JP2018096871A - Range finding sensor - Google Patents

Range finding sensor Download PDF

Info

Publication number
JP2018096871A
JP2018096871A JP2016242353A JP2016242353A JP2018096871A JP 2018096871 A JP2018096871 A JP 2018096871A JP 2016242353 A JP2016242353 A JP 2016242353A JP 2016242353 A JP2016242353 A JP 2016242353A JP 2018096871 A JP2018096871 A JP 2018096871A
Authority
JP
Japan
Prior art keywords
light
translucent member
reflected
mirror
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016242353A
Other languages
Japanese (ja)
Other versions
JP6812776B2 (en
Inventor
杉山 真人
Masato Sugiyama
真人 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2016242353A priority Critical patent/JP6812776B2/en
Publication of JP2018096871A publication Critical patent/JP2018096871A/en
Application granted granted Critical
Publication of JP6812776B2 publication Critical patent/JP6812776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a range finding sensor capable of detecting a distance to an object over a wide range.SOLUTION: A range finding sensor 1 comprises: a mirror 15 for light projection that changes a travel direction of parallel light made incident from a light projection unit 11 while being kept as the parallel light so as to travel along a prescribed first direction in accordance with rotation around a prescribed rotational axis; a translucent member 3 which is formed of a cylindrical shape with the rotational axis as an axial center, changes the travel direction of the parallel light reflected by the mirror 15 for light projection and changes the travel direction of the reflected light that the parallel light projected to the surroundings strikes against an object and is reflected; and a light-receiving unit 51 for detecting the reflected light whose travel direction has been changed by the translucent member 3. The translucent member 3 includes: a prism unit 21 for light projection that projects the parallel light made incident from the mirror 15 for light projection along a second direction that intersects the first direction; and a prism unit 31 for light reception that changes the travel direction of the reflected light in accordance with incidence on an incidence plane of the reflected light that the parallel light projected from the prism unit 21 for light projection strikes against the object and is reflected.SELECTED DRAWING: Figure 1

Description

本発明は、光を照射して物体までの距離を検出する測距センサに関する。   The present invention relates to a distance measuring sensor that detects a distance to an object by irradiating light.

従来、予め設定された所定の範囲に光を照射し、物体により反射された光を取得して、物体までの距離を検出する技術が利用されてきた。この種の技術として、例えば特許文献1−3に記載のものがある。   Conventionally, a technique has been used in which a predetermined range set in advance is irradiated with light, the light reflected by the object is acquired, and the distance to the object is detected. As this type of technology, for example, there is one described in Patent Documents 1-3.

特許文献1には、一本のビームを複数本のビームに変換し、変換された各ビームを同時に走査し、複数設けられたビーム受信手段により検知対象物からの反射を各ビームごとに区別して受信する位置情報検出装置が開示されている。この位置情報検出装置は、1回の走査で高さ方向を含む走査平面に対する二次元走査を行い、走査位置の情報と検知対象物までの距離情報に基づき、検知対象物の三次元空間における位置を特定している。   In Patent Document 1, one beam is converted into a plurality of beams, each converted beam is scanned simultaneously, and reflection from the detection target is distinguished for each beam by a plurality of beam receiving means. A receiving position information detecting device is disclosed. This position information detection device performs two-dimensional scanning on a scanning plane including the height direction in one scan, and based on the information on the scanning position and the distance information to the detection target, the position of the detection target in the three-dimensional space Has been identified.

特許文献2には、複数の光ビーム反射面を有するポリゴンミラーを備え、各反射面はポリゴンミラーの回転軸に対する倒れ角が夫々異なるように構成された車載用レーダ装置が開示されている。この車載用レーダ装置は、ポリゴンミラーの反射面に入射したレーザを当該ポリゴンミラーの回転によって左右方向に走査し、レーザ光が入射される反射面が切り替わる毎に上下方向にずれながら走査することで走査平面に対する二次元走査を行っている。   Patent Document 2 discloses an in-vehicle radar device that includes a polygon mirror having a plurality of light beam reflecting surfaces, and each reflecting surface is configured to have a different tilt angle with respect to the rotation axis of the polygon mirror. This in-vehicle radar device scans the laser incident on the reflection surface of the polygon mirror in the left-right direction by the rotation of the polygon mirror, and scans while shifting in the vertical direction every time the reflection surface on which the laser beam is incident is switched. Two-dimensional scanning is performed on the scanning plane.

特許文献3には、車両の前方に光ビームを照射し、その反射波を受光して車両前方に位置する先行車との車間距離計測に必要な情報を生成すると共に、光ビームの仰角をマイナス方向に変更して路面上の白線又はそれに相当する走行帯標識線を検出し、レーンキーピングに必要な情報を生成する車載用レーダ装置が開示されている。この車載用レーダ装置は、水平方向に走査された光ビームを車両前方に発射し、当該光ビームが路面上の白線又はそれに相当する走行帯標識線に指向する所定の水平走査角度になったときに、光ビームをプリズム等の光学的要素によって屈折させて仰角をマイナス方向に変更する。   In Patent Document 3, a light beam is irradiated in front of the vehicle, and the reflected wave is received to generate information necessary for measuring the inter-vehicle distance from the preceding vehicle positioned in front of the vehicle, and the elevation angle of the light beam is negative. An in-vehicle radar device is disclosed that detects a white line on a road surface or a traveling band mark line corresponding to the direction change and generates information necessary for lane keeping. This in-vehicle radar device emits a light beam scanned in the horizontal direction to the front of the vehicle, and when the light beam reaches a predetermined horizontal scanning angle directed to a white line on the road surface or a corresponding traveling zone marker line Furthermore, the light beam is refracted by an optical element such as a prism to change the elevation angle in the minus direction.

特開平8−248133号公報JP-A-8-248133 特開2000−147124号公報JP 2000-147124 A 特開2003−121546号公報JP 2003-121546 A

特許文献1に記載の技術は、一本のビームを、ハーフミラーを介して複数本のビームに変換しているため、変換後の各ビームの光量は元の光量に対して減少する。光量が減少することにより対象物の検知距離が狭まってしまい、また、複数本のビーム毎に受信手段(フォトダイオード)を設けているため、コストアップの要因となる。   Since the technique described in Patent Document 1 converts a single beam into a plurality of beams via a half mirror, the light amount of each beam after conversion is reduced with respect to the original light amount. As the amount of light decreases, the detection distance of the object is narrowed, and a receiving means (photodiode) is provided for each of a plurality of beams, which causes an increase in cost.

特許文献2に記載の技術は、水平方向の走査角度についてはポリゴンミラーの各面の割り当て角度に依存するため、各面全てにおいて広角で走査することができない。また、受光レンズとフォトダイオードとの中心を結ぶ中心軸に対する受光角度が大きい反射光はフォトダイオードに集光されないため、上部や側部に受光ミラーを設けて集光する必要があり、コストアップの要因となる。   The technique described in Patent Document 2 depends on the assigned angle of each surface of the polygon mirror with respect to the horizontal scanning angle, and therefore cannot scan all surfaces at a wide angle. In addition, since reflected light with a large light receiving angle with respect to the central axis connecting the centers of the light receiving lens and the photodiode is not condensed on the photodiode, it is necessary to collect light by providing a light receiving mirror on the upper side or the side part, which increases the cost. It becomes a factor.

特許文献3に記載の技術は、白線検出を前提としているため、特定の箇所しかビーム角度を変更できず、広角に亘って上下方向の角度を検出することができない。また、屈折によってマイナス方向に照射したレーザの反射光は受光角度が大きいため、受光素子に集光される光量が少なく、検出距離が短くなったり、適切に検出できなかったりすることもある。   Since the technique described in Patent Literature 3 is based on white line detection, the beam angle can be changed only at a specific location, and the vertical angle cannot be detected over a wide angle. Further, since the reflected light of the laser irradiated in the negative direction due to refraction has a large light receiving angle, the amount of light collected on the light receiving element is small, and the detection distance may be shortened or may not be detected properly.

そこで、広範囲に亘って物体までの距離を検出でき、低コストで実現可能な測距センサが求められる。   Therefore, a distance measuring sensor that can detect the distance to an object over a wide range and can be realized at low cost is required.

本発明に係る測距センサの特徴構成は、光を照射する光源と前記光源から照射された光を平行光に変換する投光レンズとが設けられる投光部と、前記投光部から入射される前記平行光の進行方向を、所定の回転軸周りでの回転に応じて所定の第1方向に沿うように平行光のままで変更する投光用ミラーと、前記回転軸を軸心とする円筒形状からなり、前記投光用ミラーで反射された前記平行光の進行方向を変更すると共に、周囲に投射された前記平行光が物体に当たって反射した反射光の進行方向を変更する透光性部材と、前記透光性部材により前記進行方向が変更された前記反射光を検出する受光部と、を備え、前記透光性部材は、前記透光性部材の周方向に沿って形成された面であって、前記周方向に沿って互いに隣接する面同士の前記軸心に対する角度が互いに異なるように配置された投射面を複数有し、前記透光性部材の径方向内側に設けられた前記投光用ミラーから入射する前記平行光を前記第1方向に交差する第2方向に沿って前記投射面から投射する投光用プリズム部と、前記透光性部材を径方向外側から見た時の前記軸心に対する前記透光性部材の外周面の角度が、前記軸心に対する前記投射面の角度と同じ角度となるように前記透光性部材の外周面に前記透光性部材の周方向に沿って形成された複数の入射面を有し、前記投光用プリズム部から投射された前記平行光が前記物体に当たって反射した反射光の前記入射面への入射に応じて前記反射光の進行方向を変更する受光用プリズム部と、を備えている点にある。   The characteristic configuration of the distance measuring sensor according to the present invention includes a light projecting unit provided with a light source that emits light and a light projecting lens that converts light emitted from the light source into parallel light, and is incident from the light projecting unit. A projecting mirror that changes the traveling direction of the parallel light in parallel with the predetermined first direction in accordance with the rotation around the predetermined rotation axis while maintaining the parallel light, and the rotation axis as a center. A translucent member that has a cylindrical shape and changes the traveling direction of the parallel light reflected by the projection mirror and changes the traveling direction of the reflected light reflected by the parallel light projected to the object. And a light receiving portion that detects the reflected light whose traveling direction has been changed by the light transmissive member, and the light transmissive member is a surface formed along a circumferential direction of the light transmissive member. And the surfaces adjacent to each other along the circumferential direction are There are a plurality of projection surfaces arranged so that the angles with respect to the heart are different from each other, and the parallel light incident from the projection mirror provided on the radially inner side of the translucent member intersects the first direction. The angle of the outer peripheral surface of the translucent member with respect to the axial center when the translucent prism portion is projected from the projection surface along the second direction and the translucent member is viewed from the radially outer side. A plurality of incident surfaces formed along the circumferential direction of the translucent member on the outer peripheral surface of the translucent member so as to have the same angle as the angle of the projection surface with respect to the axis; A light receiving prism unit that changes a traveling direction of the reflected light in response to incidence of the reflected light that is reflected by the parallel light projected from the prism unit upon being incident on the object.

このような特徴構成とすれば、1本の平行光(光ビーム)を用いて360度(水平)の範囲で所定の角度で第2方向に曲げて照射することが可能となる。このため、複雑なポリゴンミラーを用いることなく、広範囲に亘って光ビームを照射することが可能となる。また、1本の光ビームを分散することなく照射しているため、光量を減らすことが無く、検知距離を狭めることもない。また、受光用プリズム部を投光用プリズム部の角度と同じ角度で傾斜させているため、測距センサの検知対象物である物体からの反射光は、受光用プリズム部で屈折して受光用ミラーに入射する。これにより、何れの角度で照射した光ビームも、反射光は同一の角度で受光用ミラーに入射することが可能になるため、複数の受光部を設ける必要はなく、1つの受光部で受光することが可能となる。したがって、低コストで測距センサを実現できる。更に、受光用プリズム部の傾斜させる面積の割合を変更することにより、所定方向の受光量の増減を制御することができるため、所定方向の検知範囲を広げたり、狭めたりすることが可能となる。   With such a characteristic configuration, it is possible to irradiate by bending in a second direction at a predetermined angle within a range of 360 degrees (horizontal) using one parallel light (light beam). For this reason, it is possible to irradiate a light beam over a wide range without using a complicated polygon mirror. In addition, since one light beam is irradiated without being dispersed, the amount of light is not reduced and the detection distance is not narrowed. Since the light receiving prism section is inclined at the same angle as that of the light projecting prism section, the reflected light from the object, which is the detection target of the distance measuring sensor, is refracted by the light receiving prism section. Incident on the mirror. As a result, the reflected light can be incident on the light receiving mirror at the same angle for the light beam irradiated at any angle, so that it is not necessary to provide a plurality of light receiving portions, and the light is received by one light receiving portion. It becomes possible. Therefore, a distance measuring sensor can be realized at low cost. Furthermore, since the increase / decrease in the amount of light received in a predetermined direction can be controlled by changing the ratio of the area of the light receiving prism portion to be inclined, the detection range in the predetermined direction can be widened or narrowed. .

また、前記投光用プリズム部は、前記透光性部材の軸方向一方側の端部から軸方向他方側の端部までのうちの一部である第1軸方向領域に形成され、前記受光用プリズム部は、前記透光性部材の軸方向一方側の端部から軸方向他方側の端部までのうちの前記第1軸方向領域以外の第2軸方向領域に形成されると好適である。   The light projecting prism portion is formed in a first axial region that is a part of an end portion on one axial side of the translucent member to an end portion on the other axial side, and It is preferable that the prism portion for use is formed in a second axial region other than the first axial region from the end on one side in the axial direction to the end on the other side in the axial direction of the translucent member. is there.

このような構成とすれば、物体に当たって反射した反射光の受光用プリズム部に対する入射経路上に、隣接する角度が異なる受光用プリズム部を配置しないようにすることができるため、反射光が受光用プリズム部に入射されるまでに隣接する角度が異なる受光用プリズム部に入射され、光量が減衰することを防止できる。したがって、受光用プリズム部に入射される反射光の量(光量)の低減を防止でき、受光効率を高めることが可能となる。   With such a configuration, it is possible to avoid arranging adjacent light receiving prism portions having different angles on the incident path to the light receiving prism portion of the reflected light reflected by the object, so that the reflected light is received by the light receiving device. It is possible to prevent the amount of light from being attenuated by being incident on a light receiving prism portion having a different angle before being incident on the prism portion. Therefore, it is possible to prevent the amount of reflected light (light quantity) incident on the light receiving prism portion from being reduced, and to improve the light receiving efficiency.

また、前記投光用プリズム部は、前記透光性部材の外周面に形成されていると好適である。   Further, it is preferable that the light projecting prism portion is formed on an outer peripheral surface of the translucent member.

このような構成とすれば、透光性部材に、所期の方向に平行光を照射可能な投光用プリズム部を形成し易くできる。したがって、低コストで構成することが可能となる。   With such a configuration, it is possible to easily form a light projecting prism portion capable of irradiating parallel light in a desired direction on the translucent member. Therefore, it can be configured at low cost.

また、前記受光用プリズム部により前記進行方向が変更された前記反射光を前記受光部に向けて反射する受光用ミラーが備えられ、前記受光用ミラーは、前記投光用ミラーと一体回転するように構成されていると好適である。   A light receiving mirror that reflects the reflected light whose traveling direction has been changed by the light receiving prism unit toward the light receiving unit; and the light receiving mirror rotates integrally with the light projecting mirror. It is preferable to be configured as follows.

このような構成とすれば、投光用ミラーを回転させる動力と、受光用ミラーを回転させる動力とを共通化することができる。したがって、低コスト、且つ、小型化を実現することが可能となる。   With such a configuration, the power for rotating the light projecting mirror and the power for rotating the light receiving mirror can be shared. Therefore, it is possible to realize a reduction in cost and size.

また、前記投光用プリズム部は、前記透光性部材の周方向に沿って形成された平面を含むように構成しても良い。   The light projecting prism portion may be configured to include a plane formed along the circumferential direction of the translucent member.

このような構成とすれば、投光用プリズム部を容易に形成することができる。   With such a configuration, the light projecting prism portion can be easily formed.

測距センサの構成を示すブロック図である。It is a block diagram which shows the structure of a ranging sensor. 投光部及び受光部の配置を示した図である。It is the figure which showed arrangement | positioning of a light projection part and a light-receiving part. 透光性部材の側面図である。It is a side view of a translucent member. 投光用プリズム部の説明図である。It is explanatory drawing of the prism part for light projection. その他の実施形態に係る透光性部材を示した図である。It is the figure which showed the translucent member which concerns on other embodiment. その他の実施形態に係る透光性部材を示した図である。It is the figure which showed the translucent member which concerns on other embodiment. その他の実施形態に係る透光性部材を示した図である。It is the figure which showed the translucent member which concerns on other embodiment. その他の実施形態に係る透光性部材を示した図である。It is the figure which showed the translucent member which concerns on other embodiment. その他の実施形態に係る透光性部材を示した図である。It is the figure which showed the translucent member which concerns on other embodiment. その他の実施形態に係る測距センサの概要図である。It is a schematic diagram of the ranging sensor which concerns on other embodiment.

本発明に係る測距センサは、安価な構成で広範囲に亘って物体までの距離を検出できるように構成される。以下、本実施形態の測距センサ1について説明する。図1は、本実施形態の測距センサ1の構成を模式的に示したブロック図である。また、図2は、投光部11及び受光部51の配置について示した図である。図1及び図2に示されるように、測距センサ1は、制御部2、透光性部材3、投光部11、投光用ミラー15、受光用ミラー45、受光部51、モータ60、エンコーダ61を備えている。   The distance measuring sensor according to the present invention is configured to be able to detect the distance to an object over a wide range with an inexpensive configuration. Hereinafter, the distance measuring sensor 1 of the present embodiment will be described. FIG. 1 is a block diagram schematically showing the configuration of the distance measuring sensor 1 of the present embodiment. FIG. 2 is a diagram showing the arrangement of the light projecting unit 11 and the light receiving unit 51. As shown in FIGS. 1 and 2, the distance measuring sensor 1 includes a control unit 2, a translucent member 3, a light projecting unit 11, a light projecting mirror 15, a light receiving mirror 45, a light receiving unit 51, a motor 60, An encoder 61 is provided.

投光部11は光源12と投光レンズ13とが設けられる。光源12は、例えばレーザやLEDを用いて構成され、周囲に光を照射する。光源12から照射された光は、後述する投光レンズ13に入射される。光源12には、制御部2から制御信号が伝達されると共に、電源が供給される。光源12は、これらの制御信号及び電源により駆動され、周囲に光を照射する。   The light projecting unit 11 includes a light source 12 and a light projecting lens 13. The light source 12 is configured using, for example, a laser or an LED, and irradiates the surroundings with light. The light emitted from the light source 12 is incident on a light projecting lens 13 described later. A control signal is transmitted from the control unit 2 to the light source 12, and power is supplied thereto. The light source 12 is driven by these control signals and a power source, and irradiates the surroundings with light.

投光レンズ13は、光源12から照射された光を平行光に変換する。光源12から照射された光は、所定の範囲に広がって進む。投光レンズ13は、このような光を、所定の方向に沿って進む平行光に変換する。これにより、光源12からの光を、所定の方向にのみ照射することが可能となる。投光レンズ13からの平行光は、進行方向が変更されて測距センサ1の外部に照射される。なお、以下では投光レンズ13から照射される平行光を、必要に応じて「投光ビーム」と称して説明する。   The light projection lens 13 converts light emitted from the light source 12 into parallel light. The light emitted from the light source 12 travels in a predetermined range. The light projection lens 13 converts such light into parallel light traveling along a predetermined direction. Thereby, the light from the light source 12 can be irradiated only in a predetermined direction. The parallel light from the light projecting lens 13 is irradiated to the outside of the distance measuring sensor 1 with its traveling direction changed. Hereinafter, the parallel light emitted from the light projecting lens 13 will be referred to as a “light projecting beam” as necessary.

投光用ミラー15は、投光部11から入射される平行光の進行方向を、所定の回転軸X周りでの回転に応じて所定の第1方向に沿うように平行光のままで変更する。投光用ミラー15は、光を反射する鏡面を有して構成される。したがって、投光用ミラー15は、投光部11から入射される平行光を平行光のままで反射する。また、投光用ミラー15は、制御部2からの駆動信号により回転軸Xを軸心として回転される。したがって、投光部11からの平行光は、回転軸Xの径方向に相当する第1方向(本実施形態では水平方向)に平行光として反射される。   The light projecting mirror 15 changes the traveling direction of the parallel light incident from the light projecting unit 11 while maintaining the parallel light so as to follow the predetermined first direction according to the rotation around the predetermined rotation axis X. . The light projecting mirror 15 has a mirror surface that reflects light. Therefore, the light projecting mirror 15 reflects the parallel light incident from the light projecting unit 11 as parallel light. Further, the light projecting mirror 15 is rotated about the rotation axis X by the drive signal from the control unit 2. Therefore, the parallel light from the light projecting unit 11 is reflected as parallel light in the first direction (horizontal direction in the present embodiment) corresponding to the radial direction of the rotation axis X.

透光性部材3は、回転軸Xを軸心とする円筒形状からなり(図3参照)、投光用ミラー15で反射された平行光の進行方向を変更すると共に、周囲に投射された平行光が物体に当たって反射した反射光の進行方向を変更する。回転軸Xとは、投光用ミラー15が回転する際の回転軸である。したがって、透光性部材3は、投光用ミラー15の回転軸Xと同軸心上に構成される。平行光とは、投光用ミラー15により進行方向が変更された光である。この平行光は、測距センサ1の周囲に投射される。測距センサ1の周囲に投射された平行光は、物体に当たると反射して測距センサ1に戻ってくる。詳細は後述するが、透光性部材3は、これらの平行光及び反射光が透過する際に進行方向を変更する。したがって、透光性部材3は、少なくとも平行光及び反射光が透過することが可能な材料を用いて、円筒形状で構成される。   The translucent member 3 has a cylindrical shape with the rotation axis X as an axis (see FIG. 3), changes the traveling direction of the parallel light reflected by the light projecting mirror 15, and also projects parallel to the surroundings. The traveling direction of the reflected light reflected by the light hitting the object is changed. The rotation axis X is a rotation axis when the projection mirror 15 rotates. Therefore, the translucent member 3 is configured coaxially with the rotation axis X of the light projecting mirror 15. Parallel light is light whose traveling direction has been changed by the light projecting mirror 15. This parallel light is projected around the distance measuring sensor 1. The parallel light projected around the distance measuring sensor 1 is reflected back to the distance measuring sensor 1 when it hits an object. Although details will be described later, the translucent member 3 changes the traveling direction when these parallel light and reflected light are transmitted. Therefore, the translucent member 3 is formed in a cylindrical shape using a material capable of transmitting at least parallel light and reflected light.

透光性部材3は、投光用プリズム部21及び受光用プリズム部31を有する。投光用プリズム部21は、測距センサ1の筐体において、投光ビームが透過する箇所に所定の角度を有して設けられ、この角度に応じて投光ビームを屈折させながら投光ビームを測距センサ1の周囲に照射する。投光用プリズム部21は、測距センサ1の筐体に形成された窓部としての筐体窓70を構成する。投光用プリズム部21の構成については後述する。   The translucent member 3 includes a light projecting prism portion 21 and a light receiving prism portion 31. The light projecting prism unit 21 is provided in the housing of the distance measuring sensor 1 with a predetermined angle at a position where the light projecting beam is transmitted, and the light projecting beam is refracted according to the angle. Is irradiated around the distance measuring sensor 1. The light projecting prism portion 21 constitutes a housing window 70 as a window portion formed in the housing of the distance measuring sensor 1. The configuration of the light projecting prism unit 21 will be described later.

投光用プリズム部21から照射された投光ビームは、測距センサ1の周囲に存在する物体にあたると反射されて反射光となる。この反射光は、受光用プリズム部31を介して測距センサ1に取得される。受光用プリズム部31は、反射光が透過する箇所に所定の角度を有して設けられ、この角度に応じて反射光が屈折することにより反射光の進行方向が変更される。本実施形態では、反射光の進行方向が後述する受光用ミラー45に向かうように変更される。受光用プリズム部31は、上述した投光用プリズム部21と同様に測距センサ1の筐体に形成された窓部としての筐体窓70を構成する。受光用プリズム部31の構成については後述する。   The projection beam emitted from the projection prism unit 21 is reflected and becomes reflected light when it hits an object existing around the distance measuring sensor 1. This reflected light is acquired by the distance measuring sensor 1 via the light receiving prism unit 31. The light receiving prism portion 31 is provided at a position where the reflected light is transmitted with a predetermined angle, and the reflected light is refracted according to this angle, whereby the traveling direction of the reflected light is changed. In this embodiment, the traveling direction of the reflected light is changed so as to be directed to the light receiving mirror 45 described later. The light receiving prism portion 31 constitutes a housing window 70 as a window portion formed in the housing of the distance measuring sensor 1 in the same manner as the light projecting prism portion 21 described above. The configuration of the light receiving prism portion 31 will be described later.

受光用ミラー45は、受光用プリズム部31により進行方向が変更された反射光を後述する受光部51に向けて反射する。受光用ミラー45は、投光用ミラー15と同様に、光を反射する鏡面を有して構成される。また、本実施形態では受光用ミラー45は、投光用ミラー15と一体回転するように構成される。したがって、受光用ミラー45は投光用ミラー15の回転軸は同軸に構成される。受光用プリズム部31からの反射光は、受光用ミラー45の回転に応じて、回転軸Xの軸方向に沿って反射される。   The light receiving mirror 45 reflects the reflected light whose traveling direction has been changed by the light receiving prism unit 31 toward the light receiving unit 51 described later. Similar to the light projecting mirror 15, the light receiving mirror 45 has a mirror surface that reflects light. In the present embodiment, the light receiving mirror 45 is configured to rotate integrally with the light projecting mirror 15. Therefore, the light receiving mirror 45 is configured so that the rotation axis of the light projecting mirror 15 is coaxial. Reflected light from the light receiving prism portion 31 is reflected along the axial direction of the rotation axis X in accordance with the rotation of the light receiving mirror 45.

受光部51は、受光レンズ52と受光センサ53とを有する。受光レンズ52は、受光用ミラー45と受光センサ53との間に設けられ、受光用ミラー45で反射された反射光を受光センサ53の検出面に集光させる。受光センサ53は、透光性部材3により進行方向が変更された反射光を検出する。本実施形態では、上述したように受光用プリズム部31により進行方向が変更された反射光は、受光レンズ52により集光される。したがって、受光センサ53は、受光レンズ52の焦点位置に配置され、当該焦点位置で受光用プリズム部31により進行方向が変更された反射光を検出する。受光センサ53による光の検出は、公知であるので説明は省略する。受光部51は受光センサ53が反射光を検出すると、検出結果を制御部2に伝達する。   The light receiving unit 51 includes a light receiving lens 52 and a light receiving sensor 53. The light receiving lens 52 is provided between the light receiving mirror 45 and the light receiving sensor 53 and condenses the reflected light reflected by the light receiving mirror 45 on the detection surface of the light receiving sensor 53. The light receiving sensor 53 detects the reflected light whose traveling direction has been changed by the translucent member 3. In the present embodiment, the reflected light whose traveling direction is changed by the light receiving prism portion 31 as described above is collected by the light receiving lens 52. Therefore, the light receiving sensor 53 is disposed at the focal position of the light receiving lens 52, and detects reflected light whose traveling direction has been changed by the light receiving prism unit 31 at the focal position. The detection of light by the light receiving sensor 53 is well known and will not be described. The light receiving unit 51 transmits the detection result to the control unit 2 when the light receiving sensor 53 detects the reflected light.

制御部2は、伝達された検出結果を用いて測距センサ1から物体までの距離を演算する。具体的には、制御部2には、受光部51からの検出結果と、投光部11が光を照射したことを示す情報も伝達される。制御部2は、投光部11が光を照射してから、受光センサ53が光を受光するまでの時間を算定し、光の速度と当該時間の1/2との積により測距センサ1から物体までの距離を演算する。もちろん、上記時間について、各機能部の信号処理に要する遅延時間を補正して用いることも可能である。なお、制御部2は、投光用ミラー15及び受光用ミラー45を回転させるモータ60を制御し、エンコーダ61からモータ60の回転角度の検出結果を取得する。制御部2は、エンコーダ61からの検出結果に基づき、モータ60の回転を制御する。   The control unit 2 calculates the distance from the distance measuring sensor 1 to the object using the transmitted detection result. Specifically, a detection result from the light receiving unit 51 and information indicating that the light projecting unit 11 has emitted light are also transmitted to the control unit 2. The control unit 2 calculates the time from when the light projecting unit 11 irradiates light to when the light receiving sensor 53 receives light, and calculates the distance sensor 1 by the product of the speed of light and 1/2 of the time. The distance from the object to the object is calculated. Of course, it is also possible to correct and use the delay time required for signal processing of each functional unit for the above time. The control unit 2 controls the motor 60 that rotates the light projecting mirror 15 and the light receiving mirror 45, and acquires the detection result of the rotation angle of the motor 60 from the encoder 61. The control unit 2 controls the rotation of the motor 60 based on the detection result from the encoder 61.

次に、投光用プリズム部21及び受光用プリズム部31の構成について説明する。図3は、透光性部材3の側面図である。透光性部材3は、上述したように投光用プリズム部21及び受光用プリズム部31を備え、測距センサ1の筐体窓70に設けられる。   Next, configurations of the light projecting prism unit 21 and the light receiving prism unit 31 will be described. FIG. 3 is a side view of the translucent member 3. The translucent member 3 includes the light projecting prism portion 21 and the light receiving prism portion 31 as described above, and is provided in the housing window 70 of the distance measuring sensor 1.

本実施形態では上述したように、透光性部材3は投光用ミラー15及び受光用ミラー45の回転軸Xを軸心とする円筒形状で形成される。投光用プリズム部21は、このような円筒形状の透光性部材3の周方向に沿って形成された面から構成される。「円筒形状の透光性部材3の周方向に沿って形成された面」とは、複数の平面が透光性部材3の周方向に沿って形成されていることをいう。本実施形態では、これらの平面を有する投光用プリズム部21が透光性部材3の外周面に全周に亘って形成される。この場合、これらの複数の平面は透光性部材3を軸方向外側から見て周方向に沿って数度(例えば3〜5度)毎に区分けし、夫々の外周面が平面となるように形成される。このため、夫々の平面の周方向に沿った長さは互いに等しくなるように構成すると好適である。もちろん、夫々の平面の周方向に沿った長さは、均等に構成しなくても良い。なお、本実施形態では「円筒形状の透光性部材3の周方向に沿って形成された面」として平面を例に挙げたが、平面に限らず、例えば円筒面や円錐面であっても良い。   In the present embodiment, as described above, the translucent member 3 is formed in a cylindrical shape having the rotation axis X of the light projecting mirror 15 and the light receiving mirror 45 as an axis. The light projecting prism portion 21 is composed of a surface formed along the circumferential direction of such a cylindrical translucent member 3. “The surface formed along the circumferential direction of the cylindrical light-transmissive member 3” means that a plurality of planes are formed along the circumferential direction of the light-transmissive member 3. In the present embodiment, the light projecting prism portion 21 having these planes is formed on the outer peripheral surface of the translucent member 3 over the entire circumference. In this case, these plural planes are divided every several degrees (for example, 3 to 5 degrees) along the circumferential direction when the translucent member 3 is viewed from the outside in the axial direction, and the respective outer circumferential surfaces are flat. It is formed. For this reason, it is preferable that the lengths along the circumferential direction of the respective planes are equal to each other. Of course, the length along the circumferential direction of each plane does not need to be configured equally. In the present embodiment, a plane is taken as an example of the “surface formed along the circumferential direction of the cylindrical translucent member 3”, but not limited to a plane, for example, a cylindrical surface or a conical surface good.

また、投光用プリズム部21は、周方向に沿って互いに隣接する面同士の軸心に対する角度が互いに異なるように配置された投射面を複数有する。「軸心に対する角度」とは、軸心に直交する径方向と、上述した複数の平面の夫々の法線ベクトルの方向との角度差を意味する。本実施形態では、投光用プリズム部21が有する平面は、透光性部材3の径方向を向く面(以下では「A面」とする)、透光性部材3の径方向に対して上側を向く面(以下では「B面」とする)、透光性部材3の径方向に対して下側を向く面(以下では「C面」とする)が存在するものとして説明する。   In addition, the light projecting prism unit 21 has a plurality of projection surfaces arranged so that the angles of the surfaces adjacent to each other along the circumferential direction are different from each other. The “angle with respect to the axis” means an angle difference between the radial direction orthogonal to the axis and the direction of each normal vector of the plurality of planes described above. In the present embodiment, the plane of the light projecting prism portion 21 is a surface facing the radial direction of the translucent member 3 (hereinafter referred to as “A plane”), and is above the radial direction of the translucent member 3. The surface (hereinafter referred to as “B surface”) and the surface facing downward with respect to the radial direction of the translucent member 3 (hereinafter referred to as “C surface”) will be described.

図4は、投光用プリズム部21の投射面の説明図である。図4の#01には透光性部材3の斜視図が示される。また、#02には#01において一点鎖線を付した部位の側面視であるA面が示され、#03には#01において破線を付した部位の側面視であるB面が示され、#03には#01において二点鎖線を付した部位の側面視であるC面が示される。なお、理解を容易にするために、図3では、投光用プリズム部21が有するA面、B面、C面は夫々同じ色で示している。図3及び図4に示されるように、投光用プリズム部21が有する平面は、周方向に沿って、A面同士が互いに隣接することはなく、B面同士が互いに隣接することはなく、C面同士が互いに隣接することはないように構成される。本実施形態では、図3及び図4に示されるように、投光用プリズム部21は、周方向に沿って「A面、B面、C面」が繰り返すように構成される。   FIG. 4 is an explanatory diagram of a projection surface of the light projecting prism unit 21. A perspective view of the translucent member 3 is shown in # 01 of FIG. In addition, # 02 shows a side A that is a side view of the part marked with an alternate long and short dash line in # 01, and # 03 shows a B side that is a side view of the part marked with a broken line in # 01. 03 shows a C-plane that is a side view of the part marked with a two-dot chain line in # 01. In order to facilitate understanding, in FIG. 3, the A surface, the B surface, and the C surface of the light projecting prism portion 21 are shown in the same color. As shown in FIGS. 3 and 4, the plane of the light projecting prism portion 21 is such that the A surfaces are not adjacent to each other along the circumferential direction, and the B surfaces are not adjacent to each other. The C planes are not adjacent to each other. In the present embodiment, as shown in FIGS. 3 and 4, the light projecting prism portion 21 is configured so that “A surface, B surface, C surface” repeats along the circumferential direction.

投光用プリズム部21は、透光性部材3の径方向内側に設けられた投光用ミラー15から入射する平行光を屈折させて第1方向に交差する第2方向に沿って投射面から投射する。すなわち、上述したように繰り返して配置された複数の平面は、夫々投射面を構成し、径方向内側から投光用ミラー15により反射された平行光が入射され、投光面が向く方向に沿って屈折させて平行光を投射する。これにより、投光用プリズム部21は、投光用ミラー15から入射する平行光を、水平方向に対して鉛直方向に角度を付けて投射することが可能となる。   The light projecting prism portion 21 refracts the parallel light incident from the light projecting mirror 15 provided on the radially inner side of the translucent member 3, and projects from the projection surface along the second direction intersecting the first direction. Project. In other words, the plurality of planes repeatedly arranged as described above constitute a projection surface, along which the parallel light reflected by the projection mirror 15 is incident from the radially inner side and the projection surface faces. To refract and project parallel light. Accordingly, the light projecting prism unit 21 can project the parallel light incident from the light projecting mirror 15 at an angle in the vertical direction with respect to the horizontal direction.

このような投光用プリズム部21は、透光性部材3の軸方向一方側の端部から軸方向他方側の端部までのうちの一部である第1軸方向領域Mに形成される。すなわち、図3に示されるように、透光性部材3の軸方向長さをLとすると、投光用プリズム部21は透光性部材3の軸方向長さLのうちの一部である第1軸方向領域Mに形成される。   Such a light projecting prism portion 21 is formed in the first axial region M that is a part of the end of the translucent member 3 from one axial end to the other axial end. . That is, as shown in FIG. 3, when the axial length of the translucent member 3 is L, the light projecting prism portion 21 is a part of the axial length L of the translucent member 3. It is formed in the first axial region M.

一方、受光用プリズム部31は、透光性部材3を径方向外側から見た時の軸心に対する透光性部材3の外周面の角度が、軸心に対する投射面の角度と同じ角度となるように透光性部材3の外周面に透光性部材3の周方向に沿って形成された複数の入射面を有する。「透光性部材3を径方向外側から見た時の軸心に対する透光性部材3の外周面の角度」とは、透光性部材3の側面視において、透光性部材3の軸心と、透光性部材3の外周面との角度差をいう。投射面は、本実施形態ではA面、B面、及びC面が相当する。このため、「軸心に対する投射面の角度」とは、A面の角度θ1が軸心に平行であるとすると、軸心に対するB面の角度θ2、軸心に対するC面の角度θ3が相当する。   On the other hand, in the light receiving prism portion 31, the angle of the outer peripheral surface of the translucent member 3 with respect to the axis when the translucent member 3 is viewed from the radially outer side is the same angle as the angle of the projection surface with respect to the axis. As described above, the light transmitting member 3 has a plurality of incident surfaces formed on the outer peripheral surface along the circumferential direction of the light transmitting member 3. “An angle of the outer peripheral surface of the translucent member 3 with respect to the axial center when the translucent member 3 is viewed from the outside in the radial direction” refers to the axial center of the translucent member 3 in a side view of the translucent member 3. And the angle difference between the outer peripheral surface of the translucent member 3. In the present embodiment, the projection surface corresponds to the A surface, the B surface, and the C surface. For this reason, the “angle of the projection surface with respect to the axis” corresponds to the angle θ2 of the B surface with respect to the axis and the angle θ3 of the C surface with respect to the axis when the angle θ1 of the A surface is parallel to the axis. .

したがって、受光用プリズム部31は、透光性部材3の側面視において、透光性部材3の軸心と、透光性部材3の外周面との角度差が、軸心に対するA面の角度θ1、軸心に対するB面の角度θ2、軸心に対するC面の角度θ3と同じ角度になるように、透光性部材3の外周面に形成される。また、本実施形態では、受光用プリズム部31は透光性部材3の外周面との角度差が、透光性部材3の周方向に亘って一様となるように、軸心に対するA面の角度θ1で形成された第1外周部71、軸心に対するB面の角度θ2で形成された第2外周部72、軸心に対するC面の角度θ3で形成された第3外周部73から構成される。   Therefore, in the light receiving prism portion 31, in the side view of the translucent member 3, the angle difference between the axial center of the translucent member 3 and the outer peripheral surface of the translucent member 3 is the angle of the A plane with respect to the axial center. It is formed on the outer peripheral surface of the translucent member 3 so as to be equal to θ1, the angle θ2 of the B surface with respect to the axis, and the angle θ3 of the C surface with respect to the axis. Further, in the present embodiment, the light receiving prism portion 31 has an A surface with respect to the axis so that the angular difference from the outer peripheral surface of the translucent member 3 is uniform over the circumferential direction of the translucent member 3. A first outer peripheral portion 71 formed at an angle θ1 of the second surface, a second outer peripheral portion 72 formed at an angle θ2 of the B surface with respect to the shaft center, and a third outer peripheral portion 73 formed at an angle θ3 of the C surface with respect to the shaft center. Is done.

また、受光用プリズム部31は、第1外周部71、第2外周部72、第3外周部73の夫々が、同じ角度を有する外周部と隣接しないように、すなわち、第1外周部71は第2外周部72及び第3外周部73の一方又は双方と隣接するように、第2外周部72は第1外周部71及び第3外周部73の一方又は双方と隣接するように、第3外周部73は第1外周部71及び第2外周部72の一方又は双方と隣接するように配置され、これらの第1外周部71、第2外周部72、第3外周部73は上述した反射光が入射される入射面を構成する。   In addition, the light receiving prism portion 31 is configured so that the first outer peripheral portion 71, the second outer peripheral portion 72, and the third outer peripheral portion 73 are not adjacent to the outer peripheral portion having the same angle, that is, the first outer peripheral portion 71 is The third outer peripheral portion 72 is adjacent to one or both of the first outer peripheral portion 71 and the third outer peripheral portion 73 so as to be adjacent to one or both of the second outer peripheral portion 72 and the third outer peripheral portion 73. The outer peripheral portion 73 is disposed so as to be adjacent to one or both of the first outer peripheral portion 71 and the second outer peripheral portion 72, and the first outer peripheral portion 71, the second outer peripheral portion 72, and the third outer peripheral portion 73 are reflective as described above. It constitutes an incident surface on which light is incident.

受光用プリズム部31は、投光用プリズム部21から投射された平行光が物体に当たって反射した反射光の入射面への入射に応じて反射光の進行方向を変更する。すなわち、上述したように上述した第1外周部71、第2外周部72、第3外周部73には、夫々反射光が入射され、屈折により受光用ミラー45に向かう方向に反射光の進行方向が変更される。   The light receiving prism unit 31 changes the traveling direction of the reflected light according to the incident on the incident surface of the reflected light reflected by the collimated light projected from the light projecting prism unit 21 when it hits the object. That is, as described above, the reflected light is incident on the first outer peripheral portion 71, the second outer peripheral portion 72, and the third outer peripheral portion 73 described above, and the traveling direction of the reflected light in the direction toward the light receiving mirror 45 due to refraction. Is changed.

ここで、図3に示されるように、透光性部材3の軸方向長さをLとすると、投光用プリズム部21は透光性部材3の軸方向長さLのうちの一部である第1軸方向領域Mに形成されるが、受光用プリズム部31は、透光性部材3の軸方向一方側の端部から軸方向他方側の端部までのうちの第1軸方向領域M以外の第2軸方向領域Nに形成される。本実施形態では、図3に示されるように投光用プリズム部21は透光性部材3の軸方向中央部に形成されるが、当該投光用プリズム部21の軸方向両外側に第1外周部71が形成される。したがって、第1外周部71は投光用プリズム部21に分断された状態で配置される。第1外周部71の一方の軸方向外側には、第2外周部72が形成され、第1外周部71の他方の軸方向外側には、第3外周部73が形成される。   Here, as shown in FIG. 3, when the axial length of the translucent member 3 is L, the light projecting prism portion 21 is a part of the axial length L of the translucent member 3. Although formed in a certain first axial region M, the light receiving prism portion 31 is a first axial region of the translucent member 3 from one axial end to the other axial end. It is formed in the second axial region N other than M. In the present embodiment, as shown in FIG. 3, the light projecting prism portion 21 is formed at the central portion in the axial direction of the translucent member 3. An outer peripheral portion 71 is formed. Accordingly, the first outer peripheral portion 71 is arranged in a state of being divided by the light projecting prism portion 21. A second outer peripheral portion 72 is formed on one axial outer side of the first outer peripheral portion 71, and a third outer peripheral portion 73 is formed on the other outer side in the axial direction of the first outer peripheral portion 71.

上記のように構成された透光性部材3における投光用プリズム部21を、測距センサ1における所定の箇所に設けることにより、投光用プリズム部21が有する投射面の角度に応じて投光用ミラー15で反射された平行光を屈折させ、測距センサ1の周囲に平行光を投射することが可能となる。また、測距センサ1における投光用プリズム部21が設けられていない箇所を、投光用プリズム部21の角度と同じ角度で傾斜させることにより、投光用プリズム部21を介して投射した平行光が物体にあたって反射した反射光が屈折し、透光性部材3の軸心を鉛直方向に沿って配置した場合には、受光用ミラー45に対して水平方向で入射させることが可能となる。したがって、いずれの方向からの反射光も1つの受光センサ53で受光することが可能となる。   By providing the light projecting prism portion 21 in the translucent member 3 configured as described above at a predetermined location in the distance measuring sensor 1, the light projection prism portion 21 has a projection surface according to the angle of the projection surface. It becomes possible to refract the parallel light reflected by the light mirror 15 and to project the parallel light around the distance measuring sensor 1. In addition, by projecting through the light projecting prism unit 21 by tilting a portion of the distance measuring sensor 1 where the light projecting prism unit 21 is not provided at the same angle as the angle of the light projecting prism unit 21. When the reflected light reflected by the object is refracted and the axis of the translucent member 3 is arranged along the vertical direction, the light can be incident on the light receiving mirror 45 in the horizontal direction. Therefore, the reflected light from any direction can be received by the single light receiving sensor 53.

なお、透光性部材3は、筐体窓70の内側に配置しても良いし、外側に配置しても良い。また、透光性部材3は、筐体窓70と同一材料で一体化して構成すると好適である。   In addition, the translucent member 3 may be arrange | positioned inside the housing | casing window 70, and may be arrange | positioned outside. In addition, it is preferable that the translucent member 3 is integrally formed of the same material as the housing window 70.

〔その他の実施形態〕
上記実施形態では、図3に示されるように、受光用プリズム部31は、投光用プリズム部21の軸方向両外側に第1外周部71が形成され、第1外周部71の一方の軸方向外側には、第2外周部72が形成され、第1外周部71の他方の軸方向外側には、第3外周部73が形成されるとして説明した。しかしながら、図5に示されるように、投光用プリズム部21の軸方向一方側に第1外周部71、第2外周部72、及び第3外周部73を形成し、投光用プリズム部21の軸方向他方側にも第1外周部71、第2外周部72、及び第3外周部73を形成するように構成することも可能であるし、図6に示されるように、投光用プリズム部21の軸方向一方側に第1外周部71、第2外周部72、及び第3外周部73を複数セット形成し、投光用プリズム部21の軸方向他方側にも第1外周部71、第2外周部72、及び第3外周部73を複数セット形成するように構成することも可能である。このように構成することで、受光用ミラー45の形状による受光面積の影響を小さくし、受光量の均一化を図ることが可能となる。また、図示はしないが、第1外周部71、第2外周部72、及び第3外周部73の夫々の数(分割数)を不均等にし、特定の角度からの反射光を強く受光するようにすることで、測距センサ1の検知距離を制御することが可能となる。
[Other Embodiments]
In the above embodiment, as shown in FIG. 3, the light receiving prism portion 31 has a first outer peripheral portion 71 formed on both outer sides in the axial direction of the light projecting prism portion 21, and one axis of the first outer peripheral portion 71. The second outer peripheral portion 72 is formed on the outer side in the direction, and the third outer peripheral portion 73 is formed on the outer side in the other axial direction of the first outer peripheral portion 71. However, as shown in FIG. 5, a first outer peripheral portion 71, a second outer peripheral portion 72, and a third outer peripheral portion 73 are formed on one side in the axial direction of the light projecting prism portion 21, and the light projecting prism portion 21. The first outer peripheral portion 71, the second outer peripheral portion 72, and the third outer peripheral portion 73 can be formed on the other side in the axial direction of the light source. As shown in FIG. A plurality of first outer peripheral portions 71, second outer peripheral portions 72, and third outer peripheral portions 73 are formed on one axial side of the prism portion 21, and the first outer peripheral portion is also formed on the other axial side of the projecting prism portion 21. It is also possible to form a plurality of sets of 71, second outer peripheral portion 72, and third outer peripheral portion 73. With this configuration, the influence of the light receiving area due to the shape of the light receiving mirror 45 can be reduced, and the amount of received light can be made uniform. Although not shown, the numbers (division numbers) of the first outer peripheral portion 71, the second outer peripheral portion 72, and the third outer peripheral portion 73 are made unequal to strongly receive reflected light from a specific angle. By doing so, it becomes possible to control the detection distance of the distance measuring sensor 1.

上記実施形態では、投光用プリズム部21は、透光性部材3の軸方向中央部に配置される例を挙げて説明したが、例えば図7に示されるように、投光用プリズム部21の位置は平行光の投射位置に合わせて、透光性部材3の軸方向中央部とは異なる位置(例えば軸方向端部側の位置)に配置するとも可能である。   In the above-described embodiment, the light projecting prism portion 21 has been described by taking the example of being arranged at the central portion in the axial direction of the translucent member 3. For example, as shown in FIG. This position can be arranged at a position different from the axial central portion of the translucent member 3 (for example, a position on the axial end side) in accordance with the projection position of the parallel light.

また、例えば図8に示されるように、受光用プリズム部31は軸方向に沿って分割するように形成することも可能である。また、図9に示されるように、投光用プリズム部21及び受光用プリズム部31は、透光性部材3の内周面に形成することも可能である。   Further, for example, as shown in FIG. 8, the light receiving prism portion 31 can be formed so as to be divided along the axial direction. Further, as shown in FIG. 9, the light projecting prism portion 21 and the light receiving prism portion 31 can be formed on the inner peripheral surface of the translucent member 3.

また、図10に示されるように、投光部11の位置を変更すると共に、固定ミラー16を設けることにより、投光用ミラー15と受光用ミラー45とを共通化することができる。したがって、測距センサ1を小型化することが可能となる。   Further, as shown in FIG. 10, by changing the position of the light projecting unit 11 and providing the fixed mirror 16, the light projecting mirror 15 and the light receiving mirror 45 can be shared. Therefore, the distance measuring sensor 1 can be reduced in size.

上記実施形態では、受光用ミラー45は、投光用ミラー15と一体回転するように構成されているとして説明したが、受光用ミラー45は、投光用ミラー15とは別体で回転するように構成することも可能である。   In the above embodiment, the light receiving mirror 45 is described as being configured to rotate integrally with the light projecting mirror 15. However, the light receiving mirror 45 is configured to rotate separately from the light projecting mirror 15. It is also possible to configure.

本発明は、光を照射して物体までの距離を検出する測距センサに用いることが可能である。   The present invention can be used in a distance measuring sensor that irradiates light and detects a distance to an object.

1:測距センサ
3:透光性部材
11:投光部
12:光源
13:投光レンズ
15:投光用ミラー
21:投光用プリズム部
31:受光用プリズム部
45:受光用ミラー
M:第1軸方向領域
N:第2軸方向領域
1: Distance sensor 3: Translucent member 11: Projection unit 12: Light source 13: Projection lens 15: Projection mirror 21: Projection prism unit 31: Reception prism unit 45: Reception mirror M: First axial region N: Second axial region

Claims (5)

光を照射する光源と前記光源から照射された光を平行光に変換する投光レンズとが設けられる投光部と、
前記投光部から入射される前記平行光の進行方向を、所定の回転軸周りでの回転に応じて所定の第1方向に沿うように平行光のままで変更する投光用ミラーと、
前記回転軸を軸心とする円筒形状からなり、前記投光用ミラーで反射された前記平行光の進行方向を変更すると共に、周囲に投射された前記平行光が物体に当たって反射した反射光の進行方向を変更する透光性部材と、
前記透光性部材により前記進行方向が変更された前記反射光を検出する受光部と、を備え、
前記透光性部材は、前記透光性部材の周方向に沿って形成された面であって、前記周方向に沿って互いに隣接する面同士の前記軸心に対する角度が互いに異なるように配置された投射面を複数有し、前記透光性部材の径方向内側に設けられた前記投光用ミラーから入射する前記平行光を前記第1方向に交差する第2方向に沿って前記投射面から投射する投光用プリズム部と、前記透光性部材を径方向外側から見た時の前記軸心に対する前記透光性部材の外周面の角度が、前記軸心に対する前記投射面の角度と同じ角度となるように前記透光性部材の外周面に前記透光性部材の周方向に沿って形成された複数の入射面を有し、前記投光用プリズム部から投射された前記平行光が前記物体に当たって反射した反射光の前記入射面への入射に応じて前記反射光の進行方向を変更する受光用プリズム部と、を備える測距センサ。
A light projecting unit provided with a light source that emits light and a light projecting lens that converts the light emitted from the light source into parallel light;
A projecting mirror that changes the traveling direction of the parallel light incident from the light projecting unit as parallel light so as to follow a predetermined first direction according to rotation around a predetermined rotation axis;
Progressing of reflected light, which has a cylindrical shape with the rotation axis as an axis, changes the traveling direction of the parallel light reflected by the projection mirror, and reflects the collimated light projected to the surroundings when hitting an object A translucent member that changes direction;
A light receiving unit that detects the reflected light whose traveling direction has been changed by the translucent member,
The translucent member is a surface formed along the circumferential direction of the translucent member, and is disposed so that the angles of the surfaces adjacent to each other along the circumferential direction are different from each other with respect to the axis. A plurality of projection surfaces, and the parallel light incident from the projection mirror provided on the radially inner side of the translucent member is projected from the projection surface along a second direction intersecting the first direction. The angle of the projecting projection prism portion and the angle of the outer peripheral surface of the translucent member with respect to the axis when the translucent member is viewed from the outside in the radial direction are the same as the angle of the projection surface with respect to the axis. The parallel light projected from the light projecting prism unit has a plurality of incident surfaces formed along the circumferential direction of the translucent member on the outer peripheral surface of the translucent member so as to form an angle. In response to the incident light incident on the incident surface reflected by the object Distance measuring sensor comprising: a light receiving prism unit, configured to change a traveling direction of the serial reflected light.
前記投光用プリズム部は、前記透光性部材の軸方向一方側の端部から軸方向他方側の端部までのうちの一部である第1軸方向領域に形成され、
前記受光用プリズム部は、前記透光性部材の軸方向一方側の端部から軸方向他方側の端部までのうちの前記第1軸方向領域以外の第2軸方向領域に形成される請求項1に記載の測距センサ。
The light projecting prism portion is formed in a first axial region that is a part of an end of the translucent member on one side in the axial direction to an end on the other side in the axial direction.
The light-receiving prism portion is formed in a second axial region other than the first axial region from one end in the axial direction to the other end in the axial direction of the translucent member. Item 3. The distance measuring sensor according to Item 1.
前記投光用プリズム部は、前記透光性部材の外周面に形成されている請求項1又は2に記載の測距センサ。   The distance measuring sensor according to claim 1, wherein the light projecting prism portion is formed on an outer peripheral surface of the translucent member. 前記受光用プリズム部により前記進行方向が変更された前記反射光を前記受光部に向けて反射する受光用ミラーが備えられ、
前記受光用ミラーは、前記投光用ミラーと一体回転するように構成されている請求項1から3のいずれか一項に記載の測距センサ。
A light receiving mirror that reflects the reflected light whose traveling direction has been changed by the light receiving prism unit toward the light receiving unit;
The distance measuring sensor according to any one of claims 1 to 3, wherein the light receiving mirror is configured to rotate integrally with the light projecting mirror.
前記投光用プリズム部は、前記透光性部材の周方向に沿って形成された平面を含む請求項1から4のいずれか一項に記載の測距センサ。   5. The distance measuring sensor according to claim 1, wherein the light projecting prism portion includes a flat surface formed along a circumferential direction of the translucent member. 6.
JP2016242353A 2016-12-14 2016-12-14 Distance measurement sensor Active JP6812776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016242353A JP6812776B2 (en) 2016-12-14 2016-12-14 Distance measurement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016242353A JP6812776B2 (en) 2016-12-14 2016-12-14 Distance measurement sensor

Publications (2)

Publication Number Publication Date
JP2018096871A true JP2018096871A (en) 2018-06-21
JP6812776B2 JP6812776B2 (en) 2021-01-13

Family

ID=62632930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242353A Active JP6812776B2 (en) 2016-12-14 2016-12-14 Distance measurement sensor

Country Status (1)

Country Link
JP (1) JP6812776B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219168B1 (en) * 1999-12-20 2001-04-17 Xerox Corporation Single rotating polygon mirror with adjacent facets having different tilt angles
JP2003121546A (en) * 2001-10-16 2003-04-23 Omron Corp On-vehicle radar apparatus
WO2005073780A1 (en) * 2004-01-30 2005-08-11 Olympus Corporation Polygon mirror and mold for molding polygon mirror
JP2005301252A (en) * 2004-04-09 2005-10-27 Toshiba Corp Optical multibeam scanning apparatus and image forming apparatus
JP2007024928A (en) * 2005-07-12 2007-02-01 Nidec Sankyo Corp Light beam emitting apparatus and image forming apparatus
US20070058230A1 (en) * 2005-09-15 2007-03-15 Fraunhofer-Gesellschaft Zur Forderung Der Angewand Laser scanner
JP2008216654A (en) * 2007-03-05 2008-09-18 Citizen Electronics Co Ltd Light source device
JP2012242189A (en) * 2011-05-18 2012-12-10 Hokuyo Automatic Co Signal processor for scanning type distance measuring apparatus, signal processing method and scanning type distance measuring apparatus
WO2016056543A1 (en) * 2014-10-07 2016-04-14 コニカミノルタ株式会社 Scanning optical system and radar
JP2016151422A (en) * 2015-02-16 2016-08-22 株式会社トプコン Measurement device and three-dimensional camera
WO2017110574A1 (en) * 2015-12-24 2017-06-29 コニカミノルタ株式会社 Light projection/reception unit, and radar

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219168B1 (en) * 1999-12-20 2001-04-17 Xerox Corporation Single rotating polygon mirror with adjacent facets having different tilt angles
JP2003121546A (en) * 2001-10-16 2003-04-23 Omron Corp On-vehicle radar apparatus
WO2005073780A1 (en) * 2004-01-30 2005-08-11 Olympus Corporation Polygon mirror and mold for molding polygon mirror
JP2005301252A (en) * 2004-04-09 2005-10-27 Toshiba Corp Optical multibeam scanning apparatus and image forming apparatus
JP2007024928A (en) * 2005-07-12 2007-02-01 Nidec Sankyo Corp Light beam emitting apparatus and image forming apparatus
US20070058230A1 (en) * 2005-09-15 2007-03-15 Fraunhofer-Gesellschaft Zur Forderung Der Angewand Laser scanner
JP2008216654A (en) * 2007-03-05 2008-09-18 Citizen Electronics Co Ltd Light source device
JP2012242189A (en) * 2011-05-18 2012-12-10 Hokuyo Automatic Co Signal processor for scanning type distance measuring apparatus, signal processing method and scanning type distance measuring apparatus
WO2016056543A1 (en) * 2014-10-07 2016-04-14 コニカミノルタ株式会社 Scanning optical system and radar
JP2016151422A (en) * 2015-02-16 2016-08-22 株式会社トプコン Measurement device and three-dimensional camera
WO2017110574A1 (en) * 2015-12-24 2017-06-29 コニカミノルタ株式会社 Light projection/reception unit, and radar

Also Published As

Publication number Publication date
JP6812776B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
JP5806764B2 (en) Photoelectric sensor and object detection method
JPWO2016056545A1 (en) Scanning optical system and projector / receiver
JP2017129573A (en) Photoelectronic sensor and object detection method
JP2009229462A (en) Detection device
KR20180126927A (en) A eight-channel ridar
JP2009236774A (en) Three dimensional ranging device
US10162171B2 (en) Scanning optical system and light projecting and receiving apparatus
WO2017135224A1 (en) Object detection device of optical scanning type
KR101556866B1 (en) Distance measuring device
WO2017135225A1 (en) Object detection device of optical scanning type
JP2005121638A (en) Optoelectronic detection apparatus
CN110531369A (en) A kind of solid-state laser radar
KR102038549B1 (en) A sixteen-channel ridar
JP6028050B2 (en) Photoelectric sensor and method for detecting object in monitoring area
KR20180126963A (en) A eight-channel ridar
JPWO2018143093A1 (en) Measuring device
EP3364229B1 (en) Optical-scanning-type object detection device
JP6812776B2 (en) Distance measurement sensor
JP6676974B2 (en) Object detection device
KR102038547B1 (en) A sixteen-channel ridar
WO2017065049A1 (en) Optical-scanning-type object detection device
JP2009244119A (en) Reflectivity detecting device
KR102038548B1 (en) A 32-channel ridar
KR102577079B1 (en) 3 dimensional scanning device using cone shape rotation with coaxial mirror
KR102636500B1 (en) Lidar system with biased 360-degree field of view

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R151 Written notification of patent or utility model registration

Ref document number: 6812776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151