JP2018085299A - Planar heater - Google Patents

Planar heater Download PDF

Info

Publication number
JP2018085299A
JP2018085299A JP2016229143A JP2016229143A JP2018085299A JP 2018085299 A JP2018085299 A JP 2018085299A JP 2016229143 A JP2016229143 A JP 2016229143A JP 2016229143 A JP2016229143 A JP 2016229143A JP 2018085299 A JP2018085299 A JP 2018085299A
Authority
JP
Japan
Prior art keywords
planar heater
heating resistor
translucency
base material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016229143A
Other languages
Japanese (ja)
Inventor
充広 渡辺
Mitsuhiro Watanabe
充広 渡辺
本間 英夫
Hideo Honma
英夫 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Gakuin School Corp
Original Assignee
Kanto Gakuin School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Gakuin School Corp filed Critical Kanto Gakuin School Corp
Priority to JP2016229143A priority Critical patent/JP2018085299A/en
Publication of JP2018085299A publication Critical patent/JP2018085299A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a planar heater having excellent translucency.SOLUTION: To achieve the object, a planar heater according to the present invention comprises an insulative base material 2 and a heating resistor 3. The insulative base material 2 has translucency. The heating resistor 3 is composed of a metal coating which covers the surface of the insulative base material 2. The metal coating has translucency. The metal coating is preferably 30-200 nm in film thickness. The metal coating is preferably an electroless nickel plating film formed by an electroless plating treatment. The planar heater 1 further comprises an adhesive film 4 laminated on a face of the metal coating on a side opposite to the insulative base material 2. The adhesive film 4 preferably has translucency.SELECTED DRAWING: Figure 1

Description

本件発明は、面状ヒータに関する。   The present invention relates to a planar heater.

従来、道路や鉄道等で交通整理等の目的で用いられる信号機の光源として、白熱電球が用いられてきたが、近年、消費電力が少なく寿命が長いLED素子等のLED光源に置き換えられつつある。   Conventionally, incandescent light bulbs have been used as light sources for traffic lights used for traffic control purposes on roads and railways, but in recent years, LED light sources such as LED elements that consume less power and have a long life are being replaced.

LED素子は、複数の素子を用いたとしても白熱電球と比較して発熱量が少ないため、寒冷地に設置されている信号機では、LED素子の前方に設けられているレンズの表面に氷や雪が付着してLED素子からの光が遮られ、信号の色を識別するのが困難になるという問題がある。そのため、LED素子を用いた信号機では、氷雪付着の防止対策が望まれている。   LED elements generate less heat than incandescent bulbs even when multiple elements are used, so in traffic lights installed in cold regions, ice or snow is present on the surface of the lens provided in front of the LED elements. There is a problem that the light from the LED element adheres and is blocked, and it becomes difficult to identify the color of the signal. For this reason, in traffic lights using LED elements, measures to prevent the adhesion of ice and snow are desired.

そこで、信号機に付着した氷雪を融解させるために、信号機のレンズの前面に面状ヒータを設置することが考えられる。このような面状ヒータとして、透明基材の表面に刻設された蛇行状の溝部に、直径0.03〜1mmの円形断面を有する銅ニッケル線、ニクロム線、ステンレス線等の発熱線抵抗体を埋設した面状ヒータが提案されている(例えば、特許文献1参照)。   Therefore, in order to melt the ice and snow adhering to the traffic light, it is conceivable to install a planar heater in front of the lens of the traffic light. As such a planar heater, heating wire resistors such as copper nickel wire, nichrome wire, stainless steel wire having a circular cross section with a diameter of 0.03 to 1 mm in meandering grooves engraved on the surface of a transparent substrate Has been proposed (for example, see Patent Document 1).

特開2013−30391号公報JP 2013-30391 A

しかしながら、レンズの前方に位置する発熱抵抗体によってLED素子からの光が遮られ、信号を識別しづらくなるという不都合がある。   However, there is an inconvenience that the light from the LED element is blocked by the heating resistor located in front of the lens, making it difficult to identify the signal.

本発明の課題は、透光性を備える面状ヒータを提供することを目的とする。   The subject of this invention aims at providing the planar heater provided with translucency.

本件発明の面状ヒータは、絶縁基材と発熱抵抗体とを備える面状ヒータであって、当該絶縁基材は、透光性を有し、当該発熱抵抗体は、当該絶縁基材の表面を被覆する金属皮膜からなり、当該金属皮膜が透光性を有することを特徴とする。   The planar heater of the present invention is a planar heater including an insulating base and a heating resistor, the insulating base having translucency, and the heating resistor is a surface of the insulating base. It is characterized in that the metal film has translucency.

本件発明の面状ヒータにおいて、前記金属皮膜は、膜厚が30〜200nmであることが好ましい。   In the planar heater of the present invention, the metal film preferably has a film thickness of 30 to 200 nm.

本件発明の面状ヒータにおいて、前記金属皮膜は、無電解めっき処理によって成膜された無電解ニッケルめっき皮膜であることが好ましい。   In the planar heater of the present invention, the metal film is preferably an electroless nickel plating film formed by an electroless plating process.

本件発明の面状ヒータは、さらに、前記金属皮膜の前記絶縁基材とは反対側の面に積層された接着フィルム又は粘着フィルムを備え、当該接着フィルム又は粘着フィルムが透光性を有することが好ましい。   The planar heater of the present invention further includes an adhesive film or an adhesive film laminated on a surface of the metal film opposite to the insulating base, and the adhesive film or the adhesive film may have a light-transmitting property. preferable.

本件発明の面状ヒータは、絶縁基材が透光性を有すると共に、発熱抵抗体を構成する金属皮膜が透光性を有するので、優れた透光性を得ることができる。   In the planar heater of the present invention, the insulating base material has translucency, and the metal film constituting the heating resistor has translucency, so that excellent translucency can be obtained.

面状ヒータの実施の形態を示した説明図である。It is explanatory drawing which showed embodiment of the planar heater.

図1を参照して、本件発明に係る面状ヒータの実施の形態を説明する。図1に示すように、本実施形態の面状ヒータ1は、絶縁基材2と、絶縁基材2の片面に設けられた発熱抵抗体3とを備える。発熱抵抗対3の絶縁基材2とは反対側の面には、接着フィルム4が貼付されている。発熱抵抗体3は、電源(図示せず)に接続して電圧を印加可能である。   An embodiment of a planar heater according to the present invention will be described with reference to FIG. As shown in FIG. 1, the planar heater 1 of the present embodiment includes an insulating base 2 and a heating resistor 3 provided on one side of the insulating base 2. An adhesive film 4 is affixed to the surface of the heating resistor pair 3 opposite to the insulating substrate 2. The heating resistor 3 can be connected to a power source (not shown) to apply a voltage.

絶縁基材2は、板状体又はフィルム状であって、透光性を有する樹脂基材又はガラス基材からなる。絶縁基材2は、屋外での利用を考えると、防水性を備えることが好ましい。樹脂基材として、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリプロピレン(PP)樹脂、ポリカーボネート(PC)樹脂、シクロオレフィンポリマー(COP)樹脂、ポリエチレンテレフタレート(PET)樹脂、アクリル樹脂等を好適に用いることができる。   The insulating base material 2 is a plate-like body or a film, and is made of a light-transmitting resin base material or glass base material. It is preferable that the insulating base material 2 has waterproofness in consideration of outdoor use. As the resin base material, acrylonitrile-butadiene-styrene (ABS) resin, polypropylene (PP) resin, polycarbonate (PC) resin, cycloolefin polymer (COP) resin, polyethylene terephthalate (PET) resin, acrylic resin, etc. are preferably used. Can do.

絶縁基材2の線膨張係数は、面状ヒータ1として使用したときに発熱抵抗体3の熱膨張変形に追随させるために、発熱抵抗体3を構成する金属の線膨張係数に対して1.01倍以上であることが好ましい。しかしながら、絶縁基材2の線膨張係数が発熱抵抗体3を構成する金属の線膨張係数に対して1.01倍未満である場合には、絶縁基材2の発熱抵抗体3を設ける側の面に下地層(図示せず)を設けることが好ましい。   The linear expansion coefficient of the insulating base material 2 is 1. to the linear expansion coefficient of the metal constituting the heating resistor 3 in order to follow the thermal expansion deformation of the heating resistor 3 when used as the planar heater 1. It is preferably 01 times or more. However, when the linear expansion coefficient of the insulating substrate 2 is less than 1.01 times the linear expansion coefficient of the metal constituting the heating resistor 3, the insulating substrate 2 on the side where the heating resistor 3 is provided. It is preferable to provide a base layer (not shown) on the surface.

下地層としては、親水性樹脂材料を用いることが好ましく、例えば、非水溶性ポリエステル樹脂(例えば、WO2008/096671参照)、水酸基を有する樹脂及びイソシアネート系化合物、水酸基を含有してなる親水性及び水溶性樹脂(例えば、WO2007/108351参照)等を用いることができる。これらの下地層を用いることにより、絶縁基材2の線膨張係数を発熱抵抗体3を構成する金属の線膨張係数に対して1.01倍以上に調整し、絶縁基材2を発熱抵抗体3の熱膨張変形に追随させることが可能になる。このような親水性樹脂材料を用いて形成した下地層は、非水溶性であることがより好ましい。発熱抵抗体3を構成する金属皮膜を後述するように無電解めっき法を用いて形成する場合に、下地層が無電解めっき液等に溶出するのを防止するためである。   As the underlayer, a hydrophilic resin material is preferably used. For example, a water-insoluble polyester resin (see, for example, WO2008 / 096671), a hydroxyl group-containing resin and an isocyanate compound, a hydroxyl group-containing hydrophilic and water-soluble layer. Resin (for example, refer WO2007 / 108351) etc. can be used. By using these base layers, the linear expansion coefficient of the insulating base material 2 is adjusted to 1.01 times or more with respect to the linear expansion coefficient of the metal constituting the heating resistor 3, and the insulating base material 2 is adjusted to the heating resistor. 3 can follow the thermal expansion deformation. The base layer formed using such a hydrophilic resin material is more preferably water-insoluble. This is to prevent the base layer from eluting into the electroless plating solution or the like when the metal film constituting the heating resistor 3 is formed using an electroless plating method as will be described later.

発熱抵抗体3は、絶縁基材2の片面を被覆する金属皮膜からなり、当該金属皮膜は透光性を有している。この金属皮膜は、スパッタリング、真空蒸着法、無電解めっき法等を用いて形成することができる。真空蒸着法では、樹脂基材上に直接金属皮膜を形成できるが、無電解めっき法では、樹脂基材を表面改質、活性化及び触媒化した後、無電解めっきを行って金属皮膜を形成する。   The heating resistor 3 is made of a metal film that covers one surface of the insulating base 2, and the metal film has translucency. This metal film can be formed by sputtering, vacuum deposition, electroless plating, or the like. In the vacuum deposition method, a metal film can be formed directly on the resin substrate. However, in the electroless plating method, the resin substrate is surface-modified, activated and catalyzed, and then electroless plating is performed to form a metal film. To do.

金属皮膜を構成する金属は、電気抵抗が大きく発熱量を確保することができるニッケル、ニッケル合金等が好ましい。   The metal constituting the metal film is preferably nickel, a nickel alloy, or the like that has a large electric resistance and can secure a calorific value.

金属皮膜は、膜厚が50〜200nm、好ましくは50〜100nmであることにより、優れた透光性と発熱量とを両立して確保することができる。金属皮膜の膜厚が50nm未満では、所望の発熱量を得られなかったり、所望の膜厚に成膜するのが困難なことがある。金属皮膜の膜厚が200nmを超えると、所望の透光性を得られないことがある。   The metal film has a film thickness of 50 to 200 nm, preferably 50 to 100 nm, thereby ensuring both excellent translucency and heat generation. If the film thickness of the metal film is less than 50 nm, a desired calorific value cannot be obtained, or it may be difficult to form a film with a desired film thickness. If the film thickness of the metal film exceeds 200 nm, desired translucency may not be obtained.

接着フィルム4は、透光性を有するフィルムの両面に接着剤が塗布されたものであってもよく、透光性を有する接着剤組成物がフィルム状となったものでもよい。接着フィルム4は、発熱抵抗体3の表面に貼付されるため、発熱抵抗体3の発熱温度以上の耐熱性を備える必要がある。接着フィルム4として、例えば、既存のアクリル系、ウレタン系、アクリルウレタン系、オレフィン系、エポキシ系等を用いることができる。接着フィルム4は、発熱抵抗体3の表面全体に設けてもよく、発熱抵抗体3の外周縁部のみに設けてもよい。接着フィルム4に代えて粘着フィルムを用いてもよい。   The adhesive film 4 may be one in which an adhesive is applied to both surfaces of a light-transmitting film, or may be a film in which a light-transmitting adhesive composition is formed. Since the adhesive film 4 is affixed to the surface of the heating resistor 3, it is necessary to have heat resistance equal to or higher than the heating temperature of the heating resistor 3. As the adhesive film 4, for example, an existing acrylic type, urethane type, acrylic urethane type, olefin type, epoxy type, or the like can be used. The adhesive film 4 may be provided on the entire surface of the heating resistor 3 or may be provided only on the outer peripheral edge of the heating resistor 3. An adhesive film may be used instead of the adhesive film 4.

次に、本実施形態の面状ヒータ1の製造方法について説明する。ここでは、無電解めっき法を用いて形成する方法について説明するが、スパッタリング、真空蒸着法によって形成してもよい。   Next, the manufacturing method of the planar heater 1 of this embodiment is demonstrated. Here, a method of forming using an electroless plating method will be described, but it may be formed by sputtering or vacuum evaporation.

本実施形態では、例えば、以下のキャタライザー工程と、アクセレータ工程と、アクチベータ工程と、無電解めっき工程とを備え、各工程を行うことにより絶縁基材2の表面に金属を析出させて、金属皮膜を成膜する。以下、工程毎に説明する。   In this embodiment, for example, the following catalyzer process, an accelerator process, an activator process, and an electroless plating process are provided. By performing each process, a metal is deposited on the surface of the insulating base material 2 to form a metal film. Is deposited. Hereinafter, it demonstrates for every process.

キャタライザー工程: キャタライザー工程は、絶縁基材2の表面と、パラジウム及びスズのコロイド触媒(キャタライザー)とを接触させることにより、絶縁基材2の表面に触媒としてのパラジウム金属を吸着若しくは付着させる工程である。このとき、少量のスズが2価又は4価のスズ塩として絶縁基材の表面に、吸着若しくは付着する。但し、絶縁基材2に触媒を付与する際に、前処理として酸/アルカリ洗浄等の脱脂処理等の清浄化処理を行うことが好ましい。その他、必要に応じて、前処理として、市販の薬液を用いて、コンディショニング処理、プレディップ処理等を行ってよいのは勿論である。 Catalyzer process: The catalyzer process is a process of adsorbing or adhering palladium metal as a catalyst to the surface of the insulating base 2 by bringing the surface of the insulating base 2 into contact with a colloidal catalyst (catalyzer) of palladium and tin. is there. At this time, a small amount of tin is adsorbed or adhered to the surface of the insulating substrate as a divalent or tetravalent tin salt. However, when the catalyst is applied to the insulating substrate 2, it is preferable to perform a cleaning treatment such as a degreasing treatment such as acid / alkali washing as a pretreatment. In addition, as a pretreatment, it is needless to say that a conditioning treatment, a pre-dip treatment, or the like may be performed as a pretreatment using a commercially available chemical solution.

絶縁基材2の表面が平滑であり、触媒がうまく付着しない場合には、機械的処理、化学的処理又は光学的処理(UV処理、プラズマ処理等)等によって、絶縁基材2の表面を粗面化する等の前処理を行ってもよい。また、絶縁基材2の触媒付着能を向上するために、上述した親水性樹脂材料を用いて形成した下地層を設けてもよい。当該下地層を設けることにより、絶縁基材2を発熱抵抗体の熱膨張変形に追随させることが可能になると共に、当該下地層を触媒付着層として機能させることができ、触媒を良好に付与することができる。   If the surface of the insulating base 2 is smooth and the catalyst does not adhere well, the surface of the insulating base 2 is roughened by mechanical treatment, chemical treatment or optical treatment (UV treatment, plasma treatment, etc.). Pre-processing such as surface conversion may be performed. Moreover, in order to improve the catalyst adhesion ability of the insulating base material 2, you may provide the base layer formed using the hydrophilic resin material mentioned above. By providing the base layer, the insulating base 2 can be made to follow the thermal expansion deformation of the heating resistor, and the base layer can be made to function as a catalyst adhesion layer, thereby providing a good catalyst. be able to.

当該工程で用いるコロイド触媒は、例えば、スズの水和物とパラジウムの水和物とを水に溶解させ、その後界面活性剤を加えて十分に撹拌を行いながら、ここに還元剤を添加する方法等、従来既知の方法により調整することができる。また、一般にキャタライザーとして市販されているものを用いることもできる。或いは、コロイド触媒に代えて、スズ水溶液に絶縁基材を浸漬後、パラジウム水溶液に絶縁基材2を浸漬してもよい。   The colloidal catalyst used in this step is, for example, a method in which a hydrate of tin and a hydrate of palladium are dissolved in water, and then a reducing agent is added thereto while adding a surfactant and stirring sufficiently. It can be adjusted by a conventionally known method. Moreover, what is generally marketed as a catalyzer can also be used. Alternatively, instead of the colloidal catalyst, the insulating substrate 2 may be immersed in an aqueous palladium solution after the insulating substrate is immersed in an aqueous tin solution.

アクセレータ工程: アクセレータ工程では、濃度が0.1%〜10%程度の硫酸又は0.1g/l〜400g/l程度の硫酸水素ナトリウム溶液からなる促進剤(アクセラレータ)と絶縁基材2の表面とを接触させることにより、絶縁基材2(又は下地層)の表面に付着しているスズを酸化させて、Pdを還元し、事後的に行う無電解めっき反応を促進化するための工程である。 Accelerator step: In the accelerator step, an accelerator (accelerator) made of sulfuric acid having a concentration of about 0.1% to 10% or a sodium hydrogen sulfate solution having a concentration of about 0.1 g / l to 400 g / l, and the surface of the insulating base 2 Is a step for oxidizing the tin adhering to the surface of the insulating base material 2 (or the underlayer) to reduce Pd and promoting an electroless plating reaction performed afterwards. .

アクチベータ工程: アクチベータ工程は、必須の工程ではないが、0.1g/l程度〜1g/lの塩化パラジウム溶液と、絶縁基材2の表面とを接触させることにより、めっき初期析出をより均一的に反応させる為に行ってもよい。 Activator process: The activator process is not an essential process, but by bringing the palladium chloride solution of about 0.1 g / l to 1 g / l into contact with the surface of the insulating base 2, the initial plating deposition is made more uniform. It may be performed to react with.

以上のように、本件発明では、キャタライザー工程後に、アクセレータ工程とアクチベータ工程とを順に行うことにより、金属を析出させるための触媒金属核を、絶縁基材2(又は下地層)の表面に均一に吸着させることができる。   As described above, in the present invention, after the catalyzer process, the catalyst metal nucleus for depositing metal is uniformly formed on the surface of the insulating base material 2 (or the base layer) by sequentially performing the accelerator process and the activator process. Can be adsorbed.

無電解めっき工程: 次に、無電解めっき法により、絶縁基材2の表面に金属皮膜を析出形成する。当該工程では、金属皮膜を構成する金属を含む従来既知のめっき浴を構成する無電解めっき液と、上述の絶縁基材2とを接触させることにより、絶縁基材2の表面に付着したパラジウム金属を触媒として、絶縁基材2の表面に金属を析出させて、金属皮膜を成膜する。このときに用いる無電解めっき液が含有する金属成分の種類に応じた金属が適宜析出する。このとき、金属皮膜の膜厚を50〜200nmとすることにより、透光性を得ることができる。以上により、絶縁基材2の片面に発熱抵抗体3が設けられた図1に示す面状ヒータ1を形成することができる。 Electroless plating step: Next, a metal film is deposited on the surface of the insulating substrate 2 by electroless plating. In this step, the palladium metal adhered to the surface of the insulating base 2 by bringing the above-mentioned insulating base 2 into contact with an electroless plating solution that constitutes a conventionally known plating bath containing the metal constituting the metal film. As a catalyst, a metal is deposited on the surface of the insulating substrate 2 to form a metal film. A metal corresponding to the type of metal component contained in the electroless plating solution used at this time is appropriately deposited. At this time, translucency can be obtained by setting the film thickness of the metal film to 50 to 200 nm. As described above, the planar heater 1 shown in FIG. 1 in which the heating resistor 3 is provided on one surface of the insulating base 2 can be formed.

面状ヒータ1の発熱抵抗体3の絶縁基材2とは反対側の面に接着フィルム4を貼付することにより、接着フィルム4を介して面状ヒータ1を信号機のレンズ等に取り付け可能とすることができる。   By attaching the adhesive film 4 to the surface of the heating heater 3 opposite to the insulating substrate 2 of the planar heater 1, the planar heater 1 can be attached to the lens of the traffic light or the like via the adhesive film 4. be able to.

本実施形態の面状ヒータ1は、絶縁基材2、発熱抵抗体3を構成する金属皮膜、及び、接着フィルム4のそれぞれがいずれも透光性を備えることから、優れた透光性を得ることができる。そのため、面状ヒータ1の一方の側に可視光光源を配置し、可視光光源から面状ヒータ1へ向けて可視光を出射したとき、当該可視光は面状ヒータ1を透過して他方の側へ出射することができ、面状ヒータ1の他方の側から当該可視光を視認することができる。   The planar heater 1 of the present embodiment has excellent translucency because each of the insulating substrate 2, the metal film constituting the heating resistor 3, and the adhesive film 4 has translucency. be able to. Therefore, when a visible light source is arranged on one side of the planar heater 1 and visible light is emitted from the visible light source toward the planar heater 1, the visible light passes through the planar heater 1 and the other side. The visible light can be seen from the other side of the planar heater 1.

発熱抵抗体3を構成する金属皮膜は、絶縁基材2の表面全体を被覆するように設けてもよいし、十分な発熱量を得られるのであれば、絶縁基材2の表面の一部のみを被覆するように設けて絶縁基材2を露出させてもよい。発熱抵抗体3から絶縁基材2を露出させる場合には、金属皮膜を例えばハート型形状や格子状、水玉状等に未析出又はエッチング除去してもよい。発熱抵抗体3と絶縁基材2との光透過率の差によって、発熱抵抗体3の形状を視認させることができ、面状ヒータ1にデザイン性を持たせることができる。さらに、面状ヒータ1全体における光透過率を向上させることができる。   The metal film constituting the heating resistor 3 may be provided so as to cover the entire surface of the insulating base material 2, or only a part of the surface of the insulating base material 2 if a sufficient amount of heat generation can be obtained. The insulating base material 2 may be exposed by being provided so as to cover. When the insulating substrate 2 is exposed from the heating resistor 3, the metal film may be undeposited or etched away in a heart shape, a lattice shape, a polka dot shape, or the like. Due to the difference in light transmittance between the heating resistor 3 and the insulating substrate 2, the shape of the heating resistor 3 can be visually recognized, and the planar heater 1 can be given design. Furthermore, the light transmittance in the whole planar heater 1 can be improved.

本実施形態の面状ヒータ1は、例えば次のように利用することができる。寒冷地に設置されたLED式信号機のレンズの前面に、接着フィルム4を介して面状ヒータ1を取り付け、発熱抵抗体3を電源(図示せず)に接続する。電圧が印加されると発熱抵抗体3が発熱し、その熱量によってレンズ表面に付着した氷雪を融解させることができる。このとき、面状ヒータ1は優れた透光性を有するので、LED素子からの光、すなわち信号の色をレンズ表面側から確実に視認することができる。   The planar heater 1 of this embodiment can be utilized as follows, for example. A planar heater 1 is attached to the front surface of a lens of an LED type traffic signal installed in a cold region through an adhesive film 4, and the heating resistor 3 is connected to a power source (not shown). When a voltage is applied, the heating resistor 3 generates heat, and the ice and snow adhering to the lens surface can be melted by the amount of heat. At this time, since the planar heater 1 has excellent translucency, the light from the LED element, that is, the color of the signal can be surely visually recognized from the lens surface side.

本実施形態の面状ヒータ1は、LED式信号機以外にも、投光器、自動車、電車等の前照灯や尾灯、門灯、街灯等、LED光源を用いる種々の機器に適用することができる。さらに、面状ヒータ1は、LED光源以外の光源を用いる場合にも適用可能である。例えば、面状ヒータ1を自動車、電車等のフロント・リアガラスに設けて、当該フロント・リアガラス表面に付着した氷雪を融解させたり、家屋の窓ガラスに設けて、結露を防止することができる。   The planar heater 1 according to the present embodiment can be applied to various devices using an LED light source, such as a headlight such as a projector, an automobile, and a train, a taillight, a gate lamp, and a streetlight, in addition to an LED signal device. Furthermore, the planar heater 1 is applicable also when using a light source other than an LED light source. For example, the sheet heater 1 can be provided on the front / rear glass of an automobile, a train, etc., and ice and snow adhering to the front / rear glass surface can be melted or provided on the window glass of a house to prevent condensation.

以下、実施例を挙げて、本件発明をより具体的に説明するが、下記実施例に本件発明が限定されるものではないのは勿論である。   Hereinafter, the present invention will be described more specifically with reference to examples. However, it is needless to say that the present invention is not limited to the following examples.

本実施例では、絶縁基材として、COP樹脂からなり透光性を有する絶縁フィルム(ZF−16、日本ゼオン株式会社、厚さ50μm)を用意し、直径150mmの円盤状に裁断した。   In this example, an insulating film made of COP resin and having translucency (ZF-16, Nippon Zeon Co., Ltd., thickness 50 μm) was prepared as an insulating substrate, and was cut into a disk shape having a diameter of 150 mm.

続いて、円盤状の絶縁基材に対して、以下のUV照射工程、コンディショニング工程、キャタライザー工程、アクセレータ工程、アクチベータ工程及び無電解めっき工程を順に行った。   Subsequently, the following UV irradiation process, conditioning process, catalyzer process, accelerator process, activator process, and electroless plating process were sequentially performed on the disk-shaped insulating base material.

(a)UV照射工程
低圧水銀灯UV装置(江東電気株式会社)を用い、波長185nm及び254nmの混成波長の紫外線を絶縁基材に60秒間照射することにより、当該絶縁基材を表面改質して親水化させた。
(A) UV irradiation process Using a low-pressure mercury lamp UV device (Koto Electric Co., Ltd.), the insulating base material is surface-modified by irradiating the insulating base material with ultraviolet rays having a wavelength of 185 nm and 254 nm for 60 seconds. Hydrophilized.

(b)コンディショニング工程
次工程の触媒処理における触媒吸着性を向上させる目的で、UV照射工程を経た絶縁基材を、45℃のコンディショニング溶液(CC−231、ロームアンドハース社)に60秒間浸漬した。
(B) Conditioning step For the purpose of improving the catalyst adsorptivity in the catalyst treatment of the next step, the insulating base material that has undergone the UV irradiation step was immersed in a conditioning solution (CC-231, Rohm and Haas) at 45 ° C for 60 seconds. .

(c)キャタライザー工程
コンディショニング工程を経た絶縁基材を、45℃のパラジウム及びスズのコロイド触媒液(キャタライザー;ロームアンドハース社)に60秒間浸漬した。
(C) Catalyzer process The insulating base material which passed through the conditioning process was immersed in the colloidal catalyst liquid of 45 degreeC palladium and tin (Catalyzer; Rohm and Haas) for 60 seconds.

(d)アクセレータ工程
キャタライザー工程を経た絶縁基材を、45℃の10%硫酸(和光純薬工業株式会社)に30秒間浸漬した。
(D) Accelerator process The insulating base material which passed through the catalyzer process was immersed in 45 degreeC 10% sulfuric acid (Wako Pure Chemical Industries Ltd.) for 30 second.

(e)アクチベータ工程
アクセレータ工程を経た絶縁基材を、45℃の塩化パラジウム溶液(0.3g/l)に30秒間浸漬した。
(E) Activator process The insulating base material which passed through the accelerator process was immersed in the 45 degreeC palladium chloride solution (0.3g / l) for 30 second.

(f)無電解めっき工程
そして、上述のUV照射工程、コンディショニング工程、キャタライザー工程、アクセレータ工程、アクチベータ工程を経て、表面に触媒としてのパラジウム金属が吸着された絶縁基材を、以下の組成の45℃のニッケルめっき浴に30秒間浸漬し、絶縁基材にニッケルが析出した金属皮膜を得た。金属皮膜は、絶縁基材の表面全体を被覆し、膜厚は80nmであった。
NiSO・6HO 26g/dm
19g/dm
NCHCOOH 8g/dm
(NHSO 26g/dm
NaHPO・HO 21g/dm
Na 2ppm
Bi 1ppm
pH(HSO/NaOH) 8.0
(F) Electroless plating step And, through the above-mentioned UV irradiation step, conditioning step, catalyzer step, accelerator step, activator step, an insulating substrate having palladium metal as a catalyst adsorbed on its surface is converted into 45 of the following composition: It was immersed in a nickel plating bath at 0 ° C. for 30 seconds to obtain a metal film in which nickel was deposited on the insulating substrate. The metal film covered the entire surface of the insulating substrate, and the film thickness was 80 nm.
NiSO 4 · 6H 2 O 26g / dm 3
C 6 H 8 O 7 19 g / dm 3
H 2 NCH 2 COOH 8 g / dm 3
(NH 4 ) 2 SO 4 26 g / dm 3
NaH 2 PO 2 · H 2 O 21g / dm 3
Na 2 S 2 O 3 2 ppm
Bi 1ppm
pH (H 2 SO 4 / NaOH) 8.0

以上により、絶縁基材と、当該絶縁基材の表面を被覆する金属皮膜からなる発熱抵抗体とを備える面状ヒータを形成した。その後、面状ヒータの発熱抵抗体の表面に、接着フィルムとして日本ゼオン株式会社製LSシート(L3−PS、厚さ50μm)を貼付した。   As described above, a planar heater provided with an insulating base and a heating resistor made of a metal film covering the surface of the insulating base was formed. Thereafter, an LS sheet (L3-PS, thickness 50 μm) manufactured by Nippon Zeon Co., Ltd. was attached as an adhesive film to the surface of the heating resistor of the planar heater.

本実施例では、絶縁機材としてPET樹脂からなり透光性を有する絶縁フィルム(T−60、東レ株式会社、厚さ25μm)を用いた以外は、実施例1と同様にして、円盤状の絶縁基材を用意した。   In this example, a disk-shaped insulation was made in the same manner as in Example 1 except that an insulating film made of PET resin and having translucency (T-60, Toray Industries, Inc., thickness 25 μm) was used as the insulating material. A substrate was prepared.

続いて、円盤状の絶縁基材に対して、UV照射工程に代えて5分間の酸素プラズマ処理を行った後、実施例1と同様に、コンディショニング工程、キャタライザー工程、アクセレータ工程、アクチベータ工程及び無電解めっき工程を行った。   Subsequently, after performing oxygen plasma treatment for 5 minutes on the disc-shaped insulating base material instead of the UV irradiation step, as in Example 1, the conditioning step, the catalyzer step, the accelerator step, the activator step, and the An electrolytic plating process was performed.

以上により、絶縁基材と、当該絶縁基材の表面を被覆する金属皮膜からなる発熱抵抗体とを備える面状ヒータを形成した。その後、面状ヒータの発熱抵抗体の表面に、接着フィルムとしてアクリル系粘着シート(プロセーブ、株式会社きもと、厚さ50μm)を貼付した。   As described above, a planar heater provided with an insulating base and a heating resistor made of a metal film covering the surface of the insulating base was formed. Thereafter, an acrylic pressure-sensitive adhesive sheet (Prosave, Kimoto Co., Ltd., thickness 50 μm) was attached as an adhesive film to the surface of the heating resistor of the planar heater.

<評価>
実施例1及び実施例2で得られた面状ヒータを、接着フィルムを介してLED式灯光機のレンズに取り付けた。発熱抵抗体を電源に接続し、12Vの電圧を印加した。電圧を印加して2分間経過した時点で面状ヒータ表面の温度を測定したところ、67℃であった。このことから、実施例1及び実施例2の面状ヒータは、寒冷地に設置されたLED式信号機に取り付けた際に、レンズに付着した氷雪を融解できるのに十分な発熱量を得られることが確認できた。
<Evaluation>
The planar heater obtained in Example 1 and Example 2 was attached to a lens of an LED type lamp through an adhesive film. The heating resistor was connected to a power source and a voltage of 12V was applied. When the voltage was applied and the temperature of the surface heater surface was measured after 2 minutes, it was 67 ° C. From this, when the planar heaters of Example 1 and Example 2 are attached to an LED traffic light installed in a cold region, a calorific value sufficient to melt the ice and snow attached to the lens can be obtained. Was confirmed.

次に、実施例1及び実施例2の面状ヒータが取り付けられたLED式灯光機を、100m離れた地点から観察したところ、目視によってLEDが発する光の色を識別できた。これは、面状ヒータの発熱抵抗体を構成する金属皮膜が優れた透光性を備えることによるものである。   Next, when the LED type lamps to which the planar heaters of Example 1 and Example 2 were attached were observed from a point 100 m away, the color of light emitted from the LEDs could be identified by visual observation. This is because the metal film constituting the heating resistor of the planar heater has excellent translucency.

本件発明の面状ヒータは、優れた透光性を備えるため、透光性が必要とされる種々の用途に用いることができ、LED式信号機以外にも、投光器、自動車、電車等の前照灯、尾灯やフロントガラス、家屋の門灯や窓、街灯等に適用できる。   Since the planar heater of the present invention has excellent translucency, it can be used for various applications where translucency is required. In addition to LED traffic lights, the head heater for projectors, automobiles, trains, etc. It can be applied to lights, taillights, windshields, gates and windows of houses, street lights, etc.

1…面状ヒータ
2…絶縁基材
3…発熱抵抗体
4…接着フィルム
DESCRIPTION OF SYMBOLS 1 ... Planar heater 2 ... Insulating base material 3 ... Heat generating resistor 4 ... Adhesive film

Claims (4)

絶縁基材と発熱抵抗体とを備える面状ヒータであって、
当該絶縁基材は、透光性を有し、
当該発熱抵抗体は、当該絶縁基材の表面を被覆する金属皮膜からなり、当該金属皮膜が透光性を有することを特徴とする面状ヒータ。
A planar heater comprising an insulating substrate and a heating resistor,
The insulating substrate has translucency,
The said heating resistor consists of a metal film which coat | covers the surface of the said insulation base material, The said metal film has translucency, The planar heater characterized by the above-mentioned.
前記金属皮膜は、膜厚が30〜200nmである請求項1に記載の面状ヒータ。   The planar heater according to claim 1, wherein the metal film has a thickness of 30 to 200 nm. 前記金属皮膜は、無電解めっき処理によって成膜された無電解ニッケルめっき皮膜である請求項1又は請求項2に記載の面状ヒータ。   The planar heater according to claim 1, wherein the metal film is an electroless nickel plating film formed by an electroless plating process. 前記金属皮膜の前記絶縁基材とは反対側の面に積層された接着フィルム又は粘着フィルムを備え、
当該接着フィルム又は粘着フィルムが透光性を有する請求項1〜請求項3のいずれか一項に記載の面状ヒータ。
An adhesive film or an adhesive film laminated on the surface of the metal film opposite to the insulating base;
The planar heater as described in any one of Claims 1-3 in which the said adhesive film or adhesive film has translucency.
JP2016229143A 2016-11-25 2016-11-25 Planar heater Pending JP2018085299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016229143A JP2018085299A (en) 2016-11-25 2016-11-25 Planar heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016229143A JP2018085299A (en) 2016-11-25 2016-11-25 Planar heater

Publications (1)

Publication Number Publication Date
JP2018085299A true JP2018085299A (en) 2018-05-31

Family

ID=62237600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016229143A Pending JP2018085299A (en) 2016-11-25 2016-11-25 Planar heater

Country Status (1)

Country Link
JP (1) JP2018085299A (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150940A (en) * 1974-05-24 1975-12-04
JPH04123096U (en) * 1991-04-22 1992-11-06 帝人株式会社 Transparent sheet heater
JPH07114979A (en) * 1993-10-15 1995-05-02 Mitsui Toatsu Chem Inc Transparent flat heater and manufacture thereof
JPH07153559A (en) * 1993-12-02 1995-06-16 Toyobo Co Ltd Transparent sheet heater
JPH0888077A (en) * 1994-09-19 1996-04-02 Mitsui Toatsu Chem Inc Transparent flat heater and its manufacture
JPH08138841A (en) * 1994-11-01 1996-05-31 Mitsui Toatsu Chem Inc Transparent conductive film and transparent sheet-like heater using it
JPH08293379A (en) * 1995-04-20 1996-11-05 Asahi Glass Co Ltd Transparent laminated body
JPH0963754A (en) * 1995-06-15 1997-03-07 Mitsui Toatsu Chem Inc Durable transparent plate heater and its manufacture
JPH09306647A (en) * 1996-05-17 1997-11-28 Mitsui Toatsu Chem Inc Transparent surface heater, electromagnetic wave shield, and liquid crystal device
JP2002528642A (en) * 1998-10-22 2002-09-03 アルキャン・インターナショナル・リミテッド Container body for decorative processing beverage
JP2010517231A (en) * 2007-01-26 2010-05-20 テーザ・ソシエタス・ヨーロピア Heating element and heatable glass plate with this heating element
US20150327334A1 (en) * 2013-02-22 2015-11-12 Lg Chem, Ltd. Heating element and method for manufacturing same
US20160249413A1 (en) * 2015-02-23 2016-08-25 Electronics And Telecommunications Research Institute Transparent planar heater

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150940A (en) * 1974-05-24 1975-12-04
JPH04123096U (en) * 1991-04-22 1992-11-06 帝人株式会社 Transparent sheet heater
JPH07114979A (en) * 1993-10-15 1995-05-02 Mitsui Toatsu Chem Inc Transparent flat heater and manufacture thereof
JPH07153559A (en) * 1993-12-02 1995-06-16 Toyobo Co Ltd Transparent sheet heater
JPH0888077A (en) * 1994-09-19 1996-04-02 Mitsui Toatsu Chem Inc Transparent flat heater and its manufacture
JPH08138841A (en) * 1994-11-01 1996-05-31 Mitsui Toatsu Chem Inc Transparent conductive film and transparent sheet-like heater using it
JPH08293379A (en) * 1995-04-20 1996-11-05 Asahi Glass Co Ltd Transparent laminated body
JPH0963754A (en) * 1995-06-15 1997-03-07 Mitsui Toatsu Chem Inc Durable transparent plate heater and its manufacture
JPH09306647A (en) * 1996-05-17 1997-11-28 Mitsui Toatsu Chem Inc Transparent surface heater, electromagnetic wave shield, and liquid crystal device
JP2002528642A (en) * 1998-10-22 2002-09-03 アルキャン・インターナショナル・リミテッド Container body for decorative processing beverage
JP2010517231A (en) * 2007-01-26 2010-05-20 テーザ・ソシエタス・ヨーロピア Heating element and heatable glass plate with this heating element
US20150327334A1 (en) * 2013-02-22 2015-11-12 Lg Chem, Ltd. Heating element and method for manufacturing same
US20160249413A1 (en) * 2015-02-23 2016-08-25 Electronics And Telecommunications Research Institute Transparent planar heater

Similar Documents

Publication Publication Date Title
JP2012506112A (en) Transparent object having a transparent region that is locally limited, structured, and electrically heatable, its manufacturing method and use
CN108293275B (en) Heating electrode device, heating plate and conductive heating body
EA027798B1 (en) Illuminated glass panel for a vehicle, and manufacture thereof
CN101184615A (en) Corrosion resistant metallized films and methods of making the same
CN109478445B (en) Patterned electrical conductor, sheet with electrical conductor, heat-generating plate, vehicle, and method for manufacturing patterned electrical conductor
JPWO2002100634A1 (en) Anti-fog element and method for forming the same
CN110225822B (en) Laminated glass in which a single glass plate has through-holes
MX2007012286A (en) Headlight.
JP2007331611A (en) Vehicular lighting fixture and vehicular door mirror device with fixture
JP2022032047A (en) Illumination device for automobile having heatable cover glass
JP2017128503A (en) Laminated glass, and pattern sheet for laminated glass
JP2018085299A (en) Planar heater
JP2020516044A (en) Flat heating structure
JP2016197513A (en) Cover for lighting device, heater for lighting device, and lighting device
JPH10310873A (en) Electroless plating method
BR112017007857B1 (en) METHOD TO PREVENT METALIZATION OF A SUPPORT OF AT LEAST ONE PLASTIC PART SUBMITTED TO A METALIZATION PROCESS AND SELECTIVE METALIZATION PROCESS OF A PLASTIC PART
JP6663244B2 (en) Light transmitting plate and method of manufacturing the same
WO2014122991A1 (en) Reflecting mirror for solar light collection
KR101156476B1 (en) Method for Transparent Heating Glass
KR101025287B1 (en) In/out side door lock handle of car
JP2017024226A (en) Translucent panel with electric heating body and display device
TW202137811A (en) Heat-generating film and method for manufacturing heat-generating film
JP6597574B2 (en) Transparent heating plate, vehicle and building windows
JP2000243119A (en) Luminaire housing and its production
JP2007331610A (en) Vehicular lighting fixture and vehicular door mirror device equipped therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210825