JP2018204029A - Heterocycle-containing compound, polymer comprising the compound, and use therefor - Google Patents

Heterocycle-containing compound, polymer comprising the compound, and use therefor Download PDF

Info

Publication number
JP2018204029A
JP2018204029A JP2018160865A JP2018160865A JP2018204029A JP 2018204029 A JP2018204029 A JP 2018204029A JP 2018160865 A JP2018160865 A JP 2018160865A JP 2018160865 A JP2018160865 A JP 2018160865A JP 2018204029 A JP2018204029 A JP 2018204029A
Authority
JP
Japan
Prior art keywords
group
substituent
carbon atoms
polymer
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018160865A
Other languages
Japanese (ja)
Other versions
JP6783832B2 (en
Inventor
岡本 秀二
Hideji Okamoto
秀二 岡本
文明 小林
Fumiaki Kobayashi
文明 小林
智弘 宮崎
Toshihiro Miyazaki
智弘 宮崎
真理子 上村
Mariko Kamimura
真理子 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Kagaku KK
Soken Chemical and Engineering Co Ltd
Original Assignee
Soken Kagaku KK
Soken Chemical and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soken Kagaku KK, Soken Chemical and Engineering Co Ltd filed Critical Soken Kagaku KK
Publication of JP2018204029A publication Critical patent/JP2018204029A/en
Application granted granted Critical
Publication of JP6783832B2 publication Critical patent/JP6783832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

To provide a polymer obtained by oxidation polymerization in coexistence with a dopant; further provide a polymer that can control donor properties of a conjugated methine part by control of electron-donating and electron-accepting properties of a substituent of aldehyde, and can control the ionization potential.SOLUTION: The present invention provides a compound represented by formula (1) (where, Xand Xare an alkoxy group, an alkylene oxide group, mutually coupled alkylenedioxy groups, or the like, W is a hydroxyl group or formula (2)). (In formula (2) Xand Xare the same as in formula (1)).SELECTED DRAWING: Figure 1

Description

本発明は、ヘテロ環含有化合物、その化合物を用いた重合体、およびその用途に関する。   The present invention relates to a heterocycle-containing compound, a polymer using the compound, and uses thereof.

帯電防止剤、機能性キャパシタ、透明電極材料などに使用できる導電性付与材料として、または、OLEDやOPV、有機半導体センサなどの正孔輸送材料として、導電性高分子を用いた従来技術は多数ある。導電性高分子は共役系構造を有し電子移動が可能な主骨格とこれら拡張された共役内での電子または正孔キャリアを主骨格に付与する為のドーパントの組み合わせにより構成される。導電性主骨格としては3,4−エチレンジオキシチオフェン(EDOT)、ピロール、アニリンなどの重合体をはじめとして、π電子共役系が発達した化学構造を持つ骨格が一般的である。それに対応するドーパントとしては無機系ルイス酸や有機系プロトン酸など様々ある。中でも有機系プロトン酸としてスルホン酸化合物が一般的に用いられる。   There are many conventional techniques using conductive polymers as conductivity imparting materials that can be used for antistatic agents, functional capacitors, transparent electrode materials, etc., or as hole transport materials for OLEDs, OPVs, organic semiconductor sensors, etc. . The conductive polymer has a conjugated structure and a combination of a main skeleton capable of electron transfer and a dopant for imparting electron or hole carriers in the expanded conjugate to the main skeleton. As the conductive main skeleton, a skeleton having a chemical structure in which a π-electron conjugated system is developed, such as a polymer such as 3,4-ethylenedioxythiophene (EDOT), pyrrole, and aniline, is generally used. There are various dopants such as inorganic Lewis acids and organic proton acids. Of these, sulfonic acid compounds are generally used as organic protonic acids.

導電性高分子に関する従来技術の中では、主骨格にポリアニリンにビス2−エチルヘキシルスルホコハク酸をドープした導電性高分子(たとえば、特許文献1)や、ポリエチレンジオキシチオフェン(PEDOT)を主骨格とし、ポリスチレンスルホン酸(PSS)をドーピングしたPEDOT/PSSなどがある。
特にPEDOT/PSSに関しては関連した技術が多く存在し(たとえば、特許文献2)、一般に利用される事の多い材料となっている。PEDOT/PSSは主骨格のPEDOTが高導電性である点や、ドーパントとして用いられるPSSの分子量、ドープ量、未ドープのスルホン酸濃度などを調整する事によりナノメートルオーダーの微少な液中粒子径を水中に安定に分散し、塗布により均一な膜を簡便に作製できるといった優れた加工適性が付与され、工業的に利用されている。
また、一般的には導電性高分子単独では、塗膜の物理的な強度、溶剤耐性等が不十分である事が多く、水系エマルジョンバインダー、各種添加剤を混合した水系塗料として使用される。
Among the prior arts related to conductive polymers, the main skeleton is a conductive polymer (for example, Patent Document 1) in which bis-2-ethylhexylsulfosuccinic acid is doped to polyaniline on the main skeleton, and polyethylenedioxythiophene (PEDOT). PEDOT / PSS doped with polystyrene sulfonic acid (PSS).
In particular, there are many related techniques for PEDOT / PSS (for example, Patent Document 2), which is a material that is often used. PEDOT / PSS has a very small particle size in the order of nanometers by adjusting the main conductive PEDOT, the molecular weight of the PSS used as a dopant, the amount of doping, the concentration of undoped sulfonic acid, etc. Has been imparted with excellent processability such that a uniform film can be easily dispersed in water and a uniform film can be easily produced by coating.
In general, the conductive polymer alone is often insufficient in physical strength, solvent resistance and the like of the coating film, and is used as a water-based paint in which a water-based emulsion binder and various additives are mixed.

特許3426637Patent 3426637 特許2636968Patent 2636968 WO2010/095648WO2010 / 095648

しかし、PEDOT/PSSの問題として、PSS由来の残存スルホ基によってゲル粒子を水中に分散安定化する事を特徴とする為、低い酸性度による金属腐食性及び経時でスルホ基脱離の発生等による貯蔵安定性及び加熱時の脱ドーパントによる耐熱性の悪さに加え、塗膜の耐水性が本質的に悪い等の各種問題があり、各種材料との複合化塗料として塗膜物性の改善がなされて来た。また、各種材料を混合した塗料として配合する際、バインダー及び各種添加剤は水系に限定される上、前記材料との混和性についても制限があるなどの多岐にわたる問題があった。この問題を解決する為、各種改善手法が提案されており、導電性高分子主骨格に油溶性官能基を導入する事、及び/又はドーパントであるPSSのスルホ基の中和処理、ドーパント組成の変更等の手法が提示されている(たとえば、特許文献3)。
導電性高分子主骨格への油溶性官能基の導入については、3,4位への導入若しくはエチレンジオキシ基への官能基導入に限定される為、化学修飾性の幅が非常に限定的であることが挙げられる。一方、PEDOT/PSSのスルホ基をアミン化合物で変性している例があるが、金属腐食性の緩和やバインダーとの混和性を改善する事は可能であるものの水の使用は避けられないと言う問題があった。ドーパント組成の変更による混和性改善については、有機溶媒等への混和性改善は可能であるものの、導電性、塗膜均一性等のバランスを取る事は困難であった。
However, PEDOT / PSS is characterized by the fact that gel particles are dispersed and stabilized in water by the residual sulfo group derived from PSS. Therefore, due to the metal corrosivity due to low acidity and the occurrence of sulfo group elimination over time, etc. In addition to storage stability and poor heat resistance due to de-dopants during heating, there are various problems such as inherently poor water resistance of the coating film, and physical properties of the coating film have been improved as a composite paint with various materials. I came. In addition, when blended as a paint in which various materials are mixed, there are various problems such as binders and various additives being limited to water-based systems and limitations on miscibility with the materials. In order to solve this problem, various improvement methods have been proposed, introducing an oil-soluble functional group into the conductive polymer main skeleton, and / or neutralizing treatment of the sulfo group of PSS as a dopant, A technique such as a change is proposed (for example, Patent Document 3).
Introduction of oil-soluble functional groups into the conductive polymer main skeleton is limited to introduction at the 3rd and 4th positions or introduction of functional groups into ethylenedioxy groups, so the range of chemical modification is very limited. It is mentioned that. On the other hand, although there is an example in which the sulfo group of PEDOT / PSS is modified with an amine compound, it is said that the use of water is unavoidable although it is possible to reduce metal corrosivity and improve the miscibility with the binder. There was a problem. As for the miscibility improvement by changing the dopant composition, although it is possible to improve the miscibility with an organic solvent or the like, it is difficult to balance the electrical conductivity and the uniformity of the coating film.

また、導電性高分子が使用された有機薄膜太陽電池は電極間に電子輸送層/発電層/ホール輸送層が積層された構造であり、発電層のイオン化ポテンシャルに合わせて電子輸送層及びホール輸送層が選定されており、効率の良い電子授受を行なう為には、発電層とのイオン化ポテンシャルの差は0.2〜0.3eVが良いと言われている。具体的に報告されている構成としては、有機半導体(ポリ3−ヘキシルチオフェン:P3HT)/PCBMを用いた構成が報告されており、ホール輸送層としてPEDOT/PSSが使用されている。P3HTのイオン化ポテンシャル4.7eVに対してPEDOT/PSSのイオン化ポテンシャル5.0〜5.1eVと発電層となる有機半導体とのイオン化ポテンシャルを一定の幅で合わせる事でホールの取り出し効率を向上する目的で使用されている。   An organic thin film solar cell using a conductive polymer has a structure in which an electron transport layer / a power generation layer / a hole transport layer are stacked between electrodes, and an electron transport layer and a hole transport according to the ionization potential of the power generation layer. The layer is selected, and it is said that the difference in ionization potential with the power generation layer is preferably 0.2 to 0.3 eV for efficient electron transfer. As a specifically reported configuration, a configuration using an organic semiconductor (poly-3-hexylthiophene: P3HT) / PCBM has been reported, and PEDOT / PSS is used as a hole transport layer. Purpose of improving hole extraction efficiency by matching the ionization potential of PEDOT / PSS 5.0 to 5.1 eV and the ionization potential of the organic semiconductor as the power generation layer with a certain width to the ionization potential 4.7 eV of P3HT Used in.

しかし、現在では発電効率の向上(電圧向上)を目的として有機半導体の組成変更と共にイオン化ポテンシャルが調整され、PEDOT/PSSでは効率的な電荷分離が困難となっており、発電層の半導体に合わせたイオン化ポテンシャルを持つ導電性高分子が求められている。
イオン化ポテンシャルの調整に関しては、ドーパントの変更やPEDOT主骨格の官能基の変更等が検討されているが、ドーパントの変更では0.1〜0.2eV程度の微調整に留まり、大幅な変更は困難であった。また、導電性高分子主骨格の官能基変更に関しては、モノマー合成が複雑であると共に、単量体自身のドナー性が変化する事により高分子化する際に簡便な酸化重合での合成が困難となる為、C−Cクロスカップリング等の複雑な合成手法が必要となり、更には高分子化した後に主骨格にドーピング処理を行う必要があり、また、得られた導電性高分子は十分な導電性や塗工性、成膜性が得られないなどの問題があった。
However, at present, the ionization potential is adjusted with the composition change of the organic semiconductor for the purpose of improving the power generation efficiency (voltage improvement), and efficient charge separation is difficult with PEDOT / PSS. There is a need for a conductive polymer having an ionization potential.
Regarding the adjustment of the ionization potential, changes in the dopant and changes in the functional groups of the PEDOT main skeleton have been studied. However, the change in the dopant is limited to a fine adjustment of about 0.1 to 0.2 eV, and a large change is difficult. Met. In addition, regarding the functional group change of the conductive polymer main skeleton, monomer synthesis is complicated, and it is difficult to synthesize by simple oxidative polymerization when polymerizing due to the change in the donor property of the monomer itself. Therefore, a complicated synthesis method such as CC cross-coupling is necessary, and further, it is necessary to perform doping treatment on the main skeleton after polymerizing, and the obtained conductive polymer is sufficient. There were problems such as inability to obtain conductivity, coating properties, and film formability.

一方で、アルデヒドとヘテロ環の縮合による共役構造を持つ化合物については、有機顔料として古くからピロールとアルデヒドとの縮環によるポルフィリンの研究がなされてきた。また、溶解性等を付与する事で半導体としての応用も研究されているが、溶解性の低さによる成膜性の悪さ、精製の困難さにより導電材料には用いられてこなかった。   On the other hand, with regard to compounds having a conjugated structure resulting from condensation of an aldehyde and a heterocycle, studies on porphyrins by condensation of pyrrole and aldehyde have long been made as organic pigments. Further, application as a semiconductor has been studied by imparting solubility and the like, but it has not been used as a conductive material due to poor film formation due to low solubility and difficulty in purification.

また、ヘテロ環としてチオフェンを用いた場合、アルデヒドとの活性が弱く、合成が十分に進まないなどの問題があった。
しかし、発明者らは、3,4−位に電子供与性基を有するチオフェン、特に3,4−エチレンジオキシチオフェン(EDOT)を用いた場合には、通常のポルフィリン合成条件でチエノポルフィリンの合成が可能である事を見出した。
Further, when thiophene is used as a heterocycle, there is a problem that the activity with aldehyde is weak and the synthesis does not proceed sufficiently.
However, the inventors have synthesized thienoporphyrin under normal porphyrin synthesis conditions when thiophene having an electron donating group at the 3,4-position, particularly 3,4-ethylenedioxythiophene (EDOT) is used. I found out that it is possible.

また、3,4−位に電子供与性基を有するチオフェンを用い、アルデヒドとの交互縮合反応で得られた化合物の高分子量化が可能である事、チオフェン類単量体と共重合可能である事、ドーパントの共存下で酸化重合を行なう事でドーピングされた導電性高分子が得られる事、更には、導入されたアルデヒドの置換基の電子供与性、電子受容性を調整する事によって、共役メチン部のドナー性の調整が可能となり、導電性高分子のイオン化ポテンシャルの調整が可能となる事を明らかにした。   In addition, using thiophene having an electron donating group at the 3,4-position, it is possible to increase the molecular weight of the compound obtained by the alternating condensation reaction with aldehyde, and it is possible to copolymerize with thiophene monomers. In addition, by conducting oxidative polymerization in the presence of a dopant, a doped conductive polymer can be obtained. Furthermore, by adjusting the electron donating and electron accepting properties of the introduced aldehyde substituent, conjugation can be achieved. It was clarified that the donor property of the methine moiety can be adjusted and the ionization potential of the conductive polymer can be adjusted.

本発明は、このような事情に鑑みてなされたものであり、下記化学式(1)で表される、ヘテロ環含有化合物が提供される。   This invention is made | formed in view of such a situation, and the heterocyclic containing compound represented by following Chemical formula (1) is provided.

(式(1)中、X1及びX2は、一方が置換基を有してもよいアルコキシ基、置換基を有してもよいアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、若しくは置換基を有してもよいチオアルキル基を表し、他方が水素、置換基を有してもよい炭素数1〜12のアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、若しくは置換基を有してもよいチオアルキル基を表し、又は、X1とX2が連結された置換基を有してもよい炭素数1〜12のアルキレンジオキシ基、若しくは置換基を有してもよい炭素数1〜12のアルキレンジチオ基を表し、Rは、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、繰り返し単位が1〜50の炭素数1〜12のアルキレンオキサイド基、置換基を有してもよいフェニル基、置換基を有してもよい複素環基、又は置換基を有してもよい縮合環基を表し、Wは、ヒドロキシル基または下記化学式(2)で表される。)
(式(2)中のX1及びX2は、化学式(1)と同じである。)
(In formula (1), one of X1 and X2 is an alkoxy group that may have a substituent, an alkylene oxide group that may have a substituent, a thiocyano group that may have a substituent, or a substituent. An amino group that may have a substituent, or a thioalkyl group that may have a substituent, the other having hydrogen, an alkyl group having 1 to 12 carbon atoms that may have a substituent, and a substituent. An alkoxy group which may have a substituent, an alkylene oxide group which may have a substituent, a thiocyano group which may have a substituent, an amino group which may have a substituent, or a thioalkyl group which may have a substituent Or an alkylenedioxy group having 1 to 12 carbon atoms which may have a substituent in which X1 and X2 are linked, or an alkylenedithio group having 1 to 12 carbon atoms which may have a substituent. R represents alkyl having 1 to 12 carbons , An alkoxy group having 1 to 12 carbon atoms, an alkylene oxide group having 1 to 50 carbon atoms having 1 to 50 repeating units, an optionally substituted phenyl group, an optionally substituted heterocyclic group, Alternatively, it represents a condensed ring group which may have a substituent, and W is represented by a hydroxyl group or the following chemical formula (2).
(X1 and X2 in Formula (2) are the same as in Chemical Formula (1).)

本発明者らの実験によると、使用する原料化合物に種々官能基を有するものを選択することで、生成組成物への官能基導入が容易に可能であり、この手法により材料への簡便な機能性付与ができることが分かった。   According to the experiments by the present inventors, it is possible to easily introduce a functional group into a product composition by selecting a raw material compound having various functional groups. It was found that sex can be imparted.

以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
好ましくは、前記化学式(1)で表される化合物は、化学式(3)のヘテロ環化合物と化学式(4)のアルデヒド誘導体を縮合して得られる。
(式(3)中のX1及びX2、及び式(4)中のRは、化学式(1)と同じである。)
好ましくは、前記X1及びX2は、両方が置換基を有してもよいアルコキシ基、置換基を有してもよいアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、若しくは置換基を有してもよいチオアルキル基を表し、又は、X1とX2が連結された置換基を有してもよい炭素数1〜12のアルキレンジオキシ基、若しくは置換基を有してもよい炭素数1〜12のアルキレンジチオ基である。
好ましくは、前記X1及びX2は、両方が置換基を有してもよい炭素数1〜12のアルコキシ基、置換基を有してもよい炭素数1〜12のアルキレンオキサイド基を表すか、X1とX2が連結された置換基を有してもよい炭素数1〜12のアルキレンジオキシ基である。
好ましくは、前記Rは炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、置換基を有してもよいフェニル基である。
好ましくは、化学式(5)又は化学式(6)の繰返し単位を有する前記ヘテロ環含有化合物を1種または2種以上重合して得られる重合体。
(式(5)、(6)中、X1、X2及びRは、化学式(1)と同じであり、nは、2〜100である。)
好ましくは、前記ヘテロ環含有化合物とスルホン酸化合物アニオン又はその塩とを1種または2種以上の存在下で重合して得られる重合体。
好ましくは、前記重合体および重合溶媒を含む重合体組成物。
好ましくは、前記重合体組成物を塗布して得られる塗膜。
Hereinafter, various embodiments of the present invention will be exemplified. The following embodiments can be combined with each other.
Preferably, the compound represented by the chemical formula (1) is obtained by condensing a heterocyclic compound of the chemical formula (3) and an aldehyde derivative of the chemical formula (4).
(X1 and X2 in formula (3) and R in formula (4) are the same as in chemical formula (1).)
Preferably, X1 and X2 each have an alkoxy group which may have a substituent, an alkylene oxide group which may have a substituent, a thiocyano group which may have a substituent, or a substituent. An optionally substituted amino group, or a thioalkyl group that may have a substituent, or an alkylenedioxy group having 1 to 12 carbon atoms that may have a substituent in which X1 and X2 are linked, or a substituent It is a C1-C12 alkylene dithio group which may have a group.
Preferably, X1 and X2 each represents an alkoxy group having 1 to 12 carbon atoms which may have a substituent, an alkylene oxide group having 1 to 12 carbon atoms which may have a substituent, or X1 And an alkylenedioxy group having 1 to 12 carbon atoms which may have a substituent linked to X2.
Preferably, R is an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a phenyl group which may have a substituent.
Preferably, the polymer obtained by superposing | polymerizing 1 type (s) or 2 or more types of the said heterocyclic containing compound which has a repeating unit of Chemical formula (5) or Chemical formula (6).
(In the formulas (5) and (6), X1, X2 and R are the same as those in the chemical formula (1), and n is 2 to 100.)
Preferably, a polymer obtained by polymerizing the heterocycle-containing compound and the sulfonic acid compound anion or a salt thereof in the presence of one or more kinds.
Preferably, a polymer composition comprising the polymer and a polymerization solvent.
Preferably, the coating film obtained by apply | coating the said polymer composition.

図1(a)は、本発明の合成法1で合成したモノマー1のNMRを測定した結果を示し、(b)は、本発明の合成法3で合成したモノマー3のNMRを測定した結果を示す。FIG. 1 (a) shows the result of NMR measurement of monomer 1 synthesized by synthesis method 1 of the present invention, and FIG. 1 (b) shows the result of NMR measurement of monomer 3 synthesized by synthesis method 3 of the present invention. Show. 図2(c)は、本発明の合成法4で合成したモノマー4のNMRを測定した結果を示し、(d)は、本発明の合成法11で合成した重合体8のNMRを測定した結果を示す。FIG. 2 (c) shows the result of measuring NMR of the monomer 4 synthesized by the synthesis method 4 of the present invention, and FIG. 2 (d) shows the result of measuring NMR of the polymer 8 synthesized by the synthesis method 11 of the present invention. Indicates. 図3(a)は、本発明の合成法1で合成したモノマー1のIRを測定した結果を示し、(b)は、本発明の合成法11で合成した重合体8のIRを測定した結果を示す。FIG. 3 (a) shows the result of measuring the IR of monomer 1 synthesized by synthesis method 1 of the present invention, and FIG. 3 (b) shows the result of measuring the IR of polymer 8 synthesized by synthesis method 11 of the present invention. Indicates. 図4(c)は、本発明の合成法3で合成したモノマー3のIRを測定した結果を示し、(d)は、本発明の合成法4で合成したモノマー4のIRを測定した結果を示す。FIG. 4 (c) shows the result of measuring the IR of monomer 3 synthesized by the synthesis method 3 of the present invention, and FIG. 4 (d) shows the result of measuring the IR of monomer 4 synthesized by the synthesis method 4 of the present invention. Show. 図5(e)は、本発明の合成法9で合成した重合体5のIRを測定した結果を示し、(f)は、比較例1で合成した重合体11のIRを測定した結果を示す。FIG. 5 (e) shows the result of measuring IR of the polymer 5 synthesized by the synthesis method 9 of the present invention, and FIG. 5 (f) shows the result of measuring IR of the polymer 11 synthesized in Comparative Example 1. . 図6は、本発明の合成法11で合成した重合体8のLC−MSを測定した結果を示す。FIG. 6 shows the results of LC-MS measurement of the polymer 8 synthesized by the synthesis method 11 of the present invention. 図7(a)は、本発明の合成法1で合成したモノマー1と、合成法3で合成したモノマー3と、合成法4で合成したモノマー4のUVを測定した結果を示し、(b)は、本発明の合成法6で合成した重合体1と、合成法7で合成した重合体3と、合成法8で合成した重合体4と、合成法9で合成した重合体5と、合成法11で合成した重合体8及び比較例1で合成した重合体11のUVを測定した結果を示す。FIG. 7 (a) shows the results of measuring the UV of the monomer 1 synthesized by the synthesis method 1, the monomer 3 synthesized by the synthesis method 3, and the monomer 4 synthesized by the synthesis method 4, and FIG. The polymer 1 synthesized by the synthesis method 6 of the present invention, the polymer 3 synthesized by the synthesis method 7, the polymer 4 synthesized by the synthesis method 8, the polymer 5 synthesized by the synthesis method 9, and the synthesis The result of having measured UV of the polymer 8 synthesize | combined by the method 11 and the polymer 11 synthesize | combined by the comparative example 1 is shown. 図8(a)は、本発明の合成法8で合成した重合体4の分解開始温度を測定した結果を示し、(b)は、本発明の合成法9で合成した重合体5の分解開始温度を測定した結果を示す。FIG. 8A shows the result of measuring the decomposition start temperature of the polymer 4 synthesized by the synthesis method 8 of the present invention, and FIG. 8B shows the start of decomposition of the polymer 5 synthesized by the synthesis method 9 of the present invention. The result of measuring the temperature is shown. 図9(c)は、比較例1で合成した重合体11の分解開始温度を測定した結果を示す。FIG. 9C shows the result of measuring the decomposition start temperature of the polymer 11 synthesized in Comparative Example 1.

以下、本発明の一実施形態について、詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail.

本発明は、下記化学式(1)で表される新規な構成を有するヘテロ環含有化合物に関するものである。このヘテロ環含有化合物の用途は、限定されないが、一例としては、有機導電体材料(より具体的には導電性高分子、及び半導体高分子の主鎖のモノマー)として利用可能である。
最初に、ヘテロ環含有化合物の構成及び合成方法について説明し、その後に、この化合物をモノマーとして用いて導電性高分子として利用可能な重合体を合成する方法について説明する。
The present invention relates to a heterocycle-containing compound having a novel structure represented by the following chemical formula (1). Although the use of this heterocyclic compound is not limited, as an example, it can be used as an organic conductor material (more specifically, a conductive polymer and a monomer of a main chain of a semiconductor polymer).
First, the constitution and synthesis method of the heterocycle-containing compound will be described, and then, a method for synthesizing a polymer that can be used as a conductive polymer using this compound as a monomer will be described.

<ヘテロ環含有化合物>
本発明のヘテロ環含有化合物は、下記化学式(1)で表される。
<Heterocycle-containing compound>
The heterocycle-containing compound of the present invention is represented by the following chemical formula (1).

(式(1)中、X1及びX2は、一方が置換基を有してもよいアルコキシ基、置換基を有してもよいアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、若しくは置換基を有してもよいチオアルキル基を表し、他方が水素、置換基を有してもよい炭素数1〜12のアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、若しくは置換基を有してもよいチオアルキル基を表し、又は、X1とX2が連結された置換基を有してもよい炭素数1〜12のアルキレンジオキシ基、若しくは置換基を有してもよい炭素数1〜12のアルキレンジチオ基を表し、Rは、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、繰り返し単位が1〜50の炭素数1〜12のアルキレンオキサイド基、置換基を有してもよいフェニル基、置換基を有してもよい複素環基、又は置換基を有してもよい縮合環基を表し、Wは、ヒドロキシル基または下記化学式(2)で表される。)
(式(2)中のX1及びX2は、化学式(1)と同じである。)
(In formula (1), one of X1 and X2 is an alkoxy group that may have a substituent, an alkylene oxide group that may have a substituent, a thiocyano group that may have a substituent, or a substituent. An amino group that may have a substituent, or a thioalkyl group that may have a substituent, the other having hydrogen, an alkyl group having 1 to 12 carbon atoms that may have a substituent, and a substituent. An alkoxy group which may have a substituent, an alkylene oxide group which may have a substituent, a thiocyano group which may have a substituent, an amino group which may have a substituent, or a thioalkyl group which may have a substituent Or an alkylenedioxy group having 1 to 12 carbon atoms which may have a substituent in which X1 and X2 are linked, or an alkylenedithio group having 1 to 12 carbon atoms which may have a substituent. R represents alkyl having 1 to 12 carbons , An alkoxy group having 1 to 12 carbon atoms, an alkylene oxide group having 1 to 50 carbon atoms having 1 to 50 repeating units, an optionally substituted phenyl group, an optionally substituted heterocyclic group, Alternatively, it represents a condensed ring group which may have a substituent, and W is represented by a hydroxyl group or the following chemical formula (2).
(X1 and X2 in Formula (2) are the same as in Chemical Formula (1).)

X1およびX2の少なくとも一方が、ヘテロ環に電子供与性基が直接結合していることが好ましい。   It is preferable that at least one of X1 and X2 has an electron donating group directly bonded to the heterocycle.

前記X1及びX2の置換基を有してもよいアルコキシ基、アルキレンオキサイド基チオシアノ基、アミノ基、チオアルキル基、X1とX2が連結されたアルキレンジオキシ基、アルキレンジチオ基、炭素数1〜12のアルキル基、の置換基には限定はないが、ヘテロ環に対して相対的に電子供与性を阻害しない置換基が好ましく、具体的には、直鎖、分岐、または環状のアルキル基、スルホ基、ヒドロキシル基、カルボキシル基、アミノ基、アミド基、エステル基、及び、スルホ基、ヒドロキシル基、カルボキシル基、アミノ基、ハロゲン基で置換された直鎖または分岐状のアルキル基、アルコキシアルキル基、アルキレンオキサイド基であっても良く、置換基は複数有しても良い。   An alkoxy group which may have a substituent of X1 and X2, an alkylene oxide group, a thiocyano group, an amino group, a thioalkyl group, an alkylenedioxy group in which X1 and X2 are linked, an alkylenedithio group, or an alkyl group having 1 to 12 carbon atoms; The substituent of the alkyl group is not limited, but a substituent that does not inhibit the electron donating property relative to the heterocycle is preferable, and specifically, a linear, branched, or cyclic alkyl group, sulfo group , Hydroxyl group, carboxyl group, amino group, amide group, ester group, and straight or branched alkyl group, alkoxyalkyl group, alkylene substituted with sulfo group, hydroxyl group, carboxyl group, amino group, halogen group It may be an oxide group and may have a plurality of substituents.

前記X1及びX2のアルコキシ基、アルキレンオキサイド基、チオアルキル基、X1とX2が連結されたアルキレンジオキシ基、アルキレンジチオ基、及び、前記置換基のアルキル基、カルボキシル基、アミド基、エステル基、アルコキシアルキル基、アルキレンオキサイド基の炭素数は、特に限定はしないが、例えば1〜20であり、好ましくは1〜12である。この炭素数は、具体的には例えば、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、18、20であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   X1 and X2 alkoxy groups, alkylene oxide groups, thioalkyl groups, alkylenedioxy groups in which X1 and X2 are linked, alkylenedithio groups, and alkyl groups, carboxyl groups, amide groups, ester groups, alkoxy groups of the substituents Although carbon number of an alkyl group and an alkylene oxide group does not specifically limit, For example, it is 1-20, Preferably it is 1-12. Specifically, this carbon number is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20. It may be within a range between any two of the numerical values exemplified in.

前記X1またはX2の一方が、水素又は炭素数が1〜12のアルキル基あってもよいが、両方がアルキル基、両方が水素、一方が水素で他方がアルキル基である組合せを除くほうが良い。   One of X1 and X2 may be hydrogen or an alkyl group having 1 to 12 carbon atoms, but it is better to exclude a combination in which both are alkyl groups, both are hydrogen, one is hydrogen and the other is an alkyl group.

前記X1及びX2の置換基を有してもよい炭素数1〜12のアルキレンジオキシ基、置換基を有してもよい炭素数1〜12のアルキレンジチオ基は、アルキレン主鎖中のエチレン構造の代わりに酸素類縁体、窒素類縁体、硫黄類縁体構造を有していても良い。   The alkylene dioxy group having 1 to 12 carbon atoms which may have a substituent of X1 and X2 and the alkylenedithio group having 1 to 12 carbon atoms which may have a substituent are an ethylene structure in the alkylene main chain. Instead of, it may have an oxygen analog, nitrogen analog, or sulfur analog structure.

前記Rの置換基を有してもよいフェニル基、置換基を有してもよい複素環基、置換基を有してもよい縮合環基における置換基としては、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、繰り返し単位が1〜50の炭素数1〜12のアルキレンオキサイド基、フェニル基、複素環基、縮合環基、ヒドロキシ基、アルデヒド基、カルボキシ基、ハロゲン基もしくはそれのアルカリ金属塩、スルホ基もしくはそれのアルカリ金属塩、リン酸基もしくはそれのアルカリ金属塩、アミノ基、シアノ基を複数有しても良い。   Examples of the substituent in the phenyl group which may have a substituent of R, the heterocyclic group which may have a substituent, and the condensed ring group which may have a substituent include alkyl having 1 to 12 carbon atoms. Group, an alkoxy group having 1 to 12 carbon atoms, an alkylene oxide group having 1 to 50 carbon atoms and 1 to 50 carbon atoms, a phenyl group, a heterocyclic group, a condensed ring group, a hydroxy group, an aldehyde group, a carboxy group, and a halogen group. Alternatively, it may have a plurality of alkali metal salts thereof, sulfo groups or alkali metal salts thereof, phosphoric acid groups or alkali metal salts thereof, amino groups, and cyano groups.

前記Rの置換基を有してもよいフェニル基、置換基を有してもよい複素環基、置換基を有してもよい縮合環基における置換基の前記アルキル基、アルコキシ基、アルキレンオキサイド基、フェニル基、複素環基、縮合環基、アミノ基は任意の位置に任意の置換基を有していても良い。   The alkyl group, alkoxy group, alkylene oxide of the substituent in the phenyl group which may have a substituent of R, the heterocyclic group which may have a substituent, the condensed ring group which may have a substituent The group, phenyl group, heterocyclic group, condensed ring group and amino group may have an arbitrary substituent at an arbitrary position.

前記Rの炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、繰り返し単位が1〜50の炭素数1〜12のアルキレンオキサイド基は任意の位置に任意の置換基を有していても良い。   The alkyl group having 1 to 12 carbon atoms, the alkoxy group having 1 to 12 carbon atoms, and the alkylene oxide group having 1 to 50 carbon atoms and having 1 to 50 carbon atoms have an arbitrary substituent at an arbitrary position. May be.

前記複素環基としては例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε−カプロラクトン環、ε−カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3−ジオキサン環、1,4−ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン−1,1−ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]−オクタン環、フェノキサジン環、フェノチアジン環、オキサントレン環、チオキサンテン環、フェノキサチイン環から導出される1価の基等があげられる。   Examples of the heterocyclic group include silole ring, furan ring, thiophene ring, oxazole ring, pyrrole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole. Ring, thiazole ring, indole ring, benzimidazole ring, benzthiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, thienothiophene ring, carbazole ring, azacarbazole ring (any of the carbon atoms constituting the carbazole ring) A ring in which any one or more of the carbon atoms constituting the dibenzosilole ring, dibenzofuran ring, dibenzothiophene ring, benzothiophene ring or dibenzofuran ring are replaced by a nitrogen atom, Benzo Furan ring, benzodithiophene ring, acridine ring, benzoquinoline ring, phenazine ring, phenanthridine ring, phenanthroline ring, cyclazine ring, kindlin ring, tepenidine ring, quinindrine ring, triphenodithiazine ring, triphenodioxazine ring, Nantrazine ring, anthrazine ring, perimidine ring, naphthofuran ring, naphthothiophene ring, naphthodifuran ring, naphthodithiophene ring, anthrafuran ring, anthradifuran ring, anthrathiophene ring, anthradithiophene ring, thianthrene ring, phenoxathiin ring , Dibenzocarbazole ring, indolocarbazole ring, dithienobenzene ring, epoxy ring, aziridine ring, thiirane ring, oxetane ring, azetidine ring, thietane ring, tetrahydrofuran ring, dioxolane ring, pyrrole Ring, pyrazolidine ring, imidazolidine ring, oxazolidine ring, tetrahydrothiophene ring, sulfolane ring, thiazolidine ring, ε-caprolactone ring, ε-caprolactam ring, piperidine ring, hexahydropyridazine ring, hexahydropyrimidine ring, piperazine ring, morpholine Ring, tetrahydropyran ring, 1,3-dioxane ring, 1,4-dioxane ring, trioxane ring, tetrahydrothiopyran ring, thiomorpholine ring, thiomorpholine-1,1-dioxide ring, pyranose ring, diazabicyclo [2,2 , 2] -octane ring, phenoxazine ring, phenothiazine ring, oxanthrene ring, thioxanthene ring, monovalent group derived from phenoxathiin ring, and the like.

前記縮合環としては例えば、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピラントレン環等があげられる。   Examples of the condensed ring include naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, pentacene ring, perylene ring. , Pentaphen ring, picene ring, pyranthrene ring, and the like.

任意の置換基としては例えば、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、繰り返し単位が1〜50の炭素数1〜12のアルキレンオキサイド基、フェニル基、ナフチル基、ヒドロキシ基、アルデヒド基、アミノ基、炭素数3〜8のシクロアルキル基等があげられる。   Examples of the optional substituent include an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkylene oxide group having 1 to 50 carbon atoms and 1 to 50 carbon atoms, a phenyl group, a naphthyl group, and a hydroxy group. Group, aldehyde group, amino group, cycloalkyl group having 3 to 8 carbon atoms, and the like.

前記Wは反応条件により、ヒドロキシ基か、化学式(2)で表されるヘテロ環残基かを選んで合成することができる。塩基性条件下はヒドロキシ基となり、酸性条件下ではヘテロ環残基となる。   The W can be synthesized by selecting a hydroxy group or a heterocyclic residue represented by the chemical formula (2) according to reaction conditions. Under basic conditions it becomes a hydroxy group, and under acidic conditions it becomes a heterocyclic residue.

<ヘテロ環含有化合物の合成>
前記化学式(1)で表されるヘテロ環含有化合物は、化学式(3)のヘテロ環化合物と化学式(4)アルデヒド誘導体を縮合して得られる。
<Synthesis of heterocycle-containing compound>
The heterocyclic compound represented by the chemical formula (1) is obtained by condensing a heterocyclic compound of the chemical formula (3) and an aldehyde derivative of the chemical formula (4).

(式(3)中のX1及びX2、及び式(4)中のRは、化学式(1)と同じである。) (X1 and X2 in formula (3) and R in formula (4) are the same as in chemical formula (1).)

前記化学式(3)のヘテロ環化合物は主に下記化学式(3−A)、(3−B)の2種類に分けることができる。   The heterocyclic compound of the chemical formula (3) can be mainly divided into the following chemical formulas (3-A) and (3-B).

(式(3−A)中、X3及びX4は、一方が置換基を有してもよい炭素数1〜12のアルコキシ基、置換基を有してもよい炭素数1〜12のアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、若しくは置換基を有してもよいチオアルキル基を表し、他方が水素、置換基を有してもよい炭素数1〜12のアルキル基、置換基を有してもよい炭素数1〜12のアルコキシ基、置換基を有してもよい炭素数1〜12のアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、若しくは置換基を有してもよいチオアルキル基を表す。) (In formula (3-A), X3 and X4 are each an alkoxy group having 1 to 12 carbon atoms which may have a substituent, and an alkylene oxide group having 1 to 12 carbon atoms which may have a substituent. Represents a thiocyano group which may have a substituent, an amino group which may have a substituent, or a thioalkyl group which may have a substituent, the other being hydrogen, a carbon which may have a substituent It may have an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms which may have a substituent, an alkylene oxide group having 1 to 12 carbon atoms which may have a substituent, or a substituent. Represents a good thiocyano group, an amino group which may have a substituent, or a thioalkyl group which may have a substituent.)

前記X3及びX4の置換基を有してもよい炭素数1〜12のアルコキシ基、置換基を有してもよい炭素数1〜12のアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、置換基を有してもよいチオアルキル基、置換基を有してもよい炭素数1〜12のアルキル基の置換基には限定はないが、前記X1及びX2の置換基と同様の置換基を用いることができる。   C1-C12 alkoxy group which may have a substituent of said X3 and X4, C1-C12 alkylene oxide group which may have a substituent, Thiocyano group which may have a substituent , The amino group which may have a substituent, the thioalkyl group which may have a substituent, the substituent of the alkyl group having 1 to 12 carbon atoms which may have a substituent is not limited, Substituents similar to the substituents for X1 and X2 can be used.

(式(3−B)中、Y1、Y2は酸素原子、硫黄原子、セレン原子を表し、X5は置換基を有してもよい炭素数1〜12のアルキレン基であり、任意の位置に任意の置換基を有していても良く、アルキレン主鎖中のエチレン構造の代わりに酸素類縁体、窒素類縁体、硫黄類縁体構造を有していても良い。) (In Formula (3-B), Y1 and Y2 represent an oxygen atom, a sulfur atom, and a selenium atom, and X5 is an alkylene group having 1 to 12 carbon atoms that may have a substituent. And may have an oxygen analog, nitrogen analog, or sulfur analog structure in place of the ethylene structure in the alkylene main chain.)

前記X5の置換基を有してもよい炭素数1〜12のアルキレン基の置換基には限定はないが、前記X1及びX2の置換基と同様の置換基を用いることができる。   Although the substituent of the C1-C12 alkylene group which may have the said X5 substituent is not limited, The substituent similar to the said X1 and X2 substituent can be used.

前記化学式(4)アルデヒド誘導体は主に下記化学式(4−A)、(4−B)の2種類に分けることができる。   The aldehyde derivative of the chemical formula (4) can be mainly divided into the following chemical formulas (4-A) and (4-B).

(式(4−A)中、R2〜R6は炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、繰り返し単位が1〜50の炭素数1〜12のアルキレンオキサイド基、フェニル基、複素環基、縮合環基、ヒドロキシ基、アルデヒド基、カルボキシ基、ハロゲン基もしくはそれのアルカリ金属塩、スルホ基もしくはそれのアルカリ金属塩、リン酸基もしくはそれのアルカリ金属塩、アミノ基、シアノ基を複数有しても良い。) (In the formula (4-A), R2 to R6 are an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkylene oxide group having 1 to 50 carbon atoms and a phenyl group. , Heterocyclic group, condensed ring group, hydroxy group, aldehyde group, carboxy group, halogen group or alkali metal salt thereof, sulfo group or alkali metal salt thereof, phosphoric acid group or alkali metal salt thereof, amino group, cyano You may have two or more groups.)

(式(4−B)中、R7は、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、繰り返し単位が1〜50の炭素数1〜12のアルキレンオキサイド基、置換基を有してもよい複素環基、置換基を有してもよい縮合環基を表し、前記アルキル基、アルコキシ基、アルキレンオキサイド基は任意の位置に任意の置換基を有していても良い。) (In formula (4-B), R7 represents an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkylene oxide group having 1 to 50 carbon atoms and 1 to 50 carbon atoms, and a substituent. The heterocyclic group which may have and the condensed ring group which may have a substituent are represented, The said alkyl group, alkoxy group, and alkylene oxide group may have arbitrary substituents in arbitrary positions. )

<塩基性条件>
反応容器にヘテロ環化合物を計量し、不活性ガスを封入しながら、塩基、溶媒を追加し、攪拌を行う。アルデヒド誘導体を攪拌しながら追加し、撹拌しながら反応させる。
反応終了後、イオン交換水を追加し、攪拌しながら酸を少量ずつ添加してpH=6〜8程度まで中和する。精製工程により、ヒドロキシル基を側鎖に持つヘテロ環含有化合物が得られる。
<Basic conditions>
A heterocyclic compound is weighed in a reaction vessel, and a base and a solvent are added and stirred while an inert gas is sealed. Add the aldehyde derivative with stirring and react with stirring.
After completion of the reaction, ion-exchanged water is added, and acid is added little by little while stirring to neutralize to pH = about 6-8. Through the purification step, a heterocyclic-containing compound having a hydroxyl group in the side chain is obtained.

前記反応容器は、特に限定はしないが、ガラス製やテフロン(登録商標)製などが利用できる。   Although the said reaction container is not specifically limited, The product made from glass, the product made from Teflon (trademark), etc. can be utilized.

反応容器にヘテロ環化合物を計量した後に、揮発成分を除去する揮発成分除去工程を用いてもよい。揮発成分除去工程は真空ポンプなどを用いて減圧条件下または加熱による加熱条件下で揮発成分の除去を行ってもよく、減圧条件下と加熱条件下を組合せてもよい。
前記揮発成分としては水、有機溶媒、未反応の基質などがあげられ、ヘテロ環化合物を合成した際、除去できなかった化合物である。
After measuring the heterocyclic compound in the reaction vessel, a volatile component removal step of removing volatile components may be used. In the volatile component removal step, the volatile component may be removed using a vacuum pump or the like under reduced pressure conditions or heating conditions by heating, or the reduced pressure conditions and heating conditions may be combined.
Examples of the volatile component include water, organic solvents, unreacted substrates, and the like, which are compounds that could not be removed when the heterocyclic compound was synthesized.

前記不活性ガスは窒素、アルゴン、ヘリウムなどがあげられる。   Examples of the inert gas include nitrogen, argon, helium and the like.

前記攪拌方法は、特に限定はしないが、スターラーを用いてもよく、振とう機を用いてもよい。   The stirring method is not particularly limited, but a stirrer or a shaker may be used.

塩基性条件下でのヘテロ環化合物の中間反応物合成時の攪拌温度としては、−40〜50℃であり、好ましくは−10〜30℃である。この温度は、具体的には例えば、−40、−30、−20、−10、0、5、10、15、20、25、30、35、40、45又は50℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
更に、アルデヒド誘導体との縮合反応時の攪拌温度としては、25℃〜100℃であり、好ましくは40℃〜80℃である。この温度は、具体的には例えば、25、30、40、50、60、70、80、90又は100℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
この時、ヘテロ環化合物の中間反応物合成時の温度が高すぎる場合、副反応物の生成が増える為、低温での反応が好ましい。
The stirring temperature at the time of synthesizing the intermediate reactant of the heterocyclic compound under basic conditions is −40 to 50 ° C., preferably −10 to 30 ° C. Specifically, this temperature is, for example, −40, −30, −20, −10, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 ° C., and is exemplified here. It may be within a range between any two of the numerical values.
Furthermore, as stirring temperature at the time of condensation reaction with an aldehyde derivative, it is 25 to 100 degreeC, Preferably it is 40 to 80 degreeC. Specifically, this temperature is, for example, 25, 30, 40, 50, 60, 70, 80, 90, or 100 ° C., and may be within a range between any two of the numerical values exemplified here. .
At this time, when the temperature at the time of synthesizing the intermediate reactant of the heterocyclic compound is too high, the production of by-products is increased, so that the reaction at a low temperature is preferable.

塩基性条件下での攪拌時間は、特に限定はしないが、例えば1〜12時間であり、好ましくは2〜6時間である。この時間は、具体的には例えば、1、2、3、4、5、6、7、8、9、10、11又は12時間であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   The stirring time under basic conditions is not particularly limited, but is, for example, 1 to 12 hours, preferably 2 to 6 hours. This time is specifically, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 hours, and is a range between any two of the numerical values exemplified here. It may be within.

塩基性条件下での塩基としては、特に限定されないが、ヘテロ環化合物とアルデヒド誘導体の縮合反応が進行する塩基であればよく、TMP塩基(MAGNESIUMCHLOROTETRAMETHYLPIPERIDID LITHIUMCHLORID COMPLEX)、リチウムジイソプロピルアミド、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、ナトリウムエトキシド等があげられる。   The base under basic conditions is not particularly limited as long as the condensation reaction of the heterocyclic compound and the aldehyde derivative proceeds, and TMP base (MAGNESIUMCHLOROTRATRAMETHYLPIPERIDID LITHIUMCHLORID COMPLEX), lithium diisopropylamide, n-butyllithium, Examples include sec-butyl lithium, tert-butyl lithium, sodium ethoxide, and the like.

塩基性条件下での溶媒としては、特に限定されないが、ヘテロ環化合物とアルデヒド誘導体の縮合反応が進行する溶媒であればよく、テトラヒドロフラン、tert−ブチルメチルエーテル等があげられる。   The solvent under basic conditions is not particularly limited as long as the condensation reaction of the heterocyclic compound and the aldehyde derivative proceeds, and examples thereof include tetrahydrofuran and tert-butyl methyl ether.

塩基性条件下での酸としては、特に限定されないが、ヘテロ環化合物とアルデヒド誘導体の縮合反応終了後、中和できる酸であればよく、塩酸、硝酸、硫酸、又はそれらを0.1Nなどの水溶液にしたもの等があげられる。   The acid under basic conditions is not particularly limited as long as the acid can be neutralized after completion of the condensation reaction of the heterocyclic compound and the aldehyde derivative, such as hydrochloric acid, nitric acid, sulfuric acid, or 0.1N. Examples thereof include an aqueous solution.

前記精製工程は、抽出工程、分取工程などを行う工程である。抽出工程としては、目的物が含まれる油層が回収できればよく、分液抽出などがあげられる。分取工程としては、目的物が単離できればよくカラムクロマトグラフ、蒸留などがあげられる。   The said refinement | purification process is a process of performing an extraction process, a fractionation process, etc. The extraction step is not limited as long as the oil layer containing the target product can be recovered, and examples include separation extraction. As the fractionation step, it is sufficient if the target product can be isolated, and examples thereof include column chromatography and distillation.

<酸性性条件>
反応容器にヘテロ環化合物、酸を計量し、不活性ガスで置換し、アルデヒド誘導体、溶媒を滴下し、撹拌しながら反応させる。
反応終了後、塩基と溶媒を追加する。精製工程により、ヘテロ環残基を側鎖に持つヘテロ環含有化合物が得られる。
<Acid condition>
A heterocyclic compound and an acid are weighed in a reaction vessel, substituted with an inert gas, an aldehyde derivative and a solvent are dropped, and the reaction is conducted with stirring.
After the reaction is complete, base and solvent are added. By the purification step, a heterocyclic-containing compound having a heterocyclic residue in the side chain is obtained.

前記反応容器、不活性ガス、攪拌方法、精製工程は特に限定されず、塩基性条件下と同様の条件を用いることができる。   The reaction vessel, inert gas, stirring method, and purification step are not particularly limited, and the same conditions as basic conditions can be used.

酸性条件下での攪拌時の温度としては、0〜100℃であり、好ましくは50〜90℃である。この温度は、具体的には例えば、0、5、10、15、20、25、30、35、40、45、50、60、70、80、90又は100℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   As temperature at the time of stirring on acidic conditions, it is 0-100 degreeC, Preferably it is 50-90 degreeC. Specifically, this temperature is, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, or 100 ° C., and the numerical value exemplified here It may be within the range between any two.

酸性条件下での攪拌時間は、特に限定はしないが、例えば1〜12時間であり、好ましくは2〜6時間である。この時間は、具体的には例えば、1、2、3、4、5、6、7、8、9、10、11又は12時間であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   The stirring time under acidic conditions is not particularly limited, but is, for example, 1 to 12 hours, preferably 2 to 6 hours. This time is specifically, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 hours, and is a range between any two of the numerical values exemplified here. It may be within.

酸性条件下での酸としては、特に限定されないが、ヘテロ環化合物とアルデヒド誘導体の縮合反応が進行する酸であればよく、過塩素酸、硫酸、メタンスルホン酸、トリフルオロ酢酸、p−トルエンスルホン酸等があげられる。   The acid under acidic conditions is not particularly limited as long as the condensation reaction of the heterocyclic compound and the aldehyde derivative proceeds. Perchloric acid, sulfuric acid, methanesulfonic acid, trifluoroacetic acid, p-toluenesulfone Examples include acids.

酸性条件下での溶媒としては、特に限定されないが、ヘテロ環化合物とアルデヒド誘導体の縮合反応が進行する溶媒であればよく、トルエン、ベンゼン、メチルエチルケトン、ヘプタン等があげられる。   The solvent under acidic conditions is not particularly limited as long as the condensation reaction of the heterocyclic compound and the aldehyde derivative proceeds, and examples thereof include toluene, benzene, methyl ethyl ketone, heptane and the like.

酸性条件下での塩基としては、特に限定されないが、ヘテロ環化合物とアルデヒド誘導体の縮合反応終了できる塩基であればよく、ジメチルアミノエタノール、トリエチルアミン、ピリジン等があげられる。   The base under acidic conditions is not particularly limited, and may be any base that can complete the condensation reaction between the heterocyclic compound and the aldehyde derivative, and examples thereof include dimethylaminoethanol, triethylamine, and pyridine.

このようにヘテロ環含有化合物を合成することで、後述する複数の種類のヘテロ環含有化合物を用いて重合体を合成する際、好ましい組み合わせの官能基が隣合わせで合成することができ、より効果を高めることが可能であり、複数の種類のヘテロ環化合物とアルデヒド誘導体を用いて直接重合体を合成した場合に起こる官能基の組合せがランダムになってしまい、効果がなくなるまたは低下するのを防ぐことができる。   Thus, by synthesizing the heterocyclic ring-containing compound, when synthesizing a polymer using a plurality of types of heterocyclic ring-containing compounds described later, a preferred combination of functional groups can be synthesized side by side, and more effective. It is possible to increase the number of heterocyclic compounds and aldehyde derivatives to directly synthesize the polymer, and the functional group combination that occurs when the polymer is directly randomized is prevented from being lost or reduced. Can do.

また、ヘテロ環化合物とアルデヒド誘導体から直接重合体を合成する場合に比べ、ヘテロ環含有化合物から重合体を合成する場合は反応時間を短くすることができ、副反応が起きる確立を減らし不純物の生成を抑えることが可能となることや、ヘテロ環含有化合物の段階で精製可能なため、重合体の純度を高めることが可能である。   Compared to the case where a polymer is directly synthesized from a heterocyclic compound and an aldehyde derivative, the reaction time can be shortened when the polymer is synthesized from a heterocyclic compound, and the occurrence of side reactions is reduced, thereby generating impurities. It is possible to suppress the above, and the purity of the polymer can be increased because it can be purified at the stage of the heterocycle-containing compound.

また、本発明の合成機構を用いれば、チエノポルフィリンのような環状化合物を得ることができる。合成した参考例を後述する。   In addition, if the synthesis mechanism of the present invention is used, a cyclic compound such as thienoporphyrin can be obtained. A synthesized reference example will be described later.

<重合体の合成>
反応容器にヘテロ環含有化合物を加え加熱攪拌すれば、重合体を得ることができるが、好ましい合成方法としてはドーパント(スルホン酸化合物アニオン又はその塩)、重合溶媒を計量し、攪拌後、酸化剤を追加し、撹拌する。
反応終了後、イオン分除去し、重合体組成物が得られる。
<Synthesis of polymer>
A polymer can be obtained by adding a heterocycle-containing compound to a reaction vessel and stirring with heating. As a preferred synthesis method, a dopant (sulfonic acid compound anion or a salt thereof) and a polymerization solvent are weighed, stirred, and then oxidized. Add and stir.
After completion of the reaction, the ion content is removed to obtain a polymer composition.

前記重合体組成物は重合体と重合溶媒の混合物であり、重合溶媒に分散していてもよく、完全に溶解していてもよい。前記重合体組成物から重合溶媒を減圧乾燥などの公知の方法を用いて除去することで、重合体が得られる。   The polymer composition is a mixture of a polymer and a polymerization solvent, and may be dispersed in the polymerization solvent or may be completely dissolved. A polymer is obtained by removing the polymerization solvent from the polymer composition using a known method such as drying under reduced pressure.

前記重合体は下記化学式(5)又は化学式(6)の繰返し単位を有する。   The polymer has a repeating unit of the following chemical formula (5) or chemical formula (6).

(式(5)、(6)中、X1、X2及びRは、化学式(1)と同じであり、nは、2〜100である。) (In the formulas (5) and (6), X1, X2 and R are the same as those in the chemical formula (1), and n is 2 to 100.)

塩基性条件下で合成した側鎖にヒドロキシ基を持つヘテロ環含有化合物を用いた場合、縮合重合反応が進行し、水分子が脱離した化学式(5)で表される重合体が得られ、酸性条件下合成した側鎖にヘテロ環残基を持つヘテロ環含有化合物を用いた場合、酸化重合反応が進行し化学式(6)で表される重合体が得られる。   When a heterocycle-containing compound having a hydroxy group in the side chain synthesized under basic conditions is used, a polymer represented by the chemical formula (5) in which a condensation polymerization reaction proceeds and water molecules are eliminated is obtained. When a heterocyclic compound having a heterocyclic residue in the side chain synthesized under acidic conditions is used, an oxidative polymerization reaction proceeds to obtain a polymer represented by chemical formula (6).

前記反応容器、攪拌方法は特に限定されず、塩基性条件下と同様の条件を用いることができる。   The reaction vessel and the stirring method are not particularly limited, and the same conditions as basic conditions can be used.

重合体の合成時の温度としては、0〜100℃であり、好ましくは15〜35℃である。この温度は、具体的には例えば、0、5、10、15、20、25、30、35、40、45、50、60、70、80、90又は100℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   As temperature at the time of the synthesis | combination of a polymer, it is 0-100 degreeC, Preferably it is 15-35 degreeC. Specifically, this temperature is, for example, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, or 100 ° C., and the numerical value exemplified here It may be within the range between any two.

重合体の合成時の攪拌時間は、特に限定はしないが、1〜12時間であり、好ましくは2〜6時間である。この時間は、具体的には例えば、1、2、3、4、5、6、7、8、9、10、11又は12時間であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   Although the stirring time at the time of the synthesis | combination of a polymer is not specifically limited, It is 1 to 12 hours, Preferably it is 2 to 6 hours. This time is specifically, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 hours, and is a range between any two of the numerical values exemplified here. It may be within.

前記ドーパントとしては、特に限定されないが、ポリスチレンスルホン酸水溶液、ポリ2−スルホエチル(メタ)アクリレート、ポリ3−プロピルスルホ(メタ)アクリレート及びその共重合体等のポリアニオン、又はそのアルカリ金属塩、p−トルエンスルホン酸、ドデシルスルホン酸、ドデシルベンゼンスルホン酸、ジ(2−エチルヘキシル)スルホコハク酸、ポリオキシエチレン多環フェニルエーテルスルホン酸エステル、ポリオキシエチレンアリールエーテル硫酸エステル等のモノアニオン、又はそのアルカリ金属塩等があげられる。   Although it does not specifically limit as said dopant, Polysulfonic acid aqueous solution, poly 2-sulfoethyl (meth) acrylate, polyanions, such as poly 3-propyl sulfo (meth) acrylate and its copolymer, or its alkali metal salt, p- Monoanions such as toluenesulfonic acid, dodecylsulfonic acid, dodecylbenzenesulfonic acid, di (2-ethylhexyl) sulfosuccinic acid, polyoxyethylene polycyclic phenyl ether sulfonic acid ester, polyoxyethylene aryl ether sulfuric acid ester, or alkali metal salts thereof Etc.

前記重合溶媒としては、特に限定されないが、水、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、メチルセロソルブ、エチルセロソルブ、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル等のグリコール系溶剤、乳酸メチル、乳酸エチル等の乳酸系溶剤、トルエン、酢酸エチル等があげられる。   The polymerization solvent is not particularly limited, but alcohol solvents such as water, methanol, ethanol, isopropyl alcohol and butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, methyl cellosolve, ethyl cellosolve, propylene glycol methyl ether And glycol solvents such as propylene glycol ethyl ether, lactic acid solvents such as methyl lactate and ethyl lactate, toluene, and ethyl acetate.

前記酸化剤としては、特に限定されないが、重合反応が進行する酸化剤であればよく、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム、塩化鉄(III)、硫酸鉄(III)、水酸化鉄(III)、テトラフルオロホウ酸鉄(III)、ヘキサフルオロ燐酸鉄(III)、硫酸銅(II)、塩化銅(II)、テトラフルオロホウ酸銅(II)、ヘキサフルオロ燐酸銅(II)およびオキソ二硫酸アンモニウム、過酸化水素等があげられる。   The oxidizing agent is not particularly limited, and may be any oxidizing agent that allows a polymerization reaction to proceed. For example, ammonium peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate, iron (III) chloride, iron (III) sulfate, water Iron (III) oxide, iron (III) tetrafluoroborate, iron (III) hexafluorophosphate, copper (II) sulfate, copper (II) chloride, copper (II) tetrafluoroborate, copper hexafluorophosphate (II And ammonium oxodisulfate, hydrogen peroxide and the like.

前記ドーパントおよび酸化剤は1種のみを用いてもよく、複数の種類のものを用いてもよい。   As the dopant and the oxidizing agent, only one kind may be used, or a plurality of kinds may be used.

前記酸化剤は一度に加えてもよく、反応の進行状況を見ながら複数回に分けて加えてもよい。   The oxidizing agent may be added at once, or may be added in a plurality of times while observing the progress of the reaction.

前記イオン分除去方法は、特に限定されないが、イオン分が除去できる方法であればよく、過剰のイオン交換樹脂を通す方法、限外ろ過、重合体沈殿による溶媒洗浄等があげられる。   The ion content removal method is not particularly limited, and any method that can remove the ion content may be used. Examples include a method of passing an excess ion exchange resin, ultrafiltration, and solvent washing by polymer precipitation.

得られる重合体組成物のイオン化ポテンシャルが5.2(好ましくは5.4、さらに好ましくは5.6)eV以上と高い数値になる。PEDOT/PSSのイオン化ポテンシャル(5.0〜5.1eV)より高くなる分、本発明の重合性組成物を半導体に用いた場合には、開放端電圧が高くなる効果を奏する。   The resulting polymer composition has a high ionization potential of 5.2 (preferably 5.4, more preferably 5.6) eV or higher. When the polymerizable composition of the present invention is used for a semiconductor by an amount higher than the ionization potential (5.0 to 5.1 eV) of PEDOT / PSS, there is an effect of increasing the open-circuit voltage.

前記重合体組成物は塗布により均一な膜を生成することができ、導入する官能基の種類により、用途に応じて必要な物理的な強度、溶剤耐性等を付与することができる。   The said polymer composition can produce | generate a uniform film | membrane by application | coating, and can give the physical intensity | strength, solvent tolerance, etc. which are required according to a use with the kind of functional group to introduce | transduce.

前記塗布方法としては特に限定はされないが、公知の塗布方法を利用することができる。   Although it does not specifically limit as said coating method, A well-known coating method can be utilized.

重合体の合成おいて、前記ヘテロ環含有化合物は1種のみを用いてもよく、複数の種類のものを用いて共重合体としてもよい。   In the synthesis of the polymer, only one kind of the heterocycle-containing compound may be used, or a plurality of kinds may be used as a copolymer.

また、前記ヘテロ環含有化合物と公知のモノマーまたは重合体と組合せて共重合体を合成しても、官能基特有の効果を付与することができる。   Moreover, even if a copolymer is synthesized by combining the heterocyclic ring-containing compound with a known monomer or polymer, an effect specific to a functional group can be imparted.

重合体の繰り返し単位としては特に限定はしないが、2〜100であり、好ましくは2〜20である。具体的には例えば、2、5、10、20、30、40、50、60、70、80、90又は100であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   Although it does not specifically limit as a repeating unit of a polymer, It is 2-100, Preferably it is 2-20. Specifically, for example, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100, even if it is within the range between any two of the numerical values exemplified here Good.

導入する官能基は複数あってもよく、複数の効果を同時に付与することも可能である。   There may be a plurality of functional groups to be introduced, and a plurality of effects can be imparted simultaneously.

官能基として、アルキル基を導入することで、有機溶媒等に溶けやすくなる効果を付与することができる。溶媒に溶けやすくなることで、水の混入が問題となるデバイス用途への応用が容易になると共に塗膜形成の際に、低温で均一な膜の形成が期待できる。   By introducing an alkyl group as a functional group, an effect of being easily dissolved in an organic solvent or the like can be imparted. By being easily dissolved in a solvent, it can be easily applied to a device application in which mixing of water becomes a problem, and a uniform film can be formed at a low temperature when a coating film is formed.

官能基として、フェノールまたはカルボキシ基を導入することで、エポキシ、カルボジイミド等の架橋剤の添加によって架橋反応がおこり、膜安定性効果を付与することができる。膜安定性が向上することで、塗膜の溶剤耐性があがり電解質溶液などが原因となる剥がれが発生しにくくなることが期待できる。   By introducing a phenol or carboxy group as a functional group, a crosslinking reaction occurs due to the addition of a crosslinking agent such as epoxy or carbodiimide, and a film stability effect can be imparted. By improving the film stability, it can be expected that the solvent resistance of the coating film is increased and peeling due to the electrolyte solution is less likely to occur.

官能基として、スルホン酸を導入することで、自己ドープできる効果を付与することができる。ドーパントの添加が不要なため操作が簡便になり、コスト面でも有利になる他、分子内にドーパントがあるため均一にドーパントが存在しており、安定した熱特性及び導電度が期待できる。   By introducing sulfonic acid as a functional group, an effect capable of self-doping can be imparted. Since the addition of a dopant is unnecessary, the operation is simple and advantageous in terms of cost, and since the dopant is present in the molecule, the dopant is present uniformly, and stable thermal characteristics and conductivity can be expected.

このように本発明のヘテロ環含有化合物を導電性高分子材料として用いることで、側鎖に様々な官能基の導入が簡単にできるため、上記で紹介したような機能を持つ重合体を合成することができる。
更に、ヘテロ環含有化合物の組成及び配合比を変える事で容易にイオン化ポテンシャルを調整する事ができる。
As described above, since the heterocycle-containing compound of the present invention is used as a conductive polymer material, various functional groups can be easily introduced into the side chain, so that a polymer having the function introduced above is synthesized. be able to.
Furthermore, the ionization potential can be easily adjusted by changing the composition and blending ratio of the heterocycle-containing compound.

本発明の重合体、重合体組成物および塗膜の用途には限定はないが、各種用途の帯電防止剤及びそれを用いた帯電防止フィルム、p型有機半導体、n型有機半導体、固体電解コンデンサの固体電解質及びその添加剤、エレクトロクロミック素子、有機薄膜太陽電池の透明電極、色素増感太陽電池の対極及びその補助剤、有機エレクトロルミネッセンス、化学センサ、燃料電池、タッチパネルや液晶ディスプレイなどの電子デバイス、粘着剤、カーボンなどへの添加剤などに好適に用いることができる。   The use of the polymer, polymer composition and coating film of the present invention is not limited, but antistatic agents for various uses, antistatic films using the same, p-type organic semiconductors, n-type organic semiconductors, solid electrolytic capacitors Solid electrolytes and additives thereof, electrochromic elements, transparent electrodes of organic thin film solar cells, counter electrodes of dye-sensitized solar cells and auxiliary agents thereof, organic electroluminescence, chemical sensors, fuel cells, electronic devices such as touch panels and liquid crystal displays It can be suitably used as an additive for adhesives, carbon and the like.

<モノマー(ヘテロ環含有化合物)の合成>
合成法1:モノマー1の合成(塩基性条件)
300ml反応容器に3,4−エチレンジオキシチオフェン(EDOT)を14.2g計量し、真空ポンプを用い40℃で1時間真空にして揮発成分を除去した。乾燥窒素封入しながら、TMP塩基/THF溶液(1mol/L)100mlを追加し、攪拌を行いながら、室温で2時間反応させた。ベンズアルデヒド10gを攪拌しながら追加し、50℃に昇温して6時間反応後、室温に冷却した。
上記反応終了後、イオン交換水50gを追加し、攪拌しながら0.1N塩酸を少量ずつ添加してpH=7に中和した。分液抽出を行い、油層を回収し、この分液抽出を2回繰り返した。油層に過剰の硫酸マグネシウムを添加して脱水し、硫酸マグネシウムをろ別し、ろ液をエバポレーターで濃縮後、ヘキサン/酢酸エチル溶媒を用いてカラムクロマトで目的物を分取し、褐色液体のモノマー1を得た。
モノマー1の同定は、LC−MS、NMR及びIRにて確認を行った。図1aにNMR、図3aにIRの結果を示す。
<Synthesis of monomer (heterocycle-containing compound)>
Synthesis method 1: Synthesis of monomer 1 (basic conditions)
In a 300 ml reaction vessel, 14.2 g of 3,4-ethylenedioxythiophene (EDOT) was weighed and evacuated using a vacuum pump at 40 ° C. for 1 hour to remove volatile components. While adding dry nitrogen, 100 ml of a TMP base / THF solution (1 mol / L) was added, and the mixture was reacted at room temperature for 2 hours while stirring. 10 g of benzaldehyde was added with stirring, the temperature was raised to 50 ° C., the reaction was performed for 6 hours, and then cooled to room temperature.
After completion of the reaction, 50 g of ion-exchanged water was added, and 0.1N hydrochloric acid was added little by little while stirring to neutralize to pH = 7. Liquid separation extraction was performed, the oil layer was collected, and this liquid separation extraction was repeated twice. Add excess magnesium sulfate to the oil layer to dehydrate, filter the magnesium sulfate, concentrate the filtrate with an evaporator, fractionate the target product with column chromatography using hexane / ethyl acetate solvent, and prepare a brown liquid monomer 1 was obtained.
The identification of the monomer 1 was confirmed by LC-MS, NMR and IR. Fig. 1a shows the NMR results and Fig. 3a shows the IR results.

合成法2:モノマー2の合成(塩基性条件)
ベンズアルデヒドを2−エチルヘキシルアルデヒドに変更した以外は合成法1と同様の方法にて合成し、淡黄色の液体のモノマー2を得た。
Synthesis method 2: Synthesis of monomer 2 (basic conditions)
Synthesis was performed in the same manner as in Synthesis Method 1 except that benzaldehyde was changed to 2-ethylhexyl aldehyde to obtain a light yellow liquid monomer 2.

合成法3:モノマー3の合成(酸性性条件)
500ml反応容器にEDOT270g、テトラフルオロ酢酸1gを計量し、窒素置換を1時間行い、60℃に加熱してベンズアルデヒド6g、トルエン100gを7時間かけて滴下した。3時間加熱後、室温に冷却し、トルエン50g、トリエチルアミン1.2gを追加して攪拌した。イオン交換水を50g添加して分液抽出を行い、油層を回収し、この分液抽出をイオン交換水50gを用いて3回繰り返した。油層に過剰の硫酸マグネシウムを添加して脱水し、硫酸マグネシウムをろ別し、ろ液をエバポレーターで濃縮後、減圧蒸留装置にてEDOTを分留除去して濃縮し、残留分をヘキサン/酢酸エチル溶媒を用いてカラムクロマトで目的物を分取し、淡黄色の結晶のモノマー3を得た。
モノマー3の同定は、LC−MS及びNMR及びIRにて確認を行った。図1bにNMR、図4cにIRの結果を示す。
Synthesis method 3: Synthesis of monomer 3 (acidic conditions)
EDOT (270 g) and tetrafluoroacetic acid (1 g) were weighed in a 500 ml reaction vessel, purged with nitrogen for 1 hour, heated to 60 ° C., and dropped with 6 g of benzaldehyde and 100 g of toluene over 7 hours. After heating for 3 hours, the mixture was cooled to room temperature, and 50 g of toluene and 1.2 g of triethylamine were added and stirred. Separation extraction was performed by adding 50 g of ion-exchanged water, the oil layer was recovered, and this separation-extraction was repeated three times using 50 g of ion-exchanged water. Excess magnesium sulfate is added to the oil layer for dehydration, the magnesium sulfate is filtered off, the filtrate is concentrated with an evaporator, EDOT is distilled off with a vacuum distillation apparatus and concentrated, and the residue is hexane / ethyl acetate. The target product was separated by column chromatography using a solvent to obtain light yellow crystalline monomer 3.
The identification of the monomer 3 was confirmed by LC-MS, NMR and IR. Fig. 1b shows the NMR results and Fig. 4c shows the IR results.

合成法4:モノマー4の合成(酸性性条件)
ベンズアルデヒド6gをシリンガアルデヒド11gに変更し、トルエンをメチルエチルケトンに変更した以外は合成法3と同様の方法にて合成し、淡赤色の結晶のモノマー4を得た。図2cにNMR、図4dにIRの結果を示す。
Synthesis method 4: Synthesis of monomer 4 (acidic conditions)
Synthesis was performed in the same manner as in Synthesis Method 3 except that 6 g of benzaldehyde was changed to 11 g of syringaldehyde and toluene was changed to methyl ethyl ketone, to obtain monomer 4 of pale red crystals. Fig. 2c shows the NMR results, and Fig. 4d shows the IR results.

合成法5:モノマー5の合成(酸性性条件)
ベンズアルデヒド6gを2エチルヘキシルアルデヒド7.3gに変更した以外は合成法3と同様の方法にて合成し、淡黄色の液体のモノマー5を得た。
Synthesis method 5: Synthesis of monomer 5 (acidic conditions)
Synthesis was carried out in the same manner as in Synthesis Method 3 except that 6 g of benzaldehyde was changed to 7.3 g of 2-ethylhexyl aldehyde to obtain a light yellow liquid monomer 5.

モノマー6の合成(酸性性条件)
ベンズアルデヒド6gを2−デオキシ−D−リボース7.5gに変更し、トルエン100gをメチルエチルケトン50g、エタノール50gに変更した以外は合成法3と同様の方法にて合成し、淡黄色固体のモノマー6を得た。
Synthesis of monomer 6 (acidic conditions)
Synthesis was performed in the same manner as in Synthesis Method 3 except that 6 g of benzaldehyde was changed to 7.5 g of 2-deoxy-D-ribose, and 100 g of toluene was changed to 50 g of methyl ethyl ketone and 50 g of ethanol to obtain monomer 6 of a pale yellow solid. It was.

<重合体の合成>
合成法6:重合体1の合成
300ml反応容器にモノマー1を0.65g、ポリスチレンスルホン酸水溶液(Mw=75,000、固形分19%)7.8g、イオン交換水30gを計量し、攪拌を30分程度行なった後、塩化鉄(III)0.04g及びペルオキソ二硫酸アンモニウム0.4gを追加し、4時間室温で攪拌後にペルオキソ二硫酸ナトリウム0.9g追加して、4時間攪拌した。反応終了後に過剰のイオン交換樹脂を通す事でイオン分除去し、茶褐色の重合体分散液の重合体1を得た。
<Synthesis of polymer>
Synthesis Method 6: Synthesis of Polymer 1 0.65 g of Monomer 1, 7.8 g of polystyrene sulfonic acid aqueous solution (Mw = 75,000, solid content 19%), 30 g of ion-exchanged water and 30 g of ion-exchanged water were weighed in a 300 ml reaction vessel. After about 30 minutes, 0.04 g of iron (III) chloride and 0.4 g of ammonium peroxodisulfate were added, and after stirring for 4 hours at room temperature, 0.9 g of sodium peroxodisulfate was added and stirred for 4 hours. After the reaction was completed, the ion content was removed by passing an excess ion exchange resin to obtain polymer 1 of a brown polymer dispersion.

重合体2の合成
モノマー1をモノマー2に変更した以外は合成法6と同様の方法にて合成し、重合体分散液の重合体2を得た。
The polymer 2 was synthesized by the same method as the synthesis method 6 except that the synthetic monomer 1 of the polymer 2 was changed to the monomer 2 to obtain a polymer 2 of a polymer dispersion.

合成法7:重合体3の合成
200ml反応容器にポリスチレンスルホン酸水溶液(Mw=75,000、固形分19%)3.1g、イオン交換水10g、硫酸鉄(III)0.057g添加して50℃で加熱攪拌し、褐色均一液中にモノマー3 0.37gを酢酸エチル 5gに溶解した溶液を追加し、ペルオキソニ硫酸アンモニウムを0.3g追加して、5時間攪拌し冷却した。反応終了後に過剰のイオン交換樹脂に通してイオン分除去し、濃緑色の重合体分散液の重合体3を得た。
Synthesis Method 7: Synthesis of Polymer 3 3.1 g of an aqueous polystyrene sulfonic acid solution (Mw = 75,000, solid content 19%), 10 g of ion-exchanged water, and 0.057 g of iron (III) sulfate were added to a 200 ml reaction vessel and added to 50 ml. The mixture was heated and stirred at 0 ° C., a solution in which 0.37 g of monomer 3 was dissolved in 5 g of ethyl acetate in a brown uniform liquid was added, 0.3 g of ammonium peroxodisulfate was added, and the mixture was stirred for 5 hours and cooled. After completion of the reaction, the ion content was removed by passing through an excess ion exchange resin to obtain a polymer 3 of a dark green polymer dispersion.

合成法8:重合体4の合成
合成法7のモノマー3 0.37gをモノマー3 0.2g及びEDOT 0.1g(モノマーモル比で50:50)とした以外は、合成法7と同様に重合させ、濃青色の重合体分散液の重合体4を得た。図8aに分解開始温度測定の結果を示す。
Synthesis Method 8: Synthesis of Polymer 4 Polymerization was conducted in the same manner as in Synthesis Method 7 except that 0.37 g of monomer 3 in Synthesis method 7 was changed to 0.2 g of monomer 3 and 0.1 g of EDOT (monomer molar ratio 50:50). A polymer 4 of a deep blue polymer dispersion was obtained. FIG. 8a shows the result of the decomposition start temperature measurement.

合成法9:重合体5の合成
合成法7のモノマー3 0.37gをモノマー4 0.45gとした以外は、合成法7と同様に重合させ、濃青紫色の重合体分散液の重合体5を得た。図5eにIR、図8bに分解開始温度測定の結果を示す。
Synthesis Method 9: Synthesis of Polymer 5 Polymerization 5 was performed in the same manner as in Synthesis Method 7 except that 0.37 g of monomer 3 in Synthesis method 7 was changed to 0.45 g of monomer 4, and polymer 5 in a deep blue-violet polymer dispersion. Got. FIG. 5e shows the IR, and FIG. 8b shows the result of the decomposition start temperature measurement.

合成法10:重合体6の合成
200ml反応容器にポリスチレンスルホン酸水溶液(Mw=75,000、固形分19%)3.1g、イオン交換水10g、塩化鉄(III)0.057g、p−トルエンスルホン酸 0.017gを添加して50℃で加熱攪拌し、褐色均一液中にモノマー4 0.34g、EDOT 0.035g(モノマーモル比で75:25)を酢酸エチル 5gに溶解した溶液を追加し、ペルオキソニ硫酸ナトリウムを0.4g追加して、5時間攪拌し冷却した。反応終了後に過剰のイオン交換樹脂に通してイオン分除去し、濃青色の重合体分散液の重合体6を得た。
Synthesis Method 10: Synthesis of Polymer 6 Polystyrenesulfonic acid aqueous solution (Mw = 75,000, solid content 19%) 3.1 g, ion-exchanged water 10 g, iron (III) chloride 0.057 g, p-toluene in a 200 ml reaction vessel Add 0.017 g of sulfonic acid and heat and stir at 50 ° C. Add a solution of 0.34 g of monomer 4 and 0.035 g of EDOT (75:25 in terms of monomer molar ratio) dissolved in 5 g of ethyl acetate in the brown homogeneous liquid. Then, 0.4 g of sodium peroxodisulfate was added, and the mixture was stirred for 5 hours and cooled. After completion of the reaction, the ion content was removed by passing through an excess ion exchange resin to obtain a polymer 6 of a deep blue polymer dispersion.

重合体7の合成
モノマー3をモノマー5に変更した以外は合成法7と同様の方法にて合成し、重合体分散液の重合体7を得た。
The polymer 7 was synthesized by the same method as the synthesis method 7 except that the synthetic monomer 3 of the polymer 7 was changed to the monomer 5 to obtain a polymer 7 of a polymer dispersion.

合成法11:重合体8の合成
300ml反応容器にモノマー1を1g、トルエン50g、テトラフルオロ酢酸0.2gを計量し、窒素置換を行いながら、50℃に加熱攪拌した。7時間反応後、冷却し、析出物をろ別してイソプロプルアルコールで洗浄し、乾燥して、橙色の結晶の重合体8を得た。
重合体8の同定は、LC−MS、NMR及びIRにて確認を行った。図2dにNMR、図3bにIRの結果を示す。
Synthesis Method 11: Synthesis of Polymer 8 1 g of monomer 1, 50 g of toluene, and 0.2 g of tetrafluoroacetic acid were weighed into a 300 ml reaction vessel, and heated and stirred at 50 ° C. while purging with nitrogen. After reacting for 7 hours, the mixture was cooled, and the precipitate was collected by filtration, washed with isopropyl alcohol, and dried to obtain orange crystalline polymer 8.
The identification of the polymer 8 was confirmed by LC-MS, NMR and IR. Fig. 2d shows NMR results, and Fig. 3b shows IR results.

図6に重合体8のLC−MSを測定した結果を示す。LC−MSでの測定結果から、繰り返し単位として2〜20程度であることがわかった。   The result of having measured LC-MS of the polymer 8 in FIG. 6 is shown. From the measurement result by LC-MS, it was found that the number of repeating units was about 2 to 20.

合成法12:重合体9の合成
300ml反応容器にEDOTを80g、2−スルホベンズアルデヒドナトリウムを48g、酢酸エチル60g、テトラフルオロ酢酸1.5gを計量し、窒素置換を行いながら、50℃に過熱攪拌した。7時間反応後、メタノールを10g添加して冷却し、反応液を500ml容器に移した後、酢酸エチルを200g添加して攪拌した。その後、析出物をろ別して結晶を回収後、メタノール/水=90/10に溶解して不溶分を除去し、溶液を再結晶して緑色の結晶の重合体9を得た。
LC−MSの測定結果から、繰り返し単位として3〜20程度であることがわかった。
Synthesis Method 12: Synthesis of Polymer 9 80 g of EDOT, 48 g of 2-sulfobenzaldehyde sodium, 60 g of ethyl acetate and 1.5 g of tetrafluoroacetic acid were weighed into a 300 ml reaction vessel, and the mixture was heated to 50 ° C. with nitrogen substitution. did. After reacting for 7 hours, 10 g of methanol was added and cooled, the reaction solution was transferred to a 500 ml container, and then 200 g of ethyl acetate was added and stirred. Thereafter, the precipitate was separated by filtration and the crystals were collected, and then dissolved in methanol / water = 90/10 to remove insolubles. The solution was recrystallized to obtain a green crystalline polymer 9.
From the measurement result of LC-MS, it turned out that it is about 3-20 as a repeating unit.

重合体10の合成
合成法7のモノマー3 0.37gをモノマー6 0.44gに変更し、酢酸エチルをイソプロピルアルコールに変更した以外は、合成法7と同様に重合させ、重合体10を得た。
Monomer 3 0.37 g of Synthesis Process 7 of Polymer 10 was changed to a monomer 6 0.44 g, except for changing the ethyl acetate to isopropyl alcohol is similarly polymerized with synthesis 7, a polymer was obtained 10 .

比較例Comparative example

比較例1:重合体11の合成
モノマー3をEDOT 0.15gに変更更した以外は合成法7と同様の方法にて合成し、濃青色重合体分散液の重合体11を得た。図5fにIR、図9cに分解開始温度測定の結果を示す。
Comparative Example 1: Polymer 11 was synthesized in the same manner as in Synthesis Method 7 except that the synthetic monomer 3 was changed to 0.15 g of EDOT to obtain a polymer 11 of a deep blue polymer dispersion. FIG. 5f shows the IR, and FIG. 9c shows the result of the decomposition start temperature measurement.

比較例2:重合体12の合成
モノマー1を1g、3−ヘキシルチオフェン1.14g、トルエン50g、テトラフルオロ酢酸0.2gを計量し、窒素置換を行いながら、50℃に過熱攪拌した。7時間反応後、薄層クロマトグラフィーで反応状況を確認したが、原料由来の発光のみで反応していなかった。
Comparative Example 2: Synthetic monomer 1 of polymer 12 1 g, 1.14 g of 3-hexylthiophene, 50 g of toluene and 0.2 g of tetrafluoroacetic acid were weighed and stirred at 50 ° C. with nitrogen substitution. After the reaction for 7 hours, the reaction state was confirmed by thin layer chromatography, but it was not reacted only by light emission derived from the raw material.

重合体1〜9、11のモル比をまとめたものを表1に示す。   Table 1 shows a summary of the molar ratios of polymers 1-9 and 11.

<導電率測定サンプル調整法>
重合体1をサンプル瓶に6g計量し、プローブ式超音波解砕機にて解砕処理を行った。解砕後の重合体1をそのまま測定サンプル1とした。
また、同様に解砕後の重合体1を1g計量し、ジメチルスルホキシド0.08g添加して良く攪拌し、測定サンプル2とした。
重合体2〜8、10、11についても同様に測定サンプル1、2を作製した。
<Conductivity measurement sample adjustment method>
6 g of the polymer 1 was weighed into a sample bottle and crushed by a probe type ultrasonic crusher. The polymer 1 after pulverization was used as the measurement sample 1 as it was.
Similarly, 1 g of the polymer 1 after pulverization was weighed, 0.08 g of dimethyl sulfoxide was added, and the mixture was well stirred to obtain a measurement sample 2.
Measurement samples 1 and 2 were similarly prepared for the polymers 2 to 8, 10 and 11.

<導電率測定膜作製法>
イソプロピルアルコール(IPA)で表面を洗浄したガラス板上にテープを用いて2cm×2cmの面積を作製し、重合体1の測定サンプル1を0.2g垂らし、均一に広げ、120℃で30分乾燥して測定膜1を作製した。
重合体1の測定サンプル2、重合体2〜8、10、11の測定サンプル1、2についても同様に測定膜1、2を作製した。
<Conductivity measurement film preparation method>
An area of 2 cm x 2 cm is prepared using a tape on a glass plate whose surface is cleaned with isopropyl alcohol (IPA), 0.2 g of measurement sample 1 of polymer 1 is hung, uniformly spread, and dried at 120 ° C for 30 minutes. Thus, the measurement film 1 was produced.
Measurement films 1 and 2 were similarly prepared for measurement sample 2 of polymer 1 and measurement samples 1 and 2 of polymers 2 to 8, 10, and 11.

<分解開始温度測定サンプル調整法>
重合体1をサンプル瓶に入れた状態で減圧乾燥機に入れ、30℃で10Pa以下に減圧して水分を乾燥して重合体1粉末を得た。
<Decomposition start temperature measurement sample adjustment method>
The polymer 1 was put in a vacuum dryer in a sample bottle, and the water was dried by reducing the pressure to 10 Pa or less at 30 ° C. to obtain a polymer 1 powder.

導電率の測定については三菱アナリテック製のロレスタGPを用いた。
また、粒度分布の測定については日機装製のNanotrac UPAを用いた。
分解開始温度の測定については日立ハイテクサイエンス製のTG−DTA(STA7220)を用いた。
イオン化ポテンシャルの測定については住友重機工業製のPYS−202を用いた。
Loresta GP made by Mitsubishi Analitech was used for the measurement of conductivity.
For measurement of the particle size distribution, Nanotrac UPA manufactured by Nikkiso was used.
For the measurement of the decomposition start temperature, TG-DTA (STA7220) manufactured by Hitachi High-Tech Science was used.
For measurement of the ionization potential, PYS-202 manufactured by Sumitomo Heavy Industries, Ltd. was used.

<塗膜状態評価方法>
塗膜した後、その塗膜状態を目視により、塗膜の均一性及び表面光沢の有無を以下の基準で評価した。
◎:塗膜が均一及び表面光沢有り
○:塗膜がわずかに不均一又は表面光沢にわずかに曇り有り
<Coating state evaluation method>
After coating, the coating state was visually evaluated for the uniformity of the coating and the presence or absence of surface gloss on the following criteria.
◎: Uniform coating and surface gloss ○: Coating is slightly non-uniform or surface gloss slightly cloudy

重合体1〜8、10、11を評価した結果を表2に示す。   Table 2 shows the results of evaluating the polymers 1-8, 10, and 11.

<膜耐溶剤性評価>
以下の条件で膜耐溶剤性を評価した結果を表3に示す。
硬化剤配合比率:重合体/エポキシ硬化剤(エチレングリコールジグリシジルエーテル)=1g/0.1g(5%メタノール)
乾燥条件:120℃×1時間
評価方法:乾燥塗膜上にメタノールを1滴滴下して、目視で外観変化を確認した。
<Membrane solvent resistance evaluation>
Table 3 shows the results of evaluating the film solvent resistance under the following conditions.
Curing agent blending ratio: polymer / epoxy curing agent (ethylene glycol diglycidyl ether) = 1 g / 0.1 g (5% methanol)
Drying conditions: 120 ° C. × 1 hour Evaluation method: One drop of methanol was dropped on the dried coating film, and changes in appearance were visually confirmed.

さらに以下の条件で膜耐溶剤性を評価した結果を表4に示す。
硬化剤配合比率:重合体/イソシアネート硬化剤(デュラネートWB40−80D:旭化成ケミカルズ株式会社製)=1g/0.1g(5%アセトン希釈)
乾燥条件:120℃×1時間
評価方法:乾燥塗膜上にメタノールを1滴滴下して、目視で外観変化を確認した。
Table 4 shows the results of evaluating the film solvent resistance under the following conditions.
Curing agent blending ratio: polymer / isocyanate curing agent (Duranate WB40-80D: manufactured by Asahi Kasei Chemicals Corporation) = 1 g / 0.1 g (5% acetone diluted)
Drying conditions: 120 ° C. × 1 hour Evaluation method: One drop of methanol was dropped on the dried coating film, and changes in appearance were visually confirmed.

表3、4の結果より、側鎖に水酸基を導入することで、硬化剤との架橋が進行し、乾燥膜の耐溶剤性をコントロールすることができることが分かった。   From the results of Tables 3 and 4, it was found that by introducing a hydroxyl group into the side chain, crosslinking with the curing agent proceeds and the solvent resistance of the dried film can be controlled.

<自己ドープの評価>
以下の条件で自己ドープの評価した結果を表5に示す。
重合体9をイオン交換水に1.5%になる様に溶解させ、そのままの溶液及びカチオン交換樹脂でNa除去した溶液を準備した。
105℃×30分乾燥後の塗膜の外観及び導電率を測定した。
<Evaluation of self-doping>
Table 5 shows the results of evaluation of self-doping under the following conditions.
The polymer 9 was dissolved in ion exchange water so as to be 1.5%, and a solution as it was and a solution from which Na was removed with a cation exchange resin were prepared.
The appearance and conductivity of the coating film after drying at 105 ° C. for 30 minutes were measured.

表5の結果より、Na除去処理を行うことで、ドーパントなしで導電性が得られ、自己ドープが可能であることがわかった。   From the results in Table 5, it was found that by performing the Na removal treatment, conductivity was obtained without a dopant and self-doping was possible.

参考例1:チエノポルフィリン合成
3,4-エチレンジオキシチオフェン 355mg、ベンズアルデヒド255mg、ジクロロメタン250mLを500mL反応容器に計量し、乾燥窒素雰囲気で攪拌を行った。更に、ルイス酸(BF・O(Et))60mgを加えて室温で3時間反応した。その後、ジクロロジシアノベンゾキノン 603mgを加えて1時間攪拌を行なった。溶剤を除去してトルエン 80mLに再溶解し、ジクロロジシアノベンゾキノン 655mgを加えて窒素雰囲気で還流しながら1時間反応した。溶剤除去後、ジクロロメタン120mLに結晶を再溶解し、水及び塩水で3回分液洗浄を行い、有機溶媒層に硫酸ナトリウムを加えて脱水した。
その後、メタノール/ジクロロメタン溶液を用いてカラムクロマトで目的物を分取した。
Reference example 1: Thienoporphyrin synthesis
355 mg of 3,4-ethylenedioxythiophene, 255 mg of benzaldehyde, and 250 mL of dichloromethane were weighed in a 500 mL reaction vessel and stirred in a dry nitrogen atmosphere. Further, 60 mg of Lewis acid (BF 3 .O (Et) 2 ) was added and reacted at room temperature for 3 hours. Thereafter, 603 mg of dichlorodicyanobenzoquinone was added and stirred for 1 hour. The solvent was removed, the residue was redissolved in 80 mL of toluene, 655 mg of dichlorodicyanobenzoquinone was added, and the mixture was reacted for 1 hour while refluxing in a nitrogen atmosphere. After removing the solvent, the crystals were redissolved in 120 mL of dichloromethane, washed with water and brine three times, and dehydrated by adding sodium sulfate to the organic solvent layer.
Then, the target substance was fractionated by column chromatography using a methanol / dichloromethane solution.

Claims (10)

化学式(5)又は化学式(6)の繰返し単位を有する、重合体。
(式(5)及び(6)中、X1及びX2は、一方が置換基を有してもよいアルコキシ基、置換基を有してもよいアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、若しくは置換基を有してもよいチオアルキル基を表し、他方が水素、置換基を有してもよい炭素数1〜12のアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、若しくは置換基を有してもよいチオアルキル基を表し、又は、X1とX2が連結された置換基を有してもよい炭素数1〜12のアルキレンジオキシ基、若しくは置換基を有してもよい炭素数1〜12のアルキレンジチオ基を表し、Rは、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、繰り返し単位が1〜50の炭素数1〜12のアルキレンオキサイド基、置換基を有してもよいフェニル基、置換基を有してもよい複素環基、又は置換基を有してもよい縮合環基を表し、nは、2〜100である。)
The polymer which has a repeating unit of Chemical formula (5) or Chemical formula (6).
(In the formulas (5) and (6), one of X1 and X2 is an alkoxy group which may have a substituent, an alkylene oxide group which may have a substituent, or a thiocyano which may have a substituent. A group, an amino group which may have a substituent, or a thioalkyl group which may have a substituent, the other being hydrogen, an alkyl group having 1 to 12 carbon atoms which may have a substituent, a substituent An alkoxy group which may have a substituent, an alkylene oxide group which may have a substituent, a thiocyano group which may have a substituent, an amino group which may have a substituent, or a substituent Represents a thioalkyl group, or an alkylenedioxy group having 1 to 12 carbon atoms which may have a substituent in which X1 and X2 are linked, or 1 to 12 carbon atoms which may have a substituent. Represents an alkylenedithio group, and R represents a carbon number of 1 to 12. An alkyl group, an alkoxy group having 1 to 12 carbon atoms, an alkylene oxide group having 1 to 50 carbon atoms and a repeating unit of 1 to 50 carbon atoms, an optionally substituted phenyl group, and an optionally substituted heterocyclic ring Represents a condensed ring group which may have a group or a substituent, and n is 2 to 100.)
前記X1及びX2は、両方が置換基を有してもよいアルコキシ基、置換基を有してもよいアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、若しくは置換基を有してもよいチオアルキル基を表し、又は、X1とX2が連結された置換基を有してもよい炭素数1〜12のアルキレンジオキシ基、若しくは置換基を有してもよい炭素数1〜12のアルキレンジチオ基を表す、請求項1に記載の重合体。   X1 and X2 may have an alkoxy group which may have a substituent, an alkylene oxide group which may have a substituent, a thiocyano group which may have a substituent, or a substituent. Represents an amino group or a thioalkyl group which may have a substituent, or an alkylenedioxy group having 1 to 12 carbon atoms which may have a substituent in which X1 and X2 are linked, or a substituent. The polymer according to claim 1, which represents an alkylenedithio group having 1 to 12 carbon atoms. 前記X1及びX2は、両方が置換基を有してもよい炭素数1〜12のアルコキシ基、置換基を有してもよい炭素数1〜12のアルキレンオキサイド基を表すか、X1とX2が連結された置換基を有してもよい炭素数1〜12のアルキレンジオキシ基を表す、請求項1又は請求項2に記載の重合体。   X1 and X2 each represent an alkoxy group having 1 to 12 carbon atoms which may have a substituent, an alkylene oxide group having 1 to 12 carbon atoms which may have a substituent, or X1 and X2 may be The polymer of Claim 1 or Claim 2 showing the C1-C12 alkylene dioxy group which may have the connected substituent. 前記Rは炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、置換基を有してもよいフェニル基である、請求項1〜請求項3の何れか1つに記載の重合体。   The said R is a C1-C12 alkyl group, a C1-C12 alkoxy group, the phenyl group which may have a substituent, The heavy as described in any one of Claims 1-3. Coalescence. 請求項1〜請求項4の何れか1つに記載の重合体と、重合溶媒を含む、重合体組成物。   A polymer composition comprising the polymer according to any one of claims 1 to 4 and a polymerization solvent. 請求項5の重合体組成物を塗布して得られる塗膜。 The coating film obtained by apply | coating the polymer composition of Claim 5. スルホン酸化合物アニオン又はその塩の存在下で、下記化学式(1)で表されるヘテロ環含有化合物を重合する重合工程を備える、重合体の製造方法。
(式(1)中、X1及びX2は、一方が置換基を有してもよいアルコキシ基、置換基を有してもよいアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、若しくは置換基を有してもよいチオアルキル基を表し、他方が水素、置換基を有してもよい炭素数1〜12のアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、若しくは置換基を有してもよいチオアルキル基を表し、又は、X1とX2が連結された置換基を有してもよい炭素数1〜12のアルキレンジオキシ基、若しくは置換基を有してもよい炭素数1〜12のアルキレンジチオ基を表し、Rは、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、繰り返し単位が1〜50の炭素数1〜12のアルキレンオキサイド基、置換基を有してもよいフェニル基、置換基を有してもよい複素環基、又は置換基を有してもよい縮合環基を表し、Wは、ヒドロキシル基または下記化学式(2)で表される。)
(式(2)中のX1及びX2は、化学式(1)と同じである。)
The manufacturing method of a polymer provided with the superposition | polymerization process of superposing | polymerizing the heterocyclic containing compound represented by following Chemical formula (1) in presence of a sulfonic acid compound anion or its salt.
(In formula (1), one of X1 and X2 is an alkoxy group that may have a substituent, an alkylene oxide group that may have a substituent, a thiocyano group that may have a substituent, or a substituent. An amino group that may have a substituent, or a thioalkyl group that may have a substituent, the other having hydrogen, an alkyl group having 1 to 12 carbon atoms that may have a substituent, and a substituent. An alkoxy group which may have a substituent, an alkylene oxide group which may have a substituent, a thiocyano group which may have a substituent, an amino group which may have a substituent, or a thioalkyl group which may have a substituent Or an alkylenedioxy group having 1 to 12 carbon atoms which may have a substituent in which X1 and X2 are linked, or an alkylenedithio group having 1 to 12 carbon atoms which may have a substituent. R represents alkyl having 1 to 12 carbons , An alkoxy group having 1 to 12 carbon atoms, an alkylene oxide group having 1 to 50 carbon atoms having 1 to 50 repeating units, an optionally substituted phenyl group, an optionally substituted heterocyclic group, Alternatively, it represents a condensed ring group which may have a substituent, and W is represented by a hydroxyl group or the following chemical formula (2).
(X1 and X2 in Formula (2) are the same as in Chemical Formula (1).)
前記X1及びX2は、両方が置換基を有してもよいアルコキシ基、置換基を有してもよいアルキレンオキサイド基、置換基を有してもよいチオシアノ基、置換基を有してもよいアミノ基、若しくは置換基を有してもよいチオアルキル基を表し、又は、X1とX2が連結された置換基を有してもよい炭素数1〜12のアルキレンジオキシ基、若しくは置換基を有してもよい炭素数1〜12のアルキレンジチオ基を表す、請求項7に記載の重合体の製造方法。   X1 and X2 may have an alkoxy group which may have a substituent, an alkylene oxide group which may have a substituent, a thiocyano group which may have a substituent, or a substituent. Represents an amino group or a thioalkyl group which may have a substituent, or an alkylenedioxy group having 1 to 12 carbon atoms which may have a substituent in which X1 and X2 are linked, or a substituent. The method for producing a polymer according to claim 7, which represents an alkylenedithio group having 1 to 12 carbon atoms. 前記X1及びX2は、両方が置換基を有してもよい炭素数1〜12のアルコキシ基、置換基を有してもよい炭素数1〜12のアルキレンオキサイド基を表すか、X1とX2が連結された置換基を有してもよい炭素数1〜12のアルキレンジオキシ基を表す、請求項7又は請求項8に記載の重合体の製造方法。   X1 and X2 each represent an alkoxy group having 1 to 12 carbon atoms which may have a substituent, an alkylene oxide group having 1 to 12 carbon atoms which may have a substituent, or X1 and X2 may be The manufacturing method of the polymer of Claim 7 or Claim 8 showing the C1-C12 alkylenedioxy group which may have the connected substituent. 前記Rは炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基、置換基を有してもよいフェニル基である、請求項7〜請求項9の何れか1つに記載の重合体の製造方法。   The R according to any one of claims 7 to 9, wherein R is an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a phenyl group which may have a substituent. Manufacturing method of coalescence.
JP2018160865A 2015-01-05 2018-08-29 Heterocycle-containing compounds, polymers using the compounds, and their uses Active JP6783832B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015000428 2015-01-05
JP2015000428 2015-01-05

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016568380A Division JPWO2016111277A1 (en) 2015-01-05 2016-01-05 Heterocycle-containing compound, polymer using the compound, and use thereof

Publications (2)

Publication Number Publication Date
JP2018204029A true JP2018204029A (en) 2018-12-27
JP6783832B2 JP6783832B2 (en) 2020-11-11

Family

ID=56355965

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016568380A Pending JPWO2016111277A1 (en) 2015-01-05 2016-01-05 Heterocycle-containing compound, polymer using the compound, and use thereof
JP2018160865A Active JP6783832B2 (en) 2015-01-05 2018-08-29 Heterocycle-containing compounds, polymers using the compounds, and their uses

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016568380A Pending JPWO2016111277A1 (en) 2015-01-05 2016-01-05 Heterocycle-containing compound, polymer using the compound, and use thereof

Country Status (3)

Country Link
JP (2) JPWO2016111277A1 (en)
TW (1) TWI675033B (en)
WO (1) WO2016111277A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
WO2021252170A1 (en) * 2020-06-08 2021-12-16 Avx Corporation Solid electrolytic capacitor containing a moisture barrier
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221438A1 (en) 2017-05-31 2018-12-06 綜研化学株式会社 Method for manufacturing conductive polymer solid electrolytic capacitor, and conductive polymer
WO2019026961A1 (en) * 2017-08-04 2019-02-07 綜研化学株式会社 Solid electrolytic capacitor, and method for producing solid electrolytic capacitor
JP7238793B2 (en) * 2017-12-25 2023-03-14 株式会社レゾナック Dispersion composition for manufacturing solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
US11773276B2 (en) 2018-12-19 2023-10-03 Soken Chemical & Engineering Co., Ltd. Conductive polymer composition
JP2022078370A (en) * 2019-03-26 2022-05-25 綜研化学株式会社 Conductive polymer composition
KR20220056862A (en) * 2019-08-30 2022-05-06 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 Conductive polymer and resin composition
JPWO2022059609A1 (en) * 2020-09-17 2022-03-24

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228237B1 (en) * 1985-12-24 1989-11-23 Merck & Co. Inc. Substituted thiophene-2-sulfonamide antiglaucoma agents
CA1297109C (en) * 1986-01-17 1992-03-10 Dieter Binder 2-pyridinyl or 2-quinolinyl-methoxy-thiophene derivatives
US4711946A (en) * 1986-09-08 1987-12-08 Honeywell Inc. Electroactive heterocyclic aromatic polymers
JPH02200483A (en) * 1989-01-30 1990-08-08 Mitsui Petrochem Ind Ltd Optical recording medium
JP2002212168A (en) * 2000-11-17 2002-07-31 Ishihara Sangyo Kaisha Ltd Pyrimidine derivative or its salt, herbicide including the same, and method of controlling harmful weed by applying the same
DE102004033288A1 (en) * 2004-07-09 2006-02-02 H.C. Starck Gmbh New 3,4-alkylenedioxythiophene compounds comprising five membered heterocyclic terminal groups, repeating units of five membered heterocyclic compounds and terminal groups useful to prepare electrically conductive oligo- or polymers
JP2007022943A (en) * 2005-07-13 2007-02-01 Dai Ichi Seiyaku Co Ltd Squalene synthesis enzyme inhibitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11756746B2 (en) 2018-08-10 2023-09-12 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11791106B2 (en) 2018-08-10 2023-10-17 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing polyaniline
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
WO2021252170A1 (en) * 2020-06-08 2021-12-16 Avx Corporation Solid electrolytic capacitor containing a moisture barrier
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier

Also Published As

Publication number Publication date
JP6783832B2 (en) 2020-11-11
JPWO2016111277A1 (en) 2017-09-21
WO2016111277A1 (en) 2016-07-14
TW201630917A (en) 2016-09-01
TWI675033B (en) 2019-10-21

Similar Documents

Publication Publication Date Title
JP6783832B2 (en) Heterocycle-containing compounds, polymers using the compounds, and their uses
KR102533066B1 (en) organic semiconducting compounds
CN107406586B (en) Polymer, oxidized polymer, polymer composition, gel-like polymer composition, and use thereof
Data et al. Unusual properties of electropolymerized 2, 7-and 3, 6-carbazole derivatives
Putri et al. Step-by-step improvement in photovoltaic properties of fluorinated quinoxaline-based low-band-gap polymers
Chen et al. A new solution-processed diketopyrrolopyrrole donor for non-fullerene small-molecule solar cells
Cheng et al. Design and structural modification of narrow-bandgap small molecules based on asymmetric porphyrin-diketopyrrolopyrrole backbone for solution-processed organic solar cells
Ning et al. Naphthalenothiophene imide-based polymer donor for high-performance polymer solar cells
Je et al. End-group tuning of DTBDT-based small molecules for organic photovoltaics
Wang et al. Synthesis and photovoltaic properties of low-bandgap polymers based on N-arylcarbazole
Handoko et al. Effect of cyano substituent on photovoltaic properties of quinoxaline-based polymers
Kim et al. New quinoxaline derivatives as accepting units in donor–acceptor type low‐band gap polymers for organic photovoltaic cells
Cho et al. Synthesis, optical and electrochemical properties of small molecules DMM-TPA [DTS (FBTTh3) 3] and TPA [DTS (FBTTh3) 3], and their application as donors for bulk heterojunction solar cells
Lee et al. Benzodithiophene-based wide-bandgap small-molecule donors for organic photovoltaics with large open-circuit voltages
Cui et al. Metallated conjugation in small-sized-molecular donors for solution-processed organic solar cells
Zhang et al. Effects of alkyl chains on intermolecular packing and device performance in small molecule based organic solar cells
JP6625546B2 (en) Picene derivative, photoelectric conversion material and photoelectric conversion element
Li et al. Improving the photovoltaic performance of fluorinated 2, 2′-bithiophene core-based D (A–Ar) 2 type small molecules via strategically end-capped heteroaromatic substitution
Pasker et al. Photovoltaic response to structural modifications on a series of conjugated polymers based on 2‐aryl‐2H‐benzotriazoles
Cao et al. DA copolymers based on lactam acceptor unit and thiophene derivatives for efficient polymer solar cells
Lee et al. Effect of fluorine substitution on photovoltaic performance of DPP-based copolymer
Hu et al. An easily available near-infrared absorbing non-fullerene photovoltaic electron acceptor with indeno [1, 2-b] indole as the central core
JP2013237813A (en) π-ELECTRON CONJUGATED POLYMER, AND ORGANIC SEMICONDUCTOR DEVICE USING THE SAME
Sun et al. Systematic structure modification of a low bandgap conjugated polymer improves thin film morphology and photovoltaic performance by incorporating naphthalene into side chains
JP6675124B2 (en) Anthrabisthiadiazole derivative and π-conjugated polymer obtained using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201022

R150 Certificate of patent or registration of utility model

Ref document number: 6783832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250