JP2018150898A - Vertical shaft windmill, its blade, and wind power generation device - Google Patents

Vertical shaft windmill, its blade, and wind power generation device Download PDF

Info

Publication number
JP2018150898A
JP2018150898A JP2017048670A JP2017048670A JP2018150898A JP 2018150898 A JP2018150898 A JP 2018150898A JP 2017048670 A JP2017048670 A JP 2017048670A JP 2017048670 A JP2017048670 A JP 2017048670A JP 2018150898 A JP2018150898 A JP 2018150898A
Authority
JP
Japan
Prior art keywords
blade
vertical axis
wind turbine
vertical
main shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017048670A
Other languages
Japanese (ja)
Inventor
伊藤 健
Takeshi Ito
健 伊藤
真人 吉野
Masato Yoshino
真人 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2017048670A priority Critical patent/JP2018150898A/en
Priority to PCT/JP2018/009436 priority patent/WO2018168744A1/en
Publication of JP2018150898A publication Critical patent/JP2018150898A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vertical shaft windmill improved in rotational energy conversion efficiency by suppressing separation of air current on rotary inner peripheral faces of blades.SOLUTION: A vertical shaft wind mill includes a vertical main shaft rotatably disposed, a support body disposed on the vertical main shaft, and blades 9 connected to the vertical main shaft through the support body and rotated by receiving wind. In a cross-sectional shape of the blades 9, radial outer faces or inner faces to a rotation center of the blades 9 are gradually expanded to a radial outer side or inner side from front and back both ends in a rotation advancing direction, and an expansion amount is maximum at a part near a front end in the rotation advancing direction. Serration 15 in which crest portions 16 projecting to a rear side in the rotation advancing direction and retreated trough portions 17 are alternately arranged, is formed on rear edges in the rotation advancing direction of the blades 9.SELECTED DRAWING: Figure 3

Description

この発明は、垂直主軸を持つ垂直軸風車、その翼、および前記垂直軸風車を備えた風力発電装置に関する。   The present invention relates to a vertical axis wind turbine having a vertical main shaft, its blades, and a wind turbine generator including the vertical axis wind turbine.

風力発電装置に用いられる風車には、水平に設けられた主軸の軸心回りの水平翼が回転する水平軸風車と、垂直に設けられた主軸の軸心回りに垂直翼が回転する垂直軸風車(例えば特許文献1)とがある。どちらのタイプについても、揚力で翼を回転させる方式の場合、翼の断面形状は、図15に示すような翼型をしている。翼9が風を受けた場合、膨らみ面22に沿って流れる風の流速と、反対面23に沿って流れる風の流速とに差が生じ、この流速の差が圧力差となって揚力が発生する。   The wind turbines used in the wind turbine generator include a horizontal axis wind turbine in which horizontal blades around the axis of the main shaft provided horizontally rotate, and a vertical axis wind turbine in which vertical blades rotate around the axis of the main shaft provided vertically. (For example, Patent Document 1). In both types, in the case of a system in which a blade is rotated by lift, the cross-sectional shape of the blade is an airfoil as shown in FIG. When the wing 9 receives wind, a difference occurs between the flow velocity of the wind flowing along the bulging surface 22 and the flow velocity of the wind flowing along the opposite surface 23, and the difference between the flow velocity becomes a pressure difference and lift is generated. To do.

しかし、上記流線型の翼では、反対面23の側で空気の流れが剥離し、渦が発生することが知られている。この渦は剥離渦と呼ばれ、失速の原因となる。なお、水平軸風車において、前記剥離渦の発生を防ぐことを目的として、翼の後縁に、山部と谷部とが並ぶセレーションを形成することが提案されている(例えば特許文献2)。   However, it is known that in the streamlined wing, the air flow is separated on the opposite surface 23 side, and a vortex is generated. This vortex is called a separation vortex and causes a stall. In the horizontal axis wind turbine, for the purpose of preventing the generation of the separation vortex, it has been proposed to form a serration in which a peak and a valley are arranged at the trailing edge of the blade (for example, Patent Document 2).

特開2004−204801号公報JP 2004-204801 A 特開2003−336572号公報JP 2003-336572 A

垂直軸風車は、風向を問わずに回転力が得られて、風向に対する制御が不要なことから、比較的小型の風車として開発が進められている。しかし、垂直軸風車には、次のような解決すべき課題がある。   Vertical axis wind turbines are being developed as relatively small wind turbines because rotational force can be obtained regardless of the wind direction and control over the wind direction is unnecessary. However, the vertical axis wind turbine has the following problems to be solved.

一般的に、水平軸風車の場合、風速および風向が一定で、翼の回転速度が一定であれば、翼が1回転する間に翼への風の流入角および相対流入速度が変化しない。このため、翼に沿って流れる気流に変化がなく、回転エネルギー変換効率に影響しない。
これに対し、垂直軸風車では、風速および風向が一定で、翼の回転速度が一定であっても、翼が1回転する間に翼への風の流入角および相対流入速度が大きく変化する。このため、一回転する間に、翼に沿って流れる気流が剥離と付着をすることになる。つまり、気流が剥離する事により、風エネルギーを翼の回転エネルギーに変換する回転エネルギー変換効率に悪影響を及ぼす。特に、相対流入速度の遅い低風速や、低回転時または起動時において、翼後端で気流が剥離しやすい。このため、風が吹いても、トルクを発生させる所定の回転速度に上がるまでの時間がかかるため、回転エネルギー変換効率が悪くなる。
In general, in the case of a horizontal axis wind turbine, if the wind speed and direction are constant and the blade rotation speed is constant, the wind inflow angle and the relative inflow speed of the blade do not change during one rotation of the blade. For this reason, there is no change in the airflow flowing along the wing, and the rotational energy conversion efficiency is not affected.
On the other hand, in the vertical axis wind turbine, even if the wind speed and direction are constant and the rotation speed of the blade is constant, the wind inflow angle and the relative inflow speed of the blade greatly change during one rotation of the blade. For this reason, the airflow flowing along the blades peels and adheres during one rotation. In other words, the separation of the air current adversely affects the rotational energy conversion efficiency for converting the wind energy into the rotational energy of the blades. In particular, the airflow tends to peel off at the trailing edge of the blade at a low wind speed with a slow relative inflow speed, at a low rotation speed, or at startup. For this reason, even if the wind blows, it takes time until the rotational speed reaches a predetermined rotational speed for generating torque, resulting in poor rotational energy conversion efficiency.

この発明の目的は、垂直軸風車に特有の上記課題を解決するために、翼の回転内周面での気流の剥離を抑制することで、回転エネルギー変換効率が良好な垂直軸風車を提供することである。
この発明の他の目的は、気流の剥離の発生を抑制することで、垂直軸風車に用いた場合に回転エネルギー変換効率が良くなる垂直軸風車の翼を提供することである。
この発明のさらに他の目的は、発電効率が良い風力発電装置を提供することである。
An object of the present invention is to provide a vertical axis windmill with good rotational energy conversion efficiency by suppressing separation of airflow on the rotating inner peripheral surface of a blade in order to solve the above-mentioned problems peculiar to the vertical axis windmill. That is.
Another object of the present invention is to provide a blade of a vertical axis wind turbine that improves the rotational energy conversion efficiency when used in a vertical axis wind turbine by suppressing the occurrence of air flow separation.
Still another object of the present invention is to provide a wind power generator having good power generation efficiency.

この発明の垂直軸風車は、回転自在に設けられる垂直主軸と、この垂直主軸に設けられた支持体と、前記垂直主軸に前記支持体を介して連結され風を受けて前記垂直主軸の軸心の回りに回転する翼とを備え、
前記翼の横断面形状が、前記翼の回転中心に対する径方向の外側面ないし内側面が前記翼の回転進行方向の前後両端から次第に前記径方向の外側ないし内側に膨らみ、その膨らみ量は前記回転進行方向の前端寄りの箇所で最も大きい形状であり、
前記翼における前記回転進行方向の後縁に、前記回転進行方向の後方側に対して突出する山部と後退する谷部とが交互に並ぶセレーションが形成されていることを特徴とする。
A vertical axis wind turbine according to the present invention includes a vertical main shaft that is rotatably provided, a support provided on the vertical main shaft, and an axial center of the vertical main shaft that is connected to the vertical main shaft via the support and receives wind. And wings rotating around
The cross-sectional shape of the wing is such that the radially outer surface or inner surface with respect to the rotation center of the wing gradually bulges from the front and rear ends in the direction of rotation of the wing toward the outer or inner side in the radial direction. It is the largest shape near the front end in the direction of travel,
A serration is formed on the trailing edge of the wing in the rotational direction in which the ridges protruding from the rear side in the rotational direction and the valleys receding are alternately arranged.

この構成によると、翼が上記横断面形状であることにより、翼が風を受けると揚力が発生し、この揚力によって翼が垂直主軸の軸心回りに回転する。垂直軸風車の場合、回転が失速する原因の一つに、翼面からの気流の剥離がある。今回の構成では、翼の回転進行方向の後縁にセレーションが形成されているため、翼の回転中心に対する径方向の翼後端における外側面に沿う内側面より速度の速い気流によって、径方向の内側面に沿う気流の流れが誘引されて、内側面に沿う気流の剥離が抑制される。これにより、翼の回転の失速する区間が短くなり、一回転における回転エネルギー変換効率が向上する。   According to this configuration, since the wing has the above-described cross-sectional shape, lift is generated when the wing receives wind, and the wing rotates around the axis of the vertical main shaft by this lift. In the case of a vertical axis windmill, one of the causes of the stalling of rotation is separation of the airflow from the blade surface. In this configuration, since the serration is formed at the trailing edge of the blade rotation direction, the radial airflow is faster than the inner surface along the outer surface at the rear end of the blade in the radial direction with respect to the rotation center of the blade. The flow of the airflow along the inner surface is attracted, and the separation of the airflow along the inner surface is suppressed. Thereby, the section where the rotation of the blade is stalled is shortened, and the rotational energy conversion efficiency in one rotation is improved.

また、相対速度が小さく、気流が剥離しやすい低回転または低風速時では、セレーション形状により気流が翼壁面に付着しやすくなるために、各風速において一番効率の良い所定の回転速度まで短時間で翼の回転速度が上がる。さらに、風が弱まっても、翼が回転停止しにくい。これにより、翼の1回転中におけるトルク発生領域が広がり、より一層回転エネルギー変換効率が向上する。   Also, at low rotation speeds or low wind speeds where the relative speed is low and the air flow is easy to peel off, the air flow is likely to adhere to the blade wall due to the serration shape. Increases the rotation speed of the wing. Furthermore, even if the wind weakens, the wings are difficult to stop rotating. As a result, the torque generation region during one rotation of the blade is expanded, and the rotational energy conversion efficiency is further improved.

この発明において、前記セレーションは、前記翼の回転中心に対する径方向から見て、前記山部の頂部側が狭まる波形状に形成されていてもよい。
山部の頂部側が狭まる波形状であると、後方へ行くほど谷部の垂直主軸の軸心に沿う方向の幅が広くなるため、径方向の内側面に沿う気流の流れを誘引する作用が強くなる。
In the present invention, the serration may be formed in a wave shape in which the top side of the peak portion is narrowed when viewed from the radial direction with respect to the rotation center of the blade.
The wave shape that narrows the top side of the mountain portion increases the width in the direction along the axis of the vertical main axis of the valley portion as it goes backward, so the action of attracting airflow along the inner surface in the radial direction is strong Become.

また、前記セレーションは、前記翼の回転中心に対する径方向から見て、前記山部が凸曲線の湾曲形状であってもよい。
山部が凸曲線の湾曲形状であると、山部の後端が丸みを持つため、損傷し難く、外側面の気流による作用をより発揮しやすい。
Further, the serration may have a curved shape with a convex curve at the peak as viewed from a radial direction with respect to the rotation center of the blade.
If the ridge has a convex curved shape, the rear end of the ridge has a roundness, so that it is difficult to be damaged, and the effect of the airflow on the outer surface is more easily exhibited.

前記セレーションの前記山部は、前記翼の回転中心に対する径方向の外側から内側へ行くに従い、前記垂直主軸の軸心に沿う幅が広くなっていてもよい。
この場合、山部の側面が、内側に行くに従い谷部の幅が狭くなるように傾斜したR面となる。これにより、径方向の外側面に沿う気流が谷部に円滑に導かれる。
The peak portion of the serration may increase in width along the axis of the vertical main shaft as it goes from the outside in the radial direction with respect to the rotation center of the blade to the inside.
In this case, the side surface of the mountain portion becomes an R surface inclined so that the width of the valley portion becomes narrower as it goes inward. Thereby, the airflow along the outer surface in the radial direction is smoothly guided to the trough.

この発明において、前記翼が、前記垂直主軸と平行に延びる主翼部と、この主翼部の両端部から前記垂直主軸の側に斜めに折れ曲がって延びるウイングレットとを有する場合、前記主翼部における前記回転進行方向の後端に前記セレーションが形成されているとよい。
また、主翼部のみにセレーションが形成されていてもよい。
In the present invention, when the wing has a main wing portion extending in parallel with the vertical main shaft and a winglet extending obliquely from both ends of the main wing portion toward the vertical main shaft, the rotation progress in the main wing portion. The serration may be formed at the rear end in the direction.
Further, serrations may be formed only on the main wing part.

この発明の垂直軸風車の翼は、垂直主軸を有する垂直軸風車用であって、
横断面形状が、回転中心に対する径方向の外側面ないし内側面が回転進行方向の前後両端から次第に前記径方向の外側ないし内側に膨らみ、その膨らみ量は前記回転進行方向の前端寄りの箇所で最も大きい形状となる翼型をしており、
前記回転進行方向の後縁に、前記回転進行方向の後方側に対して突出する山部と後退する谷部とが交互に並ぶセレーションが形成されていることを特徴とする。
The blade of the vertical axis wind turbine of the present invention is for a vertical axis wind turbine having a vertical main axis,
The cross-sectional shape is such that the radially outer surface or inner surface with respect to the center of rotation gradually bulges from the front and rear ends in the rotational direction toward the outer side or the inner side in the radial direction, and the amount of bulge is most at the location near the front end in the rotational direction. It has a large wing shape,
A serration is formed at the rear edge of the rotation traveling direction, in which crests protruding from the rear side in the rotation traveling direction and troughs receding are alternately arranged.

上記横断面形状であると、前述したように、風を受けた場合に、径方向の内側面での気流の剥離を抑制する。このため、この翼を垂直軸風車に用いることにより、剥離による失速区間が短くなるため、垂直軸風車の回転エネルギー変換効率が向上する。   As described above, when the cross-sectional shape is the cross-sectional shape, air flow separation on the inner surface in the radial direction is suppressed when wind is received. For this reason, when this blade is used for a vertical axis wind turbine, the stalled section due to separation is shortened, so that the rotational energy conversion efficiency of the vertical axis wind turbine is improved.

この発明の風力発電装置は、前記垂直軸風車と、この垂直軸風車の前記垂直主軸の回転で発電する発電機とを備える。
この風力発電装置に用いられる垂直軸風車は、上述したように、回転エネルギー変換効率が良い。このため、この風力発電装置は発電効率が良い。
The wind power generator of the present invention includes the vertical axis wind turbine and a generator that generates electric power by the rotation of the vertical main shaft of the vertical axis wind turbine.
As described above, the vertical axis windmill used in this wind power generator has good rotational energy conversion efficiency. For this reason, this wind power generator has good power generation efficiency.

この発明の垂直軸風車は、回転自在に設けられる垂直主軸と、この垂直主軸に設けられた支持体と、前記垂直主軸に前記支持体を介して連結され風を受けて前記垂直主軸の軸心の回りに回転する翼とを備え、前記翼の横断面形状が、前記翼の回転中心に対する径方向の外側面ないし内側面が前記翼の回転進行方向の前後両端から次第に前記径方向の外側ないし内側に膨らみ、その膨らみ量は前記回転進行方向の前端寄りの箇所で最も大きい形状であり、前記翼における前記回転進行方向の後縁に、前記回転進行方向の後方側に対して突出する山部と後退する谷部とが交互に並ぶセレーションが形成されているため、翼の回転内周面での気流の剥離が抑制されて、回転エネルギー変換効率が良好である。   A vertical axis wind turbine according to the present invention includes a vertical main shaft that is rotatably provided, a support provided on the vertical main shaft, and an axial center of the vertical main shaft that is connected to the vertical main shaft via the support and receives wind. And the blade has a transverse cross-sectional shape such that the radially outer surface or inner surface of the blade with respect to the rotation center of the blade gradually increases from the front and rear ends in the direction of rotation of the blade. A ridge that bulges inward and has a bulge amount that is the largest shape near the front end in the direction of rotation, and protrudes toward the rear side in the direction of rotation of the wing at the trailing edge of the direction of rotation. Since the serrations in which the retreating troughs are alternately arranged are formed, the separation of the airflow on the rotating inner peripheral surface of the blade is suppressed, and the rotational energy conversion efficiency is good.

この発明の垂直軸風車の翼は、垂直主軸を有する垂直軸風車用であって、横断面形状が、回転中心に対する径方向の外側面ないし内側面が回転進行方向の前後両端から次第に前記径方向の外側ないし内側に膨らみ、その膨らみ量は前記回転進行方向の前端寄りの箇所で最も大きい形状であり、前記回転進行方向の後縁に、前記回転進行方向の後方側に対して突出する山部と後退する谷部とが交互に並ぶセレーションが形成されているため、気流の剥離が抑制され、垂直軸風車に用いた場合に回転エネルギー変換効率が良くなる。   The blade of the vertical axis wind turbine according to the present invention is for a vertical axis wind turbine having a vertical main shaft, and has a cross-sectional shape in which the radial outer surface or inner surface with respect to the center of rotation gradually increases from the front and rear ends in the rotational traveling direction. Bulges outward or inward, and the amount of the bulge is the largest at the position near the front end in the rotational direction, and the peak part projects from the rear side in the rotational direction at the rear edge of the rotational direction. And serrated troughs are formed alternately, so that the separation of the airflow is suppressed, and the rotational energy conversion efficiency is improved when used in a vertical axis wind turbine.

この発明の垂直軸風車は、前記垂直軸風車と、この垂直軸風車の前記垂直主軸の回転で発電する発電機とを備えるため、発電効率が良い。   Since the vertical axis windmill of this invention is equipped with the said vertical axis windmill and the generator which produces electric power by rotation of the said vertical main axis | shaft of this vertical axis windmill, electric power generation efficiency is good.

この発明の一実施形態に係る垂直軸風車を備えた風力発電装置の正面図である。It is a front view of the wind power generator provided with the vertical axis windmill concerning one embodiment of this invention. 同風力発電装置の平面図である。It is a top view of the wind power generator. (A)は同垂直軸風車の翼の正面図、(B)はその側面図である。(A) is the front view of the blade | wing of the same vertical axis windmill, (B) is the side view. 図3(B)のIV−IV断面図である。It is IV-IV sectional drawing of FIG. 3 (B). 同翼の一部の斜視図である。It is a perspective view of a part of the wing. (A)は同翼の一例の部分平面図、(B)はその側面図である。(A) is a partial plan view of an example of the wing, and (B) is a side view thereof. (A)は同翼の異なる例の部分平面図、(B)はその側面図である。(A) is a partial plan view of a different example of the wing, and (B) is a side view thereof. (A)は同翼のさらに異なる例の部分平面図、(B)はその側面図、(C)はVIIIC−VIIIC断面図である。(A) is a partial plan view of still another example of the wing, (B) is a side view thereof, and (C) is a cross-sectional view of VIIIC-VIIIC. (A)は同翼のさらに異なる例の部分平面図、(B)はその側面図である。(A) is a partial plan view of a further different example of the wing, and (B) is a side view thereof. (A)は同翼のさらに異なる例の部分平面図、(B)はその側面図である。(A) is a partial plan view of a further different example of the wing, and (B) is a side view thereof. (A)は同翼のさらに異なる例の部分平面図、(B)はその側面図である。(A) is a partial plan view of a further different example of the wing, and (B) is a side view thereof. 翼の回転位置と翼に流入する風の向きおよび速度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the rotation position of a wing | blade, and the direction and speed of the wind which flow into a wing | blade. (A),(B)はそれぞれ翼が1回転する間におけるトルク発生領域と失速領域とを示す図である。(A), (B) is a figure which respectively shows the torque generation area | region and stall area | region during 1 rotation of a blade | wing. 翼の回転速度と翼は発生する出力との関係を示すグラフである。It is a graph which shows the relationship between the rotational speed of a wing | blade and the output which a wing | blade generate | occur | produces. 従来の翼の一部を断面で表わした斜視図である。It is the perspective view which represented a part of conventional wing | blade in the cross section.

この発明の実施形態を図面と共に説明する。
図1はこの発明の一実施形態に係る垂直軸風車を備えた風力発電装置の正面図、図2はその平面図である。地面に築かれた基礎1に鉄塔2が構築され、この鉄塔2の上に風力発電装置3が設置されている。風力発電装置3は、垂直軸風車4と、この垂直軸風車4の垂直主軸5の回転で発電する発電機6と、その他の配電用、制御用等の機器とを備える。垂直主軸5は上下方向に沿って延びる軸であって、軸受によって回転自在に支持され、下部が発電機6に連結されている。垂直主軸5、発電機6、および他の機器は、カバー7によって覆われている。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a front view of a wind turbine generator having a vertical axis wind turbine according to an embodiment of the present invention, and FIG. 2 is a plan view thereof. A steel tower 2 is constructed on a foundation 1 built on the ground, and a wind power generator 3 is installed on the steel tower 2. The wind power generator 3 includes a vertical axis windmill 4, a generator 6 that generates electric power by rotation of the vertical main shaft 5 of the vertical axis windmill 4, and other devices for power distribution and control. The vertical main shaft 5 extends in the vertical direction, is rotatably supported by a bearing, and the lower portion is connected to the generator 6. The vertical main shaft 5, the generator 6, and other equipment are covered with a cover 7.

垂直軸風車4は、前記垂直主軸5に支持体8を介して複数の翼9が取り付けられている。図の例では、翼9の数が2つであり、それぞれの翼9は垂直主軸5を中心として180°位相の異なる位置に設けられている。翼9の数は3つ以上であってもよい。支持体8は、垂直主軸5の上端に水平に固定された1本の水平アーム8aと、この水平アーム8aの中央部付近からそれぞれ図の左右両側に向かって上向きの斜め方向および下向きの斜めに延びる計4本の斜めアーム8bとからなる。水平アーム8aの左端および左側の2本の斜めアーム8bの先端に左側の翼9が結合され、水平アーム8aの右端および右側の2本の斜めアーム8bの先端に右側の翼9が結合されている。垂直軸風車4は、風を受けると、垂直主軸5の軸心Oの回りに図2の矢印方向に回転する。   In the vertical axis wind turbine 4, a plurality of blades 9 are attached to the vertical main shaft 5 via a support 8. In the example shown in the figure, the number of blades 9 is two, and each blade 9 is provided at a position with a 180 ° phase difference around the vertical main axis 5. The number of wings 9 may be three or more. The support 8 has one horizontal arm 8a that is horizontally fixed to the upper end of the vertical main shaft 5, and an upward oblique direction and a downward oblique direction from the vicinity of the central portion of the horizontal arm 8a toward the left and right sides of the figure. It consists of a total of four diagonal arms 8b. The left wing 9 is coupled to the left end of the horizontal arm 8a and the left two oblique arms 8b, and the right wing 9 is coupled to the right end of the horizontal arm 8a and the two oblique arms 8b on the right side. Yes. When the vertical axis wind turbine 4 receives wind, the vertical axis wind turbine 4 rotates around the axis O of the vertical main shaft 5 in the direction of the arrow in FIG.

図3(A),(B)は翼9の正面図と側面図である。翼9は、垂直主軸5(図1参照)と平行、すなわち上下方向に沿って延びる主翼部10と、この主翼部10の上下両端部からそれぞれ垂直主軸5の側に斜めに折れ曲がって延びる上下のウイングレット11とからなる。ウイングレット11は直線状に延びていてもよく、曲線状に延びていてもよい。曲線状である場合、その曲線は、円弧状であっても、曲率が異なる複数の円弧が組み合わされたものであってよい。上下のウイングレット11は、主翼部10の長手方向中間部の中心線CLに対し、線対称となる同一形状に形成されている。   3A and 3B are a front view and a side view of the wing 9. The wings 9 are parallel to the vertical main shaft 5 (see FIG. 1), that is, a main wing portion 10 extending in the vertical direction, and upper and lower portions extending obliquely from the upper and lower end portions of the main wing portion 10 to the vertical main shaft 5 side. It consists of a winglet 11. The winglet 11 may extend linearly or may extend curvedly. In the case of a curved shape, the curved line may be an arc shape or a combination of a plurality of arcs having different curvatures. The upper and lower winglets 11 are formed in the same shape that is line-symmetric with respect to the center line CL of the intermediate portion in the longitudinal direction of the main wing portion 10.

なお、以下の説明では、垂直主軸5の軸心方向を「上下方向」とする。また、垂直主軸5の軸心Oを中心として径方向の外径側を「外側」、内径側を「内側」とする。また、垂直軸風車4が図2の矢印方向に回転するときに翼9が進行する側を「前側」、その反対側を「後側」とする。   In the following description, the axial center direction of the vertical main shaft 5 is referred to as “vertical direction”. Further, the outer diameter side in the radial direction around the axis O of the vertical main shaft 5 is defined as “outer side”, and the inner diameter side is defined as “inner side”. Further, when the vertical axis wind turbine 4 rotates in the direction of the arrow in FIG. 2, the side on which the blades 9 advance is referred to as “front side”, and the opposite side is referred to as “rear side”.

図3(A)に示すように、主翼部10の厚みは上下全域にわたって一定であり、ウイングレット11は先端側に行くに従って径方向の厚みが薄くなっている。但し、主翼部10およびウイングレット11のいずれについても、回転進行方向の位置によって径方向の厚みが異なっている。先に述べた主翼部10およびウイングレット11の厚みは、回転進行方向の最大厚み部の厚みについてである。   As shown in FIG. 3A, the thickness of the main wing portion 10 is constant over the entire upper and lower parts, and the winglet 11 is thinner in the radial direction toward the tip side. However, the radial thickness of each of the main wing part 10 and the winglet 11 differs depending on the position in the rotational traveling direction. The thicknesses of the main wing portion 10 and the winglet 11 described above are about the thickness of the maximum thickness portion in the rotation traveling direction.

図3(B)に示すように、主翼部10は回転進行方向の幅が一定で、ウイングレット11は先端側へ行くに従い回転進行方向の幅は連続的に徐々に狭くなっている。ウイングレット11の上下方向の最先端の位置である頂点位置Pは、回転進行方向の中心よりも前寄りにある。   As shown in FIG. 3B, the width of the main wing portion 10 is constant in the direction of rotation, and the width of the winglet 11 is gradually reduced gradually toward the tip side. The apex position P which is the most advanced position in the up-down direction of the winglet 11 is closer to the front than the center in the direction of rotation.

図4は図3(B)のIV−IV断面図である。同図に示すように、主翼部10の横断面形状は、回転内周面すなわち径方向の外側面12ないし内側面13が、回転進行方向の前後両端から次第に径方向外側ないし内側に膨らみ、その膨らみ量は回転進行方向の前端寄りの箇所で最も大きい形状である。径方向の内側面13は、この例では、前端部は外側面12と滑らかに繋がる曲面状で前端部よりも後方部分は平面状とされている。内側面13は、前端から後端にかけて全体が径方向内側に膨らんだ形状であってもよく、また回転進行方向の中央部分が凹んだ形状であってもよい。図示は省略するが、ウイングレット11の横断面形状も、主翼部10とは径方向および回転進行方向の寸法が異なるが、主翼部10と同様の形状である。なお、図4では、翼9が中実で示されているが、実際には軽量化のために、繊維強化樹脂等により中空状に形成されている場合もある。   4 is a cross-sectional view taken along the line IV-IV in FIG. As shown in the figure, the cross-sectional shape of the main wing part 10 is such that the rotation inner peripheral surface, that is, the outer side surface 12 or inner side surface 13 in the radial direction gradually bulges outward or inward in the radial direction from both front and rear ends in the direction of rotation. The amount of bulge is the largest shape at a location near the front end in the direction of rotation. In this example, the inner side surface 13 in the radial direction has a curved shape in which the front end portion is smoothly connected to the outer side surface 12, and the rear portion is flatter than the front end portion. The inner side surface 13 may have a shape that swells inward in the radial direction from the front end to the rear end, or may have a shape in which a central portion in the rotation traveling direction is recessed. Although illustration is omitted, the cross-sectional shape of the winglet 11 is the same as that of the main wing part 10 although the dimensions of the wing part 10 are different from those of the main wing part 10 in the radial direction and the rotational direction. In FIG. 4, the wings 9 are shown as solid. However, in some cases, the wings 9 may be formed in a hollow shape with a fiber reinforced resin or the like in order to reduce the weight.

図3(B)、図4、および図5に示すように、主翼部10の回転進行方向の後縁には、セレーション15が設けられている。セレーション15は、回転進行方向の後方側に対して突出する山部16と後退する谷部17とが交互に並ぶ。セレーション15の形成方法としては、主翼部10の後端部における谷部17となる箇所を切除してもよく、あるいは主翼部10の後端縁に、山部16となる別部材またはセレーション15が形成された別部材を取り付けてもよい。   As shown in FIGS. 3B, 4, and 5, a serration 15 is provided at the rear edge of the main wing portion 10 in the rotational traveling direction. In the serrations 15, the peak portions 16 projecting toward the rear side in the rotation traveling direction and the valley portions 17 receding are alternately arranged. As a method of forming the serration 15, a portion that becomes the valley portion 17 at the rear end portion of the main wing portion 10 may be cut out, or another member or serration 15 that becomes the peak portion 16 is formed at the rear end edge of the main wing portion 10. Another formed member may be attached.

図6〜図11に、セレーションの各種形態を示す。これらの各図のうち(B)では、翼厚み方向の寸法の比率を大きくして描いている。
図6に示すセレーション15Aは、径方向から見て、各山部16の連なりが三角波形とされている。山部16の頂部および谷部17の底部は、径方向から見て鋭角になっている。
図7に示すセレーション15Bは、径方向から見て、各山部16の連なりが台形波形とされている。山部16の頂部および谷部17の底部は、曲線によって丸みが付けられていてもよい。
6 to 11 show various forms of serrations. Of these figures, (B) is drawn with a larger ratio of dimensions in the blade thickness direction.
In the serration 15A shown in FIG. 6, when viewed from the radial direction, a series of peak portions 16 has a triangular waveform. The top part of the peak part 16 and the bottom part of the valley part 17 have an acute angle when viewed from the radial direction.
In the serration 15B shown in FIG. 7, a series of peak portions 16 has a trapezoidal waveform when viewed from the radial direction. The top of the peak 16 and the bottom of the trough 17 may be rounded by a curve.

図8に示すセレーション15Cは、径方向から見て、各山部16の連なりが山部凸曲線波形とされている。山部凸曲線波形とは、各山部16が後方に凸の湾曲形状であることを指す。山部16が凸曲線の湾曲形状であると、山部16の後端が丸みを持つため、損傷し難い。   In the serration 15C shown in FIG. 8, when viewed from the radial direction, a series of peak portions 16 has a peak convex waveform. The peak convex curve waveform means that each peak 16 has a curved shape convex backward. If the peak portion 16 has a convex curved shape, the rear end of the peak portion 16 has a rounded shape and is not easily damaged.

図8の例では、図8(C)の断面図に示すように、山部16は、外側から内側へ行くに従い、上下方向の幅が広くなっている。言い換えると、山部16の側面16aが、内側に行くに従い谷部17の幅が狭くなるように傾斜したテーパ面ないしR面となっている。これにより、径方向の外側面12に沿う気流が谷部17に円滑に導かれる。前記三角波形や台形波形のセレーション15A,15B、および後記矩形波形のセレーション15Dにも、テーパ状ないしRの面取りを施してよい。   In the example of FIG. 8, as shown in the cross-sectional view of FIG. 8C, the peak portion 16 becomes wider in the vertical direction as it goes from the outside to the inside. In other words, the side surface 16a of the peak portion 16 is a tapered surface or an R surface inclined so that the width of the valley portion 17 becomes narrower as it goes inward. Thereby, the airflow along the outer surface 12 in the radial direction is smoothly guided to the valley portion 17. The triangular waveform and trapezoidal waveform serrations 15A and 15B and the rectangular waveform serration 15D described later may be tapered or rounded.

上記各セレーション15A,15B,15Cは、径方向から見て、山部16の頂部側が狭まる波形状である。この波形状であると、後方へ行くほど谷部17の上下方向の幅が広くなるため、径方向の内側面13に沿う気流の流れを誘引する作用が強くなる。   Each of the serrations 15A, 15B, and 15C has a wave shape that narrows the top side of the peak portion 16 when viewed from the radial direction. With this wave shape, the width in the vertical direction of the valley portion 17 becomes wider toward the rear, so that the action of inducing the flow of airflow along the inner surface 13 in the radial direction becomes stronger.

図9に示すセレーション15Dのように、山部16の頂部側が狭まる波形状でなくてもよい。このセレーション15Dは、各山部16の連なりが矩形波形とされている。   Like serration 15D shown in FIG. 9, it does not need to be the wave shape which the top part side of the peak part 16 narrows. In this serration 15D, a series of peaks 16 has a rectangular waveform.

図10に示すセレーション15Eは、主翼部10の後縁に取り付けた別部材18に形成されている。この例は、山部16の波形が図6のセレーション15Aと近似したものとされているが、他のセレーション15B,15C,15Dも別部材に形成してよい。   The serration 15E shown in FIG. 10 is formed in another member 18 attached to the rear edge of the main wing part 10. In this example, the waveform of the peak portion 16 is similar to that of the serration 15A of FIG. 6, but the other serrations 15B, 15C, and 15D may be formed as separate members.

図11に示すセレーション15Fは、主翼部19の後縁に山部16となる別部材を取り付けて形成されている。この例は、図8のセレーション15Cと同様に、各山部16の連なりが山部凸曲線波形とされているが、他の波形のセレーションについても、主翼部19の後縁に山部16となる別部材を取り付けてセレーションを形成することができる。   The serration 15F shown in FIG. 11 is formed by attaching another member that becomes the peak 16 to the rear edge of the main wing part 19. In this example, as in the serration 15C of FIG. 8, the series of peaks 16 is a peak convex curve waveform, but the serrations of other waveforms also have peaks 16 at the trailing edge of the main wing 19. A separate member can be attached to form a serration.

この構成の垂直軸風車4の作用を説明する。
翼9が図4に示す横断面形状であると、翼9が風Wを受けた場合、翼9の前縁の内側面の形状により、気流A2が加速され翼進行方向前方に揚力が発生し推進力となる。この揚力によって、垂直軸風車4が垂直主軸5の軸心O回りに図2の矢印方向に回転する。翼9の両端にウイングレット11を設けたことにより、翼端付近に渦の発生を抑制し、騒音の発生が抑えられる。
The operation of the vertical axis wind turbine 4 having this configuration will be described.
If the blade 9 has the cross-sectional shape shown in FIG. 4, when the blade 9 receives the wind W, the airflow A2 is accelerated by the shape of the inner surface of the front edge of the blade 9, and lift is generated in the forward direction of the blade. It becomes a driving force. With this lift, the vertical axis wind turbine 4 rotates about the axis O of the vertical main shaft 5 in the direction of the arrow in FIG. Providing the winglets 11 at both ends of the blade 9 suppresses the generation of vortices near the blade tip and suppresses the generation of noise.

図12は、翼9の回転位置と、翼9に流入する風の向きおよび速度との関係を示す説明図である。図12の右図における左から右に向かって風速V0の風が吹いているものとし、翼9の回転進行速度はSとする。図中の矢印は、翼9が受ける風の相対的な方向と流入速度とを表わしている。図12の左図は、翼9が各回転位置にあるときの翼9の状態を表わしている。   FIG. 12 is an explanatory diagram showing the relationship between the rotational position of the blade 9 and the direction and speed of the wind flowing into the blade 9. It is assumed that the wind at the wind speed V0 is blowing from the left to the right in the right diagram of FIG. The arrows in the figure indicate the relative direction and inflow speed of the wind received by the blade 9. The left figure of FIG. 12 represents the state of the wing | blade 9 when the wing | blade 9 exists in each rotation position.

翼9が丸付き数字1の位置にあるとき、翼9は回転進行方向の正面から、風速V0と翼9の進行速度Sを加算した流入速度V1の風を受ける。この状態では、図12の左図に示すように、翼9の外側の気流A1、および内側の気流A2は、それぞれ外側面12および内側面13に沿った付着流れとなる。   When the wing 9 is at the position of the circled number 1, the wing 9 receives the wind at the inflow speed V1 obtained by adding the wind speed V0 and the traveling speed S of the wing 9 from the front in the rotational traveling direction. In this state, as shown in the left diagram of FIG. 12, the airflow A1 outside the blade 9 and the airflow A2 inside the wing 9 are attached flows along the outer surface 12 and the inner surface 13, respectively.

翼9が丸付き数字2の位置にあるとき、翼9は、風速V0と進行速度Sのベクトル値となる流入速度V2の風を、回転進行方向の斜め外径側から受ける。この状態では、図12の左図に示すように、翼9の外側の気流A1は外側面12に沿った付着流れであるが、内側内の気流A2は内側面13から剥離気味となる。しかし、翼9の回転進行方向の後縁にセレーション15(図4)が形成されていると、外側面12に沿う速度の速い気流A1によって、翼9の内側の気流A2の流れが誘引される。これにより、内側面13での気流A2の剥離が抑制される。   When the blade 9 is in the position of the circled number 2, the blade 9 receives the wind of the inflow velocity V2 that is a vector value of the wind velocity V0 and the traveling velocity S from the oblique outer diameter side in the rotational traveling direction. In this state, as shown in the left diagram of FIG. 12, the airflow A <b> 1 outside the wing 9 is an attached flow along the outer surface 12, but the inner airflow A <b> 2 becomes peeled from the inner surface 13. However, if the serration 15 (FIG. 4) is formed at the trailing edge of the blade 9 in the rotational traveling direction, the flow of the airflow A2 inside the blade 9 is attracted by the fast airflow A1 along the outer surface 12. . Thereby, peeling of the airflow A2 on the inner side surface 13 is suppressed.

丸付き数字3の位置に翼9があるとき、翼9は、風速V0と進行速度Sとのベクトル値となる流入速度V3の風を、さらに斜め外径側から受ける。この状態では、図12の左図に示すように、内側の気流A2は翼後端で内側面13から完全に剥離する。   When the blade 9 is at the position of the circled numeral 3, the blade 9 receives the wind of the inflow velocity V3 that is a vector value of the wind velocity V0 and the traveling velocity S from the oblique outer diameter side. In this state, as shown in the left diagram of FIG. 12, the inner airflow A2 is completely separated from the inner side surface 13 at the blade rear end.

上述したように、翼9の回転進行方向の後縁にセレーション15が形成されているため、径方向の外側面12に沿う速度の速い気流によって、径方向の内側面13に沿う気流の流れが誘引されて、内側面13に沿う気流の剥離が抑制される。例えば、セレーション15が無い場合、翼9が丸付き数字2の位置にある時点で気流2の剥離が発生する可能性があるが、セレーション15があると、同時点での気流2の剥離を無くすことができる。これにより、翼9の回転の失速する区間が短くなり、一回転における回転エネルギー変換効率が向上する。   As described above, since the serrations 15 are formed at the trailing edge of the rotation direction of the blade 9, the flow of the airflow along the inner surface 13 in the radial direction is caused by the fast airflow along the outer surface 12 in the radial direction. The airflow along the inner surface 13 is suppressed by being attracted. For example, when there is no serration 15, there is a possibility that separation of the air current 2 occurs when the blade 9 is at the position of the circled number 2, but when there is the serration 15, the separation of the air current 2 at the same point is eliminated. be able to. Thereby, the section where the rotation of the blade 9 is stalled is shortened, and the rotational energy conversion efficiency in one rotation is improved.

図13(A),(B)は、それぞれ翼が1回転する間におけるトルク発生領域と失速領域の関係を示す図である。一例として、ロータ直径2mの垂直軸風車における(A)は回転速度が90min−1である場合を示し、(B)は回転速度が50min−1である場合を示す。両者を比較して、回転速度が遅いとトルク発生領域が狭いことが判る。これは、特に、相対流入速度の遅い低風速や、低回転時では、気流の相対速度が小さいため翼壁面を流れる気流が失速し、翼壁面後端における剥離のタイミングが早くなるからである。 FIGS. 13A and 13B are diagrams showing the relationship between the torque generation region and the stall region during one rotation of the blade. As an example, (A) in a vertical axis wind turbine having a rotor diameter of 2 m shows a case where the rotational speed is 90 min −1 , and (B) shows a case where the rotational speed is 50 min −1 . Comparing the two, it can be seen that the torque generation region is narrow when the rotational speed is low. This is because, particularly at low wind speeds where the relative inflow speed is low or during low rotation, the relative speed of the airflow is small, so the airflow flowing through the blade wall surface stalls, and the timing of separation at the rear end of the blade wall surface is accelerated.

しかし、翼9にセレーション15が形成されていると、低風速や低回転時でも気流の剥離が抑制されるので、図13(B)に白抜き矢印で示すように、トルク発生領域を広げることができる。例えば、図13(A)と同様に、丸付き数字3の位置のあたりまでトルク発生領域を広げることができる。   However, if serrations 15 are formed on the blades 9, air flow separation is suppressed even at low wind speeds and low rotations. Therefore, as shown by the white arrows in FIG. Can do. For example, as in FIG. 13A, the torque generation region can be expanded to the position of the circled number 3.

また、気流の剥離が抑制されるので、低回転状態または回転停止状態で風が吹いた場合、翼の出力が増加するために、効率の良いトルクを発生させる所定の回転速度まで短時間で翼9の回転速度が上がる。さらに、風が弱まっても、翼9が回転停止しにくい。これにより、翼の1回転中におけるトルク発生領域が広がり、より一層回転エネルギー変換効率が向上する。   In addition, since the separation of the airflow is suppressed, when the wind blows in a low rotation state or in a rotation stop state, the output of the blade increases, so the blade speed can be reduced to a predetermined rotational speed that generates efficient torque in a short time. 9 speed increases. Furthermore, even if the wind weakens, the wing 9 is difficult to stop rotating. As a result, the torque generation region during one rotation of the blade is expanded, and the rotational energy conversion efficiency is further improved.

このように、翼が1回転する間に翼への風の流入角が大きく変化するという垂直軸風車に特有の状況に対し、翼9にセレーション15を形成することが有効である。セレーションがある場合と無い場合について、風によって翼9が発生する出力を流体解析により計算した。その結果を図14に示す。これにより、どの回転速度でも、セレーションがある場合の方が無い場合よりも大きな出力が発生することが判る。また、特に低速域で効果が大きいことが判る。   As described above, it is effective to form the serrations 15 on the blades 9 in a situation peculiar to the vertical axis wind turbine in which the wind inflow angle to the blades greatly changes during one rotation of the blades. With and without serrations, the output generated by the blades 9 by wind was calculated by fluid analysis. The result is shown in FIG. As a result, it can be seen that at any rotation speed, a larger output is generated than when there is no serration. It can also be seen that the effect is particularly great at low speeds.

以上に説明したように、セレーション15が形成された翼9を用いた垂直軸風車4は、回転エネルギー変換効率が良い。このため、この垂直軸風車4を備える風力発電装置3は発電効率が良い。   As described above, the vertical axis wind turbine 4 using the blades 9 in which the serrations 15 are formed has high rotational energy conversion efficiency. For this reason, the wind power generator 3 provided with this vertical axis windmill 4 has good power generation efficiency.

以上、実施例に基づいて本発明を実施するための形態を説明したが、ここで開示した実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   As mentioned above, although the form for implementing this invention based on the Example was demonstrated, embodiment disclosed here is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

3…風力発電装置
4…垂直軸風車
5…垂直主軸
6…発電機
8…支持体
9…翼
10…主翼部
11…ウイングレット
12…外側面
13…内側面
15,15A,15B,15C,15D,15E,15F…セレーション
16…山部
17…谷部
O…軸心
DESCRIPTION OF SYMBOLS 3 ... Wind power generator 4 ... Vertical axis windmill 5 ... Vertical main shaft 6 ... Generator 8 ... Support body 9 ... Wing 10 ... Main wing part 11 ... Winglet 12 ... Outer side surface 13 ... Inner side surface 15, 15A, 15B, 15C, 15D, 15E, 15F ... serration 16 ... mountain part 17 ... valley part O ... axis

Claims (7)

回転自在に設けられる垂直主軸と、この垂直主軸に設けられた支持体と、前記垂直主軸に前記支持体を介して連結され風を受けて前記垂直主軸の軸心の回りに回転する翼とを備えた垂直軸風車であって、
前記翼の横断面形状が、前記翼の回転中心に対する径方向の外側面ないし内側面が前記翼の回転進行方向の前後両端から次第に前記径方向の外側ないし内側に膨らみ、その膨らみ量は前記回転進行方向の前端寄りの箇所で最も大きい形状であり、
前記翼における前記回転進行方向の後縁に、前記回転進行方向の後方側に対して突出する山部と後退する谷部とが交互に並ぶセレーションが形成されていることを特徴とする垂直軸風車。
A vertical main shaft provided rotatably, a support provided on the vertical main shaft, and a wing connected to the vertical main shaft via the support and receiving wind to rotate around the axis of the vertical main shaft. A vertical axis windmill with
The cross-sectional shape of the wing is such that the radially outer surface or inner surface with respect to the rotation center of the wing gradually bulges from the front and rear ends in the direction of rotation of the wing toward the outer or inner side in the radial direction. It is the largest shape near the front end in the direction of travel,
A vertical axis wind turbine characterized in that a serration is formed on the trailing edge of the blade in the rotational direction in which the ridges projecting toward the rear side in the rotational direction and the valleys receding are alternately arranged. .
請求項1に記載の垂直軸風車において、前記セレーションは、前記翼の回転中心に対する径方向から見て、前記山部の頂部側が狭まる波形状に形成されている垂直軸風車。   2. The vertical axis wind turbine according to claim 1, wherein the serration is formed in a wave shape in which a top side of the peak portion is narrowed when viewed from a radial direction with respect to a rotation center of the blade. 3. 請求項1または請求項2に記載の垂直軸風車において、前記セレーションは、前記翼の回転中心に対する径方向から見て、前記山部が凸曲線の湾曲形状である垂直軸風車。   3. The vertical axis wind turbine according to claim 1, wherein the serration is a curved shape having a convex curve at the peak portion when viewed from a radial direction with respect to a rotation center of the blade. 4. 請求項1ないし請求項3のいずれか1項に記載の垂直軸風車において、前記セレーションの前記山部は、前記翼の回転中心に対する径方向の外側から内側へ行くに従い、前記垂直主軸の軸心に沿う幅が広くなっている垂直軸風車。   The vertical axis wind turbine according to any one of claims 1 to 3, wherein the peak portion of the serration is an axial center of the vertical main shaft as it goes from the outside in the radial direction with respect to the rotation center of the blade. A vertical axis windmill with a wider width along the axis. 請求項1ないし請求項4のいずれか1項に記載の垂直軸風車において、前記翼は、前記垂直主軸と平行に延びる主翼部と、この主翼部の両端部から前記垂直主軸の側に斜めに折れ曲がって延びるウイングレットとを有し、前記主翼部における前記回転進行方向の後端に前記セレーションが形成されている垂直軸風車。   5. The vertical axis wind turbine according to claim 1, wherein the blade includes a main wing portion extending in parallel to the vertical main shaft, and obliquely from both ends of the main wing portion toward the vertical main shaft. A vertical axis wind turbine having a winglet that bends and extends, and the serration is formed at a rear end of the main wing portion in the rotational traveling direction. 垂直主軸を有する垂直軸風車の翼であって、
横断面形状が、回転中心に対する径方向の外側面ないし内側面が回転進行方向の前後両端から次第に前記径方向の外側ないし内側に膨らみ、その膨らみ量は前記回転進行方向の前端寄りの箇所で最も大きい形状であり、
前記回転進行方向の後縁に、前記回転進行方向の後方側に対して突出する山部と後退する谷部とが交互に並ぶセレーションが形成されていることを特徴とする垂直軸風車の翼。
A blade of a vertical axis wind turbine having a vertical main axis,
The cross-sectional shape is such that the radially outer surface or inner surface with respect to the center of rotation gradually bulges from the front and rear ends in the rotational direction toward the outer side or the inner side in the radial direction, and the amount of bulge is most at the location near the front end in the rotational direction. Large shape,
A blade of a vertical axis wind turbine, wherein a serration is formed at the trailing edge of the rotational direction in which ridges protruding from the rear side of the rotational direction and troughs retreating are alternately arranged.
請求項1ないし請求項5のいずれか1項に記載の垂直軸風車と、この垂直軸風車の前記垂直主軸の回転で発電する発電機とを備える風力発電装置。   A wind turbine generator comprising: the vertical axis wind turbine according to any one of claims 1 to 5; and a generator that generates electric power by rotation of the vertical main shaft of the vertical axis wind turbine.
JP2017048670A 2017-03-14 2017-03-14 Vertical shaft windmill, its blade, and wind power generation device Pending JP2018150898A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017048670A JP2018150898A (en) 2017-03-14 2017-03-14 Vertical shaft windmill, its blade, and wind power generation device
PCT/JP2018/009436 WO2018168744A1 (en) 2017-03-14 2018-03-12 Vertical axis wind turbine, blade thereof, and wind power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017048670A JP2018150898A (en) 2017-03-14 2017-03-14 Vertical shaft windmill, its blade, and wind power generation device

Publications (1)

Publication Number Publication Date
JP2018150898A true JP2018150898A (en) 2018-09-27

Family

ID=63522237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017048670A Pending JP2018150898A (en) 2017-03-14 2017-03-14 Vertical shaft windmill, its blade, and wind power generation device

Country Status (2)

Country Link
JP (1) JP2018150898A (en)
WO (1) WO2018168744A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113048007A (en) * 2019-12-26 2021-06-29 江苏金风科技有限公司 Blade, wind generating set and method for reducing blade breathing effect

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9301910A (en) * 1993-11-04 1995-06-01 Stork Prod Eng Wind turbine.
JP2008008248A (en) * 2006-06-30 2008-01-17 Ipb:Kk Vertical shaft windmill blade with notch and vertical shaft windmill
WO2010048152A1 (en) * 2008-10-20 2010-04-29 Drexel University Vertical axis wind turbine
JP2015042864A (en) * 2013-07-24 2015-03-05 株式会社アイ・エヌ・シー・エンジニアリング Blade and wind turbine for wind power generation
KR102456995B1 (en) * 2015-03-16 2022-10-19 엔티엔 가부시키가이샤 An impeller and a natural energy power generation device having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113048007A (en) * 2019-12-26 2021-06-29 江苏金风科技有限公司 Blade, wind generating set and method for reducing blade breathing effect
CN113048007B (en) * 2019-12-26 2022-10-04 江苏金风科技有限公司 Blade, wind generating set and method for reducing blade breathing effect

Also Published As

Publication number Publication date
WO2018168744A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
US7726935B2 (en) Wind turbine rotor projection
JP3451085B1 (en) Windmill for wind power generation
WO2005116446A1 (en) Blade for vertical shaft wind wheel and vertical shaft wind wheel
US9273666B2 (en) Magnus type wind power generator
US8317480B2 (en) Turbine assembly and energy transfer method
CN110869606A (en) Vertical shaft turbine
JP2015031227A (en) Wind mill
JPWO2009066360A1 (en) Wind turbine blade and wind power generator using the same
JP2012224140A (en) Blade of rotor for fluid equipment
JP2004084522A (en) Blade and wind power generator with it
WO2018168744A1 (en) Vertical axis wind turbine, blade thereof, and wind power generation device
JP2017521599A5 (en)
JP4382120B2 (en) Turbine fin with duct
JP2017166324A (en) T-type leading end blade for turbine
EP3472456B1 (en) Wind turbine blade with tip end serrations
EP3805552B1 (en) Horizontal axis rotor
KR101073096B1 (en) Vertical axis type Darrieus windmill
JP6126287B1 (en) Vertical axis spiral turbine
JP6158019B2 (en) Axial turbine generator
KR20110008789A (en) Blade for wind power generation and device for wind power generation
JP6063445B2 (en) Vertical axis windmill
KR20100079522A (en) Rotor blade for wind power generation and wind power generator having the same
JP2009299650A (en) Straightening fluid wheel
JP5805913B1 (en) Wind turbine blade and wind power generator equipped with the same
JP7220018B2 (en) Vertical axis wind turbines and wind turbines