JP2018157812A - Detection method of cells included in sample - Google Patents

Detection method of cells included in sample Download PDF

Info

Publication number
JP2018157812A
JP2018157812A JP2018043014A JP2018043014A JP2018157812A JP 2018157812 A JP2018157812 A JP 2018157812A JP 2018043014 A JP2018043014 A JP 2018043014A JP 2018043014 A JP2018043014 A JP 2018043014A JP 2018157812 A JP2018157812 A JP 2018157812A
Authority
JP
Japan
Prior art keywords
cell
cells
target
sample
target cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018043014A
Other languages
Japanese (ja)
Inventor
惇 野口
Atsushi Noguchi
惇 野口
篤史 森本
Atsushi Morimoto
篤史 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2018157812A publication Critical patent/JP2018157812A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method in which, for target cells included in a sample, both (1) optically detecting the target cells and analyzing the number or characteristics of the target cells and (2) analyzing genes of the target cells can be easily executed.SOLUTION: A cell detection method includes: a process of concentrating target cells contained in a sample; a process of dividing target cell concentrated liquid obtained in the concentration process into 2 or more fractions; a process of optically detecting target cells by using at least one out of fractions obtained in the dividing process; a process of analyzing genes of the target cells by using at least one out of the fractions obtained in the dividing process.SELECTED DRAWING: Figure 6

Description

本発明は、試料中に含まれる細胞を検出する方法に関する。特に本発明は、血液や尿などの生体試料中に含まれる特定の細胞を対象として、当該細胞の光学的検出および遺伝子解析を合わせて行なう方法に関する。   The present invention relates to a method for detecting cells contained in a sample. In particular, the present invention relates to a method for performing optical detection and genetic analysis of specific cells contained in a biological sample such as blood or urine together.

近年、血液などの体液や、臓器などの組織を溶液に懸濁もしくは分散して得られる組織懸濁液や、細胞培養液といった試料から細胞を選択的に分離回収し、当該分離回収した細胞を基礎研究や臨床診断、治療へ応用する研究が進められている。例えば、癌患者より採取した血液から腫瘍細胞(Circulating Tumor Cell、以下CTCと表記)を検出し、当該細胞について形態学的分析、組織型分析や遺伝子分析を行ない、前記分析により得られた知見に基づき治療方針を判断する研究が進められている。しかしながら、CTCは存在確率が非常に少なく(試料が癌患者由来の全血の場合、全血1mLあたり数個程度)、高感度な検出を必要とする。   In recent years, cells have been selectively separated and collected from samples such as body fluids such as blood, tissue suspensions obtained by suspending or dispersing tissues such as organs, and cell culture solutions. Research that applies to basic research, clinical diagnosis, and treatment is underway. For example, a tumor cell (Circulating Tumor Cell, hereinafter referred to as CTC) is detected from blood collected from a cancer patient, and morphological analysis, tissue type analysis, or gene analysis is performed on the cell. Research to determine treatment policy based on this is underway. However, CTC has a very low probability of existence (in the case where the sample is whole blood derived from a cancer patient), and requires high-sensitivity detection.

試料中に含まれる標的細胞を検出する方法として、フローサイトメトリー法による検出方法が知られている(非特許文献1)。フローサイトメトリー法は、あらかじめ蛍光物質や発光基質などで標識した細胞を、1列に整列させた状態で流路に流し、当該流路に流れる標識した細胞をレーザー光および光学検出器を用いて検出ならびに解析する方法であり、試料中に含まれる前記標的細胞を精度高くカウントすることができる。また、別の方法として、標的細胞を含む細胞群をスライドガラスなどの基板上に並べ、蛍光物質や発光基質などで標識後、当該標識由来の光を顕微鏡で検出してカウントする方法も知られている(非特許文献2および3)。   As a method for detecting target cells contained in a sample, a detection method by flow cytometry is known (Non-patent Document 1). In the flow cytometry method, cells previously labeled with a fluorescent substance or a luminescent substrate are flowed through a flow channel in a state of being aligned in a line, and the labeled cells flowing in the flow channel are scanned using a laser beam and an optical detector. This is a method for detection and analysis, and the target cells contained in a sample can be counted with high accuracy. As another method, a method is also known in which cell groups containing target cells are arranged on a substrate such as a glass slide, labeled with a fluorescent substance or a luminescent substrate, and then the light derived from the label is detected by a microscope and counted. (Non-Patent Documents 2 and 3).

これらの方法で用いる標識の標的として、標的細胞内に存在する、タンパク質や核酸(例えばDNAやmRNA)などの生体分子がしばしば用いられる。例えば、前述のCTCの検出においては、標的細胞のマーカーとして上皮系細胞に特徴的な細胞内タンパク質であるサイトケラチンに対する蛍光物質で標識した抗体を用いた免疫染色や、標的細胞内のDNAに対して強力に結合する蛍光色素であるDAPI(4’,6−diamidino−2−phenylindole)による染色が一般的に行なわれている。   As a label target used in these methods, biomolecules such as proteins and nucleic acids (for example, DNA and mRNA) present in target cells are often used. For example, in the detection of the aforementioned CTC, immunostaining using an antibody labeled with a fluorescent substance against cytokeratin, an intracellular protein characteristic of epithelial cells, as a target cell marker, or DNA in target cells In general, staining with DAPI (4 ′, 6-diamidino-2-phenyllinole), which is a fluorescent dye that binds strongly and strongly, is performed.

しかしながら、標的細胞内の生体分子を標識する場合、当該細胞の固定処理や膜透過処理が必要であり、前記処理によりmRNAなどの生体分子が溶出および/または変性してしまう。そのため、標的細胞に含まれる生体分子を連続して検出することは困難であった。また前述した免疫染色を利用した検出方法は、検出までに比較的長い時間を要することから、固定処理や膜透過処理を行なわない場合であっても、mRNAなどの生体分子が分解するおそれがあり、標的細胞に含まれる生体分子の検出を連続して行なうには不向きであった。   However, in order to label a biomolecule in a target cell, the cell must be fixed or membrane permeabilized, and the biomolecule such as mRNA is eluted and / or denatured by the treatment. For this reason, it has been difficult to continuously detect biomolecules contained in target cells. In addition, since the detection method using immunostaining described above requires a relatively long time until detection, there is a possibility that biomolecules such as mRNA may be decomposed even when immobilization treatment or membrane permeation treatment is not performed. This is unsuitable for continuously detecting biomolecules contained in target cells.

試料中に含まれる標的細胞を検出する別の方法として、細胞の固定処理や膜透過処理を行なった後、前記標的細胞が有するタンパクに対する蛍光物質で標識した抗体で細胞内生体分子を標識し、標識された標的細胞を回収後、ゲノムDNAの変異解析などを行なう方法も報告されている(非特許文献3)。ゲノムDNAのような安定した大型の分子を対象とすれば、免疫染色による標的細胞の検出に続けて、標的細胞が有する遺伝子の検出が可能だが、標的細胞を1細胞ずつ回収する必要があるなど、操作の煩雑性が課題であった。   As another method for detecting target cells contained in a sample, after carrying out cell fixation treatment or membrane permeabilization treatment, intracellular biomolecules are labeled with an antibody labeled with a fluorescent substance against the protein of the target cells, A method of performing mutation analysis of genomic DNA after collecting labeled target cells has also been reported (Non-patent Document 3). If you target a stable large molecule such as genomic DNA, you can detect the target cell by detecting the target cell by immunostaining, but it is necessary to recover the target cell one by one. The complexity of operation was a problem.

試料中に含まれる標的細胞が有する遺伝子を解析する方法として、磁気ビーズを用いて試料中に含まれる標的細胞を回収し、mRNAなど遺伝子を解析する方法が報告されている(特許文献1)。しかしながら、本方法は標的細胞を集団として回収・解析しており、標的細胞を個々に検出したり、標的細胞数やその特徴を解析することはできなかった。   As a method for analyzing a gene contained in a target cell contained in a sample, a method for analyzing the gene such as mRNA by collecting the target cell contained in the sample using magnetic beads has been reported (Patent Document 1). However, this method collects and analyzes target cells as a group, and cannot detect individual target cells or analyze the number of target cells and their characteristics.

WO2016/033114号WO2016 / 033114

W.Jeffrey Allard,et al., Clin. Cancer Res.,10,6897−6904(2004)W. Jeffrey Allard, et al. , Clin. Cancer Res. 10, 6897-6904 (2004). Howard I. Scher,et al.,JAMA Oncology,2(11),1441−1449(2016)Howard I. Scher, et al. , JAMA Oncology, 2 (11), 1441-1449 (2016) A.Morimoto,et al.,PLOS ONE,10(6),e0130418(2015)A. Morimoto, et al. , PLOS ONE, 10 (6), e0130418 (2015)

本発明の課題は、試料中に含まれる標的細胞の光学的検出および標的細胞が有する遺伝子の解析をともに簡便に実施可能な方法を提供することにある。   An object of the present invention is to provide a method capable of easily performing both optical detection of a target cell contained in a sample and analysis of a gene possessed by the target cell.

上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have intensively studied to arrive at the present invention.

すなわち本発明は以下[1]から[5]に記載の態様を包含する:
[1]試料中に含まれる標的細胞を検出する方法であって、
(1)試料中に含まれる標的細胞を濃縮する工程、
(2)(1)の工程で得られた標的細胞濃縮液を2以上の画分に分割する工程、
(3)(2)の工程で得られた画分のうち少なくとも一つを用いて、標的細胞を光学的に検出する工程、
(4)(2)の工程で得られた画分のうち少なくとも一つを用いて、標的細胞が有する遺伝子を解析する工程、
を少なくとも含む、前記方法。
That is, the present invention includes the embodiments described in [1] to [5] below:
[1] A method for detecting a target cell contained in a sample,
(1) a step of concentrating target cells contained in the sample,
(2) dividing the target cell concentrate obtained in the step (1) into two or more fractions;
(3) a step of optically detecting a target cell using at least one of the fractions obtained in the step (2);
(4) A step of analyzing a gene possessed by the target cell using at least one of the fractions obtained in the step (2),
At least including the method.

[2](1)の工程を、比重差分離法で行なう、[1]に記載の方法。   [2] The method according to [1], wherein the step (1) is performed by a specific gravity difference separation method.

[3]試料が血液試料であり、標的細胞が腫瘍細胞であり、(1)の工程を白血球結合剤を添加した比重差分離法で行なう、[1]に記載の方法。   [3] The method according to [1], wherein the sample is a blood sample and the target cell is a tumor cell, and the step (1) is performed by a specific gravity difference method to which a leukocyte binding agent is added.

[4](3)の工程が、標的細胞を固定処理および/または膜透過処理して検出する工程を含む、[1]から[3]のいずれかに記載の方法。   [4] The method according to any one of [1] to [3], wherein the step (3) includes a step of detecting the target cell by fixing treatment and / or membrane permeation treatment.

[5](4)の工程が、標的細胞が有するmRNAを解析する工程である、請求項[1]から[4]のいずれかに記載の方法。   [5] The method according to any one of [1] to [4], wherein the step (4) is a step of analyzing mRNA contained in the target cell.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明における、標的細胞を含む試料の一例として、尿、全血、希釈血液、血漿、血清、唾液、精液、糞便、痰、髄液、腹水、羊水といった生体から取得した試料や、細胞の凝集物、腫瘍、リンパ節、動脈といった器官または組織由来の試料や、細胞や組織の培養物およびそれらの培養液といった培養試料があげられる。   Examples of samples containing target cells in the present invention include samples obtained from living bodies such as urine, whole blood, diluted blood, plasma, serum, saliva, semen, feces, sputum, spinal fluid, ascites, amniotic fluid, and cell aggregation Samples derived from organs or tissues such as tumors, tumors, lymph nodes, arteries, and culture samples such as cultures of cells and tissues and culture media thereof.

本発明は、少なくとも以下の(1)から(4)に示す工程により、試料中に含まれる標的細胞を検出する。
(1)試料中に含まれる標的細胞を濃縮する工程、
(2)(1)の工程で得られた標的細胞濃縮液を2以上の画分に分割する工程、
(3)(2)の工程で得られた画分のうち少なくとも一つを用いて、標的細胞を光学的に検出する工程、
(4)(2)の工程で得られた画分のうち少なくとも一つを用いて、標的細胞が有する遺伝子を解析する工程、
以下、前記各工程を詳細に説明する。
In the present invention, target cells contained in a sample are detected by at least the following steps (1) to (4).
(1) a step of concentrating target cells contained in the sample,
(2) dividing the target cell concentrate obtained in the step (1) into two or more fractions;
(3) a step of optically detecting a target cell using at least one of the fractions obtained in the step (2);
(4) A step of analyzing a gene possessed by the target cell using at least one of the fractions obtained in the step (2),
Hereafter, each said process is demonstrated in detail.

(1)試料中に含まれる標的細胞を濃縮する工程
本工程は、試料中に含まれる標的細胞以外の成分(夾雑細胞、夾雑生体分子、液体成分など)を低減することで標的細胞をより選択的に回収する工程である。本工程の一例として、標的細胞と標的細胞以外の成分との大きさの違いを利用して分離濃縮するフィルター法や、細胞表面の抗体発現プロファイルの違いを利用し標的細胞特異的なタンパク質に対する抗体を結合した磁性粒子を用いて目的細胞を分離濃縮する磁気ビーズ法や、標的細胞と標的細胞以外の成分との比重差を利用した比重差分離法があげられる。中でも比重差分離法は、短時間かつ効率的に標的細胞を濃縮できることから、本工程で行なう方法として特に好ましい。
(1) Step of concentrating target cells contained in sample This step selects target cells more by reducing components (contaminated cells, contaminated biomolecules, liquid components, etc.) other than target cells contained in the sample. Recovery step. As an example of this process, a filter method that separates and concentrates using the difference in size between the target cell and components other than the target cell, and an antibody against a target cell-specific protein using a difference in the antibody expression profile on the cell surface There are a magnetic bead method in which target cells are separated and concentrated using magnetic particles bound to, and a specific gravity difference separation method using a specific gravity difference between target cells and components other than the target cells. Among these, the specific gravity difference separation method is particularly preferable as the method performed in this step because the target cells can be concentrated efficiently in a short time.

比重差分離法による標的細胞の濃縮(標的細胞以外の成分の低減)は、標的細胞と標的細胞以外の成分(夾雑細胞など)が比重差によって分離できれば特に制限はない。例えば、密度勾配溶液が入った遠沈管に標的細胞を含む試料を重層後、遠心分離操作を行なうことで、標的細胞を含む画分と標的細胞以外の成分(夾雑細胞など)を含む画分とに分離させ、前記標的細胞を含む画分を回収することで、標的細胞を濃縮(夾雑細胞を低減)させればよい。   The concentration of target cells by the specific gravity difference separation method (reduction of components other than the target cells) is not particularly limited as long as the target cells and components other than the target cells (such as contaminating cells) can be separated by the specific gravity difference. For example, by layering a sample containing target cells in a centrifuge tube containing a density gradient solution, and performing a centrifugation operation, a fraction containing target cells and a fraction containing components other than target cells (such as contaminated cells) And collecting the fraction containing the target cells to concentrate the target cells (reduce contaminating cells).

比重差分離法により本工程を行なう際、標的細胞に特異的に結合する物質または標的細胞以外の成分(夾雑細胞など)に特異的に結合する物質を添加し、標的細胞または標的細胞以外の成分を比重の異なる物質と結合させて、見かけ上の比重を変化させることにより、標的細胞を更に効率的に分離することができる。前記特異的に結合する物質としては、標的細胞(または夾雑細胞など標的細胞以外の成分)と特異的に結合可能な抗体、抗原、ペプチド、ポリペプチド、成長因子、サイトカイン、レクチンといった生体高分子を例示できる。また前記比重の異なる物質として、ポリプロピレン、ポリスチレン等の合成高分子、ガラス、シリカ、ジルコニア等の無機材料、セルロース、デキストラン、アガロース等の天然高分子、赤血球などの生体試料が例示できる。具体例として、試料が全血や希釈血液などの血液試料であり、標的細胞がCTCなどの腫瘍細胞である場合、夾雑細胞である白血球の結合剤を添加し、白血球の見かけの比重を変化させることで、比重差分離法による効率的な白血球の除去(すなわち腫瘍細胞の濃縮)が行なえる。ここで用いる白血球結合剤は、白血球と特異的に結合し見かけ上の比重を変化させる物質であれば、特に限定はなく、白血球と特異的に結合する物質と比重を変化させる物質との組合せが例示される。中でも、RosetteSep(STEMCELL Technologies製)に代表される白血球と特異的に結合可能な抗体および赤血球と特異的に結合する抗体を連結させた白血球結合剤を用いると、血液試料からの比重差分離法による腫瘍細胞の濃縮(白血球の除去)を特に効率的に行なえるため好ましい。   When this step is performed by the specific gravity difference separation method, a substance that specifically binds to the target cell or a substance that specifically binds to a component other than the target cell (such as a contaminated cell) is added to the target cell or a component other than the target cell. The target cells can be more efficiently separated by combining the substances having different specific gravity to change the apparent specific gravity. Examples of the substance that specifically binds include biopolymers such as antibodies, antigens, peptides, polypeptides, growth factors, cytokines, and lectins that can specifically bind to target cells (or components other than target cells such as contaminated cells). It can be illustrated. Examples of substances having different specific gravities include synthetic polymers such as polypropylene and polystyrene, inorganic materials such as glass, silica and zirconia, natural polymers such as cellulose, dextran and agarose, and biological samples such as erythrocytes. As a specific example, when the sample is a blood sample such as whole blood or diluted blood and the target cell is a tumor cell such as CTC, a binding agent for leukocytes, which are contaminating cells, is added to change the apparent specific gravity of leukocytes. Thus, efficient leukocyte removal (ie, enrichment of tumor cells) can be performed by the specific gravity difference separation method. The leukocyte binding agent used here is not particularly limited as long as it is a substance that specifically binds to leukocytes and changes the apparent specific gravity, and a combination of a substance that specifically binds to leukocytes and a substance that changes the specific gravity. Illustrated. Among these, when using a leukocyte binding agent linked to an antibody capable of specifically binding to leukocytes represented by RosetteSep (manufactured by STEMCELL Technologies) and an antibody that specifically binds to red blood cells, a specific gravity difference separation method from a blood sample is used. This is preferable because the concentration of tumor cells (removal of leukocytes) can be performed particularly efficiently.

なお比重差分離法により本工程を行なう際、夾雑細胞を積極的に除去する操作を追加してもよい。例えば、血液試料から比重差分離法によりCTCなど腫瘍細胞(標的細胞)の濃縮操作を行なう際、夾雑細胞である赤血球を積極的に除去する溶血操作を追加してもよい。前記夾雑細胞を積極的に除去する操作は、比重差分離操作(遠心操作)前に行なってもよいし、比重差分離操作後に行なってもよい。なお夾雑細胞を積極的に除去する操作を比重差分離操作前に行なう場合は、前記除去操作後、遠心操作を追加すると好ましい。   In addition, when performing this process by the specific gravity difference separation method, you may add operation which removes a contaminated cell actively. For example, when performing a concentration operation of tumor cells (target cells) such as CTC from a blood sample by a specific gravity difference separation method, a hemolysis operation that positively removes red blood cells that are contaminated cells may be added. The operation of actively removing the contaminating cells may be performed before the specific gravity difference separation operation (centrifugation operation) or after the specific gravity difference separation operation. In the case where the operation of positively removing contaminant cells is performed before the specific gravity difference separation operation, it is preferable to add a centrifugal operation after the removal operation.

(2)標的細胞濃縮液を2以上の画分に分割する工程
本工程では、前記(1)の工程で得られた標的細胞濃縮液(夾雑細胞除去液)を2以上の画分に分割する。分割の数は、後述する、標的細胞を光学的に検出する工程用の画分および標的細胞が有する遺伝子を解析する工程用の画分がそれぞれ一つ以上確保されており、かつ標的細胞の検出に必要な量が確保されている限り、多数に分割して良い。分割後の各画分の量にも限定はなく、等量ずつ分割しても良いし、偏りをつけて分割しても良い。
(2) Step of dividing the target cell concentrate into two or more fractions In this step, the target cell concentrate (contaminant cell removal solution) obtained in the step (1) is divided into two or more fractions. . As for the number of divisions, one or more of the fraction for the step of optically detecting the target cell, which will be described later, and the fraction for the step of analyzing the gene of the target cell are secured, and the detection of the target cell As long as the necessary amount is secured, it may be divided into a large number. The amount of each divided fraction is not limited, and may be divided by equal amounts or may be divided with a bias.

(3)標的細胞を光学的に検出する工程
本工程は、例えばフローサイトメーター、蛍光顕微鏡、共焦点顕微鏡、光学顕微鏡、分光光度計などの光学検出器を用いて標的細胞を検出すればよい。本工程を顕微鏡を用いて行なう場合の一例として、前記(2)の工程で得られた標的細胞濃縮液の画分の一つを、スライドに塗布または保持部を有した基板に展開し、塗布された、または保持部に保持された標的細胞を顕微鏡を用いて検出する方法があげられる。なお前述した検出方法のうち、保持部を有した基板に試料を展開し、当該保持部に保持された細胞を検出する方法は、高感度かつ高精度に1細胞ごとを観察/解析できる点、およびその後、細胞を再標識して検出する際、保持された細胞が剥離するおそれが軽減するため好ましい。
(3) Step of optically detecting target cells In this step, for example, the target cells may be detected using an optical detector such as a flow cytometer, a fluorescence microscope, a confocal microscope, an optical microscope, or a spectrophotometer. As an example of the case where this step is performed using a microscope, one of the fractions of the target cell concentrate obtained in the step (2) above is applied to a slide or applied to a substrate having a holding part and applied. And a method of detecting a target cell held in a holding part using a microscope. Of the detection methods described above, the method of developing a sample on a substrate having a holding unit and detecting the cells held in the holding unit can observe / analyze each cell with high sensitivity and high accuracy, And after that, when the cells are relabeled and detected, the possibility that the retained cells are detached is preferable.

本工程は、標的細胞を明視野像により直接検出してもよいが、あらかじめ標的細胞(または夾雑細胞)が特異的に有する物質と特異的に結合可能な認識物質に光学的に検出可能なシグナルを発することが可能な標識を結合して得られる標識物質を用いて前記標的細胞(または前記夾雑細胞)を標識し、当該標識に基づき標的細胞を検出すると、標的細胞を高感度かつ簡便に検出できるため、好ましい。標的細胞が腫瘍細胞である場合の、前記標的細胞(または夾雑細胞)が特異的に有する物質として、サイトケラチン(CK)、アンドロゲン受容体(AR)およびそのスプライスバリアント(AR−Vs)、ビメンチンなどの細胞内生体分子や、CD45、上皮成長因子受容体(EGFR)、EpCAM(Epithelial Cell Adhesion Molecule)、PD−L1(Programmed Death−Ligand 1)などの膜タンパク質が例示できる。前記特異的に結合可能な認識物質としては、抗体、抗原、ペプチド、ポリペプチド、成長因子、サイトカイン、レクチンといった生体高分子が例示できる。特に、特異的に結合可能な認識物質として抗体を用いる免疫染色法は、特異性の高さや結合能の強さの点から好ましい。なお標的細胞(または夾雑細胞)が特異的に有する物質の他に、DAPI(4’,6−DiAmidino−2−PhenylIndole)、ヘマトキシリン、Hoechst 33342(商品名)などの核染色試薬を用いた有核細胞の標識や、オレンジG、ライトグリーン、エオシンなどの細胞質染色試薬を用いた細胞の標識を追加で行なっても良い。   In this step, the target cell may be directly detected by a bright-field image, but a signal that can be optically detected in advance by a recognition substance that can specifically bind to a substance that the target cell (or contaminating cell) specifically has. When the target cell (or the contaminating cell) is labeled using a labeling substance obtained by binding a label capable of emitting light, and the target cell is detected based on the label, the target cell is detected with high sensitivity and ease. This is preferable because it is possible. When the target cell is a tumor cell, the target cell (or contaminating cell) specifically has cytokeratin (CK), androgen receptor (AR) and its splice variant (AR-Vs), vimentin, etc. Intracellular biomolecules, and membrane proteins such as CD45, epidermal growth factor receptor (EGFR), EpCAM (Epithelial Cell Adhesion Molecule), PD-L1 (Programmed Death-Land 1). Examples of the recognition substance capable of specifically binding include biopolymers such as antibodies, antigens, peptides, polypeptides, growth factors, cytokines, and lectins. In particular, an immunostaining method using an antibody as a specifically binding recognizable substance is preferable from the viewpoint of high specificity and strong binding ability. Nucleation using a nuclear staining reagent such as DAPI (4 ′, 6-DiAmidino-2-PhenylIndole), hematoxylin, Hoechst 33342 (trade name), in addition to substances specifically possessed by target cells (or contaminating cells) Cell labeling or cell labeling using a cytoplasmic staining reagent such as orange G, light green, or eosin may be additionally performed.

本工程では、標的細胞および/もしくは夾雑細胞の固定処理ならびに/または膜透過処理を行なっても良い。特に細胞内生体分子を標識する場合には、当該生体分子の溶出・分解の防止や、標識試薬を細胞内へ浸透させる目的から、固定処理および/または膜透過処理を行なうと好ましい。固定処理は生体分子の細胞内位置を維持および/または分解を抑制する方法であれば、膜透過処理方法は細胞膜の透過性を向上させる方法であればいずれの方法でもよく、ホルムアルデヒド、パラホルムアルデヒド、エタノール、メタノール、アセトン、界面活性剤などを用いる方法が例示される。   In this step, target cells and / or contaminated cells may be fixed and / or membrane permeabilized. In particular, when labeling intracellular biomolecules, it is preferable to perform immobilization treatment and / or membrane permeation treatment for the purpose of preventing elution / degradation of the biomolecules and allowing the labeling reagent to penetrate into the cells. The fixation treatment may be any method as long as it maintains the intracellular position of the biomolecule and / or suppresses degradation, and the membrane permeabilization method may be any method that improves the permeability of the cell membrane, such as formaldehyde, paraformaldehyde, Examples include methods using ethanol, methanol, acetone, surfactants and the like.

(4)標的細胞が有する遺伝子を解析する工程
本工程における解析対象の遺伝子は、ゲノムDNAといったDNAであってもよく、mRNAといったRNAであってもよい。特にmRNAは、分解しやすい物質であること、また前記(3)の工程で実施し得る固定処理や膜透過処理を行なうと変性・溶出する可能性があることから、本発明の検出方法における好適な対象遺伝子である。本工程は、対象遺伝子がDNAの場合は、例えばサンガー法による配列解析や、次世代シーケンサーによる配列解析や、遺伝子増幅反応(PCR法など)を用いた一塩基多型(SNPs)解析により、対象遺伝子がRNAの場合は例えばRNA−seq法、RT−PCR法で核酸増幅後電気泳動で検出する方法、リアルタイムRT−PCR法や、TRC(Transcription Reverse−transcription Concerted)法、NASBA(Nucleic Acid Sequence−Based Amplification)法、TMA(Transcription−Mediated Amplification)法など直接RNAを増幅して検出する方法を利用した発現解析により、それぞれ行なえばよい。中でも、夾雑細胞(標的細胞以外の細胞)の影響を回避できる点で、夾雑細胞が有さない遺伝子配列やmRNA発現を検出する方法が好ましい。一例として、標的細胞が前立腺がん由来の腫瘍細胞の場合は、発現すると抗がん剤への耐性獲得へ寄与するアンドロゲン受容体バリアント7(AR−V7)mRNAを検出すると好ましく、標的細胞が肺がん由来の腫瘍細胞の場合は変異が生じると抗がん剤耐性や腫瘍の悪性度の増加に繋がる遺伝子(EGFR(Epidermal Growth Factor Receptor)など)の変異解析をすると好ましい。
(4) Step of analyzing gene of target cell The gene to be analyzed in this step may be DNA such as genomic DNA or RNA such as mRNA. Particularly, mRNA is suitable for the detection method of the present invention because it is a substance that is easily degraded and may be denatured and eluted by immobilization or membrane permeation that can be performed in the step (3). Gene of interest. If the target gene is DNA, this step is performed by, for example, sequence analysis by the Sanger method, sequence analysis by a next-generation sequencer, single nucleotide polymorphism (SNPs) analysis using gene amplification reaction (PCR method, etc.) When the gene is RNA, for example, RNA-seq method, detection method by electrophoresis after amplification of nucleic acid by RT-PCR method, real-time RT-PCR method, TRC (Transplication Reverse-translation Concerted) method, NASBA (Nucleic Acid Sequence- It can be performed by expression analysis using a method of directly amplifying and detecting RNA, such as the Base Amplification (TMA) method and the TMA (Transscription-Mediated Amplification) method. Good. Among them, a method of detecting a gene sequence or mRNA expression that is not present in a contaminated cell is preferable in that the influence of a contaminated cell (a cell other than the target cell) can be avoided. As an example, when the target cell is a prostate cancer-derived tumor cell, it is preferable to detect androgen receptor variant 7 (AR-V7) mRNA that, when expressed, contributes to acquisition of resistance to an anticancer drug, and the target cell is lung cancer. In the case of derived tumor cells, mutation analysis of genes (EGFR (Epidmal Growth Factor Receptor), etc.) that lead to an increase in anticancer drug resistance and tumor malignancy is preferable.

本発明の試料中に含まれる標的細胞の検出方法は、試料中に含まれる標的細胞を濃縮する工程と、前記濃縮工程で得られた標的細胞濃縮液を2以上の画分に分割する工程と、前記分割工程で得られた画分のうち少なくとも一つを用いて標的細胞を光学的に検出する工程と、前記分割工程で画分のうち少なくとも一つを用いて標的細胞が有する遺伝子を解析する工程とを少なくとも含むことを特徴としており、これにより光学的検出による標的細胞の数や特徴の解析、および標的細胞における遺伝子発現状況や遺伝子変異状況の解析を、ともに簡便に実施できる。   The method for detecting a target cell contained in the sample of the present invention comprises a step of concentrating the target cell contained in the sample, and a step of dividing the target cell concentrate obtained in the concentration step into two or more fractions. , A step of optically detecting a target cell using at least one of the fractions obtained in the dividing step, and an analysis of a gene possessed by the target cell using at least one of the fractions in the dividing step This includes at least a step of performing analysis of the target cells by optical detection, and analysis of gene expression status and gene mutation status in the target cells.

実施例で標的細胞(癌細胞)の濃縮に用いた遠心管を示す図である。It is a figure which shows the centrifuge tube used for concentration of a target cell (cancer cell) in the Example. 図1に示す遠心管を用いた、標的細胞(癌細胞)の濃縮を説明する図である。It is a figure explaining concentration of a target cell (cancer cell) using the centrifuge tube shown in FIG. 図1に示す遠心管を用いた、標的細胞(癌細胞)の濃縮を説明する図である。It is a figure explaining concentration of a target cell (cancer cell) using the centrifuge tube shown in FIG. 実施例で標的細胞の光学的検出に用いた細胞保持装置(基板)を示す図である。It is a figure which shows the cell holding | maintenance apparatus (board | substrate) used for the optical detection of the target cell in the Example. 図4に示す細胞保持装置(基板)を用いた、細胞の保持および光学的検出を示した図である。It is the figure which showed the holding | maintenance and optical detection of a cell using the cell holding | maintenance apparatus (board | substrate) shown in FIG. 実施例3の結果を示す図である。It is a figure which shows the result of Example 3. 実施例4の結果を示す図である。It is a figure which shows the result of Example 4.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to an Example.

実施例1 試料中に含まれる癌細胞の濃縮および当該濃縮液の分割
(1)インフォームドコンセントを得て取得した健常者血液3mLに約40000個のヒト前立腺癌細胞(22Rv1株またはPC3株、DSファーマバイオメディカル社)を添加し、懸濁させることで本実施例で用いる血液試料を調製した。
Example 1 Concentration of cancer cells contained in sample and division of the concentrated solution (1) About 40000 human prostate cancer cells (22Rv1 strain or PC3 strain, DS in 3 mL of healthy human blood obtained by obtaining informed consent) Pharma Biomedical) was added and suspended to prepare a blood sample used in this example.

(2)以下に示す方法で、図1に示す遠沈管100を使用して、(1)で調製した血液試料から癌細胞を濃縮した。なお図1に示す遠沈管100を構成する部材のうち、下部筒状部材110は内径φ10mm、縦54mm、容量3mLの底を有したポリプロピレン製部材である。また上部筒状部材120は縦70mm、容量15mLのポリプロピレン製部材であり、内径は上面側(蓋140側)φ18mm、下面側(連通開口端130側)φ2mmであり、下面側先細り形状121の部分の傾斜角度は30°である。
(2−1)下部筒状部材110に、密度が1.084g/mLの密度勾配溶液を3mL注入した。なお密度勾配溶液の液面高さは、上部筒状部材120の下面側(連通開口端130側)から約1mmの位置(従って液面は、上側筒状部材120の内部に位置する)である。
(2−2)密度勾配溶液の上に、3mLの血液試料と、3mLの生理食塩水と、180μLの0.5mg/mLチロフィバンと、75μLの白血球結合剤(商品名RosetteSep、StemCell Technologies製)との混合液150を重層した(図2中、黒塗部分が重層した混合液150の部分である)。ここで添加する白血球結合剤は、血液試料中に含まれる癌細胞以外の夾雑細胞(赤血球、白血球)を互いに結合させるための試薬であり、前記夾雑細胞の密度を高くし、癌細胞との密度差を大きくすることで、遠沈管100を用いた比重差分離により、高い回収率と選択性をもって癌細胞を分離できる。
(2−3)試料重層後、上部筒状部材120の上面を蓋140(ポリプロピレン製)で密閉し、2000×gで10分間、室温にて遠心分離した。当該遠心分離操作により、密度勾配溶液と試料の界面160の位置に癌細胞は維持された(図3)。
(2−4)蓋140を取り外すことなく上部筒状部材120を下部筒状部材110から切り離した後、蓋140をはずして密閉を開放することで、上部筒状部材120の連通開口端130側より密度勾配溶液の一部と界面160の位置に維持された細胞を流出させ、下方に設置した50mLチューブ(図示せず)で回収するとともに、上部筒状部材120の内壁を塩化アンモニウムを主成分とする赤血球破砕液で洗浄することで、上部筒状部材120の壁に付着した細胞も同時に回収した(図3)。
(2) Using the centrifuge tube 100 shown in FIG. 1, cancer cells were concentrated from the blood sample prepared in (1) by the method shown below. Of the members constituting the centrifuge tube 100 shown in FIG. 1, the lower cylindrical member 110 is a polypropylene member having a bottom with an inner diameter of 10 mm, a length of 54 mm, and a capacity of 3 mL. The upper cylindrical member 120 is a polypropylene member having a length of 70 mm and a capacity of 15 mL. The inner diameter is 18 mm on the upper surface side (lid 140 side) and 2 mm on the lower surface side (communication opening end 130 side). The inclination angle is 30 °.
(2-1) 3 mL of a density gradient solution having a density of 1.084 g / mL was injected into the lower cylindrical member 110. The liquid level height of the density gradient solution is about 1 mm from the lower surface side (communication opening end 130 side) of the upper cylindrical member 120 (therefore, the liquid level is positioned inside the upper cylindrical member 120). .
(2-2) On a density gradient solution, 3 mL of blood sample, 3 mL of physiological saline, 180 μL of 0.5 mg / mL tirofiban, 75 μL of leukocyte binding agent (trade name RosetteSep, manufactured by StemCell Technologies) The mixed liquid 150 was overlaid (in FIG. 2, the black coating portion is the portion of the mixed liquid 150 overlaid). The leukocyte binding agent to be added here is a reagent for binding contaminating cells (erythrocytes, leukocytes) other than cancer cells contained in the blood sample to each other, increasing the density of the contaminating cells, and density with cancer cells. By increasing the difference, the specific gravity difference separation using the centrifuge tube 100 can separate cancer cells with high recovery rate and selectivity.
(2-3) After sample stacking, the upper surface of the upper cylindrical member 120 was sealed with a lid 140 (made of polypropylene), and centrifuged at 2000 × g for 10 minutes at room temperature. By the centrifugation operation, the cancer cells were maintained at the position of the interface 160 between the density gradient solution and the sample (FIG. 3).
(2-4) After disconnecting the upper cylindrical member 120 from the lower cylindrical member 110 without removing the lid 140, the lid 140 is removed to open the seal, so that the upper cylindrical member 120 is connected to the communication opening end 130. A part of the density gradient solution and the cells maintained at the position of the interface 160 are allowed to flow out and collected by a 50 mL tube (not shown) installed below, and the inner wall of the upper cylindrical member 120 is mainly composed of ammonium chloride. The cells adhering to the wall of the upper cylindrical member 120 were also collected at the same time by washing with the erythrocyte disruption solution (FIG. 3).

(3)回収した細胞の懸濁液に塩化アンモニウムを主成分とする赤血球破砕液を添加して30mLまでメスアップし、300×gで10分間室温にて遠心分離した。遠心分離後、ペレットの頂部の液体をピペットで取り出し、ペレット中の細胞を300mMのマンニトールを含む溶液30mLに再懸濁し、300×gで5分間室温にて遠心分離した。当該操作は、血液成分を除去し、標的細胞を濃縮するための操作である。   (3) A red blood cell crushing solution containing ammonium chloride as a main component was added to the collected cell suspension, and the volume was increased to 30 mL, followed by centrifugation at 300 × g for 10 minutes at room temperature. After centrifugation, the liquid at the top of the pellet was removed with a pipette, and the cells in the pellet were resuspended in 30 mL of a solution containing 300 mM mannitol and centrifuged at 300 × g for 5 minutes at room temperature. This operation is an operation for removing blood components and concentrating target cells.

(4)遠心分離した後、ペレットの頂部の液体をピペットで取出し、液量を約1.3mLに調整した。ペレットをピペッティングにより懸濁し、懸濁液の半分(約0.65mL)を光学的検出による細胞数の計数工程(後述の実施例2)へ、残りの半分(約0.65mL)をmRNA解析工程(後述の実施例3)へ、それぞれ供した。   (4) After centrifugation, the liquid at the top of the pellet was removed with a pipette, and the liquid volume was adjusted to about 1.3 mL. The pellet is suspended by pipetting, half of the suspension (approx. 0.65 mL) is subjected to a cell number counting step by optical detection (Example 2 described later), and the other half (approx. 0.65 mL) is analyzed by mRNA. It used for the process (Example 3 mentioned later), respectively.

実施例2 光学的検出による癌細胞数の計数
以下に示す方法で、実施例1で回収した細胞を、図4および5に示す細胞保持装置200に保持した後、蛍光顕微鏡300により癌細胞を光学的に検出した。細胞保持装置200は、貫通孔211を有した平板状の絶縁膜210と、貫通孔221を有した平板状の遮光膜220と、導入口231、排出口232および貫通部233を有した平板状のスペーサ230と、遮光部材220の下面およびスペーサ230の上面と密着するよう設けた電極241・242と、電極241・242同士を接続する導線250と、電極241・242に信号を印加する交流電源260と、を備えた装置であり、貫通孔211、貫通孔221および遮光部材211の下部に密着して設けた電極241により、細胞を保持可能な保持部270が構成され、導入口231から細胞400を含む試料を導入すると貫通部233を通じて保持部270へ細胞400が導入される。なお本実施例で用いる細胞保持装置200では、直径φ30μm、深さ40μmの保持部270を約30万個設けている。
Example 2 Counting the number of cancer cells by optical detection After the cells collected in Example 1 were held in the cell holding device 200 shown in FIGS. 4 and 5 by the method shown below, the cancer cells were optically detected by the fluorescence microscope 300. Detected. The cell holding device 200 includes a flat insulating film 210 having a through hole 211, a flat light shielding film 220 having a through hole 221, a flat plate having an inlet 231, an outlet 232, and a through part 233. Spacer 230, electrodes 241 and 242 provided in close contact with the lower surface of light shielding member 220 and the upper surface of spacer 230, conductive wire 250 connecting electrodes 241 and 242, and AC power supply for applying a signal to electrodes 241 and 242 260, and the electrode 241 provided in close contact with the lower part of the through-hole 211, the through-hole 221 and the light-shielding member 211 constitutes a holding part 270 capable of holding cells, and the cell is introduced from the inlet 231 into the cell. When the sample containing 400 is introduced, the cell 400 is introduced into the holding part 270 through the penetration part 233. In the cell holding device 200 used in this embodiment, about 300,000 holding portions 270 having a diameter of 30 μm and a depth of 40 μm are provided.

(1)導入部231から、実施例1で回収した細胞の懸濁液を導入した後、交流電源260から各電極241・242に交流電圧(電圧20Vpp、周波数1MHz、矩形波)を3分間印加し、誘電泳動力500により前記細胞を保持部270に保持させた。   (1) After introducing the cell suspension recovered in Example 1 from the introduction unit 231, an AC voltage (voltage 20 Vpp, frequency 1 MHz, rectangular wave) is applied to the electrodes 241, 242 from the AC power supply 260 for 3 minutes. Then, the cells were held in the holding unit 270 by the dielectrophoretic force 500.

(2)導入部231から、0.01%ポリ−L−リジンを含む300mMマンニトール水溶液を、前記交流電圧を印加しながら導入し、3分間静置後、前記交流電圧の印加を停止し、排出部232から前記水溶液を吸引除去した。   (2) A 300 mM mannitol aqueous solution containing 0.01% poly-L-lysine is introduced from the introduction unit 231 while applying the AC voltage, and left to stand for 3 minutes, and then the application of the AC voltage is stopped and discharged. The aqueous solution was removed by suction from the part 232.

(3)導入部231から、50%(v/v)エタノールと1%(w/v)ホルムアルデヒドを含む水溶液(以下、細胞膜透過試薬)を導入し、10分間静置することで、細胞膜を透過させ、保持部に導入した細胞を標本化した。その後、導入部231から、細胞膜透過試薬を吸引除去し、PBS(Phosphate buffered saline)を導入することで、残留した細胞膜透過試薬を洗浄した。   (3) An aqueous solution containing 50% (v / v) ethanol and 1% (w / v) formaldehyde (hereinafter referred to as a cell membrane permeation reagent) is introduced from the introduction part 231 and allowed to stand for 10 minutes, thereby permeating the cell membrane. The cells introduced into the holding part were sampled. Thereafter, the cell membrane permeation reagent was aspirated and removed from the introduction part 231, and the remaining cell membrane permeation reagent was washed by introducing PBS (Phosphate buffered saline).

(4)導入部231から、FITC(フルオレセインイソチオシアネート)標識抗サイトケラチン抗体(Miltenyi Biotec製)(以下、CK−FITCと表記)、PE(フィコエリスリン)標識抗CD45抗体(Beckman−Coulter製)(以下、CD45−PEと表記)およびDAPI(4’,6−DiAmidino−2−PhenylIndole)(0.5μg/mL)(同仁化学研究所製)を混合した細胞染色液800μLを導入し、細胞標識を行なった(25℃、30分)後、導入部231から、300mMマンニトール水溶液を導入することで洗浄した。   (4) From introduction part 231, FITC (fluorescein isothiocyanate) labeled anti-cytokeratin antibody (Miltenyi Biotec) (hereinafter referred to as CK-FITC), PE (phycoerythrin) labeled anti-CD45 antibody (Beckman-Coulter) (Hereinafter referred to as CD45-PE) and DAPI (4 ′, 6-DiAmidino-2-PhenylIndole) (0.5 μg / mL) (manufactured by Dojindo Laboratories) were introduced, and 800 μL of a cell staining solution was introduced to label the cells. (25 ° C., 30 minutes) and then washed by introducing a 300 mM mannitol aqueous solution from the introduction part 231.

(5)保持部270に保持された全ての細胞400を観察するために、コンピューター制御式電動ステージおよび電子増倍型冷却CCDカメラ(FLOVEL製ADT−100)を備えた蛍光顕微鏡300(Olympus製IX71)を用いて全ての保持部270の明視野像および蛍光画像を撮影した。   (5) In order to observe all the cells 400 held in the holding unit 270, a fluorescence microscope 300 (IX71 manufactured by Olympus) equipped with a computer-controlled electric stage and an electron multiplying cooled CCD camera (ADT-100 manufactured by FLOVEL) ) Were used to take bright field images and fluorescent images of all the holding units 270.

(6)(5)で撮影した画像を解析ソフトウェアLabVIEW(National Instruments製)を用いて解析し、以下に示す条件に基づき、細胞を判別した。なおDAPIで染色されない(細胞核を有さない)細胞は、赤血球や死細胞片などの細胞核を有さない夾雑細胞のため解析ソフトウェア上で排除した。また保持部270には夾雑細胞である白血球が10万から50万個保持されていたが、標的細胞であるヒト前立腺癌細胞の検出に際しては妨げにならない量であった。
癌細胞(標的細胞):DAPIで染色され(細胞核を有し)、CK−FITCで染色され(サイトケラチンを発現し)、かつCD45−PEでは染色されない(CD45を発現しない)細胞
白血球(夾雑細胞):DAPIで染色され(細胞核を有し)、CK−FITCでは染色されず(サイトケラチンを発現しない)、かつCD45−PEでは染色される(CD45を発現する)細胞
本方法による検出結果を、表1に示す。健常者血液に添加された標的癌細胞を光学的に検出できた。
(6) The image photographed in (5) was analyzed using analysis software LabVIEW (manufactured by National Instruments), and cells were discriminated based on the following conditions. The cells not stained with DAPI (having no cell nuclei) were excluded on the analysis software because they were contaminated cells having no cell nuclei such as erythrocytes and dead cell debris. In addition, although 100,000 to 500,000 leukocytes, which are contaminating cells, were held in the holding unit 270, the amount was not an obstacle when detecting human prostate cancer cells, which are target cells.
Cancer cells (target cells): cell leukocytes (contaminated cells) stained with DAPI (having cell nuclei), stained with CK-FITC (expressing cytokeratin) and not stained with CD45-PE (not expressing CD45) ): Cells stained with DAPI (having cell nuclei), not stained with CK-FITC (does not express cytokeratin), and stained with CD45-PE (expresses CD45). Table 1 shows. Target cancer cells added to the blood of healthy subjects could be detected optically.

Figure 2018157812
実施例3 癌細胞のmRNA解析
以下に示す方法で、実施例1で回収した癌細胞濃縮液からアンドロゲン受容体スプライスバリアント7(AR−V7)のmRNA解析を行なった。
Figure 2018157812
Example 3 Cancer Cell mRNA Analysis Androgen receptor splice variant 7 (AR-V7) mRNA was analyzed from the cancer cell concentrate collected in Example 1 by the method described below.

(1)実施例1で回収した癌細胞濃縮液を、300×gで5分間室温にて遠心分離し、上清を除去した。回収した細胞より、NucleoSpin RNA XS(マッハライ・ナーゲル製)を用いて、total RNAを抽出した。22Rv1株を添加した試料より77ng/μLのRNAが、PC3株を添加した試料より56ng/μLのRNAが、それぞれ得られた。   (1) The cancer cell concentrate collected in Example 1 was centrifuged at 300 × g for 5 minutes at room temperature, and the supernatant was removed. Total RNA was extracted from the collected cells using NucleoSpin RNA XS (manufactured by Machalai Nagel). 77 ng / μL RNA was obtained from the sample to which the 22Rv1 strain was added, and 56 ng / μL RNA was obtained from the sample to which the PC3 strain was added.

(2)(1)で抽出したtotal RNA 400ngを鋳型として、SuperScript IV First−Strand Synthesis System(サーモフィッシャーサイエンティフィック製)によりcDNAを合成した。プライマーにはランダムヘキサマーを使用した。   (2) cDNA was synthesized by SuperScript IV First-Strand Synthesis System (manufactured by Thermo Fisher Scientific) using 400 ng of total RNA extracted in (1) as a template. A random hexamer was used as a primer.

(3)下記反応液を調製し、PCR法によりAR−V7およびβ−アクチンのcDNAを増幅した。PCR法による増幅反応は、以下の温度条件で実施した。なお、AR−V7の増幅はAntonarakis ES,et al.,N.Engl.J.Med.,371,1028−1038(2014)を、β−アクチンの増幅はGuo Z.,et al.,Cancer Cell,10,309−319(2006)を参照した。
(反応液組成)
TaKaRa Ex Taq(タカラバイオ社) 0.1μL
10× ExTaq Buffer 2μL
dNTP Mixture 1.6μL
cDNA 2μL
各5μM Forward/Reverse primer(表2) 各2μL
滅菌蒸留水 10.3μL
(3) The following reaction solution was prepared, and AR-V7 and β-actin cDNA were amplified by PCR. The amplification reaction by the PCR method was performed under the following temperature conditions. In addition, amplification of AR-V7 was performed by Antonarakis ES, et al. , N.M. Engl. J. et al. Med. , 371, 1028-1038 (2014), β-actin amplification was performed according to Guo Z. , Et al. , Cancer Cell, 10, 309-319 (2006).
(Reaction solution composition)
TaKaRa Ex Taq (Takara Bio Inc.) 0.1 μL
10x ExTaq Buffer 2μL
dNTP Mixture 1.6μL
cDNA 2μL
Each 5 μM Forward / Reverse primer (Table 2) 2 μL each
Sterile distilled water 10.3 μL

Figure 2018157812
(増幅反応の温度条件)
98℃で10秒間:1サイクル
98℃で10秒間、55℃で30秒間、72℃で30秒間:30サイクル
72℃で30秒間:1サイクル
(4)DNAの増幅を、アガロースゲル電気泳動で確認した。
Figure 2018157812
(Temperature conditions for amplification reaction)
98 ° C for 10 seconds: 1 cycle 98 ° C for 10 seconds, 55 ° C for 30 seconds, 72 ° C for 30 seconds: 30 cycles 72 ° C for 30 seconds: 1 cycle (4) DNA amplification confirmed by agarose gel electrophoresis did.

結果(電気泳動写真)を図6に示す。AR−V7陽性細胞株として知られる22Rv1株を添加した試料では、AR−V7の増幅に起因するバンドが確認された。一方で、AR−V7陰性細胞株として知られるPC3株を添加した試料では、AR−V7の増幅は確認されなかった。   A result (electrophoresis photograph) is shown in FIG. In the sample to which 22Rv1 strain known as an AR-V7 positive cell line was added, a band due to the amplification of AR-V7 was confirmed. On the other hand, AR-V7 amplification was not confirmed in the sample to which the PC3 strain known as AR-V7 negative cell line was added.

以上の結果から、標的細胞の濃縮液を分割することで、試料中の標的細胞の光学的検出と、標的細胞の遺伝子解析とを、ともに実施することができた。
実施例4 癌細胞濃縮工程における白血球結合剤の添加
以下に示す方法で、癌細胞濃縮工程における白血球結合剤添加の効果を検証した。
From the above results, it was possible to perform both optical detection of target cells in a sample and gene analysis of target cells by dividing the concentrated solution of target cells.
Example 4 Addition of leukocyte binding agent in cancer cell concentration step The effect of adding a leukocyte binding agent in the cancer cell concentration step was verified by the following method.

(1)実施例1に示す方法で、22Rv1株を添加した血液試料中に含まれる癌細胞の濃縮および当該濃縮液の分割を行った。ただし、実施例1(2−2)の工程で添加する白血球結合剤の量は、それぞれ0μL、75μL、150μLとした。   (1) By the method shown in Example 1, the cancer cells contained in the blood sample to which the 22Rv1 strain was added were concentrated and the concentrated solution was divided. However, the amount of leukocyte binding agent added in the step of Example 1 (2-2) was 0 μL, 75 μL, and 150 μL, respectively.

(2)実施例3に示す方法で、(1)で回収した癌細胞濃縮液からアンドロゲン受容体スプライスバリアント7(AR−V7)のmRNA解析を行なった。ただし、実施例3(4)の工程は、Agilent 2100 バイオアナライザおよびAgilent DNA1000キット(アジレント・テクノロジー製)を用いて行なった。   (2) By the method shown in Example 3, mRNA analysis of androgen receptor splice variant 7 (AR-V7) was performed from the cancer cell concentrate recovered in (1). However, the process of Example 3 (4) was performed using an Agilent 2100 bioanalyzer and an Agilent DNA1000 kit (manufactured by Agilent Technologies).

バイオアナライザによるAR−V7 PCR産物の定量結果を図7に示す。白血球結合剤を添加しない条件(0μL)と比較し、白血球結合剤を添加した条件(75μL)および、さらに増量した条件(150μL)で、効率的にPCR産物が増幅されていることがわかる。以上の結果から、血液試料中に含まれる癌細胞(腫瘍細胞)を濃縮する工程を白血球結合剤を添加した比重差分離法で行なうことで、癌細胞濃縮液中の夾雑白血球数が低減し当該白血球由来の夾雑RNAが減少するため、遺伝子解析工程において癌細胞(22Rv1株)に存在する目的遺伝子(AR−V7)の増幅を効率的に行なえることがわかる。   The quantification result of the AR-V7 PCR product by the bioanalyzer is shown in FIG. It can be seen that the PCR product was efficiently amplified under the condition (75 μL) in which the leukocyte binding agent was added and the condition (150 μL) in which the amount was further increased compared to the condition in which the leukocyte binding agent was not added (0 μL). Based on the above results, the step of concentrating cancer cells (tumor cells) contained in the blood sample is carried out by the specific gravity difference method with the addition of a leukocyte binding agent, so that the number of contaminating leukocytes in the cancer cell concentrate is reduced. Since contaminating RNA derived from leukocytes is reduced, it can be seen that the gene of interest (AR-V7) present in the cancer cell (22Rv1 strain) can be efficiently amplified in the gene analysis step.

100:遠沈管
110・120:筒状部材
121:先細り形状
130:連通開口端
140:蓋
150:標的細胞を含む試料
160:標的細胞を含む画分
200:細胞保持装置
210:絶縁膜
211:貫通孔
220:遮光膜
221:貫通孔
230:スペーサ
231:導入口
232:排出口
233:貫通部
241・242:電極
250:導線
260:交流電源
270:保持部
300:蛍光顕微鏡
400:細胞
500:誘電泳動力
100: centrifuge tube 110/120: cylindrical member 121: tapered shape 130: communication open end 140: lid 150: sample containing target cells 160: fraction containing target cells 200: cell holding device 210: insulating film 211: penetration Hole 220: Light shielding film 221: Through hole 230: Spacer 231: Introduction port 232: Discharge port 233: Through portion 241, 242: Electrode 250: Conductor 260: AC power supply 270: Holding portion 300: Fluorescence microscope 400: Cell 500: Dielectric Migration force

Claims (5)

試料中に含まれる標的細胞を検出する方法であって、
(1)試料中に含まれる標的細胞を濃縮する工程、
(2)(1)の工程で得られた標的細胞濃縮液を2以上の画分に分割する工程、
(3)(2)の工程で得られた画分のうち少なくとも一つを用いて、標的細胞を光学的に検出する工程、
(4)(2)の工程で得られた画分のうち少なくとも一つを用いて、標的細胞が有する遺伝子を解析する工程、
を少なくとも含む、前記方法。
A method for detecting a target cell contained in a sample, comprising:
(1) a step of concentrating target cells contained in the sample,
(2) dividing the target cell concentrate obtained in the step (1) into two or more fractions;
(3) a step of optically detecting a target cell using at least one of the fractions obtained in the step (2);
(4) A step of analyzing a gene possessed by the target cell using at least one of the fractions obtained in the step (2),
At least including the method.
(1)の工程を、比重差分離法で行なう、請求項1に記載の方法。   The method according to claim 1, wherein the step (1) is performed by a specific gravity difference separation method. 試料が血液試料であり、標的細胞が腫瘍細胞であり、(1)の工程を白血球結合剤を添加した比重差分離法で行なう、請求項1に記載の方法。   The method according to claim 1, wherein the sample is a blood sample, the target cells are tumor cells, and the step (1) is performed by a specific gravity difference separation method to which a leukocyte binding agent is added. (3)の工程が、標的細胞を固定処理および/または膜透過処理して検出する工程を含む、請求項1から3のいずれかに記載の方法。   The method according to any one of claims 1 to 3, wherein the step (3) includes a step of detecting the target cell by fixing treatment and / or membrane permeation treatment. (4)の工程が、標的細胞が有するmRNAを解析する工程である、請求項1から4のいずれかに記載の方法。   The method according to any one of claims 1 to 4, wherein the step (4) is a step of analyzing mRNA possessed by the target cell.
JP2018043014A 2017-03-23 2018-03-09 Detection method of cells included in sample Pending JP2018157812A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017057130 2017-03-23
JP2017057130 2017-03-23

Publications (1)

Publication Number Publication Date
JP2018157812A true JP2018157812A (en) 2018-10-11

Family

ID=63794843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018043014A Pending JP2018157812A (en) 2017-03-23 2018-03-09 Detection method of cells included in sample

Country Status (1)

Country Link
JP (1) JP2018157812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116040A (en) * 2017-01-19 2018-07-26 東ソー株式会社 Centrifuge tube and method of using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529541A (en) * 2005-02-21 2008-08-07 ヘクサル アクチェンゲゼルシャフト Tumor cell separation container
JP2015006169A (en) * 2013-05-31 2015-01-15 東ソー株式会社 Separation structure and separation method
JP2015524054A (en) * 2012-05-24 2015-08-20 ラールスル Method for multiplex analysis of rare cells extracted or isolated from biological samples through filtration
WO2015129646A1 (en) * 2014-02-25 2015-09-03 国立大学法人 九州大学 Dna methylation analysis method and cyp3a4 expression level estimation method
JP2015525574A (en) * 2012-08-09 2015-09-07 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Superkine and synthekine: recycled cytokines with novel and enhanced signaling activity
JP2017046685A (en) * 2015-09-03 2017-03-09 東ソー株式会社 Cell separation recovery methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529541A (en) * 2005-02-21 2008-08-07 ヘクサル アクチェンゲゼルシャフト Tumor cell separation container
JP2015524054A (en) * 2012-05-24 2015-08-20 ラールスル Method for multiplex analysis of rare cells extracted or isolated from biological samples through filtration
JP2015525574A (en) * 2012-08-09 2015-09-07 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Superkine and synthekine: recycled cytokines with novel and enhanced signaling activity
JP2015006169A (en) * 2013-05-31 2015-01-15 東ソー株式会社 Separation structure and separation method
WO2015129646A1 (en) * 2014-02-25 2015-09-03 国立大学法人 九州大学 Dna methylation analysis method and cyp3a4 expression level estimation method
JP2017046685A (en) * 2015-09-03 2017-03-09 東ソー株式会社 Cell separation recovery methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116040A (en) * 2017-01-19 2018-07-26 東ソー株式会社 Centrifuge tube and method of using the same

Similar Documents

Publication Publication Date Title
Hyun et al. Isolation and enrichment of circulating biomarkers for cancer screening, detection, and diagnostics
Zou et al. Advances in isolation and detection of circulating tumor cells based on microfluidics
US9506927B2 (en) Method for detecting low concentrations of specific cell from high concentrations of cell populations, and method for collecting and analyzing detected cell
Hyun et al. Microfluidic devices for the isolation of circulating rare cells: A focus on affinity‐based, dielectrophoresis, and hydrophoresis
JP6453592B2 (en) Blood sample processing method
Sajay et al. Microfluidic platform for negative enrichment of circulating tumor cells
US20090081689A1 (en) Reagents and methods to enrich rare cells from body fluids
CN109863398B (en) Method for detecting and/or characterizing tumor cells and related device
US10717082B2 (en) Method and device for selective, specific and simultaneous sorting of rare target cells in a biological sample
KR101279918B1 (en) Device for detection of tumor cells and detecting method tumor cells
JP6639906B2 (en) Biological sample detection method
JP6617516B2 (en) Method for detecting target cells contained in blood sample
JP6936984B2 (en) How to Predict the Prognosis of Cancer Patients Using Rare Cells
Gourikutty et al. An integrated on-chip platform for negative enrichment of tumour cells
JP6686768B2 (en) Cell separation and collection method
Sajay et al. Towards an optimal and unbiased approach for tumor cell isolation
JP2024023284A (en) Methods of using giant cell nucleic acid characterization in cancer screening, diagnostics, treatment and recurrence
JP2020030180A (en) Hemolytic agent for blood sample
JP2018157812A (en) Detection method of cells included in sample
CN109270262B (en) Laser single cell extraction method based on microfluid technology
CN111751543A (en) Rare tumor cell enrichment method and kit
JP6860165B2 (en) Anti-cancer drug administration effect prediction method
JP2019060869A (en) Factor related to cancer transfer forming ability and prognosis prediction method of cancer patient using the factor
JP7062901B2 (en) How to detect target cells
JP2018028457A (en) Method and device for collecting target particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220524