JP2018146294A - Terahertz wave detection device - Google Patents

Terahertz wave detection device Download PDF

Info

Publication number
JP2018146294A
JP2018146294A JP2017039460A JP2017039460A JP2018146294A JP 2018146294 A JP2018146294 A JP 2018146294A JP 2017039460 A JP2017039460 A JP 2017039460A JP 2017039460 A JP2017039460 A JP 2017039460A JP 2018146294 A JP2018146294 A JP 2018146294A
Authority
JP
Japan
Prior art keywords
terahertz wave
receiving element
detection device
detection
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017039460A
Other languages
Japanese (ja)
Other versions
JP6892105B2 (en
Inventor
一彦 平川
Kazuhiko Hirakawa
一彦 平川
亜 張
Zhang Ya
亜 張
優 細野
Yu Hosono
優 細野
渡辺 康行
Yasuyuki Watanabe
康行 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2017039460A priority Critical patent/JP6892105B2/en
Publication of JP2018146294A publication Critical patent/JP2018146294A/en
Application granted granted Critical
Publication of JP6892105B2 publication Critical patent/JP6892105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a terahertz wave detection device operating quickly.SOLUTION: The terahertz wave detection device comprises: a terahertz wave reception element with a straddle-mounted beam structure including at the centre a terahertz wave absorption part that rises in temperature by terahertz wave irradiation; and a detection part that detects terahertz wave irradiation by the shift of resonance frequency of the terahertz wave reception element based on the frequency modulation detection method. When the terahertz wave absorption part is irradiated with the terahertz wave, a beam part of the terahertz wave reception element rises in temperature, temperature dependence of elastic constant applies stress on the beam part, and the resonance frequency of the straddle-mounted beam structure changes. The detection part detects a shift of the resonance frequency to thereby detect the reception of the terahertz wave. Since a detection method of tracing the shift of the resonance frequency maintains oscillation amplitude of the beam constant, an oscillation energy remaining in the beam does not change and is not subjected to the time limitation by Q value. Thus, the terahertz wave detection device can operate quickly.SELECTED DRAWING: Figure 1

Description

本発明は、テラヘルツ波検出装置に関する。   The present invention relates to a terahertz wave detection device.

従来、テラヘルツ波検出装置としては、光吸収部と温度検出部を有するボロメータ型テラヘルツ波検出素子が広く用いられている。また、最近は、ボロメータ型テラヘルツ波検出素子を縦横に整列配置したものが提案・作製されている(例えば、特許文献1参照)。   Conventionally, as a terahertz wave detection device, a bolometer type terahertz wave detection element having a light absorption part and a temperature detection part has been widely used. Recently, a bolometer type terahertz wave detecting element arranged in a vertical and horizontal direction has been proposed and manufactured (for example, see Patent Document 1).

特開2012−2603号公報JP 2012-2603 A

しかしながら、上述のボロメータ型テラヘルツ波検出装置では、入射電磁波(テラヘルツ波)を一旦熱に変換し、温度上昇による物理量の変化を信号として読み出すため、原理的に室温動作が可能で広い範囲の周波数に対応することができる利点があるものの、動作速度が遅いことが指摘されている。このため、動作速度の速い検出装置が求められている。   However, in the above-described bolometer-type terahertz wave detection device, incident electromagnetic waves (terahertz waves) are once converted into heat, and changes in physical quantities due to temperature rise are read out as signals, so that in principle, room temperature operation is possible and a wide range of frequencies is achieved. Although there is an advantage that can be accommodated, it has been pointed out that the operation speed is slow. For this reason, a detection device with a high operating speed is required.

本発明のテラヘルツ波検出装置は、動作速度の速いテラヘルツ波検出装置を提供することを主目的とする。   The main object of the terahertz wave detection device of the present invention is to provide a terahertz wave detection device having a high operating speed.

本発明のテラヘルツ波検出装置は、上述の主目的を達成するために以下の手段を採った。   The terahertz wave detection device of the present invention employs the following means in order to achieve the main object described above.

本発明のテラヘルツ波検出装置は、
テラヘルツ波を検出するテラヘルツ波検出装置であって、
テラヘルツ波の照射により温度が上昇するテラヘルツ波吸収部を中央に有する両持ち梁構造のテラヘルツ波受信素子と、
周波数変調検出法に基づいて前記テラヘルツ波受信素子の共振周波数のシフトによるテラヘルツ波の受信を検出する検出部と、
を備えることを要旨とする。
The terahertz wave detection device of the present invention is
A terahertz wave detection device for detecting terahertz waves,
A terahertz wave receiving element having a terahertz wave absorbing portion having a terahertz wave absorbing portion in the center, the temperature of which rises by irradiation with terahertz waves,
A detection unit for detecting reception of a terahertz wave due to a shift of a resonance frequency of the terahertz wave receiving element based on a frequency modulation detection method;
It is a summary to provide.

この本発明のテラヘルツ波検出装置では、テラヘルツ波の照射により温度が上昇するテラヘルツ波吸収部を中央に有する両持ち梁構造のテラヘルツ波受信素子を用いる。テラヘルツ波吸収部にテラヘルツ波が照射されるとテラヘルツ波受信素子の梁部の温度が上昇し、梁部が熱膨張することにより梁内部に応力が作用し、両持ち梁構造における共振周波数が変化する。検出部では、この共振周波数の変化(シフト)を周波数変調検出(FM検出)に基づいて検出することにより、テラヘルツ波の受信を検出する。梁の駆動周波数を固定し、振幅変化を読み出す方式(スロープ検出)の感度は、梁の振動振幅の変化に伴い梁部に蓄えられているエネルギーの変化を伴うため、高いQ値の影響を受けて動作速度は遅くなる。一方、梁の振幅を一定に保ったまま、周波数シフトを直接読み出す方式(周波数変調検出:FM検出)の感度は、梁部に溜まる振動エネルギーの変化を伴わないため、原理的には素子の熱的な時定数までの動作が可能となり、スロープ検出に比して高速に動作することができる。この結果、動作速度の速いテラヘルツ波検出装置とすることができる。   In the terahertz wave detecting device according to the present invention, a terahertz wave receiving element having a doubly-supported beam structure having a terahertz wave absorbing portion whose temperature rises by irradiation with terahertz waves in the center is used. When the terahertz wave absorber is irradiated with the terahertz wave, the temperature of the beam part of the terahertz wave receiving element rises, and the beam part thermally expands, causing stress inside the beam and changing the resonance frequency in the double-supported beam structure. To do. The detection unit detects reception of the terahertz wave by detecting the change (shift) of the resonance frequency based on frequency modulation detection (FM detection). The sensitivity of the method (slope detection), in which the drive frequency of the beam is fixed and the amplitude change is read out, is accompanied by a change in the energy stored in the beam part as the vibration amplitude of the beam changes. The operation speed becomes slower. On the other hand, the sensitivity of the method of directly reading the frequency shift (frequency modulation detection: FM detection) while keeping the beam amplitude constant does not involve a change in vibration energy accumulated in the beam portion. It is possible to operate up to a specific time constant and to operate at a higher speed than the slope detection. As a result, a terahertz wave detecting device having a high operating speed can be obtained.

本発明のテラヘルツ波検出装置において、前記テラヘルツ波受信素子は、半導体集積回路作製技術を用いて形成される微小電子機械構造として構成されており、前記検出部は、位相同期回路を用いて前記テラヘルツ波受信素子の共振周波数を検出するものとしてもよい。こうすれば、極めて微小な装置とすることができる。この場合、前記テラヘルツ波受信素子をN行M列に配列したテラヘルツ波受信素子アレイを有するものとしてもよい。こうすれば、テラヘルツ波によるイメージ検出を行なうことができる。ここで、N,Mは1以上の整数である。   In the terahertz wave detection device of the present invention, the terahertz wave receiving element is configured as a microelectromechanical structure formed using a semiconductor integrated circuit fabrication technique, and the detection unit uses the phase locked loop circuit to generate the terahertz wave. The resonance frequency of the wave receiving element may be detected. In this way, a very small device can be obtained. In this case, a terahertz wave receiving element array in which the terahertz wave receiving elements are arranged in N rows and M columns may be provided. In this way, image detection using terahertz waves can be performed. Here, N and M are integers of 1 or more.

本発明の一実施例としてのテラヘルツ波検出装置20の構成の概略を示す構成図である。It is a block diagram which shows the outline of a structure of the terahertz wave detection apparatus 20 as one Example of this invention. テラヘルツ波受信素子30を上方からみた平面図である。3 is a plan view of the terahertz wave receiving element 30 as viewed from above. FIG. 図2のテラヘルツ波受信素子30のA−A断面の断面図である。FIG. 3 is a cross-sectional view taken along the line AA of the terahertz wave receiving element 30 in FIG. 2. 半導体集積回路作製技術によりテラヘルツ波受信素子30を作製している様子の一例を示す説明図である。It is explanatory drawing which shows an example of a mode that the terahertz wave receiving element 30 is produced with the semiconductor integrated circuit production technique. テラヘルツ波の照射の有無におけるテラヘルツ波受信素子30の振動の周波数と検出電圧Voとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the frequency of the vibration of the terahertz wave receiving element 30, and the detection voltage Vo in the presence or absence of the terahertz wave irradiation. テラヘルツ波の照射による加熱の周波数を変化させたときのテラヘルツ波受信素子30の共振周波数のシフトによる検出波形を示す説明図である。It is explanatory drawing which shows the detection waveform by the shift of the resonant frequency of the terahertz wave receiving element 30 when the frequency of the heating by irradiation of a terahertz wave is changed. テラヘルツ波の照射による加熱の周波数を変化させたときのテラヘルツ波受信素子30の固定周波数fにおける振幅の変化による検出波形を示す説明図である。It is explanatory drawing which shows the detection waveform by the change of the amplitude in the fixed frequency f of the terahertz wave receiving element 30 when the frequency of the heating by irradiation of a terahertz wave is changed. 振幅の変化による検出と共振周波数のシフトによる検出におけるテラヘルツ波の照射による加熱の周波数とその応答性の関係の一例を示すグラフである。It is a graph which shows an example of the relationship of the frequency of the heating by the irradiation of the terahertz wave in the detection by the change of an amplitude, and the detection by the shift of a resonant frequency, and its responsiveness. テラヘルツ波受信素子アレイ130の構成の概略を示す構成図である。FIG. 3 is a configuration diagram showing an outline of a configuration of a terahertz wave receiving element array 130.

次に、本発明を実施するための形態を実施例を用いて説明する。   Next, the form for implementing this invention is demonstrated using an Example.

図1は、本発明の一実施例としてのテラヘルツ波検出装置20の構成の概略を示す構成図である。実施例のテラヘルツ波検出装置20は、微小電子機械構造として構成された両持ち梁構造のテラヘルツ波受信素子30と、テラヘルツ波受信素子30を付与する振動の周波数を調整する位相同期回路40と、テラヘルツ波受信素子30の検出信号にゲインを乗じて位相同期回路40に入力する信号増幅器39と、を備える。   FIG. 1 is a configuration diagram showing an outline of a configuration of a terahertz wave detection device 20 as an embodiment of the present invention. The terahertz wave detection device 20 according to the embodiment includes a terahertz wave receiving element 30 having a doubly-supported beam structure configured as a microelectromechanical structure, a phase synchronization circuit 40 that adjusts the frequency of vibration applied to the terahertz wave receiving element 30, and And a signal amplifier 39 that multiplies the detection signal of the terahertz wave receiving element 30 by a gain and inputs the result to the phase locked loop circuit 40.

図2はテラヘルツ波受信素子30を上方からみた平面図であり、図3は図2のテラヘルツ波受信素子30のA−A断面の断面図である。テラヘルツ波受信素子30は、GaAsの基板部31aにGaAsの薄膜31bを積層した基板31と、基板31に立脚する二脚のAl0.7Ga0.3Asによる犠牲層32と、2脚の犠牲層32の上に形成されたGaAsの第1梁層33aとGaAs/Al0.3Ga0.7Asの第2梁層33bとGaAsの第3梁層33cとを積層してなる梁部33と、梁部33の第3梁層33cの上層に形成された二次元電子伝導層34と、梁部33の中央に薄膜として形成されてテラヘルツ波の照射により温度上昇するNiCrのテラヘルツ波吸収部35と、梁部33の両端部の上に形成されたAl0.3Ga0.7Asの第1メサ層36aとn形のAl0.3Ga0.7Asの第2メサ層36bとGaAsの第3メサ層36cとを積層してなる2つのメサ構造36と、メサ構造36の上に隔離して蒸着された2対の電極37a,37bと、を備える。メサ構造36を構成する半導体は圧電効果を奏するから、テラヘルツ波受信素子30の一方の電極37a,37bに交番する駆動信号を入力することにより梁部33を振動させることができ、この梁部33の振動に応じた電圧を他方の電極37a,37bから電気信号として検出することができる。実施例では、テラヘルツ波受信素子30は、長手方向の長さが120μm、幅が40μmであり、基板31の薄膜31bの厚みが200nm、二脚の犠牲層32の厚みが3μm、梁部33の第1梁層33a,第2梁層33b,第3梁層33cの厚みがそれぞれ100nm,10nm+10nm(GaAsが10nmでAl0.3Ga0.7Asが10nm),1μm、メサ構造36の第1メサ層36a,第2メサ層36b,第3メサ層36cの厚みがそれぞれ20nm,55nm,10nmとなるように作製した。なお、実施例では、テラヘルツ波受信素子30の梁部33をGaAsの第1梁層33aとGaAs/Al0.3Ga0.7Asの第2梁層33bとGaAsの第3梁層33cとを積層することにより構成したが、GaAsのみで構成するものとしてもよい。 2 is a plan view of the terahertz wave receiving element 30 as viewed from above, and FIG. 3 is a cross-sectional view taken along the line AA of the terahertz wave receiving element 30 in FIG. The terahertz wave receiving element 30 includes a substrate 31 in which a GaAs thin film 31 b is stacked on a GaAs substrate portion 31 a, a sacrificial layer 32 made of Al 0.7 Ga 0.3 As standing on the substrate 31, and a biped sacrificial layer 32. A first beam layer 33 a made of GaAs, a second beam layer 33 b made of GaAs / Al 0.3 Ga 0.7 As, and a third beam layer 33 c made of GaAs are laminated, and A three-dimensional electron conduction layer 34 formed on the upper layer of the three-beam layer 33c; a NiCr terahertz wave absorbing portion 35 that is formed as a thin film at the center of the beam portion 33 and rises in temperature when irradiated with terahertz waves; Two layers formed by laminating an Al 0.3 Ga 0.7 As first mesa layer 36a formed on both ends, an n-type Al 0.3 Ga 0.7 As second mesa layer 36b, and a GaAs third mesa layer 36c. A mesa structure 36; And two pairs of electrodes 37a and 37b deposited on the mesa structure 36 in isolation. Since the semiconductor constituting the mesa structure 36 has a piezoelectric effect, the beam 33 can be vibrated by inputting an alternating drive signal to one of the electrodes 37 a and 37 b of the terahertz wave receiving element 30. Can be detected as an electrical signal from the other electrodes 37a and 37b. In the embodiment, the terahertz wave receiving element 30 has a longitudinal length of 120 μm and a width of 40 μm, the thin film 31b of the substrate 31 has a thickness of 200 nm, the biped sacrificial layer 32 has a thickness of 3 μm, and the beam 33 has The thicknesses of the first beam layer 33a, the second beam layer 33b, and the third beam layer 33c are 100 nm, 10 nm + 10 nm (GaAs is 10 nm and Al 0.3 Ga 0.7 As is 10 nm), 1 μm, the first mesa layer 36a of the mesa structure 36, The second mesa layer 36b and the third mesa layer 36c were fabricated to have thicknesses of 20 nm, 55 nm, and 10 nm, respectively. In the embodiment, the beam portion 33 of the terahertz wave receiving element 30 is formed by laminating a first beam layer 33a of GaAs, a second beam layer 33b of GaAs / Al 0.3 Ga 0.7 As, and a third beam layer 33c of GaAs. However, it may be composed only of GaAs.

テラヘルツ波受信素子30は、半導体集積回路作製技術を用いて形成される。例えば、図4に示すように、基板部31aと薄膜31bとからなる基板31に、犠牲層32と梁部33と二次元電子伝導層34とメサ構造36とを積層したウエハを作製し(図4(a))、エッチングなどにより2つのメサ構造36を形成する(図4(b))。続いて、NiCrの蒸着によりテラヘルツ波吸収部35を形成すると共にAuの蒸着により2つのメサ構造36の各々に一対(全体として2対)の電極37a,37bを形成する(図4(c))。そして、エッチングなどにより2脚の犠牲層32により梁部33が支持されるように形成してテラヘルツ波受信素子30を完成する(図4(d))。   The terahertz wave receiving element 30 is formed using a semiconductor integrated circuit manufacturing technique. For example, as shown in FIG. 4, a wafer in which a sacrificial layer 32, a beam portion 33, a two-dimensional electron conductive layer 34, and a mesa structure 36 are stacked on a substrate 31 composed of a substrate portion 31a and a thin film 31b is manufactured (FIG. 4). 4 (a)), two mesa structures 36 are formed by etching or the like (FIG. 4B). Subsequently, a terahertz wave absorbing portion 35 is formed by vapor deposition of NiCr, and a pair (two pairs as a whole) of electrodes 37a and 37b are formed on each of the two mesa structures 36 by vapor deposition of Au (FIG. 4C). . Then, the terahertz wave receiving element 30 is completed by forming the beam portion 33 to be supported by the two sacrificial layers 32 by etching or the like (FIG. 4D).

位相同期回路40は、図1に示すように、周知の位相同期回路として構成されており、テラヘルツ波受信素子30の一方の電極37a,37bにより検出された信号増幅器39によりゲインが乗じられた検出信号を入力して基準信号との位相を比較する位相比較器42と、位相比較器42からの信号の高周波を遮断するローパスフィルタ44と、ローパスフィルタ44からの信号が打ち消される方向に周波数を変更して振動信号を出力する電圧制御発振器46と、を備える。電圧制御発振器46からの振動信号は、テラヘルツ波受信素子30の他方の電極37a,37bに駆動信号として入力されると共に基準信号として位相比較器42に入力される。したがって、電圧制御発振器46からの振動信号は、テラヘルツ波受信素子30の梁部33の共振周波数の信号となる。   As shown in FIG. 1, the phase synchronization circuit 40 is configured as a known phase synchronization circuit, and is detected by a gain multiplied by a signal amplifier 39 detected by one of the electrodes 37 a and 37 b of the terahertz wave receiving element 30. A phase comparator 42 that inputs a signal and compares the phase with a reference signal, a low-pass filter 44 that cuts off the high frequency of the signal from the phase comparator 42, and a frequency that is changed in a direction in which the signal from the low-pass filter 44 is canceled. And a voltage controlled oscillator 46 that outputs a vibration signal. The vibration signal from the voltage controlled oscillator 46 is input to the other electrodes 37a and 37b of the terahertz wave receiving element 30 as a drive signal and also input to the phase comparator 42 as a reference signal. Therefore, the vibration signal from the voltage controlled oscillator 46 becomes a signal having a resonance frequency of the beam portion 33 of the terahertz wave receiving element 30.

次に、こうして構成されたテラヘルツ波検出装置20の動作について説明する。テラヘルツ波が照射されていない状態では、室温による梁部33の共振周波数となる振動信号が電圧制御発振器46から出力される。テラヘルツ波をテラヘルツ波吸収部35に照射すると、テラヘルツ波吸収部35の温度が上昇し、梁部33に応力が作用し、梁部33の共振周波数が変化する。梁部33のヤング率をE、密度をρ、モードに応じた定数をμn、梁の長さをL、梁の厚みをtとすると、両持ち梁構造の固有振動数ω0は次式(1)により表わされる。梁の長手方向の応力をσとすると、応力σが作用したときの両持ち梁構造の固有振動数ω0(σ)は、応力が作用していないときの固有振動数ω0(0)とすると式(2)により表わされる。 Next, the operation of the terahertz wave detection device 20 configured as described above will be described. In a state where the terahertz wave is not irradiated, a vibration signal having a resonance frequency of the beam portion 33 at room temperature is output from the voltage controlled oscillator 46. When the terahertz wave absorbing portion 35 is irradiated with the terahertz wave, the temperature of the terahertz wave absorbing portion 35 rises, stress acts on the beam portion 33, and the resonance frequency of the beam portion 33 changes. When the Young's modulus of the beam 33 is E, the density is ρ, the constant according to the mode is μ n , the length of the beam is L, and the thickness of the beam is t, the natural frequency ω 0 of the double-supported beam structure is It is represented by (1). When the stress in the longitudinal direction of the beam is σ, the natural frequency ω 0 (σ) of the double-supported beam structure when the stress σ is applied is the natural frequency ω 0 (0) when the stress is not applied. Then, it is represented by Formula (2).

梁部33の共振周波数が変化すると、位相同期回路40は、変化した共振周波数の振動信号が電圧制御発振器46から出力されるように調整するから、電圧制御発振器46からの振動信号により共振周波数を得ることができ、共振周波数のシフトによりテラヘルツ波の照射を検出することができる。ここで、テラヘルツ波の入射による周波数シフトの感度Rは、入射するテラヘルツ波のパワーをP0、電磁波(テラヘルツ波)の吸収効率をη、梁部33の材料の熱伝導率をκ、梁の幅をW、梁の熱膨張係数をαT、周波数のシフト量をΔωnとすると、次式(3)により表わされる。一方、テラヘルツ波の入射による固定周波数の振幅変化の感度RAは、振動の振幅をAn、振幅の変化量をΔAn、共振のQ値をQとすると、式(4)により表わされる。 When the resonance frequency of the beam portion 33 changes, the phase synchronization circuit 40 adjusts so that the vibration signal with the changed resonance frequency is output from the voltage controlled oscillator 46. Therefore, the resonance frequency is adjusted by the vibration signal from the voltage controlled oscillator 46. Terahertz wave irradiation can be detected by shifting the resonance frequency. Here, the sensitivity R of the frequency shift due to the incidence of the terahertz wave is that the power of the incident terahertz wave is P 0 , the absorption efficiency of the electromagnetic wave (terahertz wave) is η, the thermal conductivity of the material of the beam portion 33 is κ, When the width is W, the thermal expansion coefficient of the beam is α T , and the frequency shift amount is Δω n , it is expressed by the following equation (3). On the other hand, the sensitivity R A of the fixed frequency amplitude change due to the incidence of the terahertz wave is expressed by Equation (4), where A n is the vibration amplitude, ΔA n is the amplitude change amount, and Q is the resonance Q value.

式(3)に示すように、テラヘルツ波の入射による周波数シフトの感度Rは、電磁波の吸収効率ηに依存するものの、共振のQ値に制限されない。このため、実施例のテラヘルツ波検出装置20は、固定周波数の振幅変化によりテラヘルツ波の照射を検出する場合に比して、高速に動作することができる。以下にこの点について説明する。図5は、テラヘルツ波の照射の有無におけるテラヘルツ波受信素子30の振動の周波数と検出電圧Voとの関係を示す説明図である。図中、Δfはテラヘルツ波の照射の有無による共振周波数のシフト量を示し、ΔVoはテラヘルツ波の照射の有無による固定周波数fにおける振幅の変化量である。図6は、テラヘルツ波受信素子30に対してテラヘルツ波の照射による加熱の周波数を変化させたときの周波数変調検出法(FM検出法)に基づくテラヘルツ波受信素子30の共振周波数のシフトによる検出波形を示す説明図であり、図7は、テラヘルツ波受信素子30に対してテラヘルツ波の照射による加熱の周波数を変化させたときのテラヘルツ波受信素子30の固定周波数fにおける振幅の変化による検出波形を示す説明図である。図7に示すように、振幅の変化による検出波形では、10Hz〜160Hzまでのテラヘルツ波の照射による加熱の周波数に対しては明確にテラヘルツ波の照射による加熱の周期を識別することができるが、320Hzのテラヘルツ波の照射による加熱の周波数ではテラヘルツ波の照射による加熱の周期の識別は困難となる。したがって、振幅の変化による検出では、バンド幅は100Hz程度となる。一方、図6に示すように、FM検出法に基づく共振周波数のシフトによる検出波形では、10Hz〜5.12kHzまでのテラヘルツ波の照射による加熱の周波数に対しては明確にテラヘルツ波の照射による加熱の周期を識別することができる。このため、FM検出法に基づく共振周波数のシフトによる検出では、バンド幅は5kHz程度となる。振幅の変化による検出と共振周波数のシフトによる検出におけるテラヘルツ波の照射による加熱の周波数とその応答性の関係を図8に示す。図中、実線は振幅の変化による検出(SD)の場合を示し、破線はFM検出法に基づく共振周波数のシフトによる検出(FMD)の場合を示す。図示するように、共振周波数のシフトによる検出(FMD)の方が振幅の変化による検出(SD)に比して、が広いバンド幅を有することが解る。   As shown in Expression (3), the frequency shift sensitivity R due to the incidence of the terahertz wave depends on the electromagnetic wave absorption efficiency η, but is not limited to the resonance Q value. For this reason, the terahertz wave detection device 20 according to the embodiment can operate at a higher speed than the case where the irradiation of the terahertz wave is detected by changing the amplitude of the fixed frequency. This point will be described below. FIG. 5 is an explanatory diagram showing a relationship between the frequency of vibration of the terahertz wave receiving element 30 and the detection voltage Vo when the terahertz wave is irradiated. In the figure, Δf represents the shift amount of the resonance frequency depending on the presence or absence of the terahertz wave irradiation, and ΔVo is the amount of change in the amplitude at the fixed frequency f depending on the presence or absence of the terahertz wave irradiation. FIG. 6 shows a detection waveform obtained by shifting the resonance frequency of the terahertz wave receiving element 30 based on the frequency modulation detection method (FM detection method) when the frequency of heating by irradiation with the terahertz wave is changed with respect to the terahertz wave receiving element 30. FIG. 7 is a diagram illustrating a detection waveform due to a change in amplitude at the fixed frequency f of the terahertz wave receiving element 30 when the frequency of heating by irradiation of the terahertz wave is changed with respect to the terahertz wave receiving element 30. It is explanatory drawing shown. As shown in FIG. 7, in the detection waveform due to the change in amplitude, the heating cycle by the irradiation of the terahertz wave can be clearly identified with respect to the heating frequency by the irradiation of the terahertz wave from 10 Hz to 160 Hz. At the frequency of heating by irradiation with 320 Hz terahertz waves, it becomes difficult to identify the period of heating by irradiation with terahertz waves. Therefore, in detection based on a change in amplitude, the bandwidth is about 100 Hz. On the other hand, as shown in FIG. 6, in the detection waveform by the shift of the resonance frequency based on the FM detection method, the heating by the irradiation of the terahertz wave from 10 Hz to 5.12 kHz is clearly heated by the irradiation of the terahertz wave. Can be identified. For this reason, in the detection by the shift of the resonance frequency based on the FM detection method, the bandwidth is about 5 kHz. FIG. 8 shows the relationship between the frequency of heating by the irradiation of the terahertz wave and the responsiveness in the detection based on the change in amplitude and the detection based on the shift of the resonance frequency. In the figure, the solid line shows the case of detection (SD) by changing the amplitude, and the broken line shows the case of detection (FMD) by shifting the resonance frequency based on the FM detection method. As shown in the figure, it is understood that the detection by the shift of the resonance frequency (FMD) has a wider bandwidth than the detection by the change in amplitude (SD).

以上説明した実施例のテラヘルツ波検出装置20では、両持ち梁構造としたテラヘルツ波受信素子30のテラヘルツ波吸収部35にテラヘルツ波が照射されるとテラヘルツ波受信素子30の梁部33の温度が上昇し、弾性定数の温度依存性により梁部33に応力が作用し、両持ち梁構造における共振周波数が変化する。このとき、位相同期回路40は、テラヘルツ波受信素子30の共振周波数の振動信号が電圧制御発振器46から出力されるように調整するから、周波数変調検出法に基づく共振周波数の変化(シフト)を検出することにより、テラヘルツ波の受信を検出することができる。周波数変調検出法に基づく共振周波数のシフトを追跡する検出方法では、梁の振動振幅が一定に保たれるので、梁に溜まる振動エネルギーが変化せず、Q値による時間の制限を受けないため、高速に動作することができる。この結果、動作速度の速いテラヘルツ波検出装置20とすることができる。   In the terahertz wave detection device 20 of the embodiment described above, when the terahertz wave is irradiated to the terahertz wave absorbing unit 35 of the terahertz wave receiving element 30 having the double-supported beam structure, the temperature of the beam 33 of the terahertz wave receiving element 30 is increased. As a result of the temperature dependence of the elastic constant, stress acts on the beam portion 33, and the resonance frequency in the double-supported beam structure changes. At this time, the phase-locked loop circuit 40 adjusts so that the vibration signal having the resonance frequency of the terahertz wave receiving element 30 is output from the voltage-controlled oscillator 46, and therefore detects a change (shift) in the resonance frequency based on the frequency modulation detection method. By doing so, reception of the terahertz wave can be detected. In the detection method for tracking the shift of the resonance frequency based on the frequency modulation detection method, since the vibration amplitude of the beam is kept constant, the vibration energy accumulated in the beam does not change, and the time is not limited by the Q value. It can operate at high speed. As a result, the terahertz wave detection device 20 having a high operating speed can be obtained.

実施例のテラヘルツ波検出装置20では、1個のテラヘルツ波受信素子30を用いるものとしたが、図9に例示するように、複数のテラヘルツ波受信素子30をN行M列(図9では8行2列)に配列したテラヘルツ波受信素子アレイ130を用いるものとしてもよい。こうすれば、テラヘルツ波によるイメージを検出することができる。   In the terahertz wave detection device 20 of the embodiment, one terahertz wave receiving element 30 is used. However, as illustrated in FIG. 9, a plurality of terahertz wave receiving elements 30 are arranged in N rows and M columns (in FIG. 9, 8 A terahertz wave receiving element array 130 arranged in two rows and two columns) may be used. By doing so, it is possible to detect an image by a terahertz wave.

実施例のテラヘルツ波検出装置20では、テラヘルツ波受信素子30を長さが120μmで幅が40μmとして構成するものとしたが、このサイズに限定されるものではなく、梁の長さを変更したり、梁を幅や厚みを変更するものとしてもよい。   In the terahertz wave detection device 20 of the embodiment, the terahertz wave receiving element 30 is configured to have a length of 120 μm and a width of 40 μm. However, the present invention is not limited to this size, and the length of the beam can be changed. The width and thickness of the beam may be changed.

実施例のテラヘルツ波検出装置20では、テラヘルツ波受信素子30をGaAsを主体とする半導体により形成するものとしたが、他の半導体材料を主体とする半導体により形成するものとしても構わない。   In the terahertz wave detection device 20 of the embodiment, the terahertz wave receiving element 30 is formed of a semiconductor mainly composed of GaAs, but may be formed of a semiconductor mainly composed of another semiconductor material.

実施例のテラヘルツ波検出装置20では、両持ち梁構造としたテラヘルツ波受信素子30の共振周波数のシフトを位相同期回路40により検出するものとしたが、周波数変調検出法に基づくテラヘルツ波受信素子30の共振周波数のシフトの検出であればよいから、位相同期回路40以外の手法によりテラヘルツ波受信素子30の共振周波数のシフトを検出するものとしてもよい。   In the terahertz wave detection device 20 of the embodiment, the shift of the resonance frequency of the terahertz wave receiving element 30 having a doubly-supported beam structure is detected by the phase synchronization circuit 40. However, the terahertz wave receiving element 30 based on the frequency modulation detection method is used. Therefore, the resonance frequency shift of the terahertz wave receiving element 30 may be detected by a method other than the phase synchronization circuit 40.

以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated using the Example, this invention is not limited at all to such an Example, In the range which does not deviate from the summary of this invention, it is with various forms. Of course, it can be implemented.

本発明は、テラヘルツ波検出装置の製造産業などに利用可能である。   The present invention can be used in the manufacturing industry of terahertz wave detection devices.

20 テラヘルツ波検出装置、30 テラヘルツ波受信素子、31 基板、31a 基板部、31b 薄膜、32 犠牲層、33 梁部、33a 第1梁層、33b 第2梁層、33c 第3梁層、34 二次元電子伝導層、35 テラヘルツ波吸収層、36 メサ構造、36a 第1メサ層、36b 第2メサ層、36c 第3メサ層、37a,37b 電極、39 信号増幅器、40 位相同期回路、42 位相比較器、44 ローパスフィルタ、46 電圧制御発振器、130 テラヘルツ波受信素子アレイ。   20 terahertz wave detection device, 30 terahertz wave receiving element, 31 substrate, 31a substrate portion, 31b thin film, 32 sacrificial layer, 33 beam portion, 33a first beam layer, 33b second beam layer, 33c third beam layer, 34 Dimensional electron conduction layer, 35 terahertz wave absorption layer, 36 mesa structure, 36a first mesa layer, 36b second mesa layer, 36c third mesa layer, 37a, 37b electrode, 39 signal amplifier, 40 phase synchronization circuit, 42 phase comparison , 44 low pass filter, 46 voltage controlled oscillator, 130 terahertz wave receiving element array.

Claims (3)

テラヘルツ波を検出するテラヘルツ波検出装置であって、
テラヘルツ波の照射により温度が上昇するテラヘルツ波吸収部を中央に有する両持ち梁構造のテラヘルツ波受信素子と、
周波数変調検出法に基づいて前記テラヘルツ波受信素子の共振周波数のシフトによるテラヘルツ波の受信を検出する検出部と、
を備えるテラヘルツ波検出装置。
A terahertz wave detection device for detecting terahertz waves,
A terahertz wave receiving element having a terahertz wave absorbing portion having a terahertz wave absorbing portion in the center, the temperature of which rises by irradiation with terahertz waves,
A detection unit for detecting reception of a terahertz wave due to a shift of a resonance frequency of the terahertz wave receiving element based on a frequency modulation detection method;
A terahertz wave detecting device.
請求項1記載のテラヘルツ波検出装置であって、
前記テラヘルツ波受信素子は、半導体集積回路作製技術を用いて形成される微小電子機械構造として構成されており、
前記検出部は、位相同期回路を用いて前記テラヘルツ波受信素子の共振周波数のシフトを検出する、
テラヘルツ波検出装置。
The terahertz wave detection device according to claim 1,
The terahertz wave receiving element is configured as a microelectromechanical structure formed using a semiconductor integrated circuit manufacturing technology,
The detection unit detects a shift in the resonance frequency of the terahertz wave receiving element using a phase locked loop.
Terahertz wave detection device.
請求項2記載のテラヘルツ波検出装置であって、
前記テラヘルツ波受信素子をN行M列に配列したテラヘルツ波受信素子アレイを有する、
テラヘルツ波検出装置。
The terahertz wave detection device according to claim 2,
A terahertz wave receiving element array in which the terahertz wave receiving elements are arranged in N rows and M columns;
Terahertz wave detection device.
JP2017039460A 2017-03-02 2017-03-02 Terahertz wave detector Active JP6892105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017039460A JP6892105B2 (en) 2017-03-02 2017-03-02 Terahertz wave detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017039460A JP6892105B2 (en) 2017-03-02 2017-03-02 Terahertz wave detector

Publications (2)

Publication Number Publication Date
JP2018146294A true JP2018146294A (en) 2018-09-20
JP6892105B2 JP6892105B2 (en) 2021-06-18

Family

ID=63591023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017039460A Active JP6892105B2 (en) 2017-03-02 2017-03-02 Terahertz wave detector

Country Status (1)

Country Link
JP (1) JP6892105B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233900A1 (en) * 2022-05-30 2023-12-07 国立大学法人東京農工大学 Light sensor, light detection device, and terahertz/infrared fourier spectroscope

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2703328Y (en) * 2003-12-31 2005-06-01 中国科学技术大学 Optical-mechanical micro-beam array thermal infrared image sensor
US20100096709A1 (en) * 2008-08-05 2010-04-22 California Institute Of Technology Uncooled ir detector arrays based on nanoelectromechanical systems
JP2011106825A (en) * 2009-11-12 2011-06-02 Nec Corp Bolometer-type thz wave detector
JP2013540264A (en) * 2010-09-23 2013-10-31 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Bolometer for frequency detection
JP2014163674A (en) * 2013-02-21 2014-09-08 Seiko Epson Corp Terahertz wave detection apparatus, camera, imaging device, and measuring device
JP2014524579A (en) * 2011-08-17 2014-09-22 パブリックサービスソリューション、インク Passive detection device for imaging system
US20160065169A1 (en) * 2013-04-22 2016-03-03 Northeastern University Nano- and micro-electromechanical resonators

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2703328Y (en) * 2003-12-31 2005-06-01 中国科学技术大学 Optical-mechanical micro-beam array thermal infrared image sensor
US20100096709A1 (en) * 2008-08-05 2010-04-22 California Institute Of Technology Uncooled ir detector arrays based on nanoelectromechanical systems
JP2011106825A (en) * 2009-11-12 2011-06-02 Nec Corp Bolometer-type thz wave detector
JP2013540264A (en) * 2010-09-23 2013-10-31 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Bolometer for frequency detection
JP2014524579A (en) * 2011-08-17 2014-09-22 パブリックサービスソリューション、インク Passive detection device for imaging system
JP2014163674A (en) * 2013-02-21 2014-09-08 Seiko Epson Corp Terahertz wave detection apparatus, camera, imaging device, and measuring device
US20160065169A1 (en) * 2013-04-22 2016-03-03 Northeastern University Nano- and micro-electromechanical resonators

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZOTOV SERGEI A.: "High Quality Factor Resonant MEMS Accelerometer With Continuous Thermal Compensation", IEEE SENSORS JOURNAL, vol. 15, no. 9, JPN6020045009, September 2015 (2015-09-01), pages 5045 - 5052, XP011663520, ISSN: 0004395676, DOI: 10.1109/JSEN.2015.2432021 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233900A1 (en) * 2022-05-30 2023-12-07 国立大学法人東京農工大学 Light sensor, light detection device, and terahertz/infrared fourier spectroscope

Also Published As

Publication number Publication date
JP6892105B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
US11099076B2 (en) Graphene nanomechanical radiation detector
Zareei et al. Continuous profile flexural GRIN lens: Focusing and harvesting flexural waves
EP3220113B1 (en) Optomechanical transducer for terahertz electromagnetic waves
US5686779A (en) High sensitivity temperature sensor and sensor array
US3422371A (en) Thin film piezoelectric oscillator
US9097578B2 (en) Infrared sensing using pyro/piezo-electric resonators
JP5107183B2 (en) Terahertz light detection device and detection method thereof
Hui et al. High performance NEMS resonant infrared detector based on an aluminum nitride nano-plate resonator
Tazzoli et al. Ovenized high frequency oscillators based on aluminum nitride contour-mode MEMS resonators
Najar et al. Microcrystalline diamond micromechanical resonators with quality factor limited by thermoelastic damping
CN110231095A (en) A kind of phasmon surface acoustic wave resonance infrared sensor
Li et al. Resonant and resistive dual-mode uncooled infrared detectors toward expanded dynamic range and high linearity
Zhang et al. Enhanced thermal sensitivity of MEMS bolometers integrated with nanometer-scale hole array structures
Ono et al. Parametrically amplified thermal resonant sensor with pseudo-cooling effect
JP2018146294A (en) Terahertz wave detection device
US7654140B2 (en) Heat pumped parametric MEMS device
Gokhale et al. Sensitive uncooled IR detectors using gallium nitride resonators and silicon nitride absorbers
Rais-Zadeh Gallium nitride micromechanical resonators for IR detection
Bandyopadhyay et al. Capacitive infrared photodetector for room temperature operation
CN104241434B (en) Based on the Terahertz simple spectrum signal sensor and preparation method thereof of Meta Materials
Breen et al. High speed mid-infrared detectors based on MEMS resonators and spectrally selective metamaterials
WO2023233900A1 (en) Light sensor, light detection device, and terahertz/infrared fourier spectroscope
Ruyack et al. Characterization of graphene electrodes as piezoresistive SAW transducers
CN117871422B (en) Photoacoustic spectrum gas sensor and preparation method thereof
Sun et al. A Pyroelectric Infrared Detector By Integrating LiTaO 3 Single Crystal with Grooved Quartz Using UV Adhesive

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210520

R150 Certificate of patent or registration of utility model

Ref document number: 6892105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150