JP2018177931A - Resin composition and molded article - Google Patents

Resin composition and molded article Download PDF

Info

Publication number
JP2018177931A
JP2018177931A JP2017078189A JP2017078189A JP2018177931A JP 2018177931 A JP2018177931 A JP 2018177931A JP 2017078189 A JP2017078189 A JP 2017078189A JP 2017078189 A JP2017078189 A JP 2017078189A JP 2018177931 A JP2018177931 A JP 2018177931A
Authority
JP
Japan
Prior art keywords
group
resin composition
molded article
unit
fluoropolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017078189A
Other languages
Japanese (ja)
Other versions
JP7003434B2 (en
Inventor
紀生 尾澤
Akio Ozawa
紀生 尾澤
佐藤 崇
Takashi Sato
崇 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2017078189A priority Critical patent/JP7003434B2/en
Publication of JP2018177931A publication Critical patent/JP2018177931A/en
Application granted granted Critical
Publication of JP7003434B2 publication Critical patent/JP7003434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Connector Housings Or Holding Contact Members (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition excellent in impact resistance and electric characteristics, and a molded article.SOLUTION: A resin composition contains a melt-moldable fluorine resin having a melting point of 100°C or higher and 325°C or lower and having at least one reactive functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group, and a liquid crystal polymer.SELECTED DRAWING: None

Description

本発明は、電気特性及び機械物性に優れた液晶ポリマーを含む樹脂組成物に関する。   The present invention relates to a resin composition containing a liquid crystal polymer excellent in electrical properties and mechanical properties.

情報通信技術の発展に向けて、マイクロ波・ミリ波の高周波領域において適応できる高性能な高周波用電子部品の要求が強くなってきている。情報通信機器を構成する高周波電子部品の高性能化のために使用する材料に対し、それぞれの設計に応じて適正な比誘電率・低誘電損失の特性が求められている。
比誘電率(ε)とは、誘電体内の分極の程度を示すパラメーターであり、比誘電率が高い程電気信号の伝播遅延が大きくなる(Td=3.3√ε、Td;電気信号伝播遅延時間)。従って、信号の伝播速度を高め、高速演算を可能にするためには、比誘電率は低い方が好ましい。誘電正接(tanδ)とは、誘電体内に伝播する信号が熱に変換されて失われる量を示すパラメーターであり、誘電正接が低い程信号の損失が少なくなり、信号伝達率が向上する。
With the development of information communication technology, the demand for high-performance high-frequency electronic components that can be adapted in the high frequency region of microwaves and millimeter waves is increasing. With respect to materials used for enhancing the performance of high-frequency electronic components that constitute information communication devices, characteristics of appropriate dielectric constant and low dielectric loss are required according to their respective designs.
The relative dielectric constant (ε) is a parameter indicating the degree of polarization in the dielectric, and the higher the relative dielectric constant, the larger the propagation delay of the electric signal (Td = 3.3√ε, Td; electric signal propagation delay time). Therefore, in order to increase the propagation speed of the signal and enable high-speed operation, it is preferable that the dielectric constant be low. The dielectric loss tangent (tan δ) is a parameter that indicates the amount of loss of a signal propagating in the dielectric body that is converted to heat and lost. The lower the dielectric loss tangent, the smaller the signal loss and the better the signal transmission rate.

液晶ポリマーは、低比誘電率、低誘電正接、耐熱性、剛性等の機械物性、耐薬品性、寸法精度等に優れており、成形品用途として、その使用が拡大しつつあるが、近年の高周波電子部品の要求は、液晶ポリマーよりもさらに低い比誘電率、低誘電正接が求められるようになってきている。
液晶ポリマー材料を低比誘電率化するために、ポリテトラフルオロエチレン(PTFE)パウダーを樹脂に混練し、誘電率を下げる試みが行われている(特許文献1参照)。
Liquid crystal polymers are excellent in mechanical properties such as low relative dielectric constant, low dielectric loss tangent, heat resistance, rigidity, etc., chemical resistance, dimensional accuracy, etc., and their use is expanding as molded products, but in recent years The requirements for high-frequency electronic components have come to be required to have a lower dielectric constant and a lower dielectric loss tangent than liquid crystal polymers.
In order to lower the dielectric constant of a liquid crystal polymer material, attempts have been made to lower the dielectric constant by kneading polytetrafluoroethylene (PTFE) powder in a resin (see Patent Document 1).

特開2003−171538号公報Unexamined-Japanese-Patent No. 2003-171538

しかし、PTFEは溶融流動性がなく、液晶ポリマーとの親和性も低いことから、溶融混練や、射出成形の際にPTFE粒子が凝集し、樹脂組成物の成形性の低下や、成形品の耐衝撃性の低下、機械強度の低下、成形品外観の悪化を引き起こすことが問題となっていた。   However, since PTFE has no melt flowability and low affinity with liquid crystal polymers, PTFE particles aggregate during melt-kneading or injection molding, resulting in a decrease in the moldability of the resin composition, and resistance to moldings. It has been a problem to cause a decrease in impact resistance, a decrease in mechanical strength, and a deterioration in the appearance of a molded article.

本発明者らが検討した結果、液晶ポリマー中に特定のフッ素樹脂を含む樹脂組成物よりなる成形品において、上記課題が解決され、電気特性、耐衝撃性、機械強度に優れる成形品が得られることがわかった。
本発明は、耐衝撃性および電気特性に優れた樹脂組成物および成形品を提供する。
As a result of investigations by the present inventors, in the molded article made of a resin composition containing a specific fluorocarbon resin in the liquid crystal polymer, the above problems are solved, and a molded article excellent in electrical characteristics, impact resistance and mechanical strength can be obtained. I understood it.
The present invention provides resin compositions and molded articles excellent in impact resistance and electrical properties.

本発明は、下記の態様を有する。
[1]融点が100℃以上325℃以下であり、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する溶融成形可能なフッ素樹脂と、液晶ポリマーを含む樹脂組成物。
[2]前記官能基が、酸無水物基である、[1]に記載の樹脂組成物。
[3]前記フッ素樹脂と前記液晶ポリマーとの合計に対する前記フッ素樹脂の含有量が1〜45体積%である、[1]または[2]に記載の樹脂組成物。
[4]さらに無機フィラーおよび有機フィラーなる群からから選ばれる少なくとも1種を含む、[1]〜[3]のいずれかに記載の樹脂組成物。
[5][1]〜[4]のいずれかに記載の樹脂組成物を成形してなる成形品。
[6]前記成形品がコネクターである、[5]に記載の成形品。
[7][1]〜[4]のいずれかに記載の樹脂組成物を、押出成形、射出成形、切削加工、熱成形、または積層造形のいずれかで成形することを特徴とする成形品の製造方法。
The present invention has the following aspects.
[1] Melt-moldable fluororesin having a melting point of 100 ° C. or more and 325 ° C. or less and having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxyl group, an epoxy group and an isocyanate group Resin composition containing a polymer.
[2] The resin composition according to [1], wherein the functional group is an acid anhydride group.
[3] The resin composition according to [1] or [2], wherein the content of the fluororesin with respect to the total of the fluororesin and the liquid crystal polymer is 1 to 45% by volume.
[4] The resin composition according to any one of [1] to [3], further containing at least one selected from the group consisting of an inorganic filler and an organic filler.
The molded article formed by shape | molding the resin composition in any one of [5] [1]-[4].
[6] The molded article according to [5], wherein the molded article is a connector.
[7] A molded article characterized in that the resin composition according to any one of [1] to [4] is molded by extrusion molding, injection molding, cutting, thermoforming, or laminate molding. Production method.

本発明によれば、耐衝撃性および電気特性に優れた樹脂組成物および成形品を得ることができる。   According to the present invention, a resin composition and a molded article excellent in impact resistance and electrical properties can be obtained.

以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
「融点」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
「溶融成形可能」であるとは、溶融流動性を示すことを意味する。
「溶融流動性を示す」とは、荷重49Nの条件下、樹脂の融点よりも20℃以上高い温度において、溶融流れ速度が0.1〜1000g/10分となる温度が存在することを意味する。
「溶融流れ速度」は、JIS K 7210:1999(ISO 1133:1997)に規定されるメルトマスフローレート(MFR)である。
「カルボニル基含有基」とは、構造中にカルボニル基(−C(=O)−)を有する基を意味する。
「酸無水物基」とは、−C(=O)−O−C(=O)−で表される基を意味する。
「単量体に基づく単位」とは、単量体が重合することによって直接形成された原子団と、該原子団の一部を化学変換することで得られる原子団との総称である。
The following definitions of terms apply throughout the specification and claims.
The "melting point" is the temperature corresponding to the maximum value of the melting peak measured by differential scanning calorimetry (DSC).
By "melt-moldable" is meant exhibiting melt flowability.
“Show melt flowability” means that there is a temperature at which the melt flow rate is 0.1 to 1000 g / 10 min at a load of 49 N and at a temperature 20 ° C. or more higher than the melting point of the resin. .
The "melt flow rate" is a melt mass flow rate (MFR) defined in JIS K 7210: 1999 (ISO 1133: 1997).
The “carbonyl group-containing group” means a group having a carbonyl group (—C (= O) —) in the structure.
The “acid anhydride group” means a group represented by —C (= O) —O—C (= O) —.
The “unit based on a monomer” is a generic name of an atomic group directly formed by polymerizing a monomer, and an atomic group obtained by chemically converting a part of the atomic group.

本発明の樹脂組成物はフッ素樹脂と液晶ポリマーを含む。
また本発明の樹脂組成物は、本発明の効果を損なわない範囲においてフッ素樹脂および液晶ポリマー以外の他の成分を含んでいてもよい。
The resin composition of the present invention contains a fluorine resin and a liquid crystal polymer.
Moreover, the resin composition of this invention may contain other components other than a fluororesin and a liquid crystal polymer in the range which does not impair the effect of this invention.

フッ素樹脂は、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選択される少なくとも1種の官能基(以下、官能基(f)と記す。)を有するフッ素樹脂である(以下、フッ素樹脂Aとも記す)。接着性の官能基(f)を有することによって、液晶ポリマーとの混和性に優れるととともに、成形品の機械特性、成形性、耐衝撃性を損なわない。   The fluorine resin is a fluorine resin having at least one functional group (hereinafter referred to as a functional group (f)) selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group (hereinafter referred to as , Also referred to as fluorine resin A). By having the adhesive functional group (f), the miscibility with the liquid crystal polymer is excellent, and the mechanical properties, moldability and impact resistance of the molded product are not impaired.

官能基(f)は、液晶ポリマーとの混和性に優れる点から、フッ素樹脂Aの主鎖の末端基および主鎖のペンダント基のいずれか一方または両方として存在することが好ましい。
官能基(f)は、1種であってもよく、2種以上であってもよい。
The functional group (f) is preferably present as one or both of an end group of the main chain of the fluororesin A and a pendant group of the main chain from the viewpoint of excellent miscibility with the liquid crystal polymer.
The functional group (f) may be of one type, or of two or more types.

フッ素樹脂Aは、液晶ポリマーとの混和性の点から、官能基(f)として少なくともカルボニル基含有基を有することが好ましい。
カルボニル基含有基としては、たとえば、炭化水素基の炭素原子間にカルボニル基を有する基、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、酸無水物基等が挙げられる。
The fluorine resin A preferably has at least a carbonyl group-containing group as the functional group (f) from the viewpoint of the compatibility with the liquid crystal polymer.
Examples of the carbonyl group-containing group include a group having a carbonyl group between carbon atoms of a hydrocarbon group, a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride group and the like.

炭化水素基の炭素原子間にカルボニル基を有する基における炭化水素基としては、たとえば、炭素数2〜8のアルキレン基等が挙げられる。なお、該アルキレン基の炭素数は、カルボニル基を構成する炭素を含まない状態での炭素数である。アルキレン基は、直鎖状であってもよく、分岐状であってもよい。
ハロホルミル基は、−C(=O)−X(ただし、Xはハロゲン原子である。)で表される。ハロホルミル基におけるハロゲン原子としては、フッ素原子、塩素原子等が挙げられ、フッ素原子が好ましい。すなわちハロホルミル基としてはフルオロホルミル基(カルボニルフルオリド基ともいう。)が好ましい。
アルコキシカルボニル基におけるアルコキシ基は、直鎖状であってもよく、分岐状であってもよく、炭素数1〜8のアルコキシ基が好ましく、メトキシ基またはエトキシ基が特に好ましい。
As a hydrocarbon group in the group which has a carbonyl group between carbon atoms of a hydrocarbon group, a C2-C8 alkylene group etc. are mentioned, for example. In addition, carbon number of this alkylene group is carbon number in the state which does not contain carbon which comprises a carbonyl group. The alkylene group may be linear or branched.
A haloformyl group is represented by -C (= O) -X (however, X is a halogen atom). A fluorine atom, a chlorine atom, etc. are mentioned as a halogen atom in a haloformyl group, A fluorine atom is preferable. That is, as the haloformyl group, a fluoroformyl group (also referred to as a carbonyl fluoride group) is preferable.
The alkoxy group in the alkoxycarbonyl group may be linear or branched, and is preferably an alkoxy group having 1 to 8 carbon atoms, and particularly preferably a methoxy group or an ethoxy group.

フッ素樹脂A中の官能基(f)の含有量は、フッ素樹脂Aの主鎖炭素数1×10個に対し10〜60000個が好ましく、100〜50000個がより好ましく、100〜10000個がさらに好ましく、300〜5000個が特に好ましい。官能基(f)の含有量が前記範囲の下限値以上であれば、液晶ポリマーとの混和性が著しく優れる。官能基(f)の含有量が前記範囲の上限値以下であれば、溶融混練時の混和性に優れる。 The content of the functional group (f) in the fluororesin A is preferably 10 to 60000, more preferably 100 to 50000, with respect to 1 × 10 6 carbon atoms in the main chain of the fluororesin A, and 100 to 10000 More preferably, 300 to 5000 are particularly preferable. When the content of the functional group (f) is at least the lower limit value of the above range, the miscibility with the liquid crystal polymer is extremely excellent. If content of a functional group (f) is below the upper limit of the said range, it is excellent in the compatibility at the time of melt-kneading.

官能基(f)の含有量は、核磁気共鳴(NMR)分析、赤外吸収スペクトル分析等の方法によって測定できる。たとえば、特開2007−314720号公報に記載のように赤外吸収スペクトル分析等の方法を用いて、フッ素樹脂Aを構成する全単位中の官能基(f)を有する単位の割合(モル%)を求め、該割合から、官能基(f)の含有量を算出できる。   The content of the functional group (f) can be measured by nuclear magnetic resonance (NMR) analysis, infrared absorption spectrum analysis or the like. For example, the proportion (mol%) of the unit having a functional group (f) in all the units constituting the fluororesin A using a method such as infrared absorption spectrum analysis as described in JP-A-2007-314720. The content of the functional group (f) can be calculated from the ratio.

フッ素樹脂Aの融点は、100℃以上325℃以下であり、100℃以上260℃未満が好ましく、120℃以上220℃以下がより好ましい。フッ素樹脂Aの融点が前記範囲の下限値以上であれば、成形品の耐熱性に優れる。フッ素樹脂Aの融点が前記範囲の上限値以下であれば、樹脂組成物および成形品を製造する際に汎用の装置を使用することができる。   The melting point of the fluororesin A is 100 ° C. or more and 325 ° C. or less, preferably 100 ° C. or more and less than 260 ° C., and more preferably 120 ° C. or more and 220 ° C. or less. If the melting point of the fluorine resin A is at least the lower limit value of the above range, the heat resistance of the molded article is excellent. If the melting point of the fluororesin A is equal to or less than the upper limit value of the above range, a general-purpose device can be used when producing the resin composition and the molded article.

融点が比較的低いフッ素樹脂Aを用いた場合、液晶ポリマーの中でも熱分解温度が低い樹脂を使用した際も、製造工程中に樹脂の分解を引き起こさずに組成物を得ることができる。したがって、該場合においては、フッ素樹脂Aの融点は、120℃以上220℃以下が好ましく、120℃以上200℃以下がより好ましい。
フッ素樹脂Aの融点は、フッ素樹脂Aを構成する単位の種類や割合、フッ素樹脂Aの分子量等によって調整できる。たとえば、後述する単位(u1)の割合が多くなるほど、融点が上がる傾向がある。
When the fluororesin A having a relatively low melting point is used, the composition can be obtained without causing decomposition of the resin during the production process, even when using a resin having a low thermal decomposition temperature among liquid crystal polymers. Therefore, in this case, the melting point of the fluororesin A is preferably 120 ° C. or more and 220 ° C. or less, and more preferably 120 ° C. or more and 200 ° C. or less.
The melting point of the fluorine resin A can be adjusted by the type and ratio of the units constituting the fluorine resin A, the molecular weight of the fluorine resin A, and the like. For example, the melting point tends to rise as the proportion of units (u1) described later increases.

なお、用いる液晶ポリマーが高い融点を有する場合は、フッ素樹脂Aの融点も高い方が好ましい。この場合、該融点は250〜320℃が好ましく、280〜315℃がより好ましく、290〜310℃がさらに好ましい。該融点は、フッ素樹脂Aを構成する単位の種類や割合、フッ素樹脂Aの分子量等によって調整できる。たとえば、後述する単位(u1)の割合が多くなるほど、融点が上がる傾向がある。   When the liquid crystal polymer to be used has a high melting point, it is preferable that the melting point of the fluororesin A be also high. In this case, the melting point is preferably 250 to 320 ° C, more preferably 280 to 315 ° C, and still more preferably 290 to 310 ° C. The melting point can be adjusted by the kind and ratio of units constituting the fluororesin A, the molecular weight of the fluororesin A, and the like. For example, the melting point tends to rise as the proportion of units (u1) described later increases.

フッ素樹脂Aとしては、樹脂組成物および成形品の製造性の観点から、溶融成形が可能なものを用いる。
溶融成形が可能なフッ素樹脂Aとしては、公知の溶融成形が可能なフッ素樹脂(テトラフルオロエチレン/フルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、エチレン/テトラフルオロエチレン共重合体、ポリフッ化ビニリデン、ポリクロロトリフルオロエチレン、エチレン/クロロトリフルオロエチレン共重合体等)に官能基(f)を導入したフッ素樹脂等が挙げられる。
As the fluorine resin A, those which can be melt-molded are used from the viewpoint of the productivity of the resin composition and the molded article.
As the fluorine resin A which can be melt molded, a known melt resin which can be melt molded (tetrafluoroethylene / fluoroalkyl vinyl ether copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / tetrafluoroethylene copolymer) And fluorine resins in which a functional group (f) is introduced into polyvinylidene fluoride, polychlorotrifluoroethylene, an ethylene / chlorotrifluoroethylene copolymer, etc.).

フッ素樹脂Aとしては、荷重49Nの条件下、フッ素樹脂Aの融点よりも20℃以上高い温度において、溶融流れ速度が0.1〜1000g/10分となる温度が存在するものを用いる。溶融流れ速度は、好ましくは0.5〜100g/10分、より好ましくは1〜30g/10分、さらに好ましくは5〜20g/10分、である。溶融流れ速度が前記範囲の下限値以上であれば、フッ素樹脂Aの成形性に優れる。溶融流れ速度が前記範囲の上限値以下であれば、成形品の機械的特性に優れる。   As the fluororesin A, used is one having a temperature at which the melt flow rate becomes 0.1 to 1000 g / 10 min at a temperature of 20 ° C. or more higher than the melting point of the fluororesin A under the condition of a load of 49N. The melt flow rate is preferably 0.5 to 100 g / 10 minutes, more preferably 1 to 30 g / 10 minutes, still more preferably 5 to 20 g / 10 minutes. If the melt flow rate is at least the lower limit value of the above range, the moldability of the fluororesin A is excellent. If the melt flow rate is not more than the upper limit value of the above range, the mechanical properties of the molded article are excellent.

フッ素樹脂Aとしては、製造方法の違いによって、たとえば、下記のものが挙げられる。
含フッ素重合体の製造の際に用いた単量体、連鎖移動剤および重合開始剤からなる群から選ばれる少なくとも1種に由来する官能基(f)を有する含フッ素重合体。以下、含フッ素重合体A1ともいう。
コロナ放電処理、プラズマ処理等の表面処理によって官能基(f)を有しないフッ素樹脂に官能基(f)を導入したフッ素樹脂。
官能基(f)を有しないフッ素樹脂に、官能基(f)を有する単量体をグラフト重合して得られたフッ素樹脂。
As the fluororesin A, for example, the following may be mentioned depending on the difference in the production method.
A fluorine-containing polymer having a functional group (f) derived from at least one selected from the group consisting of a monomer, a chain transfer agent and a polymerization initiator used in the production of the fluorine-containing polymer. Hereinafter, it is also referred to as fluoropolymer A1.
A fluorine resin in which a functional group (f) is introduced to a fluorine resin having no functional group (f) by surface treatment such as corona discharge treatment or plasma treatment.
The fluorine resin obtained by graft-polymerizing the monomer which has a functional group (f) to the fluorine resin which does not have a functional group (f).

フッ素樹脂Aとしては、下記の理由から、含フッ素重合体A1が好ましい。
・含フッ素重合体A1においては、含フッ素重合体A1の主鎖の末端基および主鎖のペンダント基のいずれか一方または両方に官能基(f)が存在するため、液晶ポリマーとの混和性が著しく優れる。
As the fluorine resin A, the fluorine-containing polymer A1 is preferable from the following reason.
In the fluoropolymer A1, since the functional group (f) is present in either or both of the terminal group of the main chain and the pendant group of the main chain of the fluoropolymer A1, the compatibility with the liquid crystal polymer is Outstandingly outstanding.

含フッ素重合体A1における官能基(f)が、含フッ素重合体A1の製造に用いられた単量体に由来する場合、含フッ素重合体A1は、下記方法(i)によって製造できる。この場合、官能基(f)は、製造時に単量体が重合することによって形成された該単量体に由来する単位中に存在する。
方法1:単量体の重合によって含フッ素重合体A1を製造する際に、官能基(f)を有する単量体を用いる。
When the functional group (f) in the fluoropolymer A1 is derived from the monomer used for the production of the fluoropolymer A1, the fluoropolymer A1 can be produced by the following method (i). In this case, the functional group (f) is present in a unit derived from the monomer formed by polymerizing the monomer at the time of production.
Method 1: In producing the fluoropolymer A1 by polymerizing monomers, a monomer having a functional group (f) is used.

含フッ素重合体A1における官能基(f)が、含フッ素重合体A1の製造に用いられた連鎖移動剤に由来する場合、含フッ素重合体A1は、下記方法2によって製造できる。この場合、官能基(f)は、含フッ素重合体A1の主鎖の末端基として存在する。
方法2:官能基(f)を有する連鎖移動剤の存在下に、単量体の重合によって含フッ素重合体A1を製造する。
官能基(f)を有する連鎖移動剤としては、酢酸、無水酢酸、酢酸メチル、エチレングリコール、プロピレングリコール等が挙げられる。
When the functional group (f) in the fluoropolymer A1 is derived from the chain transfer agent used for the production of the fluoropolymer A1, the fluoropolymer A1 can be produced by the following method 2. In this case, the functional group (f) is present as an end group of the main chain of the fluoropolymer A1.
Method 2: In the presence of a chain transfer agent having a functional group (f), a fluoropolymer A1 is produced by polymerization of monomers.
Examples of chain transfer agents having a functional group (f) include acetic acid, acetic anhydride, methyl acetate, ethylene glycol and propylene glycol.

含フッ素重合体A1における官能基(f)が、含フッ素重合体A1の製造に用いられた重合開始剤に由来する場合、含フッ素重合体A1は、下記方法3によって製造できる。この場合、官能基(f)は、含フッ素重合体A1の主鎖の末端基として存在する。
方法3:官能基(f)を有するラジカル重合開始剤等の重合開始剤の存在下に、単量体の重合によって含フッ素重合体A1を製造する。
官能基(f)を有するラジカル重合開始剤としては、ジ−n−プロピルペルオキシジカーボネート、ジイソプロピルペルオキシカーボネート、tert−ブチルペルオキシイソプロピルカーボネート、ビス(4−tert−ブチルシクロヘキシル)ペルオキシジカーボネート、ジ−2−エチルヘキシルペルオキシジカーボネート等が挙げられる。
When the functional group (f) in the fluoropolymer A1 is derived from the polymerization initiator used for the production of the fluoropolymer A1, the fluoropolymer A1 can be produced by the following method 3. In this case, the functional group (f) is present as an end group of the main chain of the fluoropolymer A1.
Method 3: In the presence of a polymerization initiator such as a radical polymerization initiator having a functional group (f), a fluoropolymer A1 is produced by polymerization of monomers.
As a radical polymerization initiator having a functional group (f), di-n-propylperoxydicarbonate, diisopropylperoxycarbonate, tert-butylperoxyisopropylcarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, di-2 -Ethylhexyl peroxydicarbonate etc. are mentioned.

含フッ素重合体A1における官能基(f)が、含フッ素重合体A1の製造に用いられた単量体、連鎖移動剤、重合開始剤のうちの2種以上に由来する場合、含フッ素重合体A1は前記方法1〜3のうちの2種以上を併用することによって製造できる。   When the functional group (f) in the fluoropolymer A1 is derived from two or more of the monomer used for producing the fluoropolymer A1, a chain transfer agent, and a polymerization initiator, the fluoropolymer A1 can be produced by using two or more of the above methods 1 to 3 in combination.

含フッ素重合体A1としては、官能基(f)の含有量を容易に制御でき、そのため、液晶ポリマーとの混和性を調整しやすい点から、方法(i)で製造された、単量体に由来する官能基(f)を有する含フッ素重合体A11が好ましい。
官能基(f)を有する単量体としては、カルボキシ基を有する単量体(マレイン酸、イタコン酸、シトラコン酸、ウンデシレン酸等);酸無水物基を有する単量体(無水イタコン酸(以下、「IAH」とも記す。)、無水シトラコン酸(以下、「CAH」とも記す。)、5−ノルボルネン−2,3−ジカルボン酸無水物(以下、「NAH」とも記す。)、無水マレイン酸等)、水酸基およびエポキシ基を有する単量体(ヒドロキシブチルビニルエーテル、グリシジルビニルエーテル等)等が挙げられる。
As the fluorine-containing polymer A1, the content of the functional group (f) can be easily controlled, and therefore, from the viewpoint of easily adjusting the miscibility with the liquid crystal polymer, it is possible to use a monomer produced by method (i) The fluorine-containing polymer A11 which has a functional group (f) derived from is preferable.
As a monomer having a functional group (f), a monomer having a carboxy group (maleic acid, itaconic acid, citraconic acid, undecylenic acid, etc.); a monomer having an acid anhydride group (itaconic anhydride (hereinafter referred to as , "IAH"), citraconic anhydride (hereinafter also referred to as "CAH"), 5-norbornene-2,3-dicarboxylic acid anhydride (hereinafter referred to as "NAH"), maleic anhydride etc. And monomers having a hydroxyl group and an epoxy group (hydroxybutyl vinyl ether, glycidyl vinyl ether, etc.) and the like.

単量体に由来する官能基(f)を有する含フッ素重合体A11としては、液晶ポリマーとの混和性が著しく優れる点から、下記の含フッ素重合体A11が特に好ましい。
テトラフルオロエチレン(以下、「TFE」とも記す。)またはクロロトリフルオロエチレン(以下、「CTFE」とも記す。)に基づく単位(u1)(以下、単に「単位(u1)」とも記す。他の単位も同様である。)と、酸無水物基を有する環状炭化水素単量体(以下、「酸無水物基含有環状炭化水素単量体」とも記す。)に基づく単位(u2)と、含フッ素単量体(ただし、TFEおよびCTFEを除く。)に基づく単位(u3)とを有する含フッ素重合体(A11)。
ここで、単位(u2)の有する酸無水物基が官能基(f)に相当する。
As the fluorine-containing polymer A11 having a functional group (f) derived from a monomer, the following fluorine-containing polymer A11 is particularly preferable because the miscibility with the liquid crystal polymer is remarkably excellent.
A unit (u1) based on tetrafluoroethylene (hereinafter also referred to as “TFE”) or chlorotrifluoroethylene (hereinafter also referred to as “CTFE”) (hereinafter simply referred to as “unit (u1)”. Other units And the unit (u2) based on a cyclic hydrocarbon monomer having an acid anhydride group (hereinafter also referred to as "acid anhydride group-containing cyclic hydrocarbon monomer"), and a fluorine-containing group The fluorine-containing polymer (A11) which has a unit (u3) based on a monomer (however, except TFE and CTFE).
Here, the acid anhydride group of the unit (u2) corresponds to the functional group (f).

単位(u2)を構成する酸無水物基含有環状炭化水素単量体としては、IAH、CAH、NAH、無水マレイン酸等が挙げられる。酸無水物基含有環状炭化水素単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。   As an acid anhydride group containing cyclic hydrocarbon monomer which constitutes a unit (u2), IAH, CAH, NAH, maleic anhydride, etc. are mentioned. The acid anhydride group-containing cyclic hydrocarbon monomer may be used alone or in combination of two or more.

酸無水物基含有環状炭化水素単量体としては、IAH、CAHおよびNAHからなる群から選ばれる1種以上が好ましい。IAH、CAHおよびNAHからなる群から選ばれる1種以上を用いると、無水マレイン酸を用いた場合に必要となる特殊な重合方法(特開平11−193312号公報参照)を用いることなく、酸無水物基を有する含フッ素重合体(A11)を容易に製造できる。
酸無水物基含有環状炭化水素単量体としては、液晶ポリマーとの混和性が著しく優れる点から、IAHまたはNAHが好ましい。
The acid anhydride group-containing cyclic hydrocarbon monomer is preferably one or more selected from the group consisting of IAH, CAH and NAH. When one or more members selected from the group consisting of IAH, CAH and NAH are used, acid anhydride can be obtained without using a special polymerization method (see JP-A-11-193312) which is required when using maleic anhydride. The fluorine-containing polymer (A11) having an organic group can be easily produced.
As the acid anhydride group-containing cyclic hydrocarbon monomer, IAH or NAH is preferable from the viewpoint that the miscibility with the liquid crystal polymer is remarkably excellent.

単位(u3)を構成する含フッ素単量体としては、重合性炭素−炭素二重結合を1つ有する含フッ素化合物が好ましく、たとえば、フルオロオレフィン(フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、ヘキサフルオロプロピレン(以下、「HFP」とも記す。)、ヘキサフルオロイソブチレン等。ただし、TFEを除く。)、CF=CFORf1(ただし、Rf1は炭素数1〜10で炭素原子間に酸素原子を含んでもよいペルフルオロアルキル基である。)(以下、「PAVE」とも記す。)、CF=CFORf2SO(ただし、Rf2は炭素数1〜10で炭素原子間に酸素原子を含んでもよいペルフルオロアルキレン基であり、Xはハロゲン原子または水酸基である。)、CF=CFORf3CO(ただし、Rf3は炭素数1〜10で炭素原子間に酸素原子を含んでもよいペルフルオロアルキレン基であり、Xは水素原子または炭素数1〜3のアルキル基である。)、CF=CF(CFOCF=CF(ただし、pは1または2である。)、CH=CX(CF(ただし、Xは水素原子またはフッ素原子であり、qは2〜10の整数であり、Xは水素原子またはフッ素原子である。)(以下、「FAE」とも記す。)、環構造を有する含フッ素単量体(ペルフルオロ(2,2−ジメチル−1,3−ジオキソール)、2,2,4−トリフルオロ−5−トリフルオロメトキシ−1,3−ジオキソール、ペルフルオロ(2−メチレン−4−メチル−1,3−ジオキソラン)等)等が挙げられる。 As the fluorine-containing monomer constituting unit (u3), a fluorine-containing compound having one polymerizable carbon-carbon double bond is preferable, and, for example, fluoroolefins (vinyl fluoride, vinylidene fluoride, trifluoroethylene, Hexafluoropropylene (hereinafter also referred to as “HFP”), hexafluoroisobutylene etc. However, TFE is excluded, CF 2 CCFOR f1 (where R f1 is a carbon number of 1 to 10 and an oxygen atom between carbon atoms) (Hereinafter, also referred to as “PAVE”), CF 2 CCFOR f 2 SO 2 X 1 (wherein R f2 is a carbon number of 1 to 10 and an oxygen atom is interposed between carbon atoms) A perfluoroalkylene group which may be contained, and X 1 is a halogen atom or a hydroxyl group), CF 2 CCFOR f 3 CO 2 2 X 2 (wherein R f3 is a perfluoroalkylene group having 1 to 10 carbon atoms and optionally containing an oxygen atom between carbon atoms, and X 2 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms), CF 2 CFCF (CF 2 ) p OCF = CF 2 (where p is 1 or 2), CH 2 CXCX 3 (CF 2 ) q X 4 (where X 3 is a hydrogen atom or a fluorine atom) And q is an integer of 2 to 10, and X 4 is a hydrogen atom or a fluorine atom) (hereinafter also referred to as “FAE”), a fluorine-containing monomer having a ring structure (perfluoro (2, 2 -Dimethyl-1,3-dioxole), 2,2,4-trifluoro-5-trifluoromethoxy-1,3-dioxole, perfluoro (2-methylene-4-methyl-1,3-dioxolane), etc. Are listed That.

含フッ素単量体としては、含フッ素重合体(A11)の成形性、に優れる点から、HFP、PAVEおよびFAEからなる群から選ばれる少なくとも1種が好ましく、FAEおよびHFPのいずれか一方または両方がより好ましい。
PAVEとしては、CF=CFOCFCF、CF=CFOCFCFCF、CF=CFOCFCFCFCF、CF=CFO(CFF等が挙げられ、CF=CFOCFCFCF(以下、「PPVE」とも記す。)が好ましい。
The fluorine-containing monomer is preferably at least one selected from the group consisting of HFP, PAVE and FAE from the viewpoint of the excellent formability of the fluorine-containing polymer (A11), and one or both of FAE and HFP Is more preferred.
Examples of PAVE include CF 2 CCFOCF 2 CF 3 , CF 2 CCFOCF 2 CF 2 CF 3 , CF 2 CCFOCF 2 CF 2 CF 2 CF 3 , CF 2 CCFO (CF 2 ) 6 F, etc. 2 = CFOCF 2 CF 2 CF 3 (hereinafter also referred to as “PPVE”) is preferable.

FAEとしては、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH等が挙げられる。
FAEとしては、CH=CH(CFq1(ただし、q1は、2〜6であり、2〜4が好ましい。)が好ましく、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFHがより好ましく、CH=CH(CFFまたはCH=CH(CFFが特に好ましい。
As the FAE, CH 2 CFCF (CF 2 ) 2 F, CH 2 CFCF (CF 2 ) 3 F, CH 2 CFCF (CF 2 ) 4 F, CH 2 CFCF (CF 2 ) 5 F, CH 2 = CF (CF 2) 6 F , CH 2 = CF (CF 2) 2 H, CH 2 = CF (CF 2) 3 H, CH 2 = CF (CF 2) 4 H, CH 2 = CF (CF 2) 5 H, CH 2 CFCF (CF 2 ) 6 H, CH 2 CHCH (CF 2 ) 2 F, CH 2 CHCH (CF 2 ) 3 F, CH 2 CHCH (CF 2 ) 4 F, CH 2 = CH (CF 2) 5 F, CH 2 = CH (CF 2) 6 F, CH 2 = CH (CF 2) 2 H, CH 2 = CH (CF 2) 3 H, CH 2 = CH (CF 2) 4 H, CH 2 = CH (CF 2) 5 H, CH 2 = CH (CF 2) 6 H , and the like .
As FAE, CH 2 CHCH (CF 2 ) q 1 X 4 (wherein q 1 is 2 to 6, preferably 2 to 4) is preferable, and CH 2 CHCH (CF 2 ) 2 F, CH 2 = CH (CF 2 ) 3 F, CH 2 CHCH (CF 2 ) 4 F, CH 2 CFCF (CF 2 ) 3 H, CH 2 CFCF (CF 2 ) 4 H, more preferably CH 2 2CH ( CF 2 ) 4 F or CH 2 CHCH (CF 2 ) 2 F is particularly preferred.

含フッ素重合体Aが単位(u1)と単位(u2)と単位(u3)とからなる場合、単位(u1)と単位(u2)と単位(u3)との合計100モル%に対して、単位(u1)の含有量は、50〜99.89モル%が好ましく、50〜99.4モル%がより好ましく、50〜98.9モル%がさらに好ましい。単位(u2)の含有量は、0.01〜5モル%が好ましく、0.1〜3モル%がより好ましく、0.1〜2モル%がさらに好ましい。単位(u3)の含有量は、0.1〜49.99モル%が好ましく、0.5〜49.9モル%がより好ましく、1〜49.9モル%がさらに好ましい。
各単位の割合が前記範囲内であれば、耐熱性、耐薬品性、高温での弾性率に優れる。
単位(u2)の割合が前記範囲内であれば、含フッ素重合体Aにおける酸無水物基の量が適切になり、液晶ポリマーとの混和性が著しく優れる。
単位(u3)の割合が前記範囲内であれば、含フッ素重合体Aの成形性に優れ、本発明の組成物を成形体としたときに耐屈曲性等に優れる。
各単位の割合は、含フッ素重合体の溶融NMR分析、フッ素含有量分析、赤外吸収スペクトル分析等により算出できる。
When the fluoropolymer A consists of the unit (u1), the unit (u2) and the unit (u3), the unit relative to a total of 100 mol% of the unit (u1), the unit (u2) and the unit (u3) 50-99.89 mol% is preferable, as for content of (u1), 50-99.4 mol% is more preferable, and 50-98.9 mol% is further more preferable. 0.01-5 mol% is preferable, as for content of a unit (u2), 0.1-3 mol% is more preferable, and 0.1-2 mol% is more preferable. The content of the unit (u3) is preferably 0.1 to 49.99 mol%, more preferably 0.5 to 49.9 mol%, and still more preferably 1 to 49.9 mol%.
If the ratio of each unit is in the above-mentioned range, it is excellent in heat resistance, chemical resistance, and elastic modulus at high temperature.
When the proportion of the unit (u2) is within the above range, the amount of the acid anhydride group in the fluoropolymer A becomes appropriate, and the miscibility with the liquid crystal polymer is extremely excellent.
When the proportion of the unit (u3) is within the above range, the moldability of the fluoropolymer A is excellent, and when the composition of the present invention is formed into a molded article, the flexibility is excellent.
The proportion of each unit can be calculated by melt NMR analysis, fluorine content analysis, infrared absorption spectrum analysis or the like of the fluoropolymer.

含フッ素重合体Aが単位(u1)と単位(u2)と単位(u3)とからなる場合、単位(u2)の割合が0.01モル%であることは、含フッ素重合体A中の酸無水物基の含有量が含フッ素重合体Aの主鎖炭素数1×10個に対して100個であることに相当する。単位(u2)の割合が5モル%であることは、含フッ素重合体A中の酸無水物基の含有量が含フッ素重合体Aの主鎖炭素数1×10個に対して50000個であることに相当する。
含フッ素重合体Aには、単位(u2)における酸無水物基の一部が加水分解し、その結果、酸無水物基含有環状炭化水素単量体に対応するジカルボン酸(イタコン酸、シトラコン酸、5−ノルボルネン−2,3−ジカルボン酸、マレイン酸等)に基づく単位が含まれる場合がある。該ジカルボン酸に基づく単位が含まれる場合、該単位の割合は、モノマー単位(u2)の割合に含まれるものとする。
When the fluoropolymer A is composed of the unit (u1), the unit (u2) and the unit (u3), the proportion of the unit (u2) is 0.01 mol%, the acid in the fluoropolymer A The content of the anhydride group corresponds to 100 per 1 × 10 6 carbon atoms of the main chain of the fluoropolymer A. The content of the acid anhydride group in the fluoropolymer A is 50000 for the main chain carbon number 1 × 10 6 of the fluoropolymer A that the proportion of the unit (u2) is 5 mol% It corresponds to being
In the fluoropolymer A, a part of the acid anhydride group in the unit (u2) is hydrolyzed, and as a result, a dicarboxylic acid corresponding to the acid anhydride group-containing cyclic hydrocarbon monomer (itaconic acid, citraconic acid) , 5-norbornene-2,3-dicarboxylic acid, maleic acid, etc.) may be included. When the unit based on the dicarboxylic acid is included, the ratio of the unit is included in the ratio of the monomer unit (u2).

含フッ素重合体A11は、単位(u1)〜(u3)に加えて、フッ素を有しない単量体(ただし、酸無水物基含有環状炭化水素単量体を除く。)に基づく単位(u4)を有していてもよい。
フッ素を有しない単量体としては、重合性炭素−炭素二重結合を1つ有するフッ素を有しない化合物が好ましく、たとえば、オレフィン(エチレン、プロピレン、1−ブテン等)、ビニルエステル(酢酸ビニル等)等が挙げられる。フッ素を有しない単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
フッ素を有しない単量体としては、成形品の機械的特性等に優れる点から、エチレン、プロピレン、1−ブテンが好ましく、エチレンが特に好ましい。
The fluoropolymer A11 is, in addition to the units (u1) to (u3), a unit (u4) based on a monomer having no fluorine (but excluding the acid anhydride group-containing cyclic hydrocarbon monomer). May be included.
As the monomer having no fluorine, a compound having no fluorine having one polymerizable carbon-carbon double bond is preferable, and, for example, olefins (ethylene, propylene, 1-butene etc.), vinyl esters (vinyl acetate etc.) Etc.). The monomer which does not have a fluorine may be used individually by 1 type, and may use 2 or more types together.
As a monomer which does not have a fluorine, ethylene, propylene and 1-butene are preferable from the point which is excellent in the mechanical characteristic etc. of a molded article, and ethylene is especially preferable.

単位(u4)がエチレンである場合の各単位の好ましい割合は下記のとおりである。
単位(u1)の割合は、単位(u1)と単位(u2)と単位(u3)と単位(u4)との合計100モル%のうち、25〜80モル%が好ましく、40〜65モル%がより好ましく、45〜63モル%がさらに好ましい。
単位(u2)の割合は、単位(u1)と単位(u2)と単位(u3)と単位(u4)との合計100モル%のうち、0.01〜5モル%が好ましく、0.03〜3モル%がより好ましく、0.05〜1モル%がさらに好ましい。
単位(u3)の割合は、単位(u1)と単位(u2)と単位(u3)と単位(u4)との合計100モル%のうち、0.2〜20モル%が好ましく、0.5〜15モル%がより好ましく、1〜12モル%がさらに好ましい。
単位(u4)の割合は、単位(u1)と単位(u2)と単位(u3)と単位(u4)との合計100モル%に対して、20〜75モル%が好ましく、35〜50モル%がより好ましく、37〜55モル%がさらに好ましい。
The preferable ratio of each unit when unit (u4) is ethylene is as follows.
The proportion of the unit (u1) is preferably 25 to 80 mol%, and 40 to 65 mol% of the total 100 mol% of the unit (u1), the unit (u2), the unit (u3) and the unit (u4) More preferably, 45 to 63 mol% is more preferable.
The proportion of the unit (u2) is preferably 0.01 to 5 mol% of the total 100 mol% of the unit (u1), the unit (u2), the unit (u3) and the unit (u4), and 0.03 to 3 mol% is more preferable, and 0.05 to 1 mol% is more preferable.
The proportion of the unit (u3) is preferably 0.2 to 20% by mol, out of the total 100 mol% of the unit (u1), the unit (u2), the unit (u3) and the unit (u4), and 0.5 to 0.5 15 mol% is more preferable, and 1 to 12 mol% is more preferable.
The proportion of the unit (u4) is preferably 20 to 75 mol%, more preferably 35 to 50 mol%, based on the total 100 mol% of the units (u1), (u2), (u3) and (u4) Is more preferable, and 37 to 55 mol% is more preferable.

各単位の割合が前記範囲内であれば、成形品の難燃性、耐薬品性等に著しく優れる。
単位(u2)の割合が前記範囲内であれば、含フッ素重合体A11における酸無水物基の量が適切になり、液晶ポリマーとの混和性が著しく優れる。
単位(u3)の割合が前記範囲内であれば、含フッ素重合体A11の成形性に著しく優れる。
各単位の割合は、含フッ素重合体A11の溶融NMR分析、フッ素含有量分析、赤外吸収スペクトル分析等により算出できる。
If the ratio of each unit is within the above range, the flame retardancy, chemical resistance and the like of the molded article are remarkably excellent.
When the proportion of the unit (u2) is within the above range, the amount of the acid anhydride group in the fluoropolymer A11 becomes appropriate, and the miscibility with the liquid crystal polymer is extremely excellent.
If the proportion of the unit (u3) is within the above range, the formability of the fluoropolymer A11 is remarkably excellent.
The proportion of each unit can be calculated by melt NMR analysis, fluorine content analysis, infrared absorption spectrum analysis, etc. of the fluoropolymer A11.

含フッ素重合体A11の好ましい具体例としては、TFE/NAH/PPVE共重合体、TFE/IAH/PPVE共重合体、TFE/CAH/PPVE共重合体、TFE/IAH/HFP共重合体、TFE/CAH/HFP共重合体、TFE/IAH/CH=CH(CFF/E共重合体、TFE/CAH/CH=CH(CFF/E共重合体、TFE/IAH/CH=CH(CFF/E共重合体、TFE/CAH/CH=CH(CFF/E共重合体、TFE/IAH/HFP/CH=CH(CFF/E共重合体等が挙げられる。 Preferred specific examples of the fluoropolymer A11 include TFE / NAH / PPVE copolymer, TFE / IAH / PPVE copolymer, TFE / CAH / PPVE copolymer, TFE / IAH / HFP copolymer, TFE / CAH / HFP copolymer, TFE / IAH / CH 2 CHCH (CF 2 ) 4 F / E copolymer, TFE / CAH / CH 2 CHCH (CF 2 ) 4 F / E copolymer, TFE / IAH / CH 2 CHCH (CF 2 ) 2 F / E copolymer, TFE / CAH / CH 2 CHCH (CF 2 ) 2 F / E copolymer, TFE / IAH / HFP / CH 2 CHCH (CF 2) 4 ) 4 F / E copolymer etc. are mentioned.

フッ素樹脂Aは、常法により製造できる。単量体の重合によってフッ素樹脂Aを製造する場合、重合方法としては、ラジカル重合開始剤を用いる重合方法が好ましい。
重合方法としては、塊状重合法、有機溶媒(フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等)を用いる溶液重合法、水性媒体と必要に応じて適当な有機溶媒とを用いる懸濁重合法、水性媒体と乳化剤とを用いる乳化重合法が挙げられ、溶液重合法が好ましい。
The fluorine resin A can be manufactured by a conventional method. When the fluororesin A is produced by polymerization of monomers, a polymerization method using a radical polymerization initiator is preferable as the polymerization method.
As a polymerization method, a bulk polymerization method, a solution polymerization method using an organic solvent (fluorohydrocarbon, chlorohydrocarbon, fluorochlorohydrocarbon, alcohol, hydrocarbon, etc.), an aqueous medium and, if necessary, an appropriate organic solvent And an emulsion polymerization method using an aqueous medium and an emulsifier, and a solution polymerization method is preferable.

本発明の液晶ポリマー(以下、液晶ポリマーBとも記す。)は、異方性溶融相を形成する熱可塑性ポリマーである。具体的には熱可塑性液晶ポリエステルまたはポリエステルアミドであり、一般にサーモトロピック液晶ポリエステルまたはサーモトロピック液晶ポリエステルアミドと呼ばれるものであれば特に制限されない。また、芳香族ポリエステルまたは芳香族ポリエステルアミドに、更にイミド結合、カーボネート結合、カルボジイミド結合やイソシアヌレート結合などのイソシアネート由来の結合等が導入されたポリマーであってもよい。特に熱可塑性液晶ポリエステルが好ましい。
異方性溶融相は、例えば試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより確認できる。熱可塑性液晶ポリマーの融点は280〜360℃が好ましく、290〜350℃がより好ましい。
市場で入手可能な液晶ポリマーとしては、ポリプラスチックス社製「ラペロス」、セラニーズ社製「ベクトラ」、上野製薬社製「UENOLCP」、住友化学社製「スミカスーパーLCP」「SOLVAY SPECIALTY POLYMERS製「XYDAR」、JX日鉱日石エネルギー社製「ザイダー」、東レ社製「シベラス」等が挙げられる。
The liquid crystal polymer of the present invention (hereinafter also referred to as liquid crystal polymer B) is a thermoplastic polymer that forms an anisotropic melt phase. Specifically, there is no particular limitation as long as it is a thermoplastic liquid crystalline polyester or polyesteramide, and is generally called a thermotropic liquid crystalline polyester or a thermotropic liquid crystalline polyester amide. In addition, it may be a polymer in which an imide bond, a carbonate bond, an isocyanate-derived bond such as a carbodiimide bond or a carbodiimide bond, or the like is further introduced into the aromatic polyester or the aromatic polyester amide. In particular, thermoplastic liquid crystalline polyester is preferred.
The anisotropic molten phase can be confirmed, for example, by placing the sample on a hot stage, heating by heating in a nitrogen atmosphere, and observing the transmitted light of the sample. 280-360 degreeC is preferable and, as for melting | fusing point of a thermoplastic liquid crystal polymer, 290-350 degreeC is more preferable.
Examples of liquid crystal polymers available on the market include “Laperos” made by Polyplastics, “Vektra” made by Celanese, “UENOLCP” made by Ueno Pharmaceutical, “Sumika Super LCP” made by Sumitomo Chemical, “XYDAR made by SOLVAY SPECIALTY POLYMERS” And “Xyder” manufactured by JX Nippon Mining & Energy Co., Ltd., “Cyberasu” manufactured by Toray Industries, Inc., and the like.

本発明の樹脂組成物におけるフッ素樹脂Aの含有量は特に限定されるものではなく、目的とする用途の要求性能により適宜選択される。添加されるフッ素樹脂Aが少なすぎる場合には、低比誘電率、衝撃強度の向上の効果が小さくなるので、好ましくはフッ素樹脂Aと液晶ポリマーBの合計に対してフッ素樹脂Aが10体積%以上、より好ましくは20体積%以上となる。   The content of the fluororesin A in the resin composition of the present invention is not particularly limited, and is appropriately selected according to the required performance of the intended application. If the amount of the fluorine resin A added is too small, the effect of improving the low relative dielectric constant and impact strength will be small, so preferably 10% by volume of the fluorine resin A with respect to the total of the fluorine resin A and the liquid crystal polymer B The above amount is more preferably 20% by volume or more.

本発明の樹脂組成物におけるフッ素樹脂Aと液晶ポリマーBの合計量は、本発明の樹脂組成物に対して50質量%以上が好ましく、70質量%以上がより好ましい。   50 mass% or more is preferable with respect to the resin composition of this invention, and, as for the total amount of fluororesin A and liquid crystal polymer B in the resin composition of this invention, 70 mass% or more is more preferable.

本発明の樹脂組成物に含まれる他の成分としては、無機フィラー、有機フィラー、有機顔料、金属せっけん、界面活性剤、紫外線吸収剤、潤滑剤、シランカップリング剤、有機化合物(たとえば有機モノマー、重合度50以下の有機オリゴマー等。)等が挙げられ、無機フィラーが好ましい。   Examples of other components contained in the resin composition of the present invention include inorganic fillers, organic fillers, organic pigments, metal soaps, surfactants, UV absorbers, lubricants, silane coupling agents, organic compounds (for example, organic monomers, Organic oligomers having a degree of polymerization of 50 or less, etc.) and the like are mentioned, and inorganic fillers are preferred.

無機フィラーとしては、シリカ、クレー、タルク、炭酸カルシウム、マイカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、珪酸カルシウム、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルーン、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、グラファイト、炭素繊維、ガラスバルーン、炭素バーン、木粉、ホウ酸亜鉛等が挙げられる。無機フィラーは、1種を単独で用いてもよく、2種以上を併用してもよい。   As the inorganic filler, silica, clay, talc, calcium carbonate, mica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, calcium oxide, calcium hydroxide, magnesium hydroxide, water Aluminum oxide, basic magnesium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dawsonite, hydrotalcite, calcium sulfate, barium sulfate, calcium silicate, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass Beads, silica-based balloons, carbon black, carbon nanotubes, carbon nanohorns, graphite, carbon fibers, glass balloons, carbon burns, wood flour, zinc borate and the like can be mentioned. An inorganic filler may be used individually by 1 type, and may use 2 or more types together.

無機フィラーは、樹脂への分散性の向上の点から、シランカップリング剤、チタネートカップリング剤等の表面処理剤による表面処理が施されてもよい。
無機フィラーを含む場合、無機フィラーの含有量は、フッ素樹脂Aと液晶ポリマーBの合計100質量部に対して0.1〜100質量部が好ましく、0.1〜60質量部がより好ましい。
The inorganic filler may be subjected to surface treatment with a surface treatment agent such as a silane coupling agent or a titanate coupling agent from the viewpoint of improving the dispersibility in the resin.
When the inorganic filler is contained, the content of the inorganic filler is preferably 0.1 to 100 parts by mass, and more preferably 0.1 to 60 parts by mass with respect to a total of 100 parts by mass of the fluororesin A and the liquid crystal polymer B.

有機フィラーとしては、芳香族ポリアミド繊維、ポリアラミド繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維等が挙げられる。
他の添加剤に関しては、本発明の成形品の特性を損なわない範囲で任意の割合を添加することができる。
Examples of the organic filler include aromatic polyamide fiber, polyaramid fiber, polyparaphenylene benzoxazole (PBO) fiber, polyphenylene sulfide fiber, polyester fiber, acrylic fiber, nylon fiber, polyethylene fiber and the like.
With respect to the other additives, any ratio can be added as long as the properties of the molded article of the present invention are not impaired.

本発明の樹脂組成物の製造方法は、特に限定されるものではなく、公知の熱可塑性樹脂組成物の製造方法を広く採用できる。具体的には、各成分を、タンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどで溶融混練することによって樹脂組成物を製造することができる。   The method for producing the resin composition of the present invention is not particularly limited, and a wide variety of known methods for producing a thermoplastic resin composition can be adopted. Specifically, each component is mixed in advance using various mixers such as tumblers and Henschel mixers, and then melt-kneaded using a Banbury mixer, rolls, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc. The resin composition can be manufactured by carrying out.

また、例えば、各成分を予め混合せずに、または、一部の成分のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して、本発明の立体回路部品に用いられる樹脂組成物を製造することもできる。
さらに、例えば、一部の成分を予め混合し押出機に供給して溶融混練することで得られる樹脂組成物をマスターバッチとし、このマスターバッチを再度残りの成分と混合し、溶融混練することによっても製造することもできる。
Also, for example, a resin used for the three-dimensional circuit component of the present invention, without mixing each component in advance, or mixing only a part of components in advance, supplying it to an extruder using a feeder, and melt kneading it. Compositions can also be made.
Furthermore, for example, a resin composition obtained by mixing some components in advance and supplying them to an extruder for melt-kneading is used as a masterbatch, and this masterbatch is mixed with the remaining components again and melt-kneaded. Can also be manufactured.

本発明の成形品は本発明の樹脂組成物を成形して得られる。成形方法としては、射出成形法、押出成形法、切削加工、熱成形法、積層造形などを用いることができる。
射出成形法としては、一般的な射出成形法、高速射出、多色成形、コインジェクション、射出圧縮成形、ガスアシスト射出成形、発泡射出成形(MUCELL)、急速加熱金型を用いたヒートアンドクール成形、インサート成形、インモールドデコレーションなどを選択することができる。
押出成形としては、Tダイを用いたフィルムシート成形、円形ダイを用いたチューブ成形、異形押出成形、溶融紡糸、中空部品成形のためのブロー成形を用いることができる。
形態として二層以上の多層成形や、芯鞘構造の多層繊維として成形することもできる。
Tダイ法によって得られた単層または多層のシートを熱成形することによっても成形することができる。
本発明の成形品は積層造形法によっても作成することができる。積層造形法としては特に限定されるものではなく、一般的に3Dプリンティング、アディティブマニュファクチャリングとよばれる成形法に広く用いられる手法を適用することができる。
The molded article of the present invention is obtained by molding the resin composition of the present invention. As a molding method, an injection molding method, an extrusion molding method, a cutting process, a thermoforming method, a lamination molding, etc. can be used.
As the injection molding method, general injection molding method, high speed injection, multicolor molding, coinjection, injection compression molding, gas assisted injection molding, foam injection molding (MUCELL), heat and cool molding using a rapid heating mold , Insert molding, in-mold decoration, etc. can be selected.
As the extrusion molding, film sheet molding using a T-die, tube molding using a circular die, profile extrusion molding, melt spinning, and blow molding for hollow part molding can be used.
It can also be formed as a multi-layer molding of two or more layers as a form, or a multi-layer fiber of core-sheath structure.
It can also be shaped by thermoforming a single layer or multilayer sheet obtained by the T-die method.
The molded article of the present invention can also be produced by the additive manufacturing method. The additive manufacturing method is not particularly limited, and methods widely used in molding methods generally called 3D printing and additive manufacturing can be applied.

本発明の成形品の用途としては特に限定はない。例えば、コネクター、ソケット、リレー部品、コイルボビン、光ピックアップ、発振子、プリント配線板、コンピュータ関連部品等の電気・電子部品;ICトレー、ウエハーキャリヤー等の半導体製造プロセス関連部品、VTR、テレビ、アイロン、エアコン、ステレオ、掃除機、冷蔵庫、炊飯器、照明器具等の家庭電気製品部品、ランプリフレクター、ランプホルダー等の照明器具部品、コンパクトディスク、スピーカー等の音響製品部品、光ケーブル用フェルール、電話機部品、ファクシミリ部品、モデム等の通信機器部品、分離爪、ヒータホルダー等の複写機関連部品、インペラー、ファン、歯車、ギヤ、軸受け、モーター部品及びケース等の機械部品、自動車用機構部品、エンジン部品、エンジンルーム内部品、電装部品、内装部品等の自動車部品、マイクロ波調理用鍋、耐熱食器等の調理用器具、床材、壁材等の断熱、防音用材料や、梁、柱等の支持材料や、屋根材等の建築資材又は土木建築用材料、航空機、宇宙機、宇宙機器用部品、原子炉等の放射線施設部材、海洋施設部材、洗浄用治具、光学機器部品、バルブ類、パイプ類、ノズル類、フィルター類、膜、医療用機器部品及び医療用材料、センサー類部品、サニタリー備品等の広範な用途に使用可能である。   There is no limitation in particular as a use of the molded article of this invention. For example, electrical and electronic parts such as connectors, sockets, relay parts, coil bobbins, optical pickups, oscillators, printed wiring boards, computer related parts, etc .; semiconductor manufacturing process related parts such as IC trays and wafer carriers, VTR, television, iron, Household electric appliance parts such as air conditioners, stereos, vacuum cleaners, refrigerators, rice cookers, lighting fixtures, lighting fixtures parts such as lamp reflectors and lamp holders, acoustic products parts such as compact discs and speakers, ferrules for optical cables, telephone parts, facsimiles Parts, communication equipment parts such as modems, separation claws, copying machine related parts such as heater holder, impellers, fans, gears, gears, bearings, mechanical parts such as motor parts and cases, mechanical parts for automobiles, engine parts, engine room Internal parts, electrical parts, interior parts Automotive parts, microwave cooking pots, cooking utensils such as heat resistant dishes, floor materials, heat insulation such as wall materials, soundproofing materials, supporting materials such as beams and columns, building materials such as roofing materials or civil engineering Materials, aircraft, spacecraft, parts for space equipment, radiation facility members such as nuclear reactors, marine facilities members, cleaning jigs, optical equipment parts, valves, pipes, nozzles, filters, membranes, for medical use It can be used in a wide range of applications such as equipment parts and medical materials, sensor parts, and sanitary accessories.

さらに、摺動部材、シール材、ギア、アクチュエーター、ピストン、ベアリング、筺体、燃料用チューブ、ブッシュ、チューブ、ホース、タンク、シール、ワイヤー、ケーブル、フィルム、シート、ボトル、繊維等の用途も挙げられる。
チューブ、ホース、タンク、シール、ワイヤーとしては、国際公開第2015/182702号の段落[0041]〜[0043]に記載されたものが挙げられる。また、チューブ、ホースとしては石油、天然ガス、シェールオイル等のエネルギー資源掘削用のチューブが挙げられる。ワイヤー、ケーブル等の電線被覆材としてはモーターコイル用の電線または平角銅線、特にハイブリッド自動車(HEV)や電気自動車(EV)の駆動用モーターに使用される平角導体の絶縁被覆として用いることが好ましく、その場合フィルムで絶縁被覆することが好ましい。石油、天然ガス、シェールオイル等エネルギー資源掘削用のダウンホールケーブル用途等も挙げられる。
Furthermore, applications such as sliding members, seals, gears, actuators, pistons, bearings, housings, tubes for fuel, bushes, tubes, hoses, tanks, seals, wires, cables, films, sheets, bottles, fibers, etc. can be mentioned. .
As a tube, a hose, a tank, a seal, and a wire, those described in paragraphs [0041] to [0043] of WO 2015/182702 can be mentioned. Moreover, as a tube and a hose, the tube for energy resource excavations, such as oil, natural gas, and shale oil, is mentioned. A wire coating material such as a wire or cable is preferably used as an insulation coating of a wire for motor coil or a flat copper wire, particularly a flat conductor used for a motor for driving a hybrid vehicle (HEV) or an electric vehicle (EV) In that case, it is preferable to carry out insulation coating with a film. Other applications include downhole cables for drilling energy resources such as oil, natural gas and shale oil.

以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。   Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.

(表面状態の評価(ストランド外観))
目視により、下記実施例1等の溶融混練後に得られたストランド状の樹脂材料の表面を観察し、添加物の凝集による表面荒れの有無を確認した。表面に添加物の凝集による表面荒れが全く見られなかったものを「A」、わずかに荒れが見られたものを「B」、全体的に荒れが見られたものを「C」とした。
(アイゾット衝撃強度)
コンターマシン(アマダ社製、V−400)を用いてプレスシートを切断し、高さ:63mm、幅:13mm、厚さ:2.8mmのサンプルを得た。サンプルの高さ32mmの位置にノッチを入れ、試験片を得た。
試験片について、アイゾッド試験装置(東洋精機社製)を用い、ハンマー容量:2.75J、ハンマー重量:13.97N、軸心から重心までの距離:10.54cm、軸心から打撃点までの距離:33.5cmの条件にてアイゾット衝撃強度を測定した。
(Evaluation of surface condition (strand appearance))
The surface of the strand-like resin material obtained after melt-kneading of the following Example 1 etc. was visually observed, and the presence or absence of the surface roughening by aggregation of the additive was confirmed. Those with no surface roughening due to the aggregation of additives on the surface were "A", those with slight roughening were "B", and those with overall roughening were "C".
(Izod impact strength)
The press sheet was cut using a contour machine (manufactured by Amada Co., Ltd., V-400) to obtain a sample having a height of 63 mm, a width of 13 mm, and a thickness of 2.8 mm. A notch was inserted at a height of 32 mm of the sample to obtain a test piece.
About the test piece, hammer capacity: 2.75 J, hammer weight: 13.97 N, distance from axis to center of gravity: 10.54 cm, distance from axis to striking point using Izod tester (made by Toyo Seiki Co., Ltd.) : Izod impact strength was measured under the condition of 33.5 cm.

含フッ素重合体A−1:官能基(f)の種類:カルボニル基含有基、官能基(f)の含有量:含フッ素重合体A−1の主鎖炭素数1×10個に対し1000個、比重:2.15、融点:300℃、溶融流れ速度(372℃、荷重49N):22g/10分)。該樹脂は、国際公開公報第2015/182702号の実施例5と同様に製造し、TFE/NAH/PPVEのモル比は、97.9/0.1/2であった。
含フッ素重合体A−2:官能基(f)の種類:カルボニル基含有基、官能基(f)の含有量:含フッ素重合体A−2の主鎖炭素数1×10個に対し3000個、融点:240℃、溶融流れ速度(297℃、荷重49N):18.5g/10分)。該樹脂は、特開の[0080][0081]と同様に製造し、TFE/IAH/CH=CH(CFF/Eのモル比は、58.5/2.0/0.3/39.1であった。
液晶ポリマーB−1:セラニーズ社製ベクトラS135(融点 355℃)
液晶ポリマーB−2:セラニーズ社製ベクトラA130(融点 280℃)
PTFEパウダー:旭硝子社製FLUON L169J
Fluorinated polymer A-1: Type of functional group (f): content of carbonyl group-containing group, functional group (f): 1000 to main chain carbon number 1 × 10 6 of the fluorine-containing polymer A-1 Pieces, specific gravity: 2.15, melting point: 300 ° C., melt flow rate (372 ° C., load 49 N): 22 g / 10 min). The resin was prepared as in Example 5 of WO 2015/182702, and the TFE / NAH / PPVE molar ratio was 97.9 / 0.1 / 2.
Fluorinated polymer A-2: Type of functional group (f): content of carbonyl group-containing group, functional group (f): 3000 to main chain carbon number 1 × 10 6 of fluoropolymer A-2 Melting point: 240 ° C., melt flow rate (297 ° C., load 49 N): 18.5 g / 10 min). The resin, [0080] [0081] and prepared in the same manner, the molar ratio of TFE / IAH / CH 2 = CH (CF 2) 2 F / E of JP is 58.5 / 2.0 / 0. It was 3 / 39.1.
Liquid crystal polymer B-1: Vectra S135 (melting point 355 ° C.) manufactured by Celanese
Liquid crystal polymer B-2: Vectra A130 manufactured by Celanese (melting point 280 ° C.)
PTFE powder: FLUON L169J manufactured by Asahi Glass Co., Ltd.

実施例1〜4:
含フッ素重合体A−1と液晶ポリマーB−1を表1に示す割合でドライブレンドし、2軸押出機(テクノベル社製、KZW15TW−45MG)に投入し、樹脂吐出量:2.0kg/時間、スクリュー回転数:200rpm、設定樹脂温度:370℃の条件にて溶融混練し、樹脂材料を得た。得られた樹脂材料をテスター産業社製メルト熱プレス機でプレス成形し、2.8mm厚のシートを得た。プレス条件は、加工温度370℃、予熱10分、圧力10MPa、プレス時間3分間とした。得られたシートを用いてアイゾット衝撃強度を測定した。結果を表1に記す。なお、表1において含フッ素重合体A−1および液晶ポリマーB−1の割合は、含フッ素重合体A−1および液晶ポリマーB−1の合計に対するそれぞれの体積%である。
Examples 1-4:
Dry blend the fluoropolymer A-1 and the liquid crystal polymer B-1 in the proportions shown in Table 1 and place them in a twin screw extruder (manufactured by Technobel, KZW15TW-45MG), resin discharge amount: 2.0 kg / hour The resin material was obtained by melt-kneading under the conditions of screw rotation speed: 200 rpm and setting resin temperature: 370 ° C. The obtained resin material was press-molded with a melt heat press manufactured by Tester Sangyo Co., Ltd. to obtain a 2.8 mm thick sheet. The pressing conditions were a processing temperature of 370 ° C., a preheating of 10 minutes, a pressure of 10 MPa, and a pressing time of 3 minutes. The Izod impact strength was measured using the obtained sheet. The results are shown in Table 1. In Table 1, the proportions of the fluoropolymer A-1 and the liquid crystal polymer B-1 are respectively% by volume with respect to the total of the fluoropolymer A-1 and the liquid crystal polymer B-1.

実施例5〜8:
組成物の作成方法
含フッ素重合体A−2と液晶ポリマーB−2を表2に示す割合でドライブレンドし、2軸押出機(テクノベル社製、KZW15TW−45MG)に投入し、樹脂吐出量:2.0kg/時間、スクリュー回転数:200rpm、設定樹脂温度:300℃の条件にて溶融混練し、樹脂材料を得た。得られた樹脂材料をテスター産業社製メルト熱プレス機でプレス成形し、2.8mm厚のシートを得た。プレス条件は、加工温度300℃、予熱10分、圧力10MPa、プレス時間3分間とした。得られたシートを用いてアイゾット衝撃強度を測定した。結果を表2に記す。なお、表2において含フッ素重合体A−2および液晶ポリマーB−2の割合は、含フッ素重合体A−2および液晶ポリマーB−2の合計に対するそれぞれの体積%である。
Examples 5-8:
Preparation Method of Composition The fluoropolymer A-2 and the liquid crystal polymer B-2 were dry-blended at a ratio shown in Table 2 and charged into a twin-screw extruder (manufactured by Technobel, KZW15TW-45MG), and the resin discharge amount: It melt-kneaded on the conditions of 2.0 kg / hour, screw rotation speed: 200 rpm, and setting resin temperature: 300 degreeC, and obtained the resin material. The obtained resin material was press-molded with a melt heat press manufactured by Tester Sangyo Co., Ltd. to obtain a 2.8 mm thick sheet. The pressing conditions were a processing temperature of 300 ° C., preheating of 10 minutes, a pressure of 10 MPa, and a pressing time of 3 minutes. The Izod impact strength was measured using the obtained sheet. The results are shown in Table 2. In Table 2, the proportions of the fluoropolymer A-2 and the liquid crystal polymer B-2 are respectively% by volume with respect to the total of the fluoropolymer A-2 and the liquid crystal polymer B-2.

比較例1〜2:
含フッ素重合体A−1の代わりにPTFEを使用した以外は、実施例1と同様にシートを作製しアイゾット衝撃強度を測定した。結果を表1に記す。
Comparative Examples 1-2:
A sheet was produced in the same manner as in Example 1 except that PTFE was used instead of the fluoropolymer A-1, and the Izod impact strength was measured. The results are shown in Table 1.

Figure 2018177931
Figure 2018177931

Figure 2018177931
Figure 2018177931

Claims (7)

融点が100℃以上325℃以下であり、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアネート基からなる群から選ばれる少なくとも1種の官能基を有する溶融成形可能なフッ素樹脂と、液晶ポリマーを含む樹脂組成物。   Melt-moldable fluororesin having a melting point of 100 ° C. or more and 325 ° C. or less and having at least one functional group selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group and an isocyanate group Resin composition. 前記官能基が、酸無水物基である、請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the functional group is an acid anhydride group. 前記フッ素樹脂と前記液晶ポリマーとの合計に対する前記フッ素樹脂の含有量が1〜45体積%である、請求項1または2に記載の樹脂組成物。   The resin composition of Claim 1 or 2 whose content of the said fluororesin with respect to the sum total of the said fluororesin and the said liquid crystal polymer is 1 to 45 volume%. さらに無機フィラーおよび有機フィラーからなる群から選ばれる少なくとも1種を含む、請求項1〜3のいずれか一項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 3, further comprising at least one selected from the group consisting of an inorganic filler and an organic filler. 請求項1〜4のいずれか一項に記載の樹脂組成物を成形してなる成形品。   The molded article formed by shape | molding the resin composition as described in any one of Claims 1-4. 前記成形品がコネクターである、請求項5に記載の成形品。   The molded article according to claim 5, wherein the molded article is a connector. 請求項1〜4のいずれか一項に記載の樹脂組成物を、押出成形、射出成形、切削加工、熱成形、または積層造形のいずれかで成形することを特徴とする成形品の製造方法。   The manufacturing method of the molded article characterized by shape | molding the resin composition as described in any one of Claims 1-4 by either extrusion molding, injection molding, cutting, thermoforming, or lamination molding.
JP2017078189A 2017-04-11 2017-04-11 Resin compositions and molded products Active JP7003434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017078189A JP7003434B2 (en) 2017-04-11 2017-04-11 Resin compositions and molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017078189A JP7003434B2 (en) 2017-04-11 2017-04-11 Resin compositions and molded products

Publications (2)

Publication Number Publication Date
JP2018177931A true JP2018177931A (en) 2018-11-15
JP7003434B2 JP7003434B2 (en) 2022-01-20

Family

ID=64281198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017078189A Active JP7003434B2 (en) 2017-04-11 2017-04-11 Resin compositions and molded products

Country Status (1)

Country Link
JP (1) JP7003434B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138277A1 (en) * 2018-12-27 2020-07-02 Jxtgエネルギー株式会社 Resin composition, and resin molded article comprising said resin composition
WO2021095656A1 (en) * 2019-11-11 2021-05-20 Agc株式会社 Powder composition, film, and method for producing film
JP2021109891A (en) * 2020-01-07 2021-08-02 パナソニックIpマネジメント株式会社 Liquid crystalline resin composition and molded article
WO2021182336A1 (en) 2020-03-10 2021-09-16 ダイキン工業株式会社 Resin composition, molded article, and method for producing molded article
WO2022163862A1 (en) * 2021-02-01 2022-08-04 住友化学株式会社 Resin composition and molded body
KR20230014717A (en) 2020-05-21 2023-01-30 스미또모 가가꾸 가부시키가이샤 Method for producing liquid crystal polyester liquid composition, liquid crystal polyester film, laminate and liquid crystal polyester film
WO2023127734A1 (en) * 2021-12-28 2023-07-06 住友化学株式会社 Resin composition and molded body
JP7443969B2 (en) 2020-07-17 2024-03-06 Agc株式会社 Extrusion film manufacturing method and extrusion film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013738A1 (en) * 1992-12-10 1994-06-23 Daikin Industries, Ltd. Thermoplastic resin composition
WO1995033782A1 (en) * 1994-06-09 1995-12-14 Daikin Industries, Ltd. Fluoroolefin, fluoropolymer, and thermoplastic resin composition containing the polymer
JP2006328195A (en) * 2005-05-25 2006-12-07 Daikin Ind Ltd Resin composition and fuel container comprising the same
WO2015098776A1 (en) * 2013-12-27 2015-07-02 旭硝子株式会社 Resin composition
JP2015168771A (en) * 2014-03-07 2015-09-28 旭硝子株式会社 Ethylene/tetrafluoroethylene copolymer composition
JP2016121263A (en) * 2014-12-25 2016-07-07 東レ株式会社 Polyphenylene sulfide resin composition, method for producing the same, and molding comprising the same
WO2017179542A1 (en) * 2016-04-11 2017-10-19 旭硝子株式会社 Laminate, printed board and method for producing laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013738A1 (en) * 1992-12-10 1994-06-23 Daikin Industries, Ltd. Thermoplastic resin composition
WO1995033782A1 (en) * 1994-06-09 1995-12-14 Daikin Industries, Ltd. Fluoroolefin, fluoropolymer, and thermoplastic resin composition containing the polymer
JP2006328195A (en) * 2005-05-25 2006-12-07 Daikin Ind Ltd Resin composition and fuel container comprising the same
WO2015098776A1 (en) * 2013-12-27 2015-07-02 旭硝子株式会社 Resin composition
JP2015168771A (en) * 2014-03-07 2015-09-28 旭硝子株式会社 Ethylene/tetrafluoroethylene copolymer composition
JP2016121263A (en) * 2014-12-25 2016-07-07 東レ株式会社 Polyphenylene sulfide resin composition, method for producing the same, and molding comprising the same
WO2017179542A1 (en) * 2016-04-11 2017-10-19 旭硝子株式会社 Laminate, printed board and method for producing laminate

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020138277A1 (en) * 2018-12-27 2020-07-02 Jxtgエネルギー株式会社 Resin composition, and resin molded article comprising said resin composition
JPWO2020138277A1 (en) * 2018-12-27 2021-11-04 Eneos株式会社 A resin composition and a resin molded product comprising the resin composition
JP7312767B2 (en) 2018-12-27 2023-07-21 Eneos株式会社 Resin composition and resin molded article made from the resin composition
WO2021095656A1 (en) * 2019-11-11 2021-05-20 Agc株式会社 Powder composition, film, and method for producing film
CN114729198A (en) * 2019-11-11 2022-07-08 Agc株式会社 Powder composition, film, and method for producing film
JP2021109891A (en) * 2020-01-07 2021-08-02 パナソニックIpマネジメント株式会社 Liquid crystalline resin composition and molded article
WO2021182336A1 (en) 2020-03-10 2021-09-16 ダイキン工業株式会社 Resin composition, molded article, and method for producing molded article
KR20220137933A (en) 2020-03-10 2022-10-12 다이킨 고교 가부시키가이샤 Resin composition, molded article and manufacturing method of molded article
CN115210315A (en) * 2020-03-10 2022-10-18 大金工业株式会社 Resin composition, molded article, and method for producing molded article
KR20230014717A (en) 2020-05-21 2023-01-30 스미또모 가가꾸 가부시키가이샤 Method for producing liquid crystal polyester liquid composition, liquid crystal polyester film, laminate and liquid crystal polyester film
CN115667398A (en) * 2020-05-21 2023-01-31 住友化学株式会社 Liquid crystal polyester liquid composition, liquid crystal polyester film, laminate, and method for producing liquid crystal polyester film
JP7443969B2 (en) 2020-07-17 2024-03-06 Agc株式会社 Extrusion film manufacturing method and extrusion film
WO2022163862A1 (en) * 2021-02-01 2022-08-04 住友化学株式会社 Resin composition and molded body
WO2023127734A1 (en) * 2021-12-28 2023-07-06 住友化学株式会社 Resin composition and molded body

Also Published As

Publication number Publication date
JP7003434B2 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
JP7003434B2 (en) Resin compositions and molded products
US9711257B2 (en) Fluorinated elastomer composition and method for its production, molded product, cross-linked product, and covered electric wire
US10347392B2 (en) Fluorinated insulated electric wire
JP6330447B2 (en) Fluorine-containing copolymer composition, process for producing the same, and molded article
JP6455367B2 (en) Fluorine-containing resin composition, molded article, electric wire, and method for producing fluorine-containing resin composition
US20160068670A1 (en) Covering material for heat resistant electric wire, its production method, and electric wire
WO2006025581A1 (en) Cable jacket material and cable jacket
JP7009858B2 (en) Resin composition for three-dimensional molded circuit parts, three-dimensional molded products and their manufacturing methods, and three-dimensional molded circuit parts and their manufacturing methods.
JP2015034278A (en) Fluororesin composition, molten and kneaded material, electric cable, manufacturing method of molten and kneaded material, and manufacturing method of covering material for electric cable
JP6586792B2 (en) Polyphenylene sulfide composition and molded article
JP6468074B2 (en) Fluororesin laminate and method for producing the same
WO2020008923A1 (en) Fluorine-containing resin composition and method for production thereof
JP2007297594A (en) Ethylene/tetrafluoroethylene copolymer composition
JP2015096577A (en) Resin composition for electric wire coating material and electric wire
JP5365939B2 (en) Automotive seal rings, industrial gas compressor seal rings and sliding parts
JP6135541B2 (en) Method for producing fluororesin composition, method for producing molded product, and method for producing electric wire
JP6701877B2 (en) Polyphenylene sulfide resin composition
JP7487905B2 (en) Composition, molded body, laminate, and resin
JP2021143330A (en) Resin composition, molded article, and method for producing molded article
JP2014024947A (en) Polyarylene sulfide resin composition and moldings of the same
JP2017088815A (en) Compatibilizing agent of fluorine-containing rubber and fluorine resin and composition containing the compatibilizing agent, fluorine-containing rubber and fluorine resin
WO2023286801A1 (en) Resin composition, method for producing resin composition, and molded article
WO2023157769A1 (en) Aromatic polysulfone composition, molded article, and molded article manufacturing method
CN112639015B (en) Glass fiber reinforced fluoropolymer compositions
JP2017204410A (en) Method for manufacturing insulated wire and method for manufacturing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 7003434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150