形状の半導体用基板を得ることができるようになる。
In the semiconductor substrate of the present invention, it is preferable that the BOW of one surface having the convex SORI is +25 to +300, and the BOW of the other surface having the concave SORI is −25 to -300 is preferred.
In the present invention, the BOW quantifies the difference in height between the center of the substrate surface and the least mean square surface obtained as a surface reference. It is defined as adding a sign. Thereby, it is possible to determine whether the shape of the substrate is convex or concave at least in the center of the substrate.
When the SORI is convex, the BOW on one side is preferably +25 to +300, more preferably +25 to +200, even more preferably +25 to +100, and the BOW on the other side is preferably −25. It is -300, More preferably, it is -25--200, More preferably, it is -25--100.
On the other hand, when the SORI is concave, the BOW on one surface thereof is preferably −25 to −300, more preferably −50 to −200, still more preferably −50 to −100, and the other surface BOW is preferably +25 to +300, more preferably +50 to +200, and even more preferably +50 to +100.
In this way, in addition to the above-mentioned predetermined SORI, by defining the height of the center of the substrate like BOW, the convex and concave can be clarified as numerical values, and a semiconductor substrate having a desired shape can be obtained. Be able to get.

ここで、本発明におけるBOWは、図3に示されるように、表裏中間面eから得られる基準面S2と、これと直交する基板中心線fとの交点と表裏中間面eとの距離dにおいて、基準面S2より表裏中間面eが上側ならプラス、基準面S2より表裏中間面eが下側ならマイナスというように絶対値dに符合を付けたものがBOWと定義される。
なお、基板表面が光を十分に反射して、装置リファレンス面との干渉縞が得られる場合、光干渉式フラットネステスターを用いてBOWを測定することができる。逆に、基板表面が粗面で干渉縞が得られない場合、基板表裏を挟み込むようにレーザ変位計を走査してBOWを求めることができる。
Here, as shown in FIG. 3, the BOW in the present invention is a distance d between the intersection of the reference surface S2 obtained from the front and back intermediate surface e and the substrate center line f orthogonal thereto and the front and back intermediate surface e. A value obtained by adding a sign to the absolute value d is defined as BOW if the front and back intermediate surface e is above the reference surface S2 and positive if the front and back intermediate surface e is below the reference surface S2.
When the substrate surface sufficiently reflects light and interference fringes with the apparatus reference surface are obtained, the BOW can be measured using an optical interference flatness tester. Conversely, when the substrate surface is rough and interference fringes cannot be obtained, the BOW can be obtained by scanning the laser displacement meter so as to sandwich the front and back of the substrate.

また、半導体用基板の厚みは、特に制限されるものではないが、基板のハンドリングや露光装置の投入可能厚みの観点から、好ましくは0.5〜3.0mm、より好ましくは0.6〜1.2mmである。   The thickness of the semiconductor substrate is not particularly limited, but is preferably 0.5 to 3.0 mm, more preferably 0.6 to 1 from the viewpoint of substrate handling and a thickness that can be introduced into the exposure apparatus. .2 mm.

本発明において、半導体用基板の形状は特に限定されるものではなく、平面視で円形状や矩形状等の一般的な形状が採用できる。また、それらの直径または対角長は、特に制限されるものではないが、好ましくは100〜450mm、より好ましくは200〜300mmである。
本発明の半導体用基板の材質は、特に制限されるものではなく、ガラス素材、セラミック素材等従来公知の材質のものが採用できるが、透過型のポリシリコンTFT用の基板は光を通す必要があることから合成石英ガラス基板が好ましく、反射型のTFTの場合にはポリシリコン基板が好ましい。
In the present invention, the shape of the semiconductor substrate is not particularly limited, and a general shape such as a circular shape or a rectangular shape can be adopted in a plan view. Moreover, although the diameter or diagonal length is not specifically limited, Preferably it is 100-450 mm, More preferably, it is 200-300 mm.
The material of the semiconductor substrate of the present invention is not particularly limited, and a conventionally known material such as a glass material or a ceramic material can be adopted. However, the substrate for the transmission type polysilicon TFT needs to transmit light. For this reason, a synthetic quartz glass substrate is preferable, and in the case of a reflective TFT, a polysilicon substrate is preferable.

上述したSORIおよびBOWを有する本発明の半導体用基板の製造方法としては、スライス工程、ラップ工程、研磨工程のいずれかの工程において、所望の形状にする方法が考えられる。
しかし、スライス工程においては、一般的なワイヤーソーによる切断の場合、砥材を含むスラリーを直線的に張られたワイヤーにかけながらインゴットが切断されるため、得られる半導体用基板は、水平方向、つまりワイヤー方向では、ワイヤーに倣って直線的になる。一方、半導体用基板表面上のワイヤー方向と直行する垂直な方向では、インゴットを下降または上昇させる方法が採られるが、この方向は再現性良く直線的に移動させる機構のものであるため、曲線的に移動してSORIおよびBOWを任意にコントロールすることは難しい。
また、半導体用基板は、直径に対して厚みが比較的薄いため、ラップ工程や研磨工程における所望のSORI形状を作り込む原動力となる基板の反復応力が少ない。よって、ラップ加工が進んでもSORIおよびBOWが維持されたままとなるため、表面のSORIを凸状、即ちBOWプラスに、裏面のSORIを凹状、即ちBOWマイナスにする等、自在に基板形状をコントロールすることは難しい。
As a manufacturing method of the semiconductor substrate of the present invention having the above-described SORI and BOW, a method of forming a desired shape in any of the slicing step, lapping step, and polishing step can be considered.
However, in the slicing process, in the case of cutting with a general wire saw, since the ingot is cut while applying the slurry containing the abrasive to the linearly stretched wire, the obtained semiconductor substrate is in the horizontal direction, that is, In the wire direction, it becomes linear following the wire. On the other hand, in the direction perpendicular to the wire direction on the surface of the semiconductor substrate, a method of lowering or raising the ingot is adopted, but this direction is a mechanism that moves linearly with good reproducibility, so it is curved. It is difficult to move to and arbitrarily control SORI and BOW.
Further, since the semiconductor substrate has a relatively small thickness with respect to the diameter, there are few repetitive stresses of the substrate which becomes a driving force for creating a desired SORI shape in the lapping process or the polishing process. Therefore, since the SORI and BOW are maintained even if the lapping process progresses, the substrate shape can be freely controlled by making the surface SORI convex, ie BOW plus, and the back SORI concave, ie BOW minus. Difficult to do.

そこで、本発明では、転写用原盤を用いてラップ工程において所望のSORIおよびBOW形状を有する半導体基板を製造する。本発明で用いられる転写用原盤は、転写工程において使用されるラップ装置の種類や、目的とする半導体用基板の形状によってその形状が異なる。
例えば、両面ラップ装置を用いる場合、中心対称なSORI形状の半導体用基板は、表面および裏面を有し、これら表裏面の中心点を結んだ中心線上の中間点を通り、中心線と直交する面に対して表面および裏面が対称に向き合うようなSORIと厚みばらつきを有する転写用原盤を準備する準備工程と、準備した転写用原盤を挟み込むようにして2枚の原料基板を両面ラップ装置に設置し、各原料基板における転写用原盤と接しない面を加工して転写用原盤の形状がそれぞれ片面に転写された2枚の転写基板を作製する転写工程と、この転写工程で得られた転写基板の両面をラップする、または転写基板における転写用原盤の形状が転写されていない面のみをラップしてラップ加工基板を作製するラップ工程と、ラップ加工基板の両面または片面を研磨することにより製造することができる。
Therefore, in the present invention, a semiconductor substrate having a desired SORI and BOW shape is manufactured in a lapping process using a transfer master. The shape of the transfer master used in the present invention differs depending on the type of the lapping device used in the transfer process and the shape of the target semiconductor substrate.
For example, when a double-sided lapping apparatus is used, a centrally symmetric SORI-shaped semiconductor substrate has a front surface and a back surface, passes through an intermediate point on the center line connecting the center points of the front and back surfaces, and is a surface orthogonal to the center line. A preparation step for preparing a transfer master having a thickness variation and a SORI in which the front and back surfaces face each other symmetrically, and two raw material substrates are installed in a double-sided lapping machine so as to sandwich the prepared transfer master. , A transfer step of processing the surface of each raw material substrate that is not in contact with the transfer master, and producing two transfer substrates each having the shape of the transfer master transferred to one side, and the transfer substrate obtained in this transfer step A lapping process that wraps both surfaces, or wraps only the surface of the transfer substrate where the shape of the transfer master is not transferred, It can be produced by polishing the one surface.

また、片面ラップ装置を用いる場合、中心対称なSORI形状の半導体用基板は、表面および裏面を有し、これら表裏面の中心点を結んだ中心線上の中間点を通り、中心線と直交する面に対して表裏面のうちのいずれか一方の面が平行であり、かつ表裏面のうち原料基板と接する他方の面が、中心線に対して直交するとともに中心線に対して対称である転写用原盤を準備する準備工程と、準備した転写用原盤の他方の面と接するようにして原料基板を片面ラップ装置に設置し、原料基板における転写用原盤と接しない面を加工して転写用原盤の形状が片面に転写された転写基板を作製する転写工程と、転写基板の両面をラップする、または転写基板における転写用原盤の形状が転写されていない面のみをラップしてラップ加工基板を作製するラップ工程と、ラップ加工基板の両面または片面を研磨することにより製造することができる。   When a single-sided lapping apparatus is used, a centrally symmetric SORI-shaped semiconductor substrate has a front surface and a back surface, passes through an intermediate point on the center line connecting the center points of the front and back surfaces, and is a surface orthogonal to the center line. For the transfer, either one of the front and back surfaces is parallel and the other surface of the front and back surfaces in contact with the raw material substrate is orthogonal to the center line and symmetric with respect to the center line. Place the raw material substrate on the single-sided lapping machine so as to contact the other side of the prepared master for transfer and prepare the master, and process the surface of the raw material substrate that does not contact the master for transfer to Create a lapping substrate by wrapping both sides of the transfer substrate, or wrapping only the surface of the transfer substrate on which the shape of the transfer master is not transferred. And-up process, can be produced by polishing the both sides or one side of the lapping board.

本発明で用いる両面ラップ装置および片面ラップ装置は特に制限されず、公知の装置から適宜選択して用いることができる。
転写工程における両面ラップ装置および片面ラップ装置の回転数は、いずれも5〜50rpmが好ましく、荷重は10〜200g/cm2が好ましく、両面ラップ装置においては、単位時間当たりの取代が両面ともほぼ同一であることが好ましい。
The double-sided lapping device and single-sided lapping device used in the present invention are not particularly limited, and can be appropriately selected from known devices.
The rotational speed of the double-sided lapping device and single-sided lapping device in the transfer process is preferably 5 to 50 rpm, and the load is preferably 10 to 200 g / cm 2. In the double-sided lapping device, the machining allowance per unit time is almost the same on both sides. It is preferable that

転写用原盤の材質は特に限定されるものではなく、アルミナセラミック、金属、樹脂等を採用できるが、変形や破損の観点から、アルミナセラミックが好ましい。
また、研磨剤としては、平均粒径が好ましくは5〜20μmのアルミナ系の砥材を用いて、水で20〜60質量%分散させたものを用いる他、炭化ケイ素系や人工ダイヤ等も使用できる。
The material of the transfer master is not particularly limited, and alumina ceramic, metal, resin, or the like can be adopted, but alumina ceramic is preferable from the viewpoint of deformation and breakage.
Moreover, as an abrasive | polishing agent, in addition to using the alumina type abrasive | polishing material with an average particle diameter of preferably 5-20 micrometers dispersed 20-20 mass% with water, silicon carbide type | system | group, an artificial diamond, etc. are also used. it can.

転写工程では、両面ラップ装置を使用する場合、上述のとおり転写用原盤を挟み込むようにして2枚の原料基板をキャリアに内封し、それぞれ両面ラップ装置の下側ラップ定盤および上側ラップ定盤に設置して加工する。
通常、両面ラップ装置は、原料基板の厚み1枚分に合わせて、キャリアの厚みを調整するが、本発明の場合は、原料基板2枚と転写用原盤の厚みの分を考慮して、キャリアの厚みを厚く設定することが好ましい。その他は、通常のラップ加工と特に変わりなく加工することができる。
この段階では、2枚の原料基板それぞれの片面側を同時に加工することになるため、下側ラップ定盤および上側ラップ定盤と接触する片面側にのみ転写用原盤の形状が転写される一方、転写用原盤に接した面は加工されることが無いため変化しない。
In the transfer process, when using a double-sided lapping machine, as described above, the two raw material substrates are enclosed in a carrier so as to sandwich the master for transfer, and the lower lapping platen and the upper lapping platen are respectively placed on the double-sided lapping machine. Install and process.
Usually, the double-sided lapping machine adjusts the thickness of the carrier in accordance with the thickness of one raw material substrate. In the case of the present invention, however, the carrier in consideration of the thickness of the two raw material substrates and the master for transfer. It is preferable to set the thickness of the film thick. Others can be processed in the same manner as normal lapping.
At this stage, since one side of each of the two raw material substrates will be processed at the same time, the shape of the master for transfer is transferred only on one side contacting the lower lap surface plate and the upper lap surface plate, Since the surface in contact with the transfer master is not processed, it does not change.

転写用原盤の中央は外周より厚いため、転写工程の初期は原料基板とラップ定盤の加工圧は原料基板の中心に集中する。この際、原料基板は薄く反発力が少ないため、原料基板の中心から切削が選択的に進む。切削が進み、原料基板の外周まで加工が及ぶと、最終的には転写用原盤と接触していない原料基板反対側の面(すなわち、ラップ定盤と接している面)に転写用原盤の形状が転写される。
転写用原盤の外周部が中心部より薄い場合、この外周部と中心部の厚みの差に応じて、転写工程で得られる原料基板の外周部は中心部より厚くなる。逆に、転写用原盤の外周部が中心部より厚い場合、この外周部と中心部の厚みの差に応じて、転写工程で得られる原料基板の外周部は中心部より薄くなる。このように転写用原盤の形状に応じて、転写される形状を創生することができる。
Since the center of the transfer master is thicker than the outer periphery, the processing pressure of the raw material substrate and the lapping platen is concentrated at the center of the raw material substrate in the initial stage of the transfer process. At this time, since the raw material substrate is thin and has little repulsive force, cutting proceeds selectively from the center of the raw material substrate. When cutting progresses and the processing reaches the outer periphery of the raw material substrate, the shape of the transfer master is finally formed on the opposite surface of the raw material substrate that is not in contact with the transfer master (that is, the surface that is in contact with the lapping platen). Is transcribed.
When the outer peripheral portion of the transfer master is thinner than the central portion, the outer peripheral portion of the raw material substrate obtained in the transfer process becomes thicker than the central portion according to the difference in thickness between the outer peripheral portion and the central portion. Conversely, when the outer peripheral portion of the transfer master is thicker than the central portion, the outer peripheral portion of the raw material substrate obtained in the transfer process becomes thinner than the central portion according to the difference in thickness between the outer peripheral portion and the central portion. In this manner, a transferred shape can be created according to the shape of the transfer master.

一方、転写工程において、片面ラップ装置を使用する場合、原料基板と片面ラップ装置のトッププレートとの間に、平坦な面をトッププレート側に向けるように転写用原盤を設置し、さらに原料基板と転写用原盤が横方向に脱落しないようにキャリアをトッププレートに固定した上で原料基板を加工する。原料基板は、片面ラップ装置の下側ラップ定盤により加工が進められ、加工が進むにつれて、転写用原盤の形状が、原料基板の下側ラップ定盤側に接触した面だけに転写される。   On the other hand, when using a single-sided lapping machine in the transfer process, a transfer master is installed between the raw material substrate and the top plate of the single-sided lapping machine so that the flat surface faces the top plate, The material substrate is processed after fixing the carrier to the top plate so that the transfer master does not fall off in the lateral direction. The raw material substrate is processed by the lower wrap surface plate of the single-sided lapping device, and as the processing proceeds, the shape of the transfer master is transferred only to the surface in contact with the lower wrap surface plate side of the raw material substrate.

以上の転写工程を経た転写基板について、両面ラップ装置または片面ラップ装置を用いてラップ加工を行う。両面ラップ装置および片面ラップ装置の回転数は、いずれも5〜50rpmが好ましく、荷重は10〜200g/cm2が好ましい。
両面ラップ装置を使用する場合、平坦な面を両面ラップ装置の上側ラップ定盤側に向けるように転写基板を設置し、基板脱落防止のためキャリアを設け、通常のラップ加工を行う。これにより、上側面は凸状に下側面は凹状にラップ加工されたラップ加工基板が得られる。ラップ加工基板のSORIの値は、ラップ加工前のSORIの値の約半分程度になるが、減少度合は、転写基板の直径と厚みにも依存する。
表裏面の形状が作り込まれる原理は、初期形状で既に存在する厚みばらつきにより、両面において面内加工圧力差が加工初期から発生し、これにより切削される部位が選択的に、かつ経時的に変化する。よって、基板面内の加工圧力分布もこれに伴い変化して加工が進む。結果的に、転写基板の反復力、つまり転写基板の直径と厚みにも依存しながら、元のラップ工程前の基板形状が半減しながら、両面の形状に反映される。
The transfer substrate that has undergone the above transfer process is lapped using a double-sided lapping device or a single-sided lapping device. As for the rotation speed of a double-sided lapping device and a single-sided lapping device, 5-50 rpm is preferable for all, and the load is preferably 10-200 g / cm 2 .
When using a double-sided lapping device, a transfer substrate is set so that the flat surface faces the upper lapping platen side of the double-sided lapping device, a carrier is provided to prevent the substrate from falling off, and normal lapping is performed. As a result, a lapping substrate is obtained in which the upper surface is lapped and the lower surface is lapped. The SORI value of the lapping substrate is about half of the SORI value before lapping, but the degree of decrease also depends on the diameter and thickness of the transfer substrate.
The principle that the shape of the front and back surfaces is created is that, due to the thickness variation that already exists in the initial shape, an in-plane processing pressure difference occurs on both sides from the initial processing, and the part to be cut is selectively and over time. Change. Therefore, the processing pressure distribution in the substrate surface also changes accordingly, and processing proceeds. As a result, the substrate shape before the original lapping process is reflected in the shape of both sides while being halved, depending on the repetitive force of the transfer substrate, that is, the diameter and thickness of the transfer substrate.

片面ラップ装置を使用する場合、その下側ラップ定盤とトッププレートとの間に、下側ラップ定盤側に平坦な面を向けるように転写基板を設置し、転写基板が横方向に脱落しないようにキャリアを設けてラップ加工する。この場合、転写されていない面だけをラップ加工するため、元の転写用原盤の転写側表面のSORIと得られたラップ加工基板のSORIは同等になる。   When using a single-sided lapping machine, install a transfer substrate between the lower wrap surface plate and the top plate so that the flat surface faces the lower wrap surface plate, and the transfer substrate will not fall off in the horizontal direction. A lapping process is performed by providing a carrier. In this case, since only the non-transferred surface is lapped, the SORI of the transfer side surface of the original master for transfer and the SORI of the obtained lapping substrate are equivalent.

上記ラップ加工工程にて得られたラップ加工基板は、鏡面化のため、必要に応じてさらに両面または片面を研磨する研磨工程を行う。
研磨工程では、両面研磨装置または片面研磨装置を使用することができる。鏡面化する面は、凸状のSORIおよびBOWプラスを有する面または凹状のSORIおよびBOWマイナスを有する面のいずれの面でもよい。
このようにして最終的に、図1に示されるような、所望の形状(SORIおよびBOW)を有する各種半導体用基板を作製することができる。
The lapping substrate obtained in the lapping step is further subjected to a polishing step for polishing both sides or one side as necessary for mirror finishing.
In the polishing step, a double-side polishing apparatus or a single-side polishing apparatus can be used. The surface to be mirrored may be either a surface having convex SORI and BOW plus or a surface having concave SORI and BOW minus.
Thus, finally, various semiconductor substrates having desired shapes (SORI and BOW) as shown in FIG. 1 can be produced.

以下、図面を参照しつつ、本発明の実施形態について説明する。
図5には、本発明の第1実施形態に係る両面ラップ装置1を用いた転写工程の実施態様が示されている。
この実施形態では、図5に示されるように、2枚の原料基板11,11が、転写用原盤10を挟み込むようにしてキャリア12に内封された状態で、それぞれ両面ラップ装置1の下側ラップ定盤13および上側ラップ定盤14に設置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 5 shows an embodiment of a transfer process using the double-sided lapping apparatus 1 according to the first embodiment of the present invention.
In this embodiment, as shown in FIG. 5, the two raw material substrates 11, 11 are encapsulated in the carrier 12 so as to sandwich the transfer master 10, and the lower side of the double-sided lapping apparatus 1. It is installed on the lap platen 13 and the upper lap platen 14.

この実施形態で用いられる転写用原盤10は、図6に示されるように、転写用原盤10の表面100の中心点100Aと裏面110の中心点110Aを通る中心線L1における、各中心点100A,110Aの中間点M1を通り、かつ中心線L1に対して直交する仮想面S1に対し、表面100および裏面110が対称に向き合うような凸状のSORIと厚みバラツキを有し、中心線L1に対して対称である表裏面形状を有している。   As shown in FIG. 6, the transfer master 10 used in this embodiment has center points 100A, 100A on the center line L1 passing through the center point 100A of the front surface 100 and the center point 110A of the back surface 110. The virtual surface S1 that passes through the intermediate point M1 of 110A and is orthogonal to the center line L1 has a convex SORI and thickness variation in which the front surface 100 and the back surface 110 face each other symmetrically, and the center line L1 The front and back surfaces are symmetrical.

また、本実施形態で用いられる原料基板11は、ワイヤーソーを用いて合成石英ガラス製インゴットをスライスし、面取り加工を行い、表裏面のソーマークを両面ラップ装置により除去して作製され、直径100mm、厚み630μm、表裏面のSORIがそれぞれ6μmおよび表裏面のBOWがそれぞれ+3μm、−3μm、厚みばらつきが1μmの円板状のものである。   In addition, the raw material substrate 11 used in the present embodiment is manufactured by slicing a synthetic quartz glass ingot using a wire saw, performing chamfering, and removing the saw marks on the front and back surfaces with a double-sided lapping apparatus, and has a diameter of 100 mm. It has a disk shape with a thickness of 630 μm, SORI on the front and back surfaces of 6 μm, BOW on the front and back surfaces of +3 μm and −3 μm, and a thickness variation of 1 μm, respectively.

上記のように2枚の原料基板11を設置した状態で、両面ラップ装置1の回転数20rpm、荷重100g/cm2にて、各原料基板11の片面側を同時に加工して、片面側に転写用原盤10の形状が転写された転写基板が得られる。
続いて、図7に示されるように、片面側に転写用原盤10の形状が転写された転写基板11Aの1枚を、平坦面を両面ラップ装置1の上側ラップ定盤14側に向けるようにキャリア12に内封して設置し、回転数20rpm、荷重100g/cm2にて両面ラップ加工を行い、転写工程で転写されなかった面についても転写用原盤10の形状を転写することにより、上側面は凸状に下側面は凹状にラップ加工されたラップ加工基板が得られる。
With the two raw material substrates 11 installed as described above, one side of each raw material substrate 11 is simultaneously processed at a rotational speed of 20 rpm and a load of 100 g / cm 2 of the double-sided lapping machine 1 and transferred to one side. A transfer substrate onto which the shape of the master 10 has been transferred is obtained.
Subsequently, as shown in FIG. 7, one of the transfer substrates 11 </ b> A on which the shape of the transfer master 10 is transferred on one side is directed so that the flat surface faces the upper lap platen 14 side of the double-sided lapping apparatus 1. By placing inside the carrier 12 and performing double-sided lapping at a rotation speed of 20 rpm and a load of 100 g / cm 2 , and transferring the shape of the master 10 for transfer on the surface that has not been transferred in the transfer process, A lapping substrate having a side surface convex and a bottom surface concaved is obtained.

得られたラップ加工基板について、両面研磨装置(図示省略)にて両面を鏡面化することにより、図1(A)に示されるような中心対称なSORIを有する合成石英ガラス基板が得られる。具体的には、表面のSORIが50μmである凸状で、BOWが+25μmであり、裏面のSORIが50μmである凹状で、BOWが−25μmであり、面内厚みばらつが1μm、かつ厚み500μmである両面が鏡面の合成石英ガラス基板が得られる。   With respect to the obtained lapping substrate, both surfaces are mirror-finished by a double-side polishing apparatus (not shown) to obtain a synthetic quartz glass substrate having a centrally symmetric SORI as shown in FIG. Specifically, it has a convex shape with a SORI of 50 μm on the front surface, a BOW of +25 μm, a concave shape with a SORI of 50 μm on the back surface, a BOW of −25 μm, an in-plane thickness variation of 1 μm, and a thickness of 500 μm. A synthetic quartz glass substrate having mirror surfaces on both sides is obtained.

図8には、本発明の第2実施形態に係る片面ラップ装置2を用いた転写工程の実施態様が示されている。なお、第2実施形態では、上記第1実施形態と同一の部材については同一符号を付す。
この実施形態で用いられる転写用原盤20は、図9に示されるように、転写用原盤20の表面200の中心点200Aと裏面210の中心点210Aを通る中心線L2における、各中心点200A,210Aの中間点M2を通り、かつ中心線L2に対して直交する仮想面S2に対し、表面200が平行(平坦面)であり、裏面210が中心線L2に対して直交するとともに、中心線L2に対して対称の凸状に沿った形状を有している。
FIG. 8 shows an embodiment of the transfer process using the single-sided lapping device 2 according to the second embodiment of the present invention. In the second embodiment, the same members as those in the first embodiment are denoted by the same reference numerals.
As shown in FIG. 9, the transfer master 20 used in this embodiment has center points 200 </ b> A, 200 </ b> A at the center line L <b> 2 passing through the center point 200 </ b> A of the front surface 200 and the center point 210 </ b> A of the back surface 210. The front surface 200 is parallel (flat surface) to the virtual surface S2 that passes through the intermediate point M2 of 210A and is orthogonal to the center line L2, and the back surface 210 is orthogonal to the center line L2, and the center line L2 The shape is along a symmetrical convex shape.

また、本実施形態で用いられる原料基板21は、第1実施形態と同様の手法で作製された、直径200mm、厚さ855μm、表裏面側のSORIがそれぞれ6μm、厚みばらつきが1μmの円板状の合成石英ガラス基板である。   In addition, the raw material substrate 21 used in the present embodiment is a disk-shaped device manufactured by the same method as that of the first embodiment and having a diameter of 200 mm, a thickness of 855 μm, a front surface and rear surface side SORI of 6 μm, and a thickness variation of 1 μm. This is a synthetic quartz glass substrate.

図8に示されるように、転写用原盤20の平坦な面をトッププレート25側に向けるように配置し、さらに、転写用原盤20において凸状に沿った面と接するようにして原料基板21を片面ラップ装置2に設置し、これらをキャリア12に内封した状態で、回転数20rpm、荷重100g/cm2にて原料基板21における転写用原盤20と接しない面のみを下側ラップ定盤13で加工することで、片面側に転写用原盤20の形状が転写された転写基板が得られる。 As shown in FIG. 8, the transfer master 20 is arranged so that the flat surface faces the top plate 25, and the raw material substrate 21 is placed in contact with the surface along the convex shape of the transfer master 20. Only the surface of the raw material substrate 21 that does not contact the transfer master 20 at a rotational speed of 20 rpm and a load of 100 g / cm 2 in a state of being installed in the single-sided wrapping device 2 and enclosed in the carrier 12 is the lower wrap surface plate 13. The transfer substrate having the shape of the transfer master 20 transferred on one side can be obtained by processing at.

続いて、図10に示されるように、片面ラップ装置2の下側ラップ定盤13とトッププレート25との間に、片面側に転写用原盤20の形状が転写された転写基板21Aを、転写用原盤20の形状が転写された面をトッププレート25側に向けた状態でキャリア12に内封して設置し、回転数20rpm、荷重100g/cm2にて片面ラップ加工を行い、転写工程で転写されなかった面についても転写用原盤20の形状を転写することにより、上側面は凹状に下側面は凸状にラップ加工されたラップ加工基板が得られる。 Subsequently, as shown in FIG. 10, the transfer substrate 21 </ b> A having the shape of the transfer master 20 transferred on one side is transferred between the lower wrap surface plate 13 and the top plate 25 of the single-side lap device 2. In a state where the surface of the master 20 for transfer is placed in the carrier 12 in a state where the surface is directed to the top plate 25 side, one-side lapping is performed at a rotation speed of 20 rpm and a load of 100 g / cm 2 . By transferring the shape of the master 20 for transfer also on the surface that has not been transferred, a lapping substrate is obtained in which the upper surface is lapped and the lower surface is lapped.

得られたラップ加工基板について、第1実施形態と同様に両面を鏡面化することにより、図1(A)に示されるような中心対称なSORIを有する合成石英ガラス基板が得られる。具体的には、表面がSORI100μmである凸状およびBOWが+50μmであり、裏面がSORI110μmである凹状およびBOWが−50μmであり、面内厚みばらつが1μm、かつ厚み725μmである両面が鏡面の合成石英ガラス基板が得られる。   The obtained lapped substrate is mirror-finished on both sides in the same manner as in the first embodiment to obtain a synthetic quartz glass substrate having a centrally symmetric SORI as shown in FIG. Specifically, a convex shape with a surface of SORI of 100 μm and a BOW of +50 μm, a concave surface of a back surface of 110 μm with a SORI of 110 μm and a BOW of −50 μm, an in-plane thickness variation of 1 μm, and a thickness of 725 μm on both sides are combined. A quartz glass substrate is obtained.

なお、本発明の半導体用基板の製造方法に用いられる転写用原盤の形状、厚みおよびSORI、原料基板の形状および材質、並びに各加工の具体的条件等については、上記各実施形態に限定されるものではなく、本発明の目的、効果を達成できる範囲での変更や改良は本発明に含まれる。   The shape, thickness and SORI of the transfer master used in the method for manufacturing a semiconductor substrate of the present invention, the shape and material of the raw material substrate, the specific conditions for each processing, etc. are limited to the above embodiments. The present invention includes modifications and improvements as long as an object and an effect of the present invention can be achieved.

例えば、両面ラップ装置を用いて中心対称ではないSORIを有する半導体基板を製造する場合、上記第1実施形態において、図11に示されるような、転写用原盤30を用いればよい。
この転写用原盤30は、表面300の頂点300Aと裏面310の頂点310Aを通る直線L3における、上記各頂点300A,310Aの中間点M3を通り、かつ直線L3と直交する仮想面S3に対して、表面300および裏面310が対称に向き合うような凸状のSORIを有している。
この転写用原盤30を用い、第1実施形態と同様に、転写加工、ラップ加工、研磨加工等を行うことで、図1(B)に示されるような凸状の頂点が中心からY軸方向にずれた凸状で、BOWがプラスに反った半導体基板を得ることができる。
For example, when a semiconductor substrate having SORI that is not centrally symmetric is manufactured using a double-sided lapping apparatus, a transfer master 30 as shown in FIG. 11 may be used in the first embodiment.
The master 30 for transfer is on a virtual plane S3 passing through the midpoint M3 between the vertices 300A and 310A in the straight line L3 passing through the vertex 300A of the front surface 300 and the vertex 310A of the back surface 310, and perpendicular to the straight line L3. It has a convex SORI in which the front surface 300 and the back surface 310 face each other symmetrically.
By using this transfer master 30 and performing transfer processing, lapping processing, polishing processing and the like in the same manner as in the first embodiment, the convex apex as shown in FIG. Thus, a semiconductor substrate having a convex shape deviating to BOW and having a negative BOW can be obtained.

また、片面ラップ装置を用いて中心対称ではないSORIを有する半導体基板を製造する場合、上記第2実施形態において、図12に示されるような、転写用原盤40を用いればよい。
この転写用原盤40は、裏面410の頂点410Aと、これに相対する表面400上の部分点400Aを通る直線L4における、上記頂点410Aと部分点400との中間点M4を通り、かつ直線L4と直交する仮想面S4に対して、表面400が平行(平坦面)であり、裏面410が凸状のSORIを有している。
この転写用原盤40を用い、第2実施形態と同様に、転写加工、ラップ加工、研磨加工等を行うことで、図1(B)に示されるような凸状の頂点が中心からY軸方向にずれた凸状で、BOWがプラスに反った半導体基板を得ることができる。
Further, when manufacturing a semiconductor substrate having SORI that is not centrally symmetric using a single-sided lapping apparatus, a transfer master 40 as shown in FIG. 12 may be used in the second embodiment.
The master 40 for transfer passes through the intermediate point M4 between the vertex 410A and the partial point 400 in the straight line L4 passing through the vertex 410A of the back surface 410 and the partial point 400A on the front surface 400, and the straight line L4. The surface 400 is parallel (flat surface) to the orthogonal virtual surface S4, and the back surface 410 has a convex SORI.
By using this transfer master 40 and performing transfer processing, lapping processing, polishing processing, and the like in the same manner as in the second embodiment, the convex apex as shown in FIG. Thus, a semiconductor substrate having a convex shape deviating to BOW and having a negative BOW can be obtained.

さらに、上記第1実施形態において、図13に示されるような、転写用原盤の表面上に直行するXY軸を設けたときに、X方向およびY方向の断面から見た厚み形状が、X方向およびY方向で中央から外周に向けて傾斜が異なる転写用原盤の表面上の中心を貫く線(図13ではY軸)に対して線対称な厚みばらつきをもつ転写用原盤を用いた場合、図1(C)に示されるような半導体用基板が得られる。なお、図13での基板内側の曲線は厚みの等高線を表している。   Furthermore, in the first embodiment, when an XY axis that is orthogonal to the surface of the transfer master as shown in FIG. 13 is provided, the thickness shape seen from the cross section in the X direction and the Y direction is the X direction. When a transfer master having a thickness variation symmetrical to a line (Y axis in FIG. 13) penetrating the center on the surface of the transfer master having a different inclination from the center to the outer periphery in the Y direction is used. A semiconductor substrate as shown in 1 (C) is obtained. In addition, the curve inside a board | substrate in FIG. 13 represents the contour line of thickness.

以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.

[実施例1]
転写用原盤として、図6に示されるような形状のものを用意した。具体的には、表裏面のSORIが共に同じ凸状の110μmであって、表裏面の中心点を結ぶ中心線上の中間点を通り、中心線と直交する面に対して表裏面が対称に向き合っており、かつ厚みばらつきが220μmである中央の厚み3mm、直径100mmのアルミナセラミック製転写用原盤を用意した。
また、トーヨーエイテック(株)製ワイヤーソーE450E−12を用いて合成石英ガラス製インゴットをスライスし、面取り加工を行い、表裏面のソーマークを両面ラップ装置により除去し、直径100mm、厚さ630μm、表裏面のSORIがそれぞれ6μm、厚みばらつきが1μmである原料基板を用意した。
上記転写用原盤を挟み込むようにして原料基板2枚を両面ラップ装置の下側ラップ定盤および上側ラップ定盤にそれぞれ設置して、番手が#1000のアルミナを主成分としたラップ材を用いて、回転数20rpm、荷重100g/cm2にて各原料基板の片面側を同時に加工して、片面側に転写用原盤の形状が転写された転写基板を2枚得た。得られた転写基板の形状は、共に片面が凹状に110μm反っていた。
[Example 1]
As a transfer master, one having a shape as shown in FIG. 6 was prepared. Specifically, both the front and back surfaces have the same convex shape of 110 μm, pass through an intermediate point on the center line connecting the center points of the front and back surfaces, and the front and back surfaces face each other symmetrically with respect to a plane orthogonal to the center line. An alumina ceramic transfer master having a thickness of 3 mm and a diameter of 100 mm with a thickness variation of 220 μm was prepared.
In addition, a synthetic quartz glass ingot was sliced using a wire saw E450E-12 manufactured by Toyo Advanced Technologies Co., Ltd., chamfered, and saw marks on the front and back surfaces were removed by a double-sided lapping machine. The diameter was 100 mm and the thickness was 630 μm. A raw material substrate having a SORI of 6 μm on the back surface and a thickness variation of 1 μm was prepared.
Two raw material substrates are placed on the lower wrap surface plate and the upper wrap surface plate of the double-sided wrapping device so as to sandwich the transfer master, and a wrap material whose main component is # 1000 alumina is used. Then, one side of each raw material substrate was simultaneously processed at a rotational speed of 20 rpm and a load of 100 g / cm 2 to obtain two transfer substrates on which the shape of the transfer master was transferred on one side. As for the shape of the obtained transfer substrate, both sides warped 110 μm in a concave shape.

得られた転写基板の1枚を両面ラップ装置に設置して、上記転写工程と同じラップ材を用いて、回転数20rpm、荷重100g/cm2にて両面ラップ加工を行い、先の転写工程で転写されなかった面についても転写用原盤の形状を転写した。そして、表面がSORI50μmの凸状およびBOWが+25μmであり、裏面がSORI50μmの凹状およびBOWが−25μmであるラップ加工基板を得た。
さらに、得られたラップ加工基板の両面を研磨する工程として、両面装置にて両面を鏡面化し、表面がSORI50μmの凸状およびBOWが+25μmであり、裏面がSORI50μmの凹状およびBOWが+25μmであり、面内厚みばらつき(TTV)が1μmで、厚みが500μmの両面が鏡面の合成石英ガラス基板を得た。
次に、得られた合成石英ガラス基板の表面に、シランガスを供給し、アモルファスシリコン膜を形成後、アニール処理をし、ポリシリコン膜を形成したところ、成膜した面がSORI122μmの凸状に、他方の面がSORI122μmの凹状に変化した。
その後、さらに1050℃の熱処理を1時間行ったところ、成膜した面がSORI4μmの凸状に、他方の面がSORI4μmの凹状に変化し、面内厚みばらつき(TTV)が1μmで、ほぼ平坦なSORIを有するポリシリコンTFT用合成石英ガラス基板が得られた。
One of the obtained transfer substrates was placed in a double-sided lapping machine, and double-sided lapping was performed at a rotational speed of 20 rpm and a load of 100 g / cm 2 using the same lapping material as in the above transfer process. The shape of the master for transfer was also transferred to the surface that was not transferred. Then, a lapping substrate having a convex shape with a SORI of 50 μm and a BOW of +25 μm on the front surface and a concave shape with a SORI of 50 μm and a BOW of −25 μm was obtained.
Furthermore, as a process of polishing both surfaces of the obtained lapping substrate, both surfaces are mirror-finished by a double-sided device, the surface is convex with SORI 50 μm and BOW is +25 μm, the back surface is concave with SORI 50 μm and BOW is +25 μm, A synthetic quartz glass substrate having an in-plane thickness variation (TTV) of 1 μm and a thickness of 500 μm on both sides was obtained.
Next, silane gas was supplied to the surface of the obtained synthetic quartz glass substrate, and after forming an amorphous silicon film, annealing treatment was performed to form a polysilicon film. As a result, the formed surface had a convex shape of SORI 122 μm, The other surface was changed to a concave shape of 122 μm SORI.
After that, when heat treatment at 1050 ° C. was further performed for 1 hour, the film-formed surface changed to a convex shape of SORI 4 μm, the other surface changed to a concave shape of SORI 4 μm, the in-plane thickness variation (TTV) was 1 μm, and it was almost flat. A synthetic quartz glass substrate for polysilicon TFT having SORI was obtained.

[実施例2]
両面ラップ装置を用い、実施例1と同様の手法で転写工程を行った後、得られた転写基板を、転写用原盤の形状が転写された面を片面ラップ装置のトッププレート側に向けるように設置し、回転数20rpm、荷重100g/cm2にて片面ラップ加工を行い、ラップ加工基板を得た。
さらに、得られたラップ加工基板の両面を、実施例1と同様の手法で研磨し、表面がSORI110μmの凸状およびBOWが+55μmであり、裏面がSORI110μmの凹状およびBOWが−55μmであり、面内厚みばらつき(TTV)が1μm、厚みが500μmの両面が鏡面の合成石英ガラス基板を得た。
次に、得られた合成石英ガラス基板に、実施例1と同様の手法でポリシリコン膜を形成したところ、成膜した面がSORI122μmの凸状に、他方の面がSORI122μmの凹状に変化した。
その後、さらに、1050℃の熱処理を1時間行ったところ、成膜した面がSORI4μmの凸状に、他方の面がSORI4μmの凹状に変化し、面内厚みばらつき(TTV)が1μmで、ほぼ平坦なSORIを有するポリシリコンTFT用合成石英ガラス基板が得られた。
[Example 2]
After performing the transfer process in the same manner as in Example 1 using the double-sided wrapping device, the obtained transfer substrate is directed so that the surface onto which the shape of the transfer master is transferred faces the top plate side of the single-sided wrapping device. It was installed, and single-sided lapping was performed at a rotation speed of 20 rpm and a load of 100 g / cm 2 to obtain a lapping substrate.
Further, both surfaces of the obtained lapping substrate were polished by the same method as in Example 1, the surface had a convex shape of SORI 110 μm and BOW was +55 μm, the back surface was a concave shape of SORI 110 μm and BOW was −55 μm, and the surface A synthetic quartz glass substrate having an inner thickness variation (TTV) of 1 [mu] m and a thickness of 500 [mu] m and mirror-finished surfaces was obtained.
Next, when a polysilicon film was formed on the obtained synthetic quartz glass substrate in the same manner as in Example 1, the formed surface was changed to a convex shape of SORI 122 μm and the other surface was changed to a concave shape of SORI 122 μm.
Thereafter, a heat treatment at 1050 ° C. was further performed for 1 hour. As a result, the film-formed surface was changed to a convex shape of SORI 4 μm, the other surface was changed to a concave shape of SORI 4 μm, and the in-plane thickness variation (TTV) was 1 μm, which was almost flat. A synthetic quartz glass substrate for a polysilicon TFT having an excellent SORI was obtained.

[実施例3]
転写用原盤として、図9に示されるような形状のものを用意した。具体的には、表裏面のうち一方の面が平坦であり、かつ他方の面が表裏面の中心を結ぶ中心線に対して直交するとともに、中心線に対して対称に凸状に110μm反った形状であり、かつ面内厚みばらつき(TTV)が110μmである、中央の厚み2mm、直径200mmのアルミナセラミック製転写用原盤を用意した。
原料基板としては、実施例1と同様な方法で、直径200mm、厚さ855μm、表裏面側のSORIがそれぞれ6μm、厚みばらつきが1μmである合成石英ガラス基板を用意した。
この原料基板と片面ラップ装置のトッププレートとの間に、平坦な面をトッププレート側に向けるように上記転写用原盤を設置して、番手が#1000のアルミナを主成分としたラップ材を用いて、回転数20rpm、荷重100g/cm2にて原料基板の片面側を加工して、片面側に転写用原盤の形状が転写された転写基板を得た。得られた転写基板の形状は、片面が平坦であり、他方の面は、凹状に110μm反っていた。
[Example 3]
As a transfer master, one having a shape as shown in FIG. 9 was prepared. Specifically, one surface of the front and back surfaces is flat, and the other surface is orthogonal to a center line connecting the centers of the front and back surfaces, and is warped 110 μm symmetrically with respect to the center line. An alumina ceramic transfer master having a shape and an in-plane thickness variation (TTV) of 110 μm and a central thickness of 2 mm and a diameter of 200 mm was prepared.
As a raw material substrate, a synthetic quartz glass substrate having a diameter of 200 mm, a thickness of 855 μm, a SORI on the front and back sides of 6 μm, and a thickness variation of 1 μm was prepared in the same manner as in Example 1.
The transfer master is installed between the raw material substrate and the top plate of the single-sided lapping machine so that the flat surface faces the top plate, and a wrap material whose main component is # 1000 alumina is used. Then, one side of the raw material substrate was processed at a rotational speed of 20 rpm and a load of 100 g / cm 2 to obtain a transfer substrate on which the shape of the transfer master was transferred on one side. The shape of the obtained transfer substrate was flat on one side, and the other side warped 110 μm in a concave shape.

次に、片面ラップ装置の下側ラップ定盤とトッププレートとの間に、転写された面を片面ラップ装置のトッププレート側に向けるように転写基板を設置して、上記転写工程と同じラップ材を用いて、回転数20rpm、荷重100g/cm2にて片面ラップ加工を行い、ラップ加工基板を得た。得られたラップ加工基板は、表面がSORI110μmの凸状であり、裏面がSORI110μmの凹状であるラップ加工基板を得た。
さらに、片面研磨装置にて凸側の片面を鏡面化し、表面がSORI110μmの凸状およびBOWが+55μmであり、裏面がSORI110μmの凹状およびBOWが−55μmであり、面内厚みばらつき(TTV)が1μmで、厚み725μmの合成石英ガラス基板を得た。
得られた合成石英ガラス基板に、実施例1と同様の手法でポリシリコン膜を形成したところ、成膜した面がSORI122μmの凸状に、他方の面がSORI122μmの凹状に変化した。
その後、さらに1050℃の熱処理を1時間行ったところ、成膜した面がSORI4μmの凸状に、他方の面がSORI4μmの凹状に変化し、面内厚みばらつき(TTV)が1μmで、ほぼ平坦なSORIを有するポリシリコンTFT用合成石英ガラス基板が得られた。
Next, a transfer substrate is placed between the lower wrap surface plate of the single-sided wrapping device and the top plate so that the transferred surface faces the top plate side of the single-sided wrapping device. Was used to perform single-sided lapping at a rotational speed of 20 rpm and a load of 100 g / cm 2 to obtain a lapped substrate. The obtained lapping substrate obtained was a lapping substrate having a convex surface with a SOI of 110 μm and a concave surface with a back surface of 110 μm.
Further, the single side of the convex side is mirror-finished by a single-side polishing apparatus, the surface has a convex shape with SORI 110 μm and BOW is +55 μm, the back surface has a concave shape with SORI 110 μm and BOW is −55 μm, and the in-plane thickness variation (TTV) is 1 μm. Thus, a synthetic quartz glass substrate having a thickness of 725 μm was obtained.
When a polysilicon film was formed on the obtained synthetic quartz glass substrate in the same manner as in Example 1, the formed surface was changed to a convex shape of SORI 122 μm and the other surface was changed to a concave shape of SORI 122 μm.
After that, when heat treatment at 1050 ° C. was further performed for 1 hour, the film-formed surface changed to a convex shape of SORI 4 μm, the other surface changed to a concave shape of SORI 4 μm, the in-plane thickness variation (TTV) was 1 μm, and it was almost flat. A synthetic quartz glass substrate for polysilicon TFT having SORI was obtained.

[実施例4]
実施例3と同様の手法で転写工程を行って得られた転写基板を、実施例1と同様の手法で両面をラップ加工し、表面がSORI50μmの凸状であり、裏面がSORI50μmの凹状のラップ加工基板を得た。
さらに、実施例1と同様の手法にて、両面を研磨し、表面がSORI50μmの凸状およびBOWが+25μmであり、裏面がSORI50μmの凹状およびBOWが−25μmであり、厚みばらつきが1μmで、厚みが725μmの両面が鏡面の合成石英ガラス基板を得た。
得られた合成石英ガラス基板に、実施例1と同様の手法でポリシリコン膜を形成したところ、成膜した面がSORI122μmの凸状に、他方の面がSORI122μmの凹状に変化した。
その後、さらに1050℃の熱処理を1時間行ったところ、成膜した面がSORI4μmの凸状に、他方の面がSORI4μmの凹状に変化し、面内厚みばらつき(TTV)が1μmで、ほぼ平坦なSORIを有するポリシリコンTFT用合成石英ガラス基板が得られた。
[Example 4]
The transfer substrate obtained by performing the transfer process by the same method as in Example 3 is lapped on both sides by the same method as in Example 1, and the surface is convex with SORI 50 μm, and the back surface is a concave wrap with SORI 50 μm. A processed substrate was obtained.
Further, both surfaces are polished by the same method as in Example 1, the surface is convex with SORI 50 μm and BOW is +25 μm, the back surface is concave with SORI 50 μm and BOW is −25 μm, thickness variation is 1 μm, thickness A synthetic quartz glass substrate having a mirror surface of 725 μm was obtained.
When a polysilicon film was formed on the obtained synthetic quartz glass substrate in the same manner as in Example 1, the formed surface was changed to a convex shape of SORI 122 μm and the other surface was changed to a concave shape of SORI 122 μm.
After that, when heat treatment at 1050 ° C. was further performed for 1 hour, the film-formed surface changed to a convex shape of SORI 4 μm, the other surface changed to a concave shape of SORI 4 μm, the in-plane thickness variation (TTV) was 1 μm, and it was almost flat. A synthetic quartz glass substrate for polysilicon TFT having SORI was obtained.

[実施例5]
転写用原盤として、図11に示されるような形状のものを用意した。具体的には、表裏面の形状が互いに対称な凸形状で、それらのSORIが110μmであり、かつ面内厚みばらつき(TTV)が220μmであり、表裏面の中心点から30mmずれたところが最も厚く、その部分の厚みが3000μmであり、直径100mmのアルミナセラミック製転写用原盤を用意した。
原料基板としては、実施例1と同様の手法で、直径100mm、厚さ630μm、表裏面のSORIがそれぞれ6μm、面内厚みばらつき(TTV)が1μmである合成石英ガラス基板を用意した。
実施例1と同様の手法で、両面ラップ装置により2枚の原料基板の片面側を同時に加工して、片面側に転写用原盤の形状が転写された転写基板を得た。得られた転写基板の形状は、共に片面が凹状に110μm反っていた。また、凹状の一番薄い部分は中心より30mmずれていた。
[Example 5]
As a transfer master, one having a shape as shown in FIG. 11 was prepared. Specifically, the front and back surfaces are convex shapes that are symmetrical to each other, their SORI is 110 μm, the in-plane thickness variation (TTV) is 220 μm, and the portion that is 30 mm away from the center point of the front and back surfaces is the thickest. An alumina ceramic transfer master having a thickness of 3000 μm and a diameter of 100 mm was prepared.
As a raw material substrate, a synthetic quartz glass substrate having a diameter of 100 mm, a thickness of 630 μm, a front surface and a back surface SORI of 6 μm, and an in-plane thickness variation (TTV) of 1 μm was prepared in the same manner as in Example 1.
In the same manner as in Example 1, one side of two raw material substrates was simultaneously processed by a double-sided lapping device to obtain a transfer substrate on which the shape of the transfer master was transferred on one side. As for the shape of the obtained transfer substrate, both sides warped 110 μm in a concave shape. Further, the concave thinnest portion was shifted by 30 mm from the center.

得られた転写基板を両面ラップ装置に設置し、実施例1と同様の手法で両面ラップ加工を行い、先の転写工程で転写されなかった面についても転写用原盤の形状を転写し、表面がSORI50μmの凸状であり、裏面がSORI50μmの凹状のラップ加工基板を得た。
さらに、得られたラップ加工基板の凸状側の面を片面研磨装置で鏡面化し、鏡面がSORI50μmの凸状およびBOWが+20μmであり、粗面がSORI50μmの凹状およびBOWが−20μmであり、面内厚みばらつき(TTV)が1μmであり、厚みが500μmの合成石英ガラス基板を得た。
次に、得られた合成石英ガラス基板の表面に、実施例1と同様の手法にてポリシリコン膜を形成したところ、成膜した面がSORI122μmの凸状に、他方の面がSORI122μmの凹状に変化した。
その後、さらに1100℃の熱処理を2時間行ったところ、成膜した面がSORI4μmの凸状に、他方の面がSORI4μmの凹状に変化し、厚みばらつきが1μmで、ほぼ平坦なSORIを有するポリシリコンTFT用合成石英ガラス基板が得られた。
The obtained transfer substrate is placed in a double-sided lapping machine, and double-sided lapping is performed in the same manner as in Example 1, and the shape of the master for transfer is also transferred to the surface that has not been transferred in the previous transfer process. A concave lapping substrate having a convex shape of SORI 50 μm and a back surface of SORI 50 μm was obtained.
Further, the surface on the convex side of the obtained lapping substrate is mirror-finished with a single-side polishing apparatus, the mirror surface is convex with SORI 50 μm and BOW is +20 μm, the rough surface is concave with SORI 50 μm and BOW is −20 μm, A synthetic quartz glass substrate having an inner thickness variation (TTV) of 1 μm and a thickness of 500 μm was obtained.
Next, when a polysilicon film was formed on the surface of the obtained synthetic quartz glass substrate by the same method as in Example 1, the film-formed surface was convex with a SORI of 122 μm, and the other surface was concave with a SORI of 122 μm. changed.
Thereafter, a heat treatment at 1100 ° C. was further performed for 2 hours. As a result, the film-formed surface was changed to a convex shape of SORI 4 μm, the other surface was changed to a concave shape of SORI 4 μm, and the thickness variation was 1 μm. A synthetic quartz glass substrate for TFT was obtained.

[実施例6]
実施例5と同様に、表裏面のうち一方の面が平坦であり、かつ、他方の面が凸状に110μm反った形状であり、かつ、面内厚みばらつき(TTV)が220μmであり、表裏面の中心点から30mmずれたところが最も厚く、その部分の厚みが3000μmであり、直径100mmのアルミナセラミック製転写用原盤を用意した。
原料基板としては、実施例5と同一のものを用意した。
実施例3と同様の手法で、片面ラップ装置により原料基板の片面側を加工して、片面側に転写用原盤の形状が転写された転写基板を得た。得られた転写基板の形状は、片面が平坦であり、他方の面は凹状に110μm反っていた。また、凹状の一番薄い部分は中心より30mmずれていた。
得られた転写基板を片面ラップ装置に設置し、実施例2と同様の手法で片面ラップ加工を行い、転写工程で転写されなかった転写基板の反対側の面についても転写用原盤の形状を転写し、表面がSORI110μmの凸状であり、裏面がSORI110μmの凹状のラップ加工基板を得た。
得られたラップ加工基板の凸状側の面を片面研磨装置で鏡面化し、鏡面がSORI110μmの凸状およびBOWが+50μmであり、粗面がSORI110μmの凹状およびBOWが−50μmであり、面内厚みばらつき(TTV)が1μmで、厚みが500μmの合成石英ガラス基板を得た。
次に、得られた合成石英ガラス基板の表面に、実施例1と同様の手法にてポリシリコン膜を形成したところ、成膜した面がSORI122μmの凸状に、他方の面がSORI122μmの凹状に変化した。
その後、さらに1100℃の熱処理を2時間行ったところ、成膜した面がSORI4μmの凸状に、他方の面がSORI4μmの凹状に変化し、面内厚みばらつきが1μmで、ほぼ平坦なSORIを有するポリシリコンTFT用合成石英ガラス基板が得られた。
[Example 6]
As in Example 5, one of the front and back surfaces is flat, the other surface is convexly warped by 110 μm, and the in-plane thickness variation (TTV) is 220 μm. An alumina ceramic transfer master having a thickness of 30 mm from the center point of the back surface and a thickness of 3000 μm and a diameter of 100 mm was prepared.
The same material substrate as that in Example 5 was prepared.
In the same manner as in Example 3, one side of the raw material substrate was processed by a single-sided lapping device to obtain a transfer substrate on which the shape of the master for transfer was transferred on one side. As for the shape of the obtained transfer substrate, one side was flat, and the other side was warped 110 μm in a concave shape. Further, the concave thinnest portion was shifted by 30 mm from the center.
The obtained transfer substrate is placed in a single-sided lapping machine, and single-sided lapping is performed in the same manner as in Example 2, and the shape of the transfer master is transferred to the opposite side of the transfer substrate that was not transferred in the transfer process. Thus, a concave lapping substrate having a convex surface with a SOI of 110 μm and a concave surface of a SOI of 110 μm was obtained.
The surface on the convex side of the obtained lapping substrate is mirror-finished with a single-side polishing apparatus, the mirror surface is convex with SORI 110 μm and BOW is +50 μm, the rough surface is concave with SORI 110 μm and BOW is −50 μm, and the in-plane thickness A synthetic quartz glass substrate having a variation (TTV) of 1 μm and a thickness of 500 μm was obtained.
Next, when a polysilicon film was formed on the surface of the obtained synthetic quartz glass substrate by the same method as in Example 1, the film-formed surface was convex with a SORI of 122 μm, and the other surface was concave with a SORI of 122 μm. changed.
Thereafter, a heat treatment at 1100 ° C. was further performed for 2 hours. As a result, the film-formed surface was changed to a convex shape of SORI 4 μm, the other surface was changed to a concave shape of SORI 4 μm, the in-plane thickness variation was 1 μm, and a substantially flat SORI was obtained. A synthetic quartz glass substrate for polysilicon TFT was obtained.

[比較例1]
転写用原盤として、表裏面のSORIが110μmで、片面が凸状で、他方の面が凹状で、厚みが2mmで、厚みばらつきが2μmで一定である、直径100mmのアルミナセラミック製転写用原盤を用意し、原料基板として、実施例1と同一のものを用意した。
両面ラップ装置を用い、実施例1と同様の手法で原料基板を転写加工し、表裏面のSORIが1μmの転写基板を得た。
さらに、得られた転写基板を、両面研磨装置にて両面鏡面化し、表裏面のSORIが1μmおよび表面のBOWが+0.5μm、裏面のBOWが−0.5μmで、面内厚みばらつき(TTV)が1μmで、厚みが500μmの両面が鏡面である合成石英ガラス基板を得た。
得られた合成石英ガラス基板に、実施例1と同様にしてポリシリコン膜を形成したところ、成膜した面がSORI120μmの凸状に、他方の面がSORI120μmの凹状に変化した。
その後、さらに1050℃の熱処理を1時間行ったところ、面内厚みばらつき(TTV)は1μmのままで、成膜した面がSORI60μmの凸状に、他方の面がSORI61μmの凹状に変化し、所望の平坦なSORIが得られなかった。
[Comparative Example 1]
As a transfer master, an alumina ceramic transfer master having a diameter of 100 mm and having a SORI of 110 μm on the front and back, a convex surface on one side, a concave surface on the other surface, a thickness of 2 mm, and a thickness variation of 2 μm is constant. The same raw material substrate as that of Example 1 was prepared.
Using a double-sided lapping machine, the raw material substrate was transferred by the same method as in Example 1 to obtain a transfer substrate having a SORI of 1 μm on the front and back surfaces.
Further, the obtained transfer substrate was made into a double-sided mirror by a double-side polishing apparatus, and the SORI on the front and back surfaces was 1 μm, the BOW on the front surface was +0.5 μm, the BOW on the back surface was −0.5 μm, and in-plane thickness variation (TTV) A synthetic quartz glass substrate having a thickness of 1 μm and a thickness of 500 μm on both sides was obtained.
When a polysilicon film was formed on the resultant synthetic quartz glass substrate in the same manner as in Example 1, the film-formed surface was changed to a convex shape of SORI 120 μm, and the other surface was changed to a concave shape of SORI 120 μm.
After that, when heat treatment at 1050 ° C. was further performed for 1 hour, the in-plane thickness variation (TTV) remained 1 μm, the film-formed surface changed to a convex shape of SORI 60 μm, and the other surface changed to a concave shape of SORI 61 μm. The flat SORI was not obtained.

[比較例2]
転写用原盤として、表裏面のSORIが110μmで、片面が凸状で、他方の面が凹状で、面内厚みばらつき(TTV)が1μmで、厚みが2mmで、直径200mmのアルミナセラミック製転写用原盤を用意し、原料基板としては、実施例4と同一のものを用意した。
実施例4と同様の手法で片面ラップ装置を用いて原料基板に転写工程を行った後、得られた転写基板を両面ラップ装置で回転数20rpm、荷重100g/cm2でラップ加工し、表裏面のSORIが1μmのラップ加工基板が得られた。
さらに、得られたラップ加工基板の両面研磨を行い、表裏面のSORIが1μmおよび表面のBOWが+0.5μm、裏面のBOWが−0.5μmで、面内厚みばらつき(TTV)が1μmで、厚みが725μmの合成石英ガラス基板を得た。
得られた合成石英ガラス基板に、実施例1と同様にしてポリシリコン膜を形成したところ、面内厚みばらつき(TTV)は1μmのままで、成膜した面がSORI120μmの凸状に、他方の面がSORI120μmの凹状に変化した。
その後、さらに1050℃の熱処理を1時間行ったところ、面内厚みばらつき(TTV)は1μmのままで、成膜した面がSORI60μmの凸状に、他方の面がSORI61μmの凹状に変化し、所望の平坦なSORIが得られなかった。
[Comparative Example 2]
As a master for transfer, for the transfer made of alumina ceramic with SORI of 110 μm on the front and back, convex on one side, concave on the other side, in-plane thickness variation (TTV) 1 μm, thickness 2 mm, diameter 200 mm A master was prepared, and the same material substrate as that of Example 4 was prepared.
After performing a transfer process on the raw material substrate using a single-sided lapping device in the same manner as in Example 4, the obtained transfer substrate was lapped with a double-sided lapping device at a rotation speed of 20 rpm and a load of 100 g / cm 2 , A lapping substrate having a SORI of 1 μm was obtained.
Further, the obtained lapping substrate is subjected to double-side polishing, the front and back SORI is 1 μm, the front BOW is +0.5 μm, the back BOW is −0.5 μm, the in-plane thickness variation (TTV) is 1 μm, A synthetic quartz glass substrate having a thickness of 725 μm was obtained.
When a polysilicon film was formed on the resulting synthetic quartz glass substrate in the same manner as in Example 1, the in-plane thickness variation (TTV) remained at 1 μm, and the formed surface had a convex shape of SORI of 120 μm. The surface changed to a concave shape of 120 μm SORI.
After that, when heat treatment at 1050 ° C. was further performed for 1 hour, the in-plane thickness variation (TTV) remained 1 μm, the film-formed surface changed to a convex shape of SORI 60 μm, and the other surface changed to a concave shape of SORI 61 μm. The flat SORI was not obtained.

[比較例3]
転写用原盤として、表裏面のSORIが110μmで、片面が凸状で、他方の面が凹状で、面内厚みばらつき(TTV)が1μmで、厚みが2mmで、直径110mmのアルミナセラミック製転写用原盤を用意し、原料基板として、実施例2と同一のものを用意した。
実施例2と同様の手法で両面ラップ装置を用いて原料基板に転写工程を行った後、転写用原盤の形状が転写されていない平坦な面を片面ラップ装置のトッププレート側に向けるように転写基板を設置して、実施例2と同様の条件でラップ加工を行い、表面のSORIが1μmのラップ加工基板を得た。
さらに、片面研磨装置で得られたラップ加工基板の片面を鏡面化し、表面のSORIが1μmおよび表面のBOWが+0.5μm、裏面のBOWが−0.5μmで、面内厚みばらつき(TTV)が1μmで、厚みが500μmの合成石英ガラス基板を得た。
得られた合成石英ガラス基板に、実施例1と同様の手法で、ポリシリコン膜を形成したところ、成膜した面がSORI120μmの凸状に、他方の面がSORI120μmの凹状に変化した。
その後、さらに1050℃の熱処理を1時間行ったところ、面内厚みばらつき(TTV)は1μmのままで、成膜した面がSORI60μmの凸状に、他方の面がSORI61μmの凹状に変化し、所望の平坦なSORIが得られなかった。
[Comparative Example 3]
As a transfer master, for the transfer made of alumina ceramic with SORI of 110 μm on the front and back sides, convex on one side, concave on the other side, in-plane thickness variation (TTV) of 1 μm, thickness of 2 mm and diameter of 110 mm A master disk was prepared, and the same material substrate as that of Example 2 was prepared.
After performing a transfer process on the raw material substrate using a double-sided lapping machine in the same manner as in Example 2, transfer so that the flat surface on which the shape of the master for transfer is not transferred faces the top plate side of the single-sided lapping machine A substrate was placed, and lapping was performed under the same conditions as in Example 2 to obtain a lapping substrate having a surface SORI of 1 μm.
Further, one side of the lapping substrate obtained by the single-side polishing apparatus is mirror-finished, the surface SORI is 1 μm, the surface BOW is +0.5 μm, the back BOW is −0.5 μm, and the in-plane thickness variation (TTV) is A synthetic quartz glass substrate having a thickness of 1 μm and a thickness of 500 μm was obtained.
When a polysilicon film was formed on the resultant synthetic quartz glass substrate by the same method as in Example 1, the formed surface was changed to a convex shape of SORI 120 μm, and the other surface was changed to a concave shape of SORI 120 μm.
After that, when heat treatment at 1050 ° C. was further performed for 1 hour, the in-plane thickness variation (TTV) remained 1 μm, the film-formed surface changed to a convex shape of SORI 60 μm, and the other surface changed to a concave shape of SORI 61 μm. The flat SORI was not obtained.

[比較例4]
転写用原盤として、表裏面のSORIが110μmで、片面が凸状、他方の面が凹状で、面内厚みばらつき(TTV)が1μmで、厚みが2mmで、直径200mmのアルミナセラミック製転写用原盤を用意し、原料基板として、実施例4と同一のものを用意した。
実施例4と同様の手法で片面ラップ装置を用いて原料基板の転写工程を行った後、転写用原盤の形状が転写されていない平坦な面を片面ラップ装置のトッププレート側に向けるように転写基板を設置して、実施例2と同様の条件でラップ加工を行い、表面のSORIが1μmのラップ加工基板を得た。
さらに、片面研磨装置で得られたラップ加工基板の片面を鏡面化し、表面のSORIが1μmおよび表面のBOWが+0.5μm、裏面のBOWが−0.5μmで、面内厚みばらつき(TTV)が1μmで、厚みが725μmの合成石英ガラス基板を得た。
得られた合成石英ガラス基板に、実施例1と同様にしてポリシリコン膜を形成したところ、成膜した面がSORI120μmの凸状に、他方の面がSORI120μmの凹状に変化した。
その後、さらに1050℃の熱処理を1時間行ったところ、厚みばらつきは1μmのままで、成膜した面がSORI60μmの凸状に、他方の面がSORI61μmの凹状に変化し、所望の平坦なSORIが得られなかった。
[Comparative Example 4]
As a transfer master, an alumina ceramic transfer master having an SORI of 110 μm on the front and back, a convex on one side, a concave on the other, an in-plane thickness variation (TTV) of 1 μm, a thickness of 2 mm, and a diameter of 200 mm And the same material substrate as that of Example 4 was prepared.
After performing the transfer process of the raw material substrate using the single-sided lapping device in the same manner as in Example 4, transfer the flat surface on which the shape of the transfer master is not transferred to the top plate side of the single-sided lapping device A substrate was placed, and lapping was performed under the same conditions as in Example 2 to obtain a lapping substrate having a surface SORI of 1 μm.
Further, one side of the lapping substrate obtained by the single-side polishing apparatus is mirror-finished, the surface SORI is 1 μm, the surface BOW is +0.5 μm, the back BOW is −0.5 μm, and the in-plane thickness variation (TTV) is A synthetic quartz glass substrate having a thickness of 1 μm and a thickness of 725 μm was obtained.
When a polysilicon film was formed on the resultant synthetic quartz glass substrate in the same manner as in Example 1, the film-formed surface was changed to a convex shape of SORI 120 μm, and the other surface was changed to a concave shape of SORI 120 μm.
After that, when heat treatment at 1050 ° C. was further performed for 1 hour, the thickness variation remained 1 μm, the film-formed surface changed to a convex shape of SORI 60 μm, the other surface changed to a concave shape of SORI 61 μm, and a desired flat SORI was obtained. It was not obtained.

上記各実施例および比較例のまとめを表1に示す。   A summary of the above examples and comparative examples is shown in Table 1.

Figure 2018207097
Figure 2018207097

Figure 2018207097
Figure 2018207097

A 半導体用基板
1 両面ラップ装置
2 片面ラップ装置
10,20,30,40 転写用原盤
11A,21A 転写基板
100,200,300,400 転写用原盤の表面
110,210,310,410 転写用原盤の裏面
100A,110A,200A,210A 中心点
L1,L2 中心線
S1,S2,S3,S4 仮想面(中心線と直交する面)
11,21 原料基板
A Semiconductor substrate 1 Double-sided lapping device 2 Single-sided lapping device 10, 20, 30, 40 Transfer master 11A, 21A Transfer substrate 100, 200, 300, 400 Transfer master surface 110, 210, 310, 410 Transfer master Back surface 100A, 110A, 200A, 210A Center point L1, L2 Center line S1, S2, S3, S4 Virtual plane (surface orthogonal to center line)
11, 21 Raw material substrate

Claims (10)

凸状のSORIを有する一方の面と、前記SORIと同程度の凹状のSORIを有する他方の面とを備え、かつ厚みばらつきが3μm以下であることを特徴とする半導体用基板。   A semiconductor substrate comprising one surface having a convex SORI and the other surface having a concave SORI comparable to the SORI and having a thickness variation of 3 μm or less. 前記各面のSORIが、50〜600μmである請求項1記載の半導体用基板。   The semiconductor substrate according to claim 1, wherein the SORI of each of the surfaces is 50 to 600 μm. 前記凸状のSORIを有する一方の面のBOWが、+25〜+300である請求項1または2記載の半導体用基板。   3. The semiconductor substrate according to claim 1, wherein the BOW on one surface having the convex SORI is +25 to +300. 前記凹状のSORIを有する他方の面のBOWが、−25〜−300である請求項1〜3のいずれか1項記載の半導体用基板。   4. The semiconductor substrate according to claim 1, wherein a BOW of the other surface having the concave SORI is −25 to −300. 厚みが、0.5〜3mmである請求項1〜4のいずれかの1項記載の半導体用基板。   The semiconductor substrate according to claim 1, wherein the thickness is 0.5 to 3 mm. 前記半導体用基板の形状が、平面視で直径100〜450mmの円形状または対角長100〜450mmの矩形状である請求項1〜5のいずれか1項記載の半導体用基板。   The semiconductor substrate according to claim 1, wherein the semiconductor substrate has a circular shape with a diameter of 100 to 450 mm or a rectangular shape with a diagonal length of 100 to 450 mm in plan view. 合成石英ガラス製である請求項1〜6のいずれか1項記載の半導体用基板。   The semiconductor substrate according to any one of claims 1 to 6, which is made of synthetic quartz glass. ポリシリコンTFT用基板である請求項1〜7のいずれか1項記載の半導体用基板。   The semiconductor substrate according to claim 1, which is a polysilicon TFT substrate. 表面および裏面を有し、これら表裏面の中心点を結んだ中心線上の中間点を通り、前記中心線と直交する面に対して前記表面および裏面が対称に向き合うようなSORIと厚みばらつきを有する転写用原盤を準備する準備工程と、
前記転写用原盤を挟み込むようにして2枚の原料基板を両面ラップ装置に設置し、前記各原料基板における前記転写用原盤と接しない面を加工して前記転写用原盤の形状がそれぞれ片面に転写された2枚の転写基板を作製する転写工程と、
前記転写基板の両面をラップすることにより、または前記転写基板における前記転写工程で前記転写用原盤の形状が転写されていない面のみをラップすることによりラップ加工基板を作製するラップ工程と、
前記ラップ加工基板の両面または片面を研磨することを特徴とする半導体用基板の製造方法。
It has a front surface and a back surface, passes through an intermediate point on the center line connecting the center points of the front and back surfaces, and has a thickness variation such as SORI in which the front surface and the back surface face each other symmetrically with respect to a plane orthogonal to the center line. A preparation process for preparing a master for transfer;
Two raw material substrates are placed in a double-sided lapping machine so as to sandwich the transfer master, and the surface of each raw material substrate that is not in contact with the transfer master is processed to transfer the shape of the transfer master to one side. A transfer process for producing the two transferred substrates;
A wrapping process for producing a lapping substrate by wrapping both surfaces of the transfer substrate or by wrapping only a surface of the transfer substrate in which the shape of the transfer master is not transferred in the transfer step;
A method for producing a semiconductor substrate, comprising polishing both sides or one side of the lapped substrate.
表面および裏面を有し、これら表裏面の中心点を結んだ中心線上の中間点を通り、前記中心線と直交する面に対して前記表裏面のうちのいずれか一方の面が平行であり、かつ前記表裏面のうち原料基板と接する他方の面が、前記中心線に対して直交するとともに前記中心線に対して対称である転写用原盤を準備する準備工程と、
前記転写用原盤の前記他方の面と接するようにして原料基板を片面ラップ装置に設置し、前記原料基板における前記転写用原盤と接しない面を加工して前記転写用原盤の形状が片面に転写された転写基板を作製する転写工程と、
前記転写基板の両面をラップすることにより、または前記転写基板における前記転写工程で前記転写用原盤の形状が転写されていない面のみをラップすることによりラップ加工基板を作製するラップ工程と、
前記ラップ加工基板の両面または片面を研磨することを特徴とする半導体用基板の製造方法。
It has a front surface and a back surface, passes through an intermediate point on the center line connecting the center points of these front and back surfaces, and either one of the front and back surfaces is parallel to a surface orthogonal to the center line, And a preparatory step of preparing a master for transfer in which the other surface in contact with the raw material substrate of the front and back surfaces is orthogonal to the center line and symmetrical with respect to the center line;
The material substrate is placed on a single-sided lapping machine so as to be in contact with the other surface of the transfer master, and the surface of the material substrate that is not in contact with the transfer master is processed to transfer the shape of the transfer master to one surface. A transfer process for producing a transferred substrate,
A wrapping process for producing a lapping substrate by wrapping both surfaces of the transfer substrate or by wrapping only a surface of the transfer substrate in which the shape of the transfer master is not transferred in the transfer step;
A method for producing a semiconductor substrate, comprising polishing both sides or one side of the lapped substrate.
JP2018089007A 2017-06-02 2018-05-07 Semiconductor substrates and their manufacturing methods Active JP7035777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810553227.7A CN108987413B (en) 2017-06-02 2018-06-01 Substrate for semiconductor and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017109696 2017-06-02
JP2017109696 2017-06-02

Publications (2)

Publication Number Publication Date
JP2018207097A true JP2018207097A (en) 2018-12-27
JP7035777B2 JP7035777B2 (en) 2022-03-15

Family

ID=64958143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089007A Active JP7035777B2 (en) 2017-06-02 2018-05-07 Semiconductor substrates and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP7035777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240009938A (en) 2021-05-20 2024-01-23 신에쯔 한도타이 가부시키가이샤 Manufacturing method of silicon wafer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611705A (en) * 1992-01-31 1994-01-21 Sony Corp Active element substrate
JPH06260459A (en) * 1992-07-23 1994-09-16 Wacker Chemitronic Ges Elektron Grundstoffe Mbh Semiconductor wafer and its preparation
JP2005263569A (en) * 2004-03-19 2005-09-29 Asahi Glass Co Ltd Method for manufacturing synthetic quartz glass substrate for polysilicon tft
JP2008140856A (en) * 2006-11-30 2008-06-19 Sumco Corp Epitaxial silicon wafer, manufacturing method thereof and silicon wafer for epitaxial growth
JP2010181530A (en) * 2009-02-04 2010-08-19 Seiko Epson Corp Method of fabricating electrooptical device
JP2010219353A (en) * 2009-03-17 2010-09-30 Sumitomo Metal Mining Co Ltd Method of polishing wafer for semiconductor
JP2015156433A (en) * 2014-02-20 2015-08-27 株式会社Sumco Method of manufacturing silicon wafer and silicon wafer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611705A (en) * 1992-01-31 1994-01-21 Sony Corp Active element substrate
JPH06260459A (en) * 1992-07-23 1994-09-16 Wacker Chemitronic Ges Elektron Grundstoffe Mbh Semiconductor wafer and its preparation
JP2005263569A (en) * 2004-03-19 2005-09-29 Asahi Glass Co Ltd Method for manufacturing synthetic quartz glass substrate for polysilicon tft
JP2008140856A (en) * 2006-11-30 2008-06-19 Sumco Corp Epitaxial silicon wafer, manufacturing method thereof and silicon wafer for epitaxial growth
JP2010181530A (en) * 2009-02-04 2010-08-19 Seiko Epson Corp Method of fabricating electrooptical device
JP2010219353A (en) * 2009-03-17 2010-09-30 Sumitomo Metal Mining Co Ltd Method of polishing wafer for semiconductor
JP2015156433A (en) * 2014-02-20 2015-08-27 株式会社Sumco Method of manufacturing silicon wafer and silicon wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240009938A (en) 2021-05-20 2024-01-23 신에쯔 한도타이 가부시키가이샤 Manufacturing method of silicon wafer

Also Published As

Publication number Publication date
JP7035777B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
KR102047598B1 (en) Method for manufacturing electronic grade synthetic quartz glass substrate
KR100818683B1 (en) Mirror chamfered wafer, mirror chamfering polishing cloth, and mirror chamfering polishing machine and method
KR101994782B1 (en) Production method for mirror polished wafers
KR101048910B1 (en) Reticle substrate and its manufacturing method, mask blank and its manufacturing method
JPH0997775A (en) Manufacture of mirror-surface semiconductor wafer
JP5472073B2 (en) Semiconductor wafer and manufacturing method thereof
WO2021235067A1 (en) Substrate wafer production method and substrate wafer
JP2018207097A (en) Substrate for semiconductor and manufacturing method of the same
CN110383427B (en) Method for manufacturing wafer
KR102444692B1 (en) Substrate for semiconductor and making method
JP2021132102A (en) Manufacturing method for semiconductor wafer
CN108987413B (en) Substrate for semiconductor and method for manufacturing the same
TWI744539B (en) Substrate for semiconductor and manufacturing method thereof
US20040195657A1 (en) Semiconductor wafer
US20200270174A1 (en) Method for manufacturing disk-shaped glass substrate, method for manufacturing thin glass substrate, method for manufacturing light-guiding plate, and disk-shaped glass substrate
JP2020003547A (en) Photomask substrate and process for producing the same
JP7397844B2 (en) Method for manufacturing a disc-shaped glass substrate, method for manufacturing a thin glass substrate, method for manufacturing a light guide plate, and disc-shaped glass substrate
JP2007035917A (en) Polishing pad, silicon wafer, and polishing machine
KR100809825B1 (en) Synthetic Quartz Glass Substrate
JPH02303127A (en) Method of simultaneously lapping both faces of semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7035777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150