JP2018192240A - Wearable device - Google Patents

Wearable device Download PDF

Info

Publication number
JP2018192240A
JP2018192240A JP2018078055A JP2018078055A JP2018192240A JP 2018192240 A JP2018192240 A JP 2018192240A JP 2018078055 A JP2018078055 A JP 2018078055A JP 2018078055 A JP2018078055 A JP 2018078055A JP 2018192240 A JP2018192240 A JP 2018192240A
Authority
JP
Japan
Prior art keywords
physiological data
wearable device
air pump
gas
drive control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018078055A
Other languages
Japanese (ja)
Other versions
JP6936762B2 (en
Inventor
世昌 陳
Seishiyou Chin
世昌 陳
立邦 莫
Li-Pang Mo
立邦 莫
▲けい▼峰 黄
Chi-Feng Huang
▲けい▼峰 黄
長諺 ▲さい▼
長諺 ▲さい▼
Chang-Yen Tsai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microjet Technology Co Ltd
Original Assignee
Microjet Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microjet Technology Co Ltd filed Critical Microjet Technology Co Ltd
Publication of JP2018192240A publication Critical patent/JP2018192240A/en
Application granted granted Critical
Publication of JP6936762B2 publication Critical patent/JP6936762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/123Fluid connections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6829Foot or ankle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2047Membrane type

Abstract

To provide a wearable device for measuring physiological data.SOLUTION: A wearable device 2 comprises: a band structure 20; a main body 21; a micro air pump 22; an air bag 23; a sensor 24; an optical sensor 28; and a drive control module 25, in which the micro air pump is installed in a storage space of the main body, the sensor is installed on the drive control module and is mutually connected to the micro air pump, and the drive control module controls an operation of the micro air pump for transporting a gas from the micro air pump to the air bag, for filling the gas in the air bag for expanding the air bag and fixing the air bag to a specific portion of a wearer. A user measures physiological data of the user by the sensor and transmits the physiological data to the drive control module for recording the physiological data, or, measures the physiological data by the optical sensor and transmits the physiological data to the drive control module, for recording the physiological data for achieving quick measurement.SELECTED DRAWING: Figure 4B

Description

本発明はウェアラブルデバイスに関し、特に、圧電駆動のマイクロエアポンプを採用し、生理データを検出するウェアラブルデバイスに関する。   The present invention relates to a wearable device, and more particularly to a wearable device that employs a piezoelectric-driven micro air pump to detect physiological data.

迅速さにこだわり、個人のストレスが増大し続けている現今の社会において、個人の健康を追求する意識が高まっており、経常的に自身の健康状態をモニタリングまたは確認したいと考える人が増えている。一般に、従来人体の生理と健康に関する情報を得るためのデータ測定は主に固定された血圧計や、体積が大きな測定機器が用いられているが、これらの測定機器は通常モーター型のエアポンプ、エアバッグ、センサー、排気弁、電池等の部材を含んでおり、そのうち、モーター型のエアポンプは摩擦損耗が発生しやすく、またこれら部材の組立て後の体積が非常に大きいため、形状的な使用には不利である。しかし、体積が比較的小さいモーター型エアポンプを採用すると、その損耗速度がより速くなり、より多くのエネルギーを消耗する。   In today's society where personal stress continues to increase with an emphasis on speed, there is an increasing awareness of pursuing personal health, and an increasing number of people want to monitor or confirm their health status on a regular basis. . In general, data measurement for obtaining information on the physiology and health of the human body has been mainly performed with fixed blood pressure monitors and measuring devices with large volumes. These measuring devices are usually motor-type air pumps and air It includes parts such as bags, sensors, exhaust valves, batteries, etc. Among them, motor type air pumps are prone to frictional wear, and the volume after assembly of these parts is very large, so they are not suitable for geometric use. It is disadvantageous. However, if a motor-type air pump having a relatively small volume is used, the wear rate becomes faster and more energy is consumed.

一般の人々が経常的に自身の健康状態をモニタリングでき、かつモニタリング装置を携帯しやすくするために、現在市場ではウェアラブル健康モニタリング装置が増加している。しかしながら、市場でよく見受けられるウェアラブル健康モニタリング装置は、通常光学測定方式で測定を行うが、この光学測定方式は精度が低いため、往々にして誤差値の発生につながり、信頼できるデータを効果的に取得することができない。これでは使用者は自身の健康に関する正確なデータが得られず、判定上の誤差を引き起こしやすい。反対に、正確な測定方法を選択すると、誤差値は比較的小さくなり、より正確なデータが得られるが、正確な測定に要する時間も長くなる。   Wearable health monitoring devices are now increasing in the market to allow ordinary people to regularly monitor their health status and make it easier to carry monitoring devices. However, wearable health monitoring devices often found in the market usually measure with an optical measurement method, but this optical measurement method is low in accuracy, often leading to the generation of error values and effectively providing reliable data. I can't get it. This makes it difficult for the user to obtain accurate data about his / her health, which is likely to cause a determination error. On the other hand, when an accurate measurement method is selected, the error value becomes relatively small and more accurate data can be obtained, but the time required for accurate measurement also becomes longer.

通常、被測定者の生理データを測定したい場合、一般には図1に示すように、頭部1a、心臓部1b、手首1cまたは足首1d等の位置を選択して測定を行う。これらの位置は人体の中で最も脈、血圧、心拍等のデータを測定しやすい位置であり、これらの位置で測定を行うことで、被測定者の生理・健康情報を迅速かつ効果的に把握することができる。しかしながら、前述のように、光学測定方式のウェアラブル健康モニタリング装置を採用した場合、精度が低く、測定したデータを信用することができず、また前述の一般的な信頼性がより高い血圧計やその他測定機器を採用した場合、それらの機器の体積が大きすぎ、軽さ、薄さ、携帯の容易さという目標を達成することができず、かつ測定機器による測定時にかかる時間が長いため、使用者が測定した生理・健康情報をすぐに知る必要がある場合、実際の使用時不便である。   Usually, when it is desired to measure physiological data of a measurement subject, generally, as shown in FIG. 1, the position of the head 1a, the heart 1b, the wrist 1c or the ankle 1d is selected and measured. These positions are the easiest positions in the human body to measure data such as pulse, blood pressure, and heart rate. By measuring at these positions, the physiological and health information of the person being measured can be grasped quickly and effectively. can do. However, as described above, when an optical measurement type wearable health monitoring device is adopted, the accuracy is low, the measured data cannot be trusted, and the above-described general sphygmomanometer with higher reliability is also available. When measuring devices are used, the volume of these devices is too large to achieve the goals of lightness, thinness, and ease of portability, and it takes a long time to measure with measuring devices. It is inconvenient at the time of actual use when it is necessary to immediately know the physiological / health information measured.

このため、上述の従来技術の欠点を改善し、個人向けの健康モニタリング装置の体積を小さく、小型化し、携帯に便利で、省電力かつ迅速で高精度のウェアラブルデバイスをいかに開発するかが現在解決を要する切迫した問題となっている。   For this reason, the above-mentioned drawbacks of the prior art have been improved, and the current solution is how to develop wearable devices that are small, compact, convenient to carry, power-saving, quick, and highly accurate. Has become an urgent issue that requires.

本発明の主な目的は、圧電駆動のマイクロエアポンプを採用し、圧電駆動のマイクロエアポンプで気体をエアバッグに輸送し、エアバッグに気体を充填して膨張させ、さらに対応する位置に設置したセンサーを通じて装用者の生理データを測定することで、従来技術の測定機器の体積が大きい、薄型化が困難、携帯性が低い、消費電力が大きい等の欠点と、生理データの測定により長い時間がかかる問題を解決するとともに、別の従来技術で採用されている光学測定方式の健康モニタリング装置の精度が低い問題を同時に解決できる、生理データを測定するウェアラブルデバイスを提供することにある。   The main object of the present invention is to employ a piezoelectric-driven micro air pump, to transport gas to the airbag with the piezoelectric-driven micro air pump, to fill and inflate the air bag, and to install the sensor at a corresponding position Measures physiological data of the wearer through the disadvantages such as large volume, difficulty in thinning, low portability, high power consumption, etc. of conventional measuring devices, and it takes a long time to measure physiological data An object of the present invention is to provide a wearable device for measuring physiological data, which can solve the problem and simultaneously solve the problem of low accuracy of the health monitoring apparatus of the optical measurement method employed in another conventional technique.

上述の目的を達するため、本発明の広義の一実施態様によるウェアラブルデバイスは、外表面と内表面を備えたバンド構造体と、該バンド構造体の該外表面上に連接して設置され、かつ収容空間を備えた本体と、該本体の該収容空間内に設置されたマイクロエアポンプと、該マイクロエアポンプに相対し、該バンド構造体の該内表面に設置され、該マイクロエアポンプに連通されたエアバッグと、該本体の該収容空間内に設置された駆動制御モジュールと、該駆動制御モジュール上に設置され、マイクロエアポンプに連接されたセンサーと、該バンド構造体の該内表面に設置され、該駆動制御モジュールに電気的に接続された光学センサーと、を含み、そのうち、該駆動制御モジュールが該マイクロエアポンプの動作を制御して、該マイクロエアポンプから気体を該エアバッグに輸送させ、該エアバッグに気体を充填して膨張させることで装用者の特定部位に固定し、使用者は該センサーで装用者の生理データを測定して、該生理データを該駆動制御モジュールに伝送し、生理データを記録して正確な測定を達成するか、該光学センサーで装用者の該生理データを測定し、該生理データを該駆動制御モジュールに伝送して生理データを記録し、迅速な測定を達成するかを選択することができる。   In order to achieve the above-mentioned object, a wearable device according to an embodiment of the present invention has a band structure having an outer surface and an inner surface, and is installed on and connected to the outer surface of the band structure. A main body having a housing space, a micro air pump installed in the housing space of the main body, and an air that is installed on the inner surface of the band structure and communicates with the micro air pump, opposite to the micro air pump A bag, a drive control module installed in the housing space of the main body, a sensor installed on the drive control module and connected to a micro air pump, installed on the inner surface of the band structure, An optical sensor electrically connected to the drive control module, wherein the drive control module controls the operation of the micro air pump, The gas is transferred from the up pump to the airbag, and the airbag is filled with the gas and inflated to fix the specific portion of the wearer. The user measures the physiological data of the wearer with the sensor, and Transmit physiological data to the drive control module and record physiological data to achieve accurate measurement, or measure the physiological data of the wearer with the optical sensor and transmit the physiological data to the drive control module Record physiological data and select whether to achieve rapid measurement.

従来の被測定者の生理データ測定位置を示す概略図である。It is the schematic which shows the physiological data measurement position of the conventional to-be-measured person. 本発明の最良の実施例のウェアラブルデバイスの全体構造を示す立体斜視図である。It is a three-dimensional perspective view showing the overall structure of the wearable device of the best embodiment of the present invention. 図2のウェアラブルデバイスのマイクロエアポンプの立体分解図である。It is a three-dimensional exploded view of the micro air pump of the wearable device of FIG. 図3Aのマイクロエアポンプの立体組立図である。It is a three-dimensional assembly drawing of the micro air pump of FIG. 3A. 図2の側面図である。FIG. 3 is a side view of FIG. 2. 本発明の最良の実施例のウェアラブルデバイスのエアバッグに気体を充填して膨張させた状態を示す概略図である。It is the schematic which shows the state which filled the gas into the airbag of the wearable device of the best example of this invention, and was inflated. 本発明の最良の実施例のウェアラブルデバイスを装用者の手首上に装着した状態を示す概略図である。It is the schematic which shows the state with which the wearable device of the best example of this invention was mounted | worn on a wearer's wrist. 本発明の最良の実施例のウェアラブルデバイスのブロック図である。It is a block diagram of the wearable device of the best example of this invention.

本発明の特徴と利点を体現するいくつかの典型的実施例について、以下で詳細に説明する。本発明は異なる態様において各種の変化が可能であり、そのいずれも本発明の範囲を逸脱せず、かつ本発明の説明及び図面は本質的に説明のために用いられ、本発明を制限するものではないことが理解されるべきである。   Several exemplary embodiments embodying the features and advantages of the invention are described in detail below. The invention is capable of various modifications in different embodiments, none of which depart from the scope of the invention, and that the description and drawings of the invention are essentially used for illustration and to limit the invention. It should be understood that this is not the case.

図2から図6に示すように、本発明のウェアラブルデバイス2は、装用者が測定を行う必要がある特定部位に装着するために用いられ、かつ該特定部位は図1に示すように、頭部1a、心臓部1b、手首1c、足首1dまたはその他の測定したい特定部位とすることができるが、これらに限らない。本実施例において、ウェアラブルデバイス2は、バンド構造体20と、本体21と、マイクロエアポンプ22と、エアバッグ23と、センサー24と、駆動制御モジュール25と、伝送モジュール26と、光学センサー28を含む。そのうち、バンド構造体20は外表面200と内表面201を備え、かつ外表面200は内表面201に相対している。本体21はバンド構造体20の外表面200上に連接して設置され、かつその内部に収容空間を備えている(図示しない)。マイクロエアポンプ22と、駆動制御モジュール25と、伝送モジュール26は本体21の収容空間内に設置され、エアバッグ23はマイクロエアポンプ22に相対し、バンド構造体20の内表面201に設置され、かつマイクロエアポンプ22に連通される。駆動制御モジュール25も同様に本体21の収容空間210内に設置され、マイクロエアポンプ22の動作を制御し、マイクロエアポンプ22から気体をエアバッグ23に輸送させ、エアバッグ23に気体を充填して膨張させ、装用者が装着している特定部位を圧迫させる。センサー24は駆動制御モジュール25上に設置され、マイクロエアポンプ22の出口端(図示しない)に連接され、装用者の生理データを測定するために用いられ、かつそれらの生理データは駆動制御モジュール25に伝送されて記録される。光学センサー28はバンド構造体20の内表面201に設置され、かつ駆動制御モジュール25に電気的に接続される。光学センサー28はさらに発光器281と受光器282を備え、発光と受光による装用者の生理データ測定に用いられ、それらの生理データが駆動制御モジュール25に伝送されて記録される。   As shown in FIG. 2 to FIG. 6, the wearable device 2 of the present invention is used for wearing at a specific site where the wearer needs to perform measurement, and the specific site is shown in FIG. Although it can be set as the part 1a, the heart part 1b, the wrist 1c, the ankle 1d, or other specific parts to be measured, it is not limited thereto. In this embodiment, the wearable device 2 includes a band structure 20, a main body 21, a micro air pump 22, an airbag 23, a sensor 24, a drive control module 25, a transmission module 26, and an optical sensor 28. . Among them, the band structure 20 includes an outer surface 200 and an inner surface 201, and the outer surface 200 is opposed to the inner surface 201. The main body 21 is connected to the outer surface 200 of the band structure 20 and has a storage space (not shown) therein. The micro air pump 22, the drive control module 25, and the transmission module 26 are installed in the housing space of the main body 21, the airbag 23 is installed on the inner surface 201 of the band structure 20, opposite to the micro air pump 22, and the micro air pump 22. The air pump 22 communicates. Similarly, the drive control module 25 is installed in the housing space 210 of the main body 21, controls the operation of the micro air pump 22, transports gas from the micro air pump 22 to the airbag 23, and fills the airbag 23 with gas to inflate. The specific part worn by the wearer is pressed. The sensor 24 is installed on the drive control module 25, connected to the outlet end (not shown) of the micro air pump 22, used to measure the wearer's physiological data, and the physiological data is sent to the drive control module 25. Transmitted and recorded. The optical sensor 28 is installed on the inner surface 201 of the band structure 20 and is electrically connected to the drive control module 25. The optical sensor 28 further includes a light emitter 281 and a light receiver 282, and is used for measuring physiological data of the wearer by light emission and light reception. The physiological data is transmitted to the drive control module 25 and recorded.

図2に示すように、本実施例において、ウェアラブルデバイス2のバンド構造体20は軟性または硬性の材質で構成された環状のバンド構造体とすることができ、例えばシリコン材質、プラスチック材質、リボン材質、タオル材質、皮材質、金属材質、その他運用可能な関連材質とすることができるが、これらに限らず、主に例えば手首や足首など(但しこれらに限らない)装用者の特定部位上に巻いて装着するために用いられる。当然、バンド構造体20の長さもこれに限らず、一部の実施例において、バンド構造体20は比較的長いリボン材質またはタオル材質で構成されるバンドを採用し、装用者の頭部に装着してもよい。または、別の一部の実施例において、バンド構造体20は比較的長いプラスチック材質の補助固定ベルトを採用し、装用者の胸部区域に巻いて装着することで、装用者の心臓部の生理データをモニタリングすることもできる。バンド構造体20両端の連接方法は、面ファスナーの粘着方式、または凸凹の嵌合方式、あるいは一般に腕時計のベルトによく使用されるバックル形式、または一体成型の環状構造などを採用してもよく、その連接方法は実際の運用状況に応じて任意に変化させることができ、これらに限らない。   As shown in FIG. 2, in this embodiment, the band structure 20 of the wearable device 2 can be an annular band structure made of a soft or hard material, such as a silicon material, a plastic material, or a ribbon material. , Towel material, leather material, metal material, and other related materials that can be operated, but not limited to these, mainly wound around a specific part of the wearer such as, but not limited to, wrist and ankle. Used for mounting. Of course, the length of the band structure 20 is not limited to this, and in some embodiments, the band structure 20 employs a band made of a relatively long ribbon material or towel material and is attached to the head of the wearer. May be. Alternatively, in some other embodiments, the band structure 20 employs a relatively long plastic auxiliary fixing belt and is wound around the chest area of the wearer for wearing, thereby providing physiological data of the wearer's heart. Can also be monitored. The connecting method of both ends of the band structure 20 may employ an adhesive method of a hook-and-loop fastener, an uneven fitting method, a buckle type generally used for a wristwatch belt or an integrally formed annular structure, The connection method can be arbitrarily changed according to the actual operation status, but is not limited thereto.

ウェアラブルデバイス2のバンド構造体20は装用者の特定部位上に巻いて装着するために用いるほか、さらに本体21を搭載するために用いられる。前述したように、本体21はバンド構造体20の外表面200上に連接して設置されるが、その設置方法は一体成型、または別途バンド構造体20の上に取り付けることができ、またこれらに限らない。本実施例において、本体21は方形の中空枠体構造であり、その輪郭はバンド構造体20の幅にほぼ等しい、または若干小さいものとするが、その形態及び大きさはこれに限らず、実際の運用状況に応じて任意に調整することができる。本体21の収容空間は主にマイクロエアポンプ22(図3B参照)と駆動制御モジュール25をその内部に収容するために用いられる。   The band structure 20 of the wearable device 2 is used not only for winding and wearing on a specific part of the wearer, but also for mounting the main body 21. As described above, the main body 21 is connected and installed on the outer surface 200 of the band structure 20, but the installation method can be integrally molded or separately attached on the band structure 20. Not exclusively. In the present embodiment, the main body 21 has a rectangular hollow frame structure, and its outline is substantially equal to or slightly smaller than the width of the band structure 20, but the form and size are not limited to this, and in practice It can be arbitrarily adjusted according to the operational status of the system. The accommodation space of the main body 21 is mainly used for accommodating the micro air pump 22 (see FIG. 3B) and the drive control module 25 therein.

図2に示すように、本実施例において、ウェアラブルデバイス2はさらにマイクロエアポンプ22の上に対応して設置するディスプレイパネル27を含み、ディスプレイパネル27はタッチスクリーンまたはボタン式スクリーンとすることができ、使用者はタッチスクリーンまたはボタン式スクリーンを通じてセンサー24または光学センサー28を選択し、該生理データの測定を行い、ディスプレイパネル27にデータを表示することができる。これらのデータは装用者の生理データ、時間データ、着信表示データなどのうち少なくとも1つを含むことができるが、これらに限らない。当然、別の一部の実施例において、ウェアラブルデバイス2は別の蓋体(図示しない)を用いてマイクロエアポンプ22上を被覆してもよく、前述のディスプレイパネル27に限らない。   As shown in FIG. 2, in the present embodiment, the wearable device 2 further includes a display panel 27 installed correspondingly on the micro air pump 22, and the display panel 27 can be a touch screen or a button-type screen. The user can select the sensor 24 or the optical sensor 28 through a touch screen or a button-type screen, measure the physiological data, and display the data on the display panel 27. These data may include at least one of the wearer's physiological data, time data, incoming call display data, and the like, but is not limited thereto. Naturally, in some other embodiments, the wearable device 2 may cover the micro air pump 22 using another lid (not shown), and is not limited to the display panel 27 described above.

同時に図3Aと図3Bを参照する。図3Aは図2に示すウェアラブルデバイスのマイクロエアポンプの立体分解図であり、図3Bは図3Aに示すマイクロエアポンプの立体組立図である。本実施例において、マイクロエアポンプ22は圧電駆動の小型空気圧動力装置であるが、これに限らない。かつ本実施例を例とすると、マイクロエアポンプ22は小型気体輸送装置22Aと小型バルブ装置22Bを組み合わせて成り、そのうち、小型気体輸送装置22Aは気体導入板221と、共振片222と、圧電アクチュエータ223と、絶縁片224と、導電片225等の構造を備え、圧電アクチュエータ223が共振片222に対応して設置され、気体導入板221、共振片222、圧電アクチュエータ223、絶縁片2241、導電片225、別の絶縁片2242等が順に重ねて設置される。かつ該圧電アクチュエータ223は、懸架板223aと圧電セラミック板223bを組み立てて成り、小型バルブ装置22Bは集気板226と、バルブ片227と、出口板228等を順に重ねて組み立てて成るが、これに限らない。かつ本実施例において、図3Aに示すように、集気板226は単一の板体構造に限らず、周縁に側壁を備えた枠体構造としてもよく、かつ該周縁が構成する側壁とその底部の板体が共同で収容空間226aを定義するため、本発明の小型空気圧動力装置22の組立完了後の正面図は図3Bに示すとおりとなり、該小型気体輸送装置22Aが集気板226の収容空間226a内に収容され、かつその下にバルブ片227及び出口板228が積層される。この小型気体輸送装置22Aと小型バルブ装置22Bの組立設置により、気体が小型気体輸送装置22Aの気体導入板221上の少なくとも1つの気体導入孔221aから導入され、かつ圧電アクチュエータ223の作動を通じ、複数の圧力チャンバ(図示しない)を経由して下に輸送され、気体を小型バルブ装置22B内で単一方向に流動させて、圧力を小型バルブ装置22Bの出口端に連接されたエアバッグ23(図4B参照)内に蓄積させ、圧力蓄積作業を行うことができ、かつ圧力を逃がす必要があるときは、小型気体輸送装置22Aの出力量を制御して、気体を小型バルブ装置22Bの出口板228上の圧力リリーフ通孔(図示しない)から排出させ、圧力を逃がす。   At the same time, refer to FIGS. 3A and 3B. 3A is a three-dimensional exploded view of the micro air pump of the wearable device shown in FIG. 2, and FIG. 3B is a three-dimensional assembly diagram of the micro air pump shown in FIG. 3A. In the present embodiment, the micro air pump 22 is a piezoelectric-driven small pneumatic power unit, but is not limited thereto. Taking the present embodiment as an example, the micro air pump 22 is composed of a small gas transport device 22A and a small valve device 22B. Of these, the small gas transport device 22A includes a gas introduction plate 221, a resonance piece 222, and a piezoelectric actuator 223. And an insulating piece 224, a conductive piece 225, and the like, and a piezoelectric actuator 223 is installed corresponding to the resonant piece 222. The gas introduction plate 221, the resonant piece 222, the piezoelectric actuator 223, the insulating piece 2241, and the conductive piece 225 are provided. Further, another insulating piece 2242 and the like are sequentially stacked. The piezoelectric actuator 223 is constructed by assembling a suspension plate 223a and a piezoelectric ceramic plate 223b, and the small valve device 22B is constructed by sequentially stacking a gas collecting plate 226, a valve piece 227, an outlet plate 228, etc. Not limited to. In the present embodiment, as shown in FIG. 3A, the air collecting plate 226 is not limited to a single plate structure, and may be a frame structure having a side wall on the periphery, and the side wall formed by the periphery and its side Since the bottom plate jointly defines the accommodating space 226a, the front view after the assembly of the small pneumatic power unit 22 of the present invention is as shown in FIG. 3B, and the small gas transporting device 22A is connected to the air collecting plate 226. A valve piece 227 and an outlet plate 228 are stacked under the storage space 226a. By assembling and installing the small gas transport device 22A and the small valve device 22B, gas is introduced from at least one gas introduction hole 221a on the gas introduction plate 221 of the small gas transport device 22A, and a plurality of gas is introduced through the operation of the piezoelectric actuator 223. The air bag 23 (shown in FIG. 1) is transported down through a pressure chamber (not shown) and flows in a single direction in the small valve device 22B, and pressure is connected to the outlet end of the small valve device 22B. 4B), the pressure can be accumulated, and when it is necessary to release the pressure, the output amount of the small gas transport device 22A is controlled to discharge the gas to the outlet plate 228 of the small valve device 22B. The pressure is released through the upper pressure relief hole (not shown) to release the pressure.

同時に図4Aと図4Bを参照する。図4Aは図2の側面図であり、図4Bは本発明の最良の実施例のウェアラブルデバイスのエアバッグに気体を充填して膨張させた状態を示す概略図である。図4Aと図4Bに示すように、本実施例において、バンド構造体20は本体21の内表面201に相対してさらに該エアバッグ23を収容するための収容部(図示しない)を備えてもよく、かつ該収容部が本体21の収容空間に連通されるが、これに限らない。これにより、マイクロエアポンプ22が作動していないとき、ウェアラブルデバイス2の側面図は図4Aに示すように、バンド構造体20と本体21のみが見え、収容部に収容されているエアバッグ23は見えないが、マイクロエアポンプ22が駆動されて作動すると、気体がマイクロエアポンプ22の出口端からエアバッグ23内に輸送され、図4Bに示すように、エアバッグ23が気体の充填により外側に向かって膨張する。   At the same time, refer to FIGS. 4A and 4B. 4A is a side view of FIG. 2, and FIG. 4B is a schematic view showing a state where the airbag of the wearable device according to the best embodiment of the present invention is filled with gas and inflated. As shown in FIGS. 4A and 4B, in this embodiment, the band structure 20 may further include an accommodating portion (not shown) for accommodating the airbag 23 relative to the inner surface 201 of the main body 21. The storage portion is communicated with the storage space of the main body 21, but is not limited thereto. As a result, when the micro air pump 22 is not operating, the side view of the wearable device 2 shows only the band structure 20 and the main body 21 and the airbag 23 housed in the housing portion as shown in FIG. 4A. However, when the micro air pump 22 is driven and operated, the gas is transported from the outlet end of the micro air pump 22 into the air bag 23, and the air bag 23 is expanded outward by filling with the gas as shown in FIG. 4B. To do.

図5を参照する。図5に本発明の最良の実施例のウェアラブルデバイスを装用者の手首上に装着した状態を示す。図に示すように、本発明のウェアラブルデバイス2を装用者の手首上に装着すると、図5に示すようになり、駆動制御モジュール25がマイクロエアポンプ22を制御して動作させると、マイクロエアポンプ22が気体をその出口端からエアバッグ23に輸送し、エアバッグ23に気体を充填して膨張させ、装用者の手首内側に固定させる。このとき、装用者は駆動制御モジュール25上に設置されたセンサー24を通じてマイクロエアポンプ22の空気圧の変化を直接測定し、装用者の生理データを計算して、最後に駆動制御モジュール25のメモリユニット241を通じて生理データを記録し、正確な測定を達成する。または、装用者は光学センサー28を通じて測定を行うことを選択し、光学センサー28の発光器281により測定光線を装用者の手首の皮膚に発射して、使用者の生理データを測定し、光学センサー28の受光器282により該測定光線を受け取り、最後に駆動制御モジュール25のメモリユニット241を通じて生理データを記録し、迅速な測定を達成する。かつ本実施例において、生理データは脈拍血圧及び心拍等のデータとであるが、これらに限らない。   Please refer to FIG. FIG. 5 shows a state in which the wearable device of the best embodiment of the present invention is mounted on the wrist of the wearer. As shown in the figure, when the wearable device 2 of the present invention is mounted on the wrist of the wearer, the wearable device 2 is as shown in FIG. 5, and when the drive control module 25 controls and operates the micro air pump 22, the micro air pump 22 The gas is transported from the outlet end to the airbag 23, and the airbag 23 is filled with the gas and inflated to be fixed inside the wrist of the wearer. At this time, the wearer directly measures the change in air pressure of the micro air pump 22 through the sensor 24 installed on the drive control module 25, calculates the physiological data of the wearer, and finally, the memory unit 241 of the drive control module 25. Record physiological data through and achieve accurate measurements. Alternatively, the wearer chooses to make a measurement through the optical sensor 28, and the light beam 281 of the optical sensor 28 emits a measurement beam to the skin of the wearer's wrist to measure the physiological data of the user, and the optical sensor The measurement light beam is received by the 28 light receivers 282, and finally, physiological data is recorded through the memory unit 241 of the drive control module 25 to achieve quick measurement. In the present embodiment, the physiological data is data such as pulse blood pressure and heart rate, but is not limited thereto.

図6に示すように、本実施例はさらに伝送モジュール26を含むことができるが、これに限らない。伝送モジュール26は駆動制御モジュール25上に設置してもよく、前述の測定された装用者の生理データを外部装置3に伝送し、より詳細な分析統計を行い、装用者の生理・健康状態をより詳細に把握するために用いることができるが、その設置位置はこれに限らず、実際の運用状況に応じて任意に変化させることができる。一部の実施例において、伝送モジュール26は有線伝送モジュールとしてもよく、例えばUSB、mini−USBまたはmicro−USBを含むが、これらに限らない。また別の一部の実施例において、伝送モジュールは無線伝送モジュールとしてもよく、例えばWi−Fiモジュール、Bluetoothモジュール、RFID(RadioFrequencyIdentification)モジュール、または近距離通信モジュール(Near Field Communication、NFC)とすることができるが、これらに限らない。かつ、伝送モジュール26はさらに同時に有線伝送モジュールと無線伝送モジュールを含むこともでき、かつそのデータ伝送形態は実際の運用状況に応じて任意に変化させることができる。駆動制御モジュール25のメモリユニット241内に保存された装用者の生理データを外部装置3に伝送できる実施態様であればいずれも本発明の保護範囲内であり、ここでは説明を省略する。また、本実施例において、外部装置3はクラウドシステム、モバイルデバイス、コンピューターシステム等とすることができるが、これらに限らず、該外部装置3は主に本発明のウェアラブルデバイスから伝送される装用者の生理データを受け取り、プログラムを通じてそれらのデータにより詳細な分析と比較を行い、装用者の生理・健康状態をより詳細に把握することができる。   As shown in FIG. 6, this embodiment can further include a transmission module 26, but is not limited thereto. The transmission module 26 may be installed on the drive control module 25, transmits the measured physiological data of the wearer to the external device 3, performs more detailed analysis statistics, and determines the physiological / health state of the wearer. Although it can be used for grasping in more detail, the installation position is not limited to this, and can be arbitrarily changed according to the actual operation status. In some embodiments, the transmission module 26 may be a wired transmission module, including but not limited to USB, mini-USB, or micro-USB. In some other embodiments, the transmission module may be a wireless transmission module, for example, a Wi-Fi module, a Bluetooth module, an RFID (Radio Frequency Identification) module, or a near field communication module (NFC). However, it is not limited to these. In addition, the transmission module 26 can further include a wired transmission module and a wireless transmission module at the same time, and the data transmission mode can be arbitrarily changed according to the actual operation status. Any embodiment that can transmit the wearer's physiological data stored in the memory unit 241 of the drive control module 25 to the external device 3 is within the protection scope of the present invention, and will not be described here. In the present embodiment, the external device 3 can be a cloud system, a mobile device, a computer system, or the like. However, the external device 3 is not limited to these, and the external device 3 is mainly a wearer transmitted from the wearable device of the present invention. Physiological data can be received, and the data can be analyzed and compared in detail through the program, and the physiology / health state of the wearer can be grasped in more detail.

続いて図6と、同時に図2を参照する。図に示すように、本発明のウェアラブルデバイス2で正確な測定を行うときは、主に駆動制御モジュール25を通じて該圧電駆動を採用したマイクロエアポンプ22を制御・駆動し、マイクロエアポンプ22で気体をエアバッグ23に輸送してエアバッグ23に気体を充填し、膨張させて装用者が装着している特定の位置を圧迫させ、このとき、センサー24で装用者の生理データを測定する。本発明のウェアラブルデバイス2で迅速な測定を行うときは、主に光学センサー28で装用者の該生理データを測定し、該生理データを該駆動制御モジュール25に伝送して生理データを記録する。一部の実施例において、測定した生理データをディスプレイパネル27で直接表示してもよく、また別の一部の実施例において、さらに測定した生理データを伝送モジュール26で外部装置3に伝送し、より詳細な解析を行うことができる。   Next, FIG. 6 and FIG. 2 will be referred to at the same time. As shown in the figure, when accurate measurement is performed with the wearable device 2 of the present invention, the micro air pump 22 that employs the piezoelectric drive is mainly controlled and driven through the drive control module 25, and the micro air pump 22 supplies air to the air. The air bag 23 is transported to the bag 23, filled with gas, and inflated to compress a specific position worn by the wearer. At this time, the sensor 24 measures the physiological data of the wearer. When quick measurement is performed by the wearable device 2 of the present invention, the physiological data of the wearer is mainly measured by the optical sensor 28, and the physiological data is transmitted to the drive control module 25 to record the physiological data. In some embodiments, the measured physiological data may be directly displayed on the display panel 27. In another partial embodiment, the measured physiological data is further transmitted to the external device 3 by the transmission module 26. More detailed analysis can be performed.

上述をまとめると、本発明の提供するウェアラブルデバイスは、装用者が正確に生理データを測定したいときは、センサーを選択して測定し、センサーが主に圧電駆動のマイクロエアポンプにより気体をエアバッグに輸送し、センサーで装用者の生理データを測定することができ、または、装用者が迅速に生理データを測定したいときは、光センサーを選択して測定し、光学センサーの発光器と受光器を通じて装用者の生理データを測定することができ、最後にセンサーまたは光学センサーが測定した生理データを駆動制御モジュールのメモリユニットに伝送し、さらに伝送モジュールでそれら生理データを外部装置に伝送するか、ディスプレイパネルでそれら生理データを直接表示でき、これにより正確な測定と迅速な測定を達成することができる。このほか、ウェアラブルデバイスの体積を小さく、重量を軽くして、使用者が携帯しやすく、省電力の効果も達成することができる。このため、本発明の圧電駆動のマイクロエアポンプを採用したウェアラブルデバイスは産業的利用価値が高く、法に基づきここに出願を提出するものである。   In summary, the wearable device provided by the present invention selects a sensor when the wearer wants to accurately measure physiological data, and the sensor mainly uses a piezoelectric micro-air pump to drive gas into an airbag. You can transport and measure the wearer's physiological data with the sensor, or when the wearer wants to quickly measure the physiological data, select the light sensor and measure it through the light emitter and receiver of the optical sensor The physiological data of the wearer can be measured. Finally, the physiological data measured by the sensor or the optical sensor is transmitted to the memory unit of the drive control module, and further, the physiological data is transmitted to the external device by the transmission module, or the display You can display these physiological data directly on the panel, thereby achieving accurate and quick measurement It can be. In addition, the wearable device can be reduced in volume and weight so that the user can easily carry it and achieve a power saving effect. For this reason, the wearable device employing the piezoelectric-driven micro air pump of the present invention has high industrial utility value, and the application is filed here based on the law.

本発明について上述のように実施例に基づいて詳細に説明したが、発明の属する技術分野において通常の知識を有する者であればさまざまな工夫と修飾が可能であり、それらはいずれも本発明の特許請求の範囲が求める保護を逸脱しない   Although the present invention has been described in detail on the basis of the embodiments as described above, various ideas and modifications can be made by those having ordinary knowledge in the technical field to which the present invention belongs. Do not depart from the protection required by the claims.

1a 頭部
1b 心臓部
1c 手首
1d 足首
2 ウェアラブルデバイス
20 バンド構造体
200 外表面
201 内表面
21 本体
22 マイクロエアポンプ
22A 小型気体輸送装置
22B 小型バルブ装置
221 気体導入板
221a 気体導入孔
222 共振片
223 圧電アクチュエータ
223a 懸架板
223b 圧電セラミック板
224、2241、2242 絶縁片
225 導電片
226 集気板
226a 収容空間
2277 バルブ片
228 出口板
23 エアバッグ
24 センサー
241 メモリユニット
25 駆動制御モジュール
26 伝送モジュール
27 ディスプレイパネル
28 光学センサー
281 発光器
282 受光器
3 外部装置
1a head 1b heart 1c wrist 1d ankle 2 wearable device 20 band structure 200 outer surface 201 inner surface 21 main body 22 micro air pump 22A small gas transport device 22B small valve device 221 gas introduction plate 221a gas introduction hole 222 resonance piece 223 piezoelectric Actuator 223a Suspension plate 223b Piezoelectric ceramic plates 224, 2241, 2242 Insulating piece 225 Conductive piece 226 Air collecting plate 226a Housing space 2277 Valve piece 228 Outlet plate 23 Airbag 24 Sensor 241 Memory unit 25 Drive control module 26 Transmission module 27 Display panel 28 Optical sensor 281 Light emitter 282 Light receiver 3 External device

Claims (10)

ウェアラブルデバイスであって、
外表面と、内表面を備えたバンド構造体と、
該バンド構造体の該外表面上に連接して設置され、収容空間を備えた本体と、
該本体の該収容空間内に設置されたマイクロエアポンプと、
該マイクロエアポンプに相対し、該バンド構造体の該内表面に設置され、かつ該マイクロエアポンプに連通されたエアバッグと、
該本体の該収容空間に設置された駆動制御モジュールと、
該駆動制御モジュール上に設置され、該マイクロエアポンプに連接されたセンサーと、
該バンド構造体の該内表面に設置され、該駆動制御モジュールに電気的に接続された光学センサーと、
を含み、そのうち、該駆動制御モジュールがマイクロエアポンプの動作を制御して、該マイクロエアポンプから気体を該エアバッグに輸送させ、該エアバッグに気体を充填して膨張させることで装用者の特定部位に固定し、使用者は該センサーで装用者の生理データを測定して、該生理データを該駆動制御モジュールに伝送し、該生理データを記録して正確な測定を達成するか、該光学センサーで装用者の該生理データを測定し、該生理データを該駆動制御モジュールに伝送して該生理データを記録し、迅速な測定を達成するかを選択可能としたことを特徴とする、ウェアラブルデバイス。
A wearable device,
A band structure with an outer surface and an inner surface;
A main body provided connected to the outer surface of the band structure and provided with an accommodation space;
A micro air pump installed in the housing space of the main body;
An air bag that is disposed on the inner surface of the band structure and that communicates with the micro air pump, facing the micro air pump;
A drive control module installed in the housing space of the main body;
A sensor installed on the drive control module and connected to the micro air pump;
An optical sensor installed on the inner surface of the band structure and electrically connected to the drive control module;
Of which the drive control module controls the operation of the micro air pump, transports gas from the micro air pump to the air bag, fills the air bag with gas, and inflates the specified portion of the wearer. The user measures the wearer's physiological data with the sensor, transmits the physiological data to the drive control module, and records the physiological data to achieve an accurate measurement, or the optical sensor. The wearable device is characterized in that it can select whether to measure the physiological data of the wearer, transmit the physiological data to the drive control module, record the physiological data, and achieve a quick measurement. .
前記マイクロエアポンプが圧電駆動の小型空気圧動力装置であり、かつ該小型空気圧動力装置が、小型気体輸送装置と、小型バルブ装置を含み、気体が該小型気体輸送装置から該小型バルブ装置内に輸送され、圧力の蓄積または解放作業を行うことを特徴とする、請求項1に記載のウェアラブルデバイス。   The micro air pump is a piezoelectrically driven small pneumatic power device, and the small pneumatic power device includes a small gas transport device and a small valve device, and gas is transported from the small gas transport device into the small valve device. The wearable device according to claim 1, wherein pressure is accumulated or released. 前記小型気体輸送装置が、順に重ねて設置された気体導入板と、共振片と、圧電アクチュエータを含み、そのうち、該圧電アクチュエータが駆動されると、気体が該気体導入板から進入し、複数の圧力チャンバを経由して、下方向へ輸送され、気体が該小型バルブ装置内で一方向に流動され、かつ該小型バルブ装置が順に重ねて設置された集気板と、バルブ片と、出口板を含み、該出口板の出口端が該エアバッグに連通され、気体が該小型気体輸送装置から該小型バルブ装置内に輸送されると、該出口板の該出口端を通じて該エアバッグ内に輸送され、圧力の蓄積作業が行われるか、該出口板の圧力逃がし孔を通じて圧力の逃がし作業が行われることを特徴とする、請求項2に記載のウェアラブルデバイス。   The small gas transport device includes a gas introduction plate, a resonance piece, and a piezoelectric actuator that are installed one on top of the other, and when the piezoelectric actuator is driven, gas enters from the gas introduction plate, A gas collecting plate that is transported downward through the pressure chamber, gas flows in one direction in the small valve device, and the small valve devices are installed one after the other, a valve piece, and an outlet plate When the outlet end of the outlet plate communicates with the airbag and gas is transported from the small gas transport device into the small valve device, it is transported into the airbag through the outlet end of the outlet plate. The wearable device according to claim 2, wherein a pressure accumulation operation is performed or a pressure relief operation is performed through a pressure relief hole of the outlet plate. 前記ウェアラブルデバイスがさらに、該駆動制御モジュール上に設置され、装用者の該生理データを外部装置に伝送する伝送モジュールを備えたことを特徴とする、請求項1に記載のウェアラブルデバイス。   The wearable device according to claim 1, further comprising a transmission module installed on the drive control module and transmitting the physiological data of the wearer to an external device. 前記伝送モジュールが、有線伝送モジュール及び無線伝送モジュールのうちの少なくとも1つであることを特徴とする、請求項4に記載のウェアラブルデバイス。   The wearable device according to claim 4, wherein the transmission module is at least one of a wired transmission module and a wireless transmission module. 前記有線伝送モジュールが、USB、mini−USB、micro−USBのうちの少なくとも1つであり、かつ該無線伝送モジュールが、Wi−Fiモジュール、Bluetoothモジュール、RFIDモジュール、近距離通信モジュールの少なくとも1つであることを特徴とする、請求項5に記載のウェアラブルデバイス。   The wired transmission module is at least one of USB, mini-USB, and micro-USB, and the wireless transmission module is at least one of a Wi-Fi module, a Bluetooth module, an RFID module, and a near field communication module. The wearable device according to claim 5, wherein 前記外部装置が、クラウドシステム、モバイルデバイス、コンピューターシステム等のうちの少なくとも1つであることを特徴とする、請求項4に記載のウェアラブルデバイス。   The wearable device according to claim 4, wherein the external device is at least one of a cloud system, a mobile device, a computer system, and the like. 前記光学センサーが、発光器と、受光器を備え、該発光器が測定光線を発射して該生理データを測定し、さらに該受光器で該測定光線を受け取ることを特徴とする、請求項1に記載のウェアラブルデバイス。   The optical sensor includes a light emitter and a light receiver, wherein the light emitter emits a measurement light beam to measure the physiological data, and further receives the measurement light beam at the light receiver. Wearable device as described in. 前記ウェアラブルデバイスがさらに、データを表示するためのディスプレイパネルを含み、該ウェアラブルデバイスのディスプレイパネルが、タッチスクリーン、またはボタン式スクリーンとすることができ、使用者が該タッチスクリーンを通じて該センサーまたは該光学センサーを選択し、該生理データを測定できることを特徴とする、請求項1に記載のウェアラブルデバイス。   The wearable device further includes a display panel for displaying data, and the display panel of the wearable device can be a touch screen or a button-type screen, and the user can use the sensor or the optical through the touch screen. The wearable device according to claim 1, wherein a sensor can be selected and the physiological data can be measured. 前記データが、装用者の該生理データ、時間データ、着信表示データ等のうち少なくとも1つを含むことを特徴とする、請求項9に記載のウェアラブルデバイス。   The wearable device according to claim 9, wherein the data includes at least one of the physiological data of the wearer, time data, incoming call display data, and the like.
JP2018078055A 2017-05-12 2018-04-15 Wearable device Active JP6936762B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW106115873A TW201900103A (en) 2017-05-12 2017-05-12 Wearable device
TW106115873 2017-05-12

Publications (2)

Publication Number Publication Date
JP2018192240A true JP2018192240A (en) 2018-12-06
JP6936762B2 JP6936762B2 (en) 2021-09-22

Family

ID=62530070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018078055A Active JP6936762B2 (en) 2017-05-12 2018-04-15 Wearable device

Country Status (4)

Country Link
US (1) US20180325395A1 (en)
EP (1) EP3400866A1 (en)
JP (1) JP6936762B2 (en)
TW (1) TW201900103A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111202493A (en) * 2018-11-22 2020-05-29 研能科技股份有限公司 Health monitoring device
TWI724598B (en) * 2019-10-31 2021-04-11 研能科技股份有限公司 Blood pressure measurement module
CN110912575B (en) * 2019-11-29 2021-10-15 盐城吉研智能科技有限公司 Wearable intelligent terminal capable of being fixed quickly
TWI722701B (en) * 2019-12-06 2021-03-21 研能科技股份有限公司 Blood pressure measuring module
CN112914532A (en) * 2019-12-06 2021-06-08 研能科技股份有限公司 Blood pressure measuring module
TWI762854B (en) * 2020-01-07 2022-05-01 研能科技股份有限公司 Blood pressure device
TWI752403B (en) * 2020-01-07 2022-01-11 研能科技股份有限公司 Wearable device used for detection of cardiovascular system of user

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259448A (en) * 1991-02-15 1992-09-16 Omron Corp Electronic sphygmomanometer for finger
JP2008536545A (en) * 2005-03-21 2008-09-11 ヘルス−スマート リミテッド System for continuous blood pressure monitoring
US20130190629A1 (en) * 2012-01-25 2013-07-25 Shota Umeda Electronic sphygmomanometer for measuring blood pressure and pulse
US20140159912A1 (en) * 2012-12-10 2014-06-12 Jacob Fraden Biomedical monitor for smartphone
CN205918569U (en) * 2016-06-24 2017-02-01 研能科技股份有限公司 Miniature fluid controlling means
US20170095171A1 (en) * 2015-10-06 2017-04-06 Samsung Electronics Co., Ltd. Apparatus and method for measuring bioinformation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20219565U1 (en) * 2002-12-17 2003-03-06 Hsu Jui Tzen Electronic wrist blood pressure sensor is worn like watch
US8628477B2 (en) * 2009-07-31 2014-01-14 Nellcor Puritan Bennett Ireland Systems and methods for non-invasive determination of blood pressure
CA2803885A1 (en) * 2010-06-25 2011-12-29 Drexel University Non-invasive blood pressure sensor
CN107072563B (en) * 2014-10-21 2019-05-17 株式会社村田制作所 Valve, fluid control device and sphygmomanometer
US10398375B2 (en) * 2015-12-17 2019-09-03 Htc Corporation Wearable device and physiological information monitoring system and method
TWM523432U (en) * 2016-01-15 2016-06-11 Microjet Technology Co Ltd Wearable device
CN205885426U (en) * 2016-05-20 2017-01-18 佛山市第一人民医院 Simple and convenient multifunctional monitor
TWI676463B (en) * 2017-11-07 2019-11-11 研能科技股份有限公司 Wearable blood pressure measuring device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259448A (en) * 1991-02-15 1992-09-16 Omron Corp Electronic sphygmomanometer for finger
JP2008536545A (en) * 2005-03-21 2008-09-11 ヘルス−スマート リミテッド System for continuous blood pressure monitoring
US20090216132A1 (en) * 2005-03-21 2009-08-27 Tuvi Orbach System for Continuous Blood Pressure Monitoring
US20130190629A1 (en) * 2012-01-25 2013-07-25 Shota Umeda Electronic sphygmomanometer for measuring blood pressure and pulse
JP2013150692A (en) * 2012-01-25 2013-08-08 Omron Healthcare Co Ltd Measuring apparatus and measuring method
US20140159912A1 (en) * 2012-12-10 2014-06-12 Jacob Fraden Biomedical monitor for smartphone
US20170095171A1 (en) * 2015-10-06 2017-04-06 Samsung Electronics Co., Ltd. Apparatus and method for measuring bioinformation
JP2017070739A (en) * 2015-10-06 2017-04-13 三星電子株式会社Samsung Electronics Co.,Ltd. Apparatus and method for measuring bioinformation, and wearable device
CN205918569U (en) * 2016-06-24 2017-02-01 研能科技股份有限公司 Miniature fluid controlling means

Also Published As

Publication number Publication date
JP6936762B2 (en) 2021-09-22
TW201900103A (en) 2019-01-01
US20180325395A1 (en) 2018-11-15
EP3400866A1 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
JP2018192240A (en) Wearable device
US11278242B2 (en) Wearable health monitoring device
US10292606B2 (en) System and method for determining performance capacity
CN205458646U (en) Wearable device
JP7181758B2 (en) Wearable blood pressure measurement device
JP7152247B6 (en) Wearable blood pressure measurement device
CN106974632A (en) Wearable device
TWM576726U (en) Wearable health monitoring device
CN110022763A (en) A kind of wrist-watch wrist strap
TWM523432U (en) Wearable device
TWM560881U (en) Wearing type blood pressure measuring device
TW201728904A (en) Portable gas detecting device
TWM546202U (en) Wearable device
TWM580949U (en) Wearable device
TWM566054U (en) Wearable device
KR101260465B1 (en) Blood Pressure Calculation Method and Device utilizing Pulse Wave of a wrist artery
TWI640292B (en) Wearable device
WO2019102874A1 (en) Information processing device, information processing method, and information processing program
TWM557587U (en) Wearable blood pressure measuring device
CN209018718U (en) Wearable blood pressure measuring device
CN108852281A (en) Wearable device
CN209499701U (en) Wearable device
WO2019131243A1 (en) Information processing device, information processing method, and information processing program
CN110313905A (en) A kind of blood pressure measurement accessory and system
TW201519858A (en) Healthy wrist strap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210827

R150 Certificate of patent or registration of utility model

Ref document number: 6936762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150