JP2018073200A - Safety inventory determination device, method and program - Google Patents

Safety inventory determination device, method and program Download PDF

Info

Publication number
JP2018073200A
JP2018073200A JP2016213596A JP2016213596A JP2018073200A JP 2018073200 A JP2018073200 A JP 2018073200A JP 2016213596 A JP2016213596 A JP 2016213596A JP 2016213596 A JP2016213596 A JP 2016213596A JP 2018073200 A JP2018073200 A JP 2018073200A
Authority
JP
Japan
Prior art keywords
delivery
probability distribution
safety stock
destinations
destination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016213596A
Other languages
Japanese (ja)
Other versions
JP6740860B2 (en
Inventor
孝介 川上
Kosuke Kawakami
孝介 川上
敬和 小林
Takakazu Kobayashi
敬和 小林
鈴木 豊
Yutaka Suzuki
豊 鈴木
純一 松岡
Junichi Matsuoka
純一 松岡
源幸 古田
Motoyuki Furuta
源幸 古田
中村 新吾
Shingo Nakamura
新吾 中村
圭一 中里
Keiichi Nakazato
圭一 中里
直人 堀下
Naoto Horishita
直人 堀下
洋土 石川
Yoji Ishikawa
洋土 石川
大夢 岡本
Hiromu Okamoto
大夢 岡本
松浦 慎
Shin Matsuura
慎 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016213596A priority Critical patent/JP6740860B2/en
Publication of JP2018073200A publication Critical patent/JP2018073200A/en
Application granted granted Critical
Publication of JP6740860B2 publication Critical patent/JP6740860B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable adequate determination on a safety inventory that each delivery destination should have even if a lead time from the order to delivery of an object to be delivered to a plurality of delivery destinations from one or a plurality of delivery sources is long and even under an unstable circumstance.SOLUTION: An input unit 101 acquires, for an object for which the safety inventory is desired to be determined, ship entry time information for each delivery destination and use amount information for each delivery destination/day. On the assumption that a plurality of delivery destinations included in the ship entry time information for each delivery destination are one delivery destination (hereinafter referred to as all delivery destinations), a first probability distribution calculation unit 103 determines a probability distribution of the intervals of arrival of a ship at all delivery destinations. A second probability distribution calculation unit 104 determines a probability distribution of the intervals of arrival of the ship at each delivery destination on the basis of the probability distribution of the intervals of arrival of the ship at all delivery destinations. A safety inventory calculation unit 105 calculates a safety inventory to be held at each delivery destination on te basis of the probability distribution of the intervals of arrival of the ship at each delivery destination.SELECTED DRAWING: Figure 1

Description

本発明は、一又は複数の出荷元(生産拠点等)から複数の納品先(工場、商業施設、在庫拠点等)に納品される対象物(原料、材料、製品、商品等)に関して、各納品先で持つべき安全在庫を決定するのに利用して好適な安全在庫決定装置、方法及びプログラムに関する。   The present invention relates to an object (raw material, material, product, product, etc.) delivered to a plurality of delivery destinations (factories, commercial facilities, inventory bases, etc.) from one or a plurality of shipping sources (production bases, etc.). The present invention relates to a safety stock determination apparatus, method, and program suitable for use in determining a safety stock to have in advance.

鉄鋼メーカ、化学メーカ、石油メーカ、電力会社等では、原料、材料、製品、商品等の対象物を海外から船で輸入し、在庫として保管する。在庫の持ち過ぎは、キャッシュフローの鈍化や管理コストの増加を招くため、保持する在庫は少ない方が望ましい。その一方で、在庫が少なすぎると、需要・供給のばらつきを十分に吸収できず、欠品発生による生産停止を招きかねない。したがって、対象物の欠品率を一定以下に保つためには、需要・供給の変動を予測して、管理目標とする平均在庫(適正在庫)の設定が必須といえる。
しかしながら、対象物を世界各国から船で輸入する場合、発注から納品までのリードタイムが非常に長く、需要・供給のばらつきの影響を受けやすい。このため、在庫は過剰又は過小状態に陥りやすく、一度その状態に陥ったときの損失は大きい。さらに、天候不順や設備トラブル等による突発的途絶の発生、膨大な量を輸送する船の頻繁な運航変動のため、対象物の供給は大きくばらつく。したがって、適正在庫を数理的に導き出すことは難しかった。
Steel manufacturers, chemical manufacturers, petroleum manufacturers, electric power companies, etc. import raw materials, materials, products, products, etc. from overseas by ship and store them in stock. Too much inventory leads to a slowdown in cash flow and an increase in management costs, so it is desirable that the inventory held be small. On the other hand, if the inventory is too small, it will not be possible to sufficiently absorb the fluctuations in demand and supply, which may lead to production stoppage due to out-of-stock items. Therefore, in order to keep the target shortage rate below a certain level, it can be said that it is essential to set an average inventory (proper inventory) as a management target by predicting fluctuations in demand and supply.
However, when importing objects from around the world by ship, the lead time from ordering to delivery is very long, and is susceptible to fluctuations in demand and supply. For this reason, inventory is likely to fall into an excess or under condition, and the loss once it falls into that state is large. Furthermore, the supply of objects varies greatly due to the occurrence of sudden disruptions due to unseasonable weather, equipment troubles, etc., and frequent fluctuations in the operation of ships that transport huge volumes. Therefore, it was difficult to mathematically derive the appropriate stock.

需要・供給の変動を予測した適正在庫設定手法として、非特許文献1では、適正在庫をサイクル在庫、安全在庫の足し合せで与える手法が提示されている。図15は、横軸が時間、縦軸が在庫量で、在庫の推移を表わし、サイクル在庫及び安全在庫と適正在庫との関係を示す。サイクル在庫は、在庫の定常的な変動分だけ持つランニング在庫であり、安全在庫は、需要・供給がばらついても欠品を起こさないように持つ在庫である。非特許文献1では、サイクル在庫を入荷ロットの平均値の半分で与え、安全在庫を「安全係数×最大リードタイム1/2×需要量の標準偏差」で計算する。ここで、最大リードタイムは、「平均リードタイム+安全係数×リードタイムの標準偏差」で与える。安全係数は、どの程度遅れを許容するか決めるパラメータであり、実務者が状況に応じて決定する。 As a proper inventory setting technique for predicting fluctuations in demand and supply, Non-Patent Document 1 presents a technique for providing an appropriate inventory by adding a cycle inventory and a safety inventory. FIG. 15 shows the transition of inventory with the horizontal axis representing time and the vertical axis representing inventory quantity, and shows the relationship between cycle inventory, safety inventory, and appropriate inventory. The cycle stock is a running stock that has a constant fluctuation of the stock, and the safety stock is a stock that does not cause a shortage even if the supply and demand vary. In Non-Patent Document 1, the cycle stock is given by half of the average value of the received lots, and the safety stock is calculated by “safety factor × maximum lead time 1/2 × standard deviation of demand”. Here, the maximum lead time is given by “average lead time + safety factor × lead time standard deviation”. The safety factor is a parameter that determines how much delay is allowed, and is determined by the practitioner according to the situation.

また、特許文献1では、需要情報として受注間隔が指数分布、受注納期が正規分布、受注数量がΓ分布に従い、供給情報として供給リードタイムがΓ分布に従うような、供給リードタイムが変動する状況下において、納期遵守向上と在庫費用抑制のトレードオフ関係を考慮した在庫計画を策定する方法が開示されている。   In Patent Document 1, the supply lead time fluctuates such that the order interval is an exponential distribution as demand information, the order delivery date is a normal distribution, the order quantity follows a Γ distribution, and the supply lead time follows a Γ distribution as supply information. Discloses a method for formulating an inventory plan that takes into account the trade-off relationship between improved delivery date compliance and reduced inventory costs.

特開2014−119768号公報JP 2014-119768 A

勝呂隆男著,「適正在庫の考え方・求め方」,2003年9月10日発行,日刊工業新聞社By Takao Suguro, “Appropriate Inventory Approach / How to Find”, published on September 10, 2003, Nikkan Kogyo Shimbun Emery N. Brown et al., The Time-Rescaling Theorem and Its Application to Neural Spike Train Data Analysis, Neural Computation 14, 325-346, 2001Emery N. Brown et al., The Time-Rescaling Theorem and Its Application to Neural Spike Train Data Analysis, Neural Computation 14, 325-346, 2001 Yosihiko Ogata, On Lewis' Simulation Method for Point Processes, IEEE Transactions On Information Theory, Vol. 27, No.1, January 1981Yosihiko Ogata, On Lewis' Simulation Method for Point Processes, IEEE Transactions On Information Theory, Vol. 27, No.1, January 1981

ところで、海上輸送によって供給される対象物は、国外の様々な地域からの納品があるため、リードタイムが発注ごとに異なる。しかしながら、非特許文献1では、リードタイムが均一の場合のみ検討されており、リードタイムが発注ごとに異なる場合、船の到着(入港)が設定したリードタイムよりも大きく遅れたときに、長期間にわたる在庫切れを起こす事態を招く。
さらに、対象物は遠方の海外から船によって輸送されるため、発注から納品までのリードタイムは1週間から数カ月程度と非常に長い。また、積地では、天候不順や、設備故障、他社船との融通等の影響を受けて出港時刻が大きくばらつく。加えて、揚地では、港の荷揚げ能力ネック、倉庫容量ネックによる洋上滞船、及び荷揚げ設備故障等の影響を受けて、在庫の供給タイミングや出港時刻がばらつく。
このため、本来予定されていた船の出港/入港時刻が大きく変更となった場合、複数の納品先での過剰/過小在庫を防ぐために、出荷時刻の更新も含め納品先の見直し等、出荷・納品計画が絶えず見直し、更新される。このように、一度発注した後に、発注元や納品先の変更が頻発すると、リードタイムを計算するために必要な発注点と納品時刻の関係が分からなくなる。すなわち、発注点と納品時刻の関係を用いて決められるリードタイムは、発注点自体が不安定であるため計算できない。
なお、ある一定期間前の予定と実績を比較して、その差分からリードタイムを計算することは可能である。しかしながら、この方法で計算されるリードタイムのばらつきは、予定期間の選び方によって変化するため不安定であり、非特許文献1や特許文献1で開示されている発注から納品までのリードタイムを用いた安全在庫計算手法では過剰/過小在庫を招く。
さらに、非特許文献1及び特許文献1は共に、一か所の生産拠点から、一拠点又は複数拠点への対象物の補充及びその在庫を検討しているのみであり、複数の生産拠点から、一拠点又は複数拠点のうちどこかに対象物を補充する場合は記述されていない。
By the way, since the objects supplied by sea transportation are delivered from various regions outside the country, the lead time is different for each order. However, Non-Patent Document 1 examines only when the lead time is uniform, and when the lead time is different for each order, when the arrival (port arrival) of the ship is greatly delayed from the set lead time, the long time is reached. Cause an out of stock situation.
Furthermore, since the object is transported by ship from a distant overseas, the lead time from ordering to delivery is very long, from one week to several months. On the other hand, the departure time varies greatly due to unseasonable weather, equipment breakdown, interchange with other ships. In addition, at the landing site, the supply timing of the inventory and the departure time vary due to the impact of the port unloading capacity, the offshore vessel due to the warehouse capacity neck, and the unloading equipment failure.
For this reason, when the originally scheduled departure / entry time of a ship has changed significantly, in order to prevent over / under-stocking at multiple delivery destinations, review of delivery destinations including renewal of delivery times, etc. The delivery plan is constantly reviewed and updated. As described above, when the ordering source and the delivery destination are frequently changed after the order is placed once, the relationship between the ordering point and the delivery time necessary for calculating the lead time cannot be understood. That is, the lead time determined using the relationship between the order point and the delivery time cannot be calculated because the order point itself is unstable.
In addition, it is possible to compare the plan with a certain period of time and the actual result and calculate the lead time from the difference. However, the variation in the lead time calculated by this method is unstable because it varies depending on how the scheduled period is selected, and the lead time from ordering to delivery disclosed in Non-Patent Document 1 and Patent Document 1 was used. The safety stock calculation method leads to excess / under stock.
Furthermore, both Non-Patent Document 1 and Patent Document 1 are only considering replenishment of objects and inventory from one production base to one base or a plurality of bases. It is not described when an object is refilled somewhere in one site or multiple sites.

本発明は上記のような点を鑑みてなされたものであり、一又は複数の出荷元から複数の納品先に納品される対象物に関して、発注から納品までのリードタイムが長く、また、不安定な状況下においても、各納品先で持つべき安全在庫を適切に決定できるようにすることを目的とする。   The present invention has been made in view of the above points, and has a long lead time from ordering to delivery for an object delivered from one or a plurality of shipping sources to a plurality of delivery destinations, and is unstable. The purpose is to enable appropriate determination of the safety stock that each delivery destination should have even under difficult circumstances.

上記の課題を解決するための本発明の要旨は、以下のとおりである。
[1] 一又は複数の出荷元から複数の納品先に納品される対象物に関して、各納品先で持つべき安全在庫を決定する安全在庫決定装置であって、
安全在庫を決定したい対象物について、過去の実績情報として、納品時刻情報、及び、納品先ごとの前記対象物の使用量の情報である使用量情報を取り込む入力手段と、
前記入力手段で取り込んだ納品時刻情報に基づいて、前記納品時刻情報に含まれる複数の納品先を一つの納品先と仮定し(以下、全納品先と呼ぶ)、前記全納品先への納品間隔の確率分布を求める第1の確率分布計算手段と、
前記入力手段で取り込んだ使用量情報と、前記第1の確率分布計算手段で求めた前記全納品先への納品間隔の確率分布とに基づいて、前記納品時刻情報に含まれる各納品先への納品間隔の確率分布を求める第2の確率分布計算手段と、
前記入力手段で取り込んだ使用量情報と、前記第2の確率分布計算手段で求めた前記各納品先への納品間隔の確率分布とに基づいて、前記各納品先で持つべき安全在庫を計算する安全在庫計算手段とを備えたことを特徴とする安全在庫決定装置。
[2] 前記第2の確率分布計算手段は、前記全納品先への納品回数のうち納品先i(iは納品先を表わす記号)への納品は、前記納品先ごとの前記対象物の使用量に応じて、Ni回に一回あると仮定することで、納品先iへの納品間隔を、前記全納品先への納品間隔の確率分布をNi回畳み込み積分した確率分布で与えることを特徴とする[1]に記載の安全在庫決定装置。
[3] 前記第2の確率分布計算手段は、納品先iへの納品回数qi、全納品先への納品回数Qとして、畳み込み積分の回数NiをQ/qiで与えることを特徴とする[2]に記載の安全在庫決定装置。
[4] 納期遅れ許容値α%を設定する納期遅れ許容値設定手段を備え、
前記安全在庫計算手段は、さらに前記納期遅れ許容値設定手段で設定した納期遅れ許容値α%に基づいて、前記各納品先への納品間隔の確率分布を1−α%網羅する点と、前記各納品先への納品間隔の確率分布の平均との差分を安全在庫日数とし、この安全在庫日数に納品先別の平均使用量を掛け合わせて、前記各納品先で持つべき安全在庫を計算することを特徴とする[1]乃至[3]のいずれか一つに記載の安全在庫決定装置。
[5] 前記全納品先への納品は、出荷元からの直接の納品と、他の納品先を経由しての納品とを含むことを特徴とする[1]乃至[4]のいずれか一つに記載の安全在庫決定装置。
[6] 前記第1の確率分布計算手段は、前記全納品先への納品間隔の確率分布が指数分布又はガンマ分布に従うとし、
前記第2の確率分布計算手段は、前記各納品先への納品間隔の確率分布がガンマ分布に従うとすることを特徴とする[1]乃至[5]のいずれか一つに記載の安全在庫決定装置。
[7] 前記第1の確率分布計算手段は、前記全納品先への納品間隔の確率分布を、前記全納品先への単位時間当たりの平均納品回数(以下、平均納品率と称する)を用いた指数分布又はガンマ分布で表わし、
平均納品率を一定として扱うことを特徴とする[6]に記載の安全在庫決定装置。
[8] 前記第1の確率分布計算手段は、前記全納品先への納品間隔の確率分布を、前記全納品先への単位時間当たりの平均納品回数(以下、平均納品率と称する)を用いた指数分布又はガンマ分布で表わし、
平均納品率を時間変化する関数としてモデル化することを特徴とする[6]に記載の安全在庫決定装置。
[9] 前記第1の確率分布計算手段は、前記関数のパラメータを所定の情報量規準に基づいて決定することを特徴とする[8]に記載の安全在庫決定装置。
[10] 前記関数は指数フーリエ級数で表わされることを特徴とする[8]又は[9]に記載の安全在庫決定装置。
[11] 前記第1の確率分布計算手段は、安全在庫を決定する対象期間である将来の平均納品率を、過去の平均納品率の定数倍として求めることを特徴とする[8]乃至[10]のいずれか一つに記載の安全在庫決定装置。
[12] 前記第1の確率分布計算手段は、前記定数倍とする定数を、将来の平均納品率の平均を過去の平均納品率の平均で除した値として求め、
前記将来の平均納品率の平均は、前記対象物の累積入荷量に比例するものとして、過去の実績情報を用いた単回帰分析により推定することを特徴とする[11]に記載の安全在庫決定装置。
[13] 前記対象物が船による海上輸送により出荷元から納品先に納品され、
前記納品時刻情報として入港時刻情報を用い、
前記全納品先への納品間隔の確率分布として船の前記全納品先への到着間隔の確率分布を用い、
前記各納品先への納品間隔の確率分布として船の前記各納品先への到着間隔の確率分布を用いることを特徴とする[1]乃至[12]のいずれか一つに記載の安全在庫決定装置。
[14] 一又は複数の出荷元から複数の納品先に納品される対象物に関して、各納品先で持つべき安全在庫を決定する安全在庫決定方法であって、
入力手段が、安全在庫を決定したい対象物について、過去の実績情報として、納品時刻情報、及び、納品先ごとの前記対象物の使用量の情報である使用量情報を取り込むステップと、
第1の確率分布計算手段が、前記入力手段で取り込んだ納品時刻情報に基づいて、前記納品時刻情報に含まれる複数の納品先を一つの納品先と仮定し(以下、全納品先と呼ぶ)、前記全納品先への納品間隔の確率分布を求めるステップと、
第2の確率分布計算手段が、前記入力手段で取り込んだ使用量情報と、前記第1の確率分布計算手段で求めた前記全納品先への納品間隔の確率分布とに基づいて、前記納品時刻情報に含まれる各納品先への納品間隔の確率分布を求めるステップと、
安全在庫計算手段が、前記入力手段で取り込んだ使用量情報と、前記第2の確率分布計算手段で求めた前記各納品先への納品間隔の確率分布とに基づいて、前記各納品先で持つべき安全在庫を計算するステップとを有することを特徴とする安全在庫決定方法。
[15] 一又は複数の出荷元から複数の納品先に納品される対象物に関して、各納品先で持つべき安全在庫を決定するためのプログラムであって、
安全在庫を決定したい対象物について、過去の実績情報として、納品時刻情報、及び、納品先ごとの前記対象物の使用量の情報である使用量情報を取り込む入力手段と、
前記入力手段で取り込んだ納品時刻情報に基づいて、前記納品時刻情報に含まれる複数の納品先を一つの納品先と仮定し(以下、全納品先と呼ぶ)、前記全納品先への納品間隔の確率分布を求める第1の確率分布計算手段と、
前記入力手段で取り込んだ使用量情報と、前記第1の確率分布計算手段で求めた前記全納品先への納品間隔の確率分布とに基づいて、前記納品時刻情報に含まれる各納品先への納品間隔の確率分布を求める第2の確率分布計算手段と、
前記入力手段で取り込んだ使用量情報と、前記第2の確率分布計算手段で求めた前記各納品先への納品間隔の確率分布とに基づいて、前記各納品先で持つべき安全在庫を計算する安全在庫計算手段としてコンピュータを機能させるためのプログラム。
The gist of the present invention for solving the above problems is as follows.
[1] A safety stock determination device for determining a safety stock to be held at each delivery destination for an object delivered from one or a plurality of shipping sources to a plurality of delivery destinations,
For an object for which safety stock is to be determined, input means for fetching usage time information that is delivery time information and usage amount information of the object for each delivery destination as past performance information;
Based on the delivery time information captured by the input means, a plurality of delivery destinations included in the delivery time information are assumed to be one delivery destination (hereinafter referred to as all delivery destinations), and delivery intervals to all delivery destinations First probability distribution calculating means for obtaining a probability distribution of
Based on the usage information captured by the input means and the probability distribution of delivery intervals to all delivery destinations obtained by the first probability distribution calculation means, the delivery destination information included in the delivery time information is sent to each delivery destination. A second probability distribution calculating means for obtaining a probability distribution of delivery intervals;
Based on the usage information fetched by the input means and the probability distribution of the delivery interval to each delivery destination obtained by the second probability distribution calculation means, the safety stock to be possessed by each delivery destination is calculated. A safety stock determination device comprising a safety stock calculation means.
[2] The second probability distribution calculation means uses the object for each delivery destination for delivery to the delivery destination i (i is a symbol indicating the delivery destination) out of the number of deliveries to all delivery destinations. depending on the amount, by assuming that there once in N i times, to provide a delivery interval of the delivery destination i, the probability distribution of the probability distribution of the delivery interval and convolving N i times to all delivery destination The safety stock determination device according to [1], characterized by:
[3] the second probability distribution calculating means, delivery times q i to delivery destination i, as delivery times Q to all delivery destination, and characterized in providing a number N i of the convolution with Q / q i The safety stock determination device according to [2].
[4] Provided with a delivery delay allowable value setting means for setting a delivery delay allowable value α%,
The safety stock calculation means further covers 1-α% of the probability distribution of delivery intervals to each delivery destination based on the delivery delay allowable value α% set by the delivery delay allowable value setting means, The difference from the average of the probability distribution of the delivery interval to each delivery destination is the safety stock days, and the safety stock that each delivery destination should have is calculated by multiplying this safety stock days by the average usage for each delivery destination. The safety stock determination device according to any one of [1] to [3], wherein:
[5] Any one of [1] to [4], wherein the delivery to all delivery destinations includes delivery directly from a shipping source and delivery via other delivery destinations. Safety stock determination device described in one.
[6] The first probability distribution calculating means assumes that a probability distribution of delivery intervals to all delivery destinations follows an exponential distribution or a gamma distribution,
The safety probability determination according to any one of [1] to [5], wherein the second probability distribution calculating means is configured such that a probability distribution of a delivery interval to each delivery destination follows a gamma distribution. apparatus.
[7] The first probability distribution calculating means uses a probability distribution of a delivery interval to all the delivery destinations using an average number of deliveries per unit time to the all delivery destinations (hereinafter referred to as an average delivery rate). Represented by an exponential distribution or a gamma distribution,
The safety stock determination apparatus according to [6], wherein the average delivery rate is treated as constant.
[8] The first probability distribution calculating means uses a probability distribution of a delivery interval to all the delivery destinations using an average number of deliveries per unit time to the all delivery destinations (hereinafter referred to as an average delivery rate). Represented by an exponential distribution or a gamma distribution,
The safety stock determination apparatus according to [6], wherein the average delivery rate is modeled as a function changing with time.
[9] The safety stock determination device according to [8], wherein the first probability distribution calculation unit determines the parameter of the function based on a predetermined information criterion.
[10] The safety stock determination apparatus according to [8] or [9], wherein the function is represented by an exponential Fourier series.
[11] The first probability distribution calculating means calculates a future average delivery rate, which is a target period for determining safety stock, as a constant multiple of a past average delivery rate. [8] to [10] ] The safety stock determination apparatus as described in any one of.
[12] The first probability distribution calculating means obtains a constant to be the constant multiple as a value obtained by dividing an average of future average delivery rates by an average of past average delivery rates,
The safety stock determination according to [11], wherein the average of the future average delivery rate is estimated by a single regression analysis using past performance information, assuming that the average of the average delivery rate of the object is proportional apparatus.
[13] The object is delivered from the shipper to the delivery destination by sea transport by ship,
Using the arrival time information as the delivery time information,
Using the probability distribution of the arrival interval to the all delivery destinations of the ship as the probability distribution of the delivery interval to the all delivery destinations,
The safety stock determination according to any one of [1] to [12], wherein a probability distribution of an arrival interval of a ship to each delivery destination is used as a probability distribution of a delivery interval to each delivery destination. apparatus.
[14] A safety stock determination method for determining a safety stock to be held at each delivery destination with respect to an object delivered from one or a plurality of shipping sources to a plurality of delivery destinations,
The input means, for the object for which safety stock is to be determined, fetching, as past performance information, delivery time information, and usage information that is information on the usage of the object for each delivery destination;
The first probability distribution calculation means assumes a plurality of delivery destinations included in the delivery time information as one delivery destination based on the delivery time information captured by the input means (hereinafter referred to as all delivery destinations). Obtaining a probability distribution of delivery intervals to all delivery destinations;
Based on the usage information captured by the input means by the second probability distribution calculating means and the probability distribution of delivery intervals to all the delivery destinations obtained by the first probability distribution calculating means, the delivery time Obtaining a probability distribution of delivery intervals to each delivery destination included in the information;
The safety stock calculation means has at each delivery destination based on the usage amount information fetched by the input means and the probability distribution of delivery intervals to each delivery destination obtained by the second probability distribution calculation means. And calculating a safety stock to be calculated.
[15] A program for determining a safety stock to be held at each delivery destination with respect to an object delivered from one or more shipping sources to a plurality of delivery destinations,
For an object for which safety stock is to be determined, input means for fetching usage time information that is delivery time information and usage amount information of the object for each delivery destination as past performance information;
Based on the delivery time information captured by the input means, a plurality of delivery destinations included in the delivery time information are assumed to be one delivery destination (hereinafter referred to as all delivery destinations), and delivery intervals to all delivery destinations First probability distribution calculating means for obtaining a probability distribution of
Based on the usage information captured by the input means and the probability distribution of delivery intervals to all delivery destinations obtained by the first probability distribution calculation means, the delivery destination information included in the delivery time information is sent to each delivery destination. A second probability distribution calculating means for obtaining a probability distribution of delivery intervals;
Based on the usage information fetched by the input means and the probability distribution of the delivery interval to each delivery destination obtained by the second probability distribution calculation means, the safety stock to be possessed by each delivery destination is calculated. A program for causing a computer to function as a safety stock calculation means.

本発明によれば、一又は複数の出荷元から複数の納品先に納品される対象物に関して、発注から納品までのリードタイムが長く、また、不安定な状況下においても、各納品先で持つべき安全在庫を適切に決定することができる。   According to the present invention, for an object delivered from one or a plurality of shipping sources to a plurality of delivery destinations, the lead time from ordering to delivery is long, and each delivery destination has even an unstable situation. The appropriate safety stock can be determined appropriately.

第1の実施形態に係る安全在庫決定装置の機能構成を示す図である。It is a figure which shows the function structure of the safety stock determination apparatus which concerns on 1st Embodiment. 第1の実施形態における対象物の出荷及び納品の概念を模式的に示す図である。It is a figure which shows typically the concept of the shipment and delivery of the target object in 1st Embodiment. 第1の実施形態に係る安全在庫決定装置による安全在庫決定処理を示すフローチャートである。It is a flowchart which shows the safety stock determination process by the safety stock determination apparatus which concerns on 1st Embodiment. ある対象物についての納品先別の入港時刻情報の例を示す図である。It is a figure which shows the example of the arrival time information according to the delivery destination about a certain target object. 製品名Xについての納品先別・日別の使用量情報の例を示す図である。It is a figure which shows the example of the usage-amount information according to the delivery destination about a product name X, and a day. 船の全納品先への到着間隔のヒストグラムと、指数分布による近似曲線との例を示す図である。It is a figure which shows the example of the histogram of the arrival interval to all the delivery destinations of a ship, and the approximate curve by exponential distribution. 船の納品先Bへの到着間隔のヒストグラムと、ガンマ分布による近似曲線との例を示す図である。It is a figure which shows the example of the histogram of the arrival interval to the delivery destination B of a ship, and the approximated curve by gamma distribution. 初期在庫を第1の実施形態に係る安全在庫決定方法で与え、在庫推移を計算した結果の例を示す特性図である。It is a characteristic view which shows the example of the result of having given initial stock with the safe stock determination method concerning a 1st embodiment, and calculating stock transition. 第2の実施形態に係る安全在庫決定装置の機能構成を示す図である。It is a figure which shows the function structure of the safety stock determination apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る安全在庫決定装置による安全在庫決定処理を示すフローチャートである。It is a flowchart which shows the safety stock determination process by the safety stock determination apparatus which concerns on 2nd Embodiment. ある対象物についての納品先別の入港時刻情報の例を示す図である。It is a figure which shows the example of the arrival time information according to the delivery destination about a certain target object. 平均到着率λ(s)の推定結果、及び全納品先への入港時刻に線分を表示したグラフの例を示す特性図である。It is a characteristic view which shows the example of the graph which displayed the line segment in the estimation result of average arrival rate (lambda) (s), and the port arrival time to all the delivery destinations. 船の各納品先への到着間隔と、希薄化アルゴリズムによりランダムに生成した標本とを比較したグラフの例を示す図である。It is a figure which shows the example of the graph which compared the arrival interval to each delivery destination of a ship, and the sample produced | generated at random by the dilution algorithm. 納品先別に安全在庫日数を計算した結果の例を示す図である。It is a figure which shows the example of the result of having calculated the safety stock days for every delivery destination. 在庫の考え方を説明するための図である。It is a figure for demonstrating the view of stock.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
[第1の実施形態]
まず、本発明を適用する安全在庫決定手法の概要について説明する。
本発明者は、海上輸送によって供給される対象物(原料、材料、製品、商品等)の在庫切れを抑えるためには、対象物を供給する船の到着間隔のばらつきを吸収する分だけ安全在庫を持てば良いと考えた。すなわち、安全在庫は、リードタイムのばらつきからではなく、船の納品先への到着間隔を確率分布でモデル化し、船の平均到着間隔と、船の最大の到着間隔との差分から与えればよいと考えた。このように安全在庫を設定すれば、平均到着間隔からばらついて船が到着したとしても、納品先(工場、商業施設、在庫拠点等)で対象物の在庫切れを抑えるように在庫管理ができる。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
[First Embodiment]
First, an outline of a safety stock determination method to which the present invention is applied will be described.
In order to suppress the out of stock of the objects (raw materials, materials, products, goods, etc.) supplied by sea transportation, the present inventor has safety stock corresponding to the variation in arrival intervals of ships that supply the objects. I thought I should have. In other words, the safety stock should be given from the difference between the average arrival interval of the ship and the maximum arrival interval of the ship, modeling the arrival interval to the ship destination with a probability distribution, not from the variation in lead time. Thought. If the safety stock is set in this way, even if the ship arrives with a variation from the average arrival interval, the inventory can be managed so as to prevent the target from being out of stock at the delivery destination (factory, commercial facility, inventory base, etc.).

上記計算のためには、船の納品先への到着間隔の確率分布をモデル化することが必要である。そこで、以下に詳述するように、配船業務を解析し、配船を統計的にモデル化することで、納品先ごとに船の到着間隔の確率分布の構築を試みた。
まず、本発明者は、船の各納品先への到着間隔を解析したところ、その到着間隔はガンマ分布に近い確率分布であることを見出した。ガンマ分布は、指数分布に従って発生する到着事象が複数回生起するまでの時間間隔を表わす分布であり、現実問題では、設備の寿命時間分布や故障率の計算に使われることが多い。
For the above calculation, it is necessary to model the probability distribution of the arrival interval at the ship delivery destination. Therefore, as will be described in detail below, we attempted to construct a probability distribution of ship arrival intervals for each delivery destination by analyzing ship allocation operations and statistically modeling ship allocation.
First, the present inventor analyzed the arrival interval of each ship to each delivery destination, and found that the arrival interval was a probability distribution close to a gamma distribution. The gamma distribution is a distribution that represents a time interval until an arrival event that occurs in accordance with an exponential distribution occurs multiple times. In real problems, the gamma distribution is often used to calculate the life time distribution of equipment and the failure rate.

本発明者は、この知見に基づき、船の各納品先への到着現象も、指数分布等の特定の確率分布に従う現象から生起しているのではないかと考えた。そこで、複数の納品先を一つの納品先と仮定して(以下、全納品先と呼ぶ)、船の全納品先への到着に着目し、その到着間隔を計算した。その結果、船の全納品先への到着間隔は、指数分布やガンマ分布等のランダム性の強い確率分布に従う傾向があることを見出した。この場合に、船の全納品先への到着間隔は、出荷元からの最初の納品先への到着だけでなく、国内へ到着した船が複数の納品先を巡る多港揚げの場合も、各港への到着を全納品先への一つの到着として取り扱うことにより求める。
船が全納品先にランダムに到着する理由は、船が全納品先に到着する過程で様々な影響を受けてばらついたからであると考えた。例えば海外の遠方から輸送する船の出港時刻は、他社船との融通、荷積み待ち、設備トラブル等によってばらつく。さらに、船は、複数のリードタイムを持ち、かつ天候不順や海流等の影響を受けてばらつく。加えて、船が国内近隣の拠点に到着した後も、天候影響を受けることはもちろん、港の混雑や荷降ろし先の在庫状況によって、洋上での滞船が発生するため、船の出港/入港時刻がばらつく。このように、様々なばらつき影響を受けた船が全納品先に到着する過程で混ざりあうと、最終的にランダム性が強くなり、ランダム性が強い確率分布に近くなると考えた。
Based on this knowledge, the present inventor has thought that the arrival phenomenon of each ship at each delivery destination may also be caused by a phenomenon that follows a specific probability distribution such as an exponential distribution. Therefore, assuming a plurality of delivery destinations as one delivery destination (hereinafter referred to as all delivery destinations), the arrival interval of the ship is focused on and calculated. As a result, we found that the arrival interval of ships to all destinations tends to follow a highly random probability distribution such as exponential distribution and gamma distribution. In this case, not only the arrival interval of the ship to all delivery destinations, but also the arrival at the first delivery destination from the shipper, as well as in the case of multi-port unloading that ships arriving in the country visit multiple delivery destinations. Obtained by treating arrival at the port as one arrival at all destinations.
We thought that the reason why the ship randomly arrived at all delivery destinations was that the ship was affected by various influences in the process of arrival at all delivery destinations. For example, the departure time of a ship that is transported from a remote location varies depending on the interchange with other ships, waiting for loading, equipment troubles, and the like. In addition, ships have multiple lead times and vary under the influence of bad weather and ocean currents. In addition, after a ship arrives at a nearby base in the country, it is not only affected by the weather, but also due to congestion at the port and stocking conditions at the unloading destination, the ship will depart / enter the port. Time varies. In this way, if ships affected by various variations are mixed in the process of arriving at all delivery destinations, the randomness will eventually become stronger, and it will be close to a probability distribution with a strong randomness.

以上のことを考慮して、本発明者は、対象物の配船業務は、ある二つの拠点間で単独で行われる輸送ではなく、図2に示すように、指数分布やガンマ分布等のランダム性の強い確率分布に従って全納品先に到着した船を、各納品先に各々の使用量に応じて配船する業務として捉えられると考えた。そして、この考えに基づいて、船の到着を「船の全納品先への到着」と「船の各納品先への到着」との二段階に分けて、船の各納品先への到着間隔の確率分布を、船の全納品先への到着間隔の確率分布の畳み込み積分でモデル化し、各納品先で持つべき安全在庫を算出する手法を確立した。   In consideration of the above, the present inventor considered that the ship dispatching operation of the object is not a single transportation between two bases but a random distribution such as an exponential distribution or a gamma distribution as shown in FIG. We thought that ships that arrived at all delivery destinations according to a highly probable probability distribution could be regarded as a task of allocating to each delivery destination according to their usage. Based on this idea, the arrival interval of a ship is divided into two stages: “arrival at all ship destinations” and “arrival at each ship destination”. The probability distribution of the ship is modeled by the convolution integral of the probability distribution of arrival intervals at all ship destinations, and a method to calculate the safety stock that each ship destination should have is established.

以下、本発明を適用した第1の実施形態に係る安全在庫決定手法について述べる。
図1に、第1の実施形態に係る安全在庫決定装置100の機能構成を示す。安全在庫決定装置100は、一又は複数の出荷元から複数の納品先に納品される対象物に関して、各納品先で持つべき安全在庫を決定するのに利用される。例えば鉄鋼メーカにおける鉄鉱石や石炭、化学メーカや石油メーカにおける原油、電力会社におけるLNGや石炭は、国外の出荷元から、船を利用して、国内の納品先に納品される。このようなケースにおいて、各納品先で持つべき安全在庫を計算するために、本発明は広く適用可能である。
Hereinafter, the safety stock determination method according to the first embodiment to which the present invention is applied will be described.
FIG. 1 shows a functional configuration of the safety stock determination apparatus 100 according to the first embodiment. The safety stock determination device 100 is used to determine a safety stock to be held at each delivery destination for an object delivered from one or a plurality of shipping sources to a plurality of delivery destinations. For example, iron ore and coal in steel manufacturers, crude oil in chemical manufacturers and oil manufacturers, and LNG and coal in electric power companies are delivered from overseas shipping sources to domestic destinations using ships. In such a case, the present invention is widely applicable in order to calculate the safety stock that each delivery destination should have.

300はデータベースであり、実績情報が蓄積、保存されている。実績情報には、対象物別・納品先別の入港時刻情報と、対象物別・納品先別・日別の使用量情報を含む。   Reference numeral 300 denotes a database in which performance information is accumulated and stored. The track record information includes arrival time information for each object and each delivery destination, and usage information for each object, each delivery destination, and each day.

101は入力手段である入力部であり、データベース300から、安全在庫を決定したい対象物(製品名Xとする)について、納品先別の入港時刻情報と、納品先別・日別の使用量情報とを取り込む。なお、データベース300に保存されている全期間の実績情報を取り込むようにしてもよいし、ユーザが指定した解析対象期間の実績情報を取り込むようにしてもよい。
図4に、製品名Xについての納品先別の入港時刻情報の例を示す。納品先別の入港時刻情報は、荷卸しした納品先名と、その納品先への入港時刻と、入荷量[t]とのマトリクスとして与えられる。入港時刻情報は、本発明でいう「納品時刻情報」の例である。
図5に、製品名Xについての納品先別・日別の使用量情報の例を示す。納品先別・日別の使用量情報は、使用した納品先名と、使用した日付と、使用量[t]とのマトリクスとして与えられる。
101 is an input unit that is an input means, and from the database 300, for an object (product name X) for which safety stock is desired to be determined, arrival time information by delivery destination and usage information by delivery destination / day And capture. In addition, you may make it capture the performance information of the whole period preserve | saved at the database 300, and may capture the performance information of the analysis object period designated by the user.
In FIG. 4, the example of the port arrival time information according to the delivery destination about the product name X is shown. The arrival time information for each delivery destination is given as a matrix of the name of the delivery destination that has been unloaded, the arrival time at the delivery destination, and the arrival amount [t]. The port entry time information is an example of “delivery time information” in the present invention.
FIG. 5 shows an example of usage amount information for each delivery destination and each day for the product name X. The usage amount information for each delivery destination and each day is given as a matrix of the name of the delivery destination used, the date used, and the usage [t].

102は納期遅れ許容値設定手段である納期遅れ許容値設定部であり、納期遅れ許容値を設定する。納期遅れ許容値は、例えば納期遅れの割合[%]として設定される。納期遅れ許容値は、ユーザが入力装置107を介して適宜設定することができ、対象物別、納品先別に設定できるようにしてもよい。また、デフォルト値が用いられるようにしてもよい。   Reference numeral 102 denotes a delivery date delay allowable value setting unit, which is a delivery date delay allowable value setting means, and sets a delivery date delay allowable value. The delivery delay allowable value is set, for example, as a delivery delay rate [%]. The delivery delay allowable value can be appropriately set by the user via the input device 107, and may be set for each object and each delivery destination. A default value may be used.

103は第1の確率分布計算手段である第1の確率分布計算部であり、入力部101で取り込んだ納品先別の入港時刻情報に基づいて、該納品先別の入港時刻情報に含まれる複数の納品先を一つの納品先と仮定し(以下、全納品先と呼ぶ)、船の全納品先への到着間隔の確率分布を求める。図4の例でいえば、時系列順に納品先がC,C,B,・・・となっているが、納品先の識別をなくして、船が全納品先に「2015/3/10 0:00」、「2015/3/19 14:27」、「2015/3/20 5:20」、・・・の順で到着したものとして、その間隔の確率分布を求める。船の全納品先への到着間隔の確率分布は、本発明でいう「全納品先への納品間隔の確率分布」の例である。   Reference numeral 103 denotes a first probability distribution calculation unit which is a first probability distribution calculation unit, and a plurality of items included in the port arrival time information for each delivery destination based on the port arrival time information for each delivery destination captured by the input unit 101. Is assumed to be one delivery destination (hereinafter referred to as all delivery destinations), and the probability distribution of the arrival interval to all delivery destinations of the ship is obtained. In the example of FIG. 4, the delivery destinations are C, C, B,... In time series order, but the delivery destination is not identified, and the ship sends all the delivery destinations to “2015/3/100. 0:00 ”,“ 2015/3/19 14:27 ”,“ 2015/3/20 5:20 ”,... The probability distribution of the arrival interval to all delivery destinations of the ship is an example of the “probability distribution of delivery interval to all delivery destinations” in the present invention.

104は第2の確率分布計算手段である第2の確率分布計算部であり、入力部101で取り込んだ納品先別・日別の使用量情報と、第1の確率分布計算部103で求めた船の全納品先への到着間隔の確率分布とに基づいて、船の各納品先(納品先別の入港時刻情報に含まれる複数の納品先)への到着間隔の確率分布を求める。船の各納品先への到着間隔の確率分布は、本発明でいう「各納品先への納品間隔の確率分布」の例である。図2に示すように、製品名Xの対象物を積載した船は、全納品先にQ隻到着し(すなわち、全納品先への納品回数がQ)、納品先別の使用量に応じてqA隻、qB隻、・・・と配船されると考える。ここで、ある納品先iにはNi=Q/qi隻に一回、定期的に配船されると仮定して(すなわち、納品先iへの納品はNi回に一回あると仮定する)、船の納品先iへの到着間隔を、船の全納品先への到着間隔の確率分布をNi回畳み込み積分した確率分布で与える。iは納品先を表わす記号であり、図2の例ではi=A、B、・・・、Zである。 Reference numeral 104 denotes a second probability distribution calculation unit which is a second probability distribution calculation unit, which is obtained by the first probability distribution calculation unit 103 and the usage amount information for each delivery destination, which is captured by the input unit 101, and the first probability distribution calculation unit 103. Based on the probability distribution of arrival intervals at all ship destinations, the probability distribution of arrival intervals at each ship destination (a plurality of destinations included in the port arrival time information for each ship destination) is obtained. The probability distribution of the arrival interval at each delivery destination of the ship is an example of the “probability distribution of the delivery interval to each delivery destination” in the present invention. As shown in FIG. 2, a ship loaded with an object of product name X arrives at all delivery destinations with Q ships (that is, the number of deliveries to all delivery destinations is Q) and depends on the amount used by each delivery destination. q Ships q A , q B , and so on. Here, one in N i = Q / q i vessels in certain delivery destination i times, assuming that is periodically Haisen (i.e., delivery to a delivery destination i is when there once in N i times suppose), give the arrival interval of the delivery destination i of the ship, the probability distribution of the arrival interval to all the delivery destination of the ship at the N i times the convolution integral of the probability distribution. i is a symbol representing a delivery destination, and i = A, B,..., Z in the example of FIG.

105は安全在庫計算手段である安全在庫計算部であり、入力部101で取り込んだ納品先別・日別の使用量情報と、納期遅れ許容値設定部102で設定した納期遅れ許容値と、第2の確率分布計算部104で求めた船の各納品先への到着間隔の確率分布とに基づいて、各納品先で持つべき安全在庫を計算する。   Reference numeral 105 denotes a safety stock calculation unit which is a safety stock calculation means, and includes usage amount information for each delivery destination and date fetched by the input unit 101, a delivery date delay allowable value set by the delivery date delay allowable value setting unit 102, Based on the probability distribution of the arrival interval at each delivery destination of the ship obtained by the probability distribution calculation unit 104 of 2, the safety stock to be possessed by each delivery destination is calculated.

106は出力手段である出力部であり、安全在庫計算部105で計算した安全在庫の結果を出力する。例えばディスプレイ108に結果を表示したり、本装置100の外部機器に結果を送出したりする。   Reference numeral 106 denotes an output unit serving as an output unit, which outputs the result of the safety stock calculated by the safety stock calculation unit 105. For example, the result is displayed on the display 108 or the result is sent to an external device of the apparatus 100.

107はポインティングデバイスやキーボード等の入力装置、108はディスプレイである。   Reference numeral 107 denotes an input device such as a pointing device or a keyboard, and 108 denotes a display.

次に、安全在庫決定装置100による安全在庫決定方法を説明する。
図3は、第1の実施形態に係る安全在庫決定装置100による安全在庫決定処理を示すフローチャートである。
ステップS1で、入力部101は、データベース300から、安全在庫を決定したい対象物(製品名Xとする)について、納品先別の入港時刻情報(図4を参照)と、納品先別・日別の使用量情報(図5を参照)とを取り込む。
Next, a safety stock determination method by the safety stock determination device 100 will be described.
FIG. 3 is a flowchart showing the safety stock determination process performed by the safety stock determination apparatus 100 according to the first embodiment.
In step S <b> 1, the input unit 101 determines, from the database 300, port arrival time information (see FIG. 4) for each delivery destination and the delivery destination / day for an object (product name X) for which safety stock is desired to be determined. Usage amount information (see FIG. 5).

次に、ステップS2で、納期遅れ許容値設定部102は、納期遅れ許容値α%を設定する。納期遅れ許容値α%は、納期遅れの割合[%]として設定される。   Next, in step S2, the delivery delay allowable value setting unit 102 sets the delivery delay allowable value α%. The delivery delay tolerance α% is set as a delivery delay percentage [%].

次に、ステップS3で、第1の確率分布計算部103は、船の全納品先への到着間隔の確率分布を求める。船の全納品先への到着は、出荷元からの直接の到着であるか、他の港を経由しての到着(多港揚げ)であるかは問わないこととする。
図6は、図4の入港時刻情報から計算した、船の全納品先への到着間隔のヒストグラムと、指数分布による近似曲線とを描いた図である。図6から分かるように、船の全納品先への到着間隔は、指数分布に従っている。ここで、指数分布とは、確率密度関数が式(1)で与えられる確率分布であり、ランダムに発生する離散事象の到着間隔を表わす。船の全納品先への到着間隔がランダムな理由は、海外の遠方から輸送する船は、天候不順や設備トラブル等の影響を受けて大きくばらつくため、様々な出荷元から出た船が日本に到着する過程で混ざりあうと、最終的にランダム性が強くなり、指数分布に近くなったからだと考えられる。λは船の全納品先への平均到着率であり、単位時間当たりの船の平均到着数を表わす。図4の入港時刻情報に対して最尤推定法を用いてλを推定した結果、その値は1.0[隻/日]となった。船の全納品先への平均到着率λは、本発明でいう「全納品先への平均納品率(単位時間当たりの平均納品回数)」の例である。
Next, in step S3, the first probability distribution calculation unit 103 obtains a probability distribution of arrival intervals at all ship destinations of the ship. Regardless of whether the ship arrives at all destinations, it is a direct arrival from the shipper or an arrival through another port (multi-port freight).
FIG. 6 is a diagram depicting a histogram of arrival intervals at all ship destinations calculated from the port entry time information of FIG. 4 and an approximate curve based on an exponential distribution. As can be seen from FIG. 6, the arrival intervals at all ship destinations follow an exponential distribution. Here, the exponential distribution is a probability distribution in which a probability density function is given by Expression (1), and represents an arrival interval of randomly occurring discrete events. The reason for the random arrival intervals at all ship destinations is that ships that are transported from far away from the country vary greatly due to bad weather, equipment troubles, etc., so ships from various shipping sources come to Japan. When mixed in the process of arriving, it is thought that the randomness eventually became stronger and became closer to the exponential distribution. λ is an average arrival rate to all ship destinations, and represents an average number of ship arrivals per unit time. As a result of estimating λ using the maximum likelihood estimation method for the port arrival time information of FIG. 4, the value was 1.0 [ships / day]. The average arrival rate λ to all delivery destinations of a ship is an example of “average delivery rate to all delivery destinations (average number of deliveries per unit time)” in the present invention.

Figure 2018073200
Figure 2018073200

なお、船の全納品先への到着間隔は、ガンマ分布に従うとしてもよい。指数分布に従って発生する船を複数の会社で共有する場合、ある会社から見た全社到着間隔はガンマ分布に従う場合がある。   Note that the arrival interval of all ships to the delivery destination may follow a gamma distribution. When a ship generated according to an exponential distribution is shared by a plurality of companies, the company-wide arrival interval seen from a certain company may follow a gamma distribution.

次に、ステップS4で、第2の確率分布計算部104は、船の各納品先への到着間隔の確率分布を求める。
図2に示すように、製品名Xの対象物を積載した船は、全納品先にQ隻到着し、納品先別の使用量に応じてqA隻、qB隻、・・・と配船されると考える。ここで、ある納品先iには常にNi=Q/qi隻に一回、定期的に配船されると仮定する。この仮定の下では、納品先iには、船が全納品先にNi隻到着するごとに一回配船される。すなわち、船の納品先iへの到着間隔の確率分布は、指数分布に従って、全納品先に到着する船がNi隻となるまでの時間の分布として与えられる。この指数分布に従う現象が一定回数生起するまでの時間は、指数分布のNi回の畳み込み積分で与えられ、一般的にガンマ分布となる。つまり、船の納品先iへの到着間隔の確率分布をgi(t)とすると、Ni及びλの2つのパラメータを用いることで、式(2)のようにガンマ分布でモデル化できる。
Next, in step S4, the second probability distribution calculation unit 104 obtains a probability distribution of arrival intervals at each ship destination of the ship.
As shown in FIG. 2, the ship loaded with objects product names X arrives Q vessels in all delivery destination, q A vessels in accordance with the delivery destination another usage, q B vessels, ... and distribution Think of it as a ship. Here, it is assumed that a certain delivery destination i is regularly dispatched once to N i = Q / q i ships. Under this assumption, the delivery destination i, is once Haisen each time the ship arrives N i vessels in all delivery destination. That is, the probability distribution of the arrival interval of the delivery destination i ship, according to an exponential distribution, a ship to arrive to all the delivery destination is given as the time of the distribution of until N i cough. Time behavior according to the exponential distribution until the predetermined number of times occur is given by N i times the convolution integral of the exponential distribution, the general gamma distribution. In other words, if the probability distribution of the arrival interval of the ship to the delivery destination i is g i (t), it can be modeled by a gamma distribution as shown in Equation (2) by using two parameters N i and λ.

Figure 2018073200
Figure 2018073200

なお、畳み込み積分の回数Niは、上記計算方法に限らない。例えば納品先別の使用量の割合に応じてNiを決定したい場合は、全納品先の入船数Qに納品先別の使用量の割合を掛けた値をNiとして与えればよい。具体的には、A,Bの2つの納品先を仮定し、それぞれの使用量の割合が0.4、0.6であるとする。このとき、納品先A,BそれぞれのNiは、納品先Aに対してはQ×0.4、納品先Bに対してはQ×0.6とすれば、使用量の割合に応じたNiが決められる。 Incidentally, the number N i of the convolution integral is not limited to the above calculation method. For example, if you want to determine the N i in proportion to the delivery destination-specific usage, a value obtained by multiplying the ratio of delivery destination-specific usage Irifune number Q of total delivery destination may be given as N i. Specifically, it is assumed that two delivery destinations A and B are used, and the ratios of the respective usage amounts are 0.4 and 0.6. In this case, the delivery destination A, B each N i is, Q × 0.4 for delivery destination A, if Q × 0.6 for delivery destination B, corresponding to the ratio of the amount Ni is determined.

図7は、船の納品先Bへの到着間隔のヒストグラムと、納品先Bに関してλ、Niをそれぞれ計算し、式(2)を用いて作成したガンマ分布による近似曲線とを描いた図である。各納品先への入船回数qi、ガンマ分布のパラメータλ、Niは、図4の入港時刻情報から計算し、表1〜表3に示す値を与えた。λ、Niという2つのパラメータを用いるだけで、実績に近い曲線を得られる。 Figure 7 is a histogram of the arrival interval of the delivery destination B ship, lambda respect delivery destination B, the N i respectively calculated, in view depicting the approximate curve by gamma distribution prepared using the equation (2) is there. The number of times of arrival at each delivery destination q i and the parameters λ and N i of the gamma distribution were calculated from the port entry time information of FIG. 4 and given the values shown in Tables 1 to 3. By using only two parameters λ and N i , a curve close to actual results can be obtained.

Figure 2018073200
Figure 2018073200

Figure 2018073200
Figure 2018073200

Figure 2018073200
Figure 2018073200

この近似曲線の妥当性を確保するためには、コルモゴロフ・スミルノフ検定(KS検定)等を用いた統計検定を実施することが望ましい。KS検定は、ある二つの母集団又は確率分布が同一の分布に従っているという帰無仮説を立て、この帰無仮説が成立するかどうか検定する手法である。KS検定では、この帰無仮説が成立している確率p値を計算し、p値が0.05以下であれば、帰無仮説が棄却され、二つの母集団又は分布が同一の分布に従っていないと検定できる。今回、図7のヒストグラムと近似曲線とに対して、有意度5%にてKS検定を実施した。その結果、p値は0.62となり、0.05よりも十分大きな値を示し、ヒストグラムと近似曲線とが同一の分布に従っているという帰無仮説は棄却されなかった。   In order to ensure the validity of this approximate curve, it is desirable to perform a statistical test using the Kolmogorov-Smirnov test (KS test) or the like. The KS test is a technique for establishing a null hypothesis that two populations or probability distributions follow the same distribution, and testing whether this null hypothesis holds. In the KS test, the probability p-value that this null hypothesis is established is calculated. If the p-value is 0.05 or less, the null hypothesis is rejected and the two populations or distributions do not follow the same distribution. Can be tested. This time, the KS test was performed on the histogram and the approximate curve of FIG. As a result, the p value was 0.62, showing a value sufficiently larger than 0.05, and the null hypothesis that the histogram and the approximate curve follow the same distribution was not rejected.

次に、ステップS5で、安全在庫計算部105は、各納品先で持つべき安全在庫を計算する。
式(2)で与えられた船の納品先iへの到着間隔の確率分布の下で、納期達成率を1−α%以上に保つためには、確率分布gi(t)を1−α%網羅する点と、確率分布gi(t)の平均値の差分を安全在庫日数として与えればよい。安全在庫日数をZ[日]、船の納品先iへの到着間隔の確率分布gi(t)の累積分布関数をGi(・)と置き、累積分布関数の逆関数をG-1(・)と置くと、納期達成率1−α%以上に保つ安全在庫日数は式(3)となる。
Next, in step S5, the safety stock calculation unit 105 calculates the safety stock that each delivery destination should have.
In order to keep the delivery rate achievement rate at 1-α% or more under the probability distribution of the arrival interval of the ship to the delivery destination i given by the equation (2), the probability distribution g i (t) is set to 1-α. It is only necessary to give the difference between the points covering% and the average value of the probability distribution g i (t) as the safety stock days. The safety distribution days are Z [days], the cumulative distribution function of the probability distribution g i (t) of the arrival interval at the ship destination i is set as G i (·), and the inverse function of the cumulative distribution function is G −1 ( -)), The safety stock days to keep the delivery rate achievement rate 1-α% or more is given by equation (3).

Figure 2018073200
Figure 2018073200

ただし、式(3)により計算される安全在庫日数は、納期遅れをα%以下に保つ計算式であり、在庫切れがこの確率で発生することはない。なぜならば、式(3)により計算される安全在庫日数は在庫の使用量一定を仮定しているからである。実務上は、ある対象物の在庫が少ないと予め分かっている場合、船の予定到着時間を見越して、事前に他の対象物への使用振り替え等で、在庫切れが発生しないように生産を調整できる。   However, the safety stock days calculated by the equation (3) is a calculation equation that keeps the delivery delay at α% or less, and the stockout does not occur with this probability. This is because the safety stock days calculated by the equation (3) assume a constant usage amount of stock. In practice, if it is known in advance that the inventory of a certain object is small, the production is adjusted so that the planned arrival time of the ship is anticipated and the use is transferred to another object in advance so that it will not run out of stock. it can.

表4に、納期遅れ許容値α%を5%として設定し、納品先別に安全在庫日数[日]を計算した結果を示す。
安全在庫は、図5の使用量情報から、納品先別の平均使用量[t/日]を計算し、表4で得られた安全在庫日数[日]に掛け合わせて求める。表5に、平均使用量[t/日]の計算結果を示す。また、表6に、安全在庫日数[日]に平均使用量[t/日]を掛けて、安全在庫[t]を計算した結果を示す。
Table 4 shows the result of calculating the safety stock days [days] for each delivery destination by setting the delivery delay allowable value α% as 5%.
The safety stock is obtained by calculating the average usage amount [t / day] for each delivery destination from the usage amount information of FIG. 5 and multiplying it by the safety stock days [day] obtained in Table 4. Table 5 shows the calculation result of the average usage [t / day]. Table 6 shows the result of calculating the safety stock [t] by multiplying the safety stock days [days] by the average usage [t / day].

Figure 2018073200
Figure 2018073200

Figure 2018073200
Figure 2018073200

Figure 2018073200
Figure 2018073200

このように、船の全納品先への到着間隔の確率分布と、船の各納品先別の配船数を与えることで、畳み込み積分の計算を用いて、安全在庫を計算することができる。
図8は、納品先Bにおいて初期在庫を本実施形態に係る安全在庫決定方法で与え、在庫推移を計算した結果である。今回計算した安全在庫を用いれば、在庫切れが発生していないことが分かる。また、表7に、複数の対象物に対して安全在庫を計算した結果を示す。このように、各種の対象物について、納品先ごとに安全在庫をユーザに提示することで、在庫を適正に保つことができる。
As described above, the safety stock can be calculated using the calculation of the convolution integral by giving the probability distribution of the arrival intervals to all the delivery destinations of the ship and the number of ships allocated to each delivery destination of the ship.
FIG. 8 shows the result of calculating the stock transition by giving the initial stock at the delivery destination B by the safety stock determination method according to the present embodiment. If the safety stock calculated this time is used, it can be understood that there is no out of stock. Table 7 shows the result of calculating the safety stock for a plurality of objects. As described above, by presenting the safety stock to the user for each delivery destination for various objects, the stock can be appropriately maintained.

Figure 2018073200
Figure 2018073200

次に、ステップS6で、出力部106は、ステップS5において計算した安全在庫の結果を出力する。   Next, in step S6, the output unit 106 outputs the safety stock result calculated in step S5.

以上述べたように、海外や多港揚げによる一又は複数の出荷元から、海上輸送により複数の納品先に納品される対象物に関して、発注から納品までのリードタイムが長く、また、不安定な状況下においても、納期達成率を一定以上に保つように各納品先で持つべき安全在庫を適切に決定することができる。これにより、例えば決定した安全在庫と現状の安全在庫とを比較することで、納品先ごとに在庫多少を見極めることが可能となり、大きな在庫削減が期待される。
また、安全在庫を決定する際に、船の到着を「船の全納品先への到着」と「船の各納品先への到着」との二段階に分けて、船の各納品先への到着間隔の確率分布を、船の全納品先への到着間隔の確率分布の畳み込み積分でモデル化するようにした。例えば船の各納品先への到着間隔の確率分布を実績情報から直接的に求める手法も考えられるが、船の全納品先への到着間隔の確率分布を求めるのに比べると精度が劣ってしまう。それに対して、本発明を適用した手法では、船の到着を「船の全納品先への到着」と「船の各納品先への到着」との二段階に分けて、N数の多い、船の全納品先への到着間隔の確率分布を精度良く求めた上で、船の各納品先への到着間隔の確率分布を求めるので、安全在庫の決定精度を向上させることができる。
As described above, the lead time from ordering to delivery is long and unstable for objects delivered from one or more shippers from overseas or multi-port to multiple delivery destinations by sea transport. Even under circumstances, it is possible to appropriately determine the safety stock that each delivery destination should have so as to keep the delivery date achievement rate above a certain level. As a result, for example, by comparing the determined safety stock with the current safety stock, it becomes possible to determine the amount of inventory for each delivery destination, and a large inventory reduction is expected.
Also, when determining the safety stock, the arrival of the ship is divided into two stages, “arrival at all ship destinations” and “arrival at each ship destination”. The probability distribution of arrival intervals is modeled by the convolution integral of the probability distribution of arrival intervals to all ship destinations. For example, a method of directly obtaining the probability distribution of arrival intervals at each ship destination from the actual information may be considered, but the accuracy is inferior compared to obtaining the probability distribution of arrival intervals at all ship destinations. . On the other hand, in the method to which the present invention is applied, the arrival of the ship is divided into two stages of “arrival at all ship destinations” and “arrival at each ship destination”, and the number of N is large. Since the probability distribution of the arrival interval to each delivery destination of the ship is obtained with high accuracy after obtaining the probability distribution of the arrival interval to all delivery destinations of the ship, the accuracy of determining the safety stock can be improved.

[第2の実施形態]
第1の実施形態で説明した安全在庫決定手法によって、対象物別に、所望の解析対象期間における各納品先で持つべき安全在庫を決定できるようになった。
ここで、対象物の供給途絶の発生確率が季節により変動する場合がある。対象物は遠方の海外から輸送されるため、洪水、台風、寒波等の季節影響を受けて供給量が変動することが知られている。例えばオーストラリアから出荷される対象物は、オーストラリアが雨季となる1〜3月に洪水等の自然災害により陸上のサプライチェーンが分断され、対象物の出荷停止リスクがある。したがって、1〜3月より前の時期に予め供給途絶を予想して、通常よりも多くの安全在庫を確保しなければならない。
[Second Embodiment]
With the safety stock determination method described in the first embodiment, it is possible to determine the safety stock to be held in each delivery destination in a desired analysis target period for each target.
Here, the occurrence probability of the supply interruption of the object may vary depending on the season. Since the object is transported from a distant overseas, the supply amount is known to fluctuate due to seasonal influences such as floods, typhoons, and cold waves. For example, an object shipped from Australia has a risk of stopping the shipment of the object due to a break in the supply chain on land due to a natural disaster such as a flood in January to March when Australia is in the rainy season. Therefore, it is necessary to anticipate a supply disruption in advance before the period of 1 to 3 months, and to secure more safety stock than usual.

第1の実施形態で説明した安全在庫決定手法では、このような季節変動を考慮して安全在庫を決定するようにはしていない。
この場合に、解析対象期間を、季節変動を考慮したいメッシュに合わせて小分割し、小分割した期間それぞれに対して安全在庫を決定することが考えられる。しかしながら、安全在庫を高精度に決定するためには、小分割した期間中にも、十分に多くの実績情報が必要となる。つまり、納品頻度が少ない対象物に対しては適用できない。特に本発明を適用して安全在庫を計算する対象物は、遠方の海外から輸送されることが想定されるため、大ロット、低頻度納品となる場合が多く、期間を小分割すると、安全在庫を高精度に決定できるほど実績情報が揃わない場合が多い。
In the safety stock determination method described in the first embodiment, the safety stock is not determined in consideration of such seasonal variation.
In this case, it is conceivable that the analysis target period is subdivided in accordance with a mesh to be considered for seasonal variation, and the safety stock is determined for each of the subdivided periods. However, in order to determine the safety stock with high accuracy, a sufficiently large amount of performance information is required even during the subdivision period. That is, it cannot be applied to an object with a low delivery frequency. In particular, an object for which safety inventory is calculated by applying the present invention is assumed to be transported from a distant overseas, so it is often delivered in large lots and low frequency delivery. In many cases, results information is not available enough to determine the

本発明者は、上記課題を解決するため、第1の実施形態で説明した「船の全納品先への到着間隔」と「船の各納品先への到着間隔」の確率分布に改良を加え、季節変動まで考慮して、船の各納品先への到着間隔の確率分布をモデル化しようと試みた。
船の各納品先への到着間隔の確率分布に季節変動要素を加えるには、この確率分布が時刻で変化するようなモデルを構築すればよいという思想に至ったが、季節変動発生確率は、対象物や年によって異なる上、その発生要因は多岐に渡るため、個々の対象物に対して定量的に季節変動を設定することは非常に困難であった。さらに、船の入港時刻は、納品先別で見ると数が少ないため、季節変動を高精度に推定するためには、より多くの実績情報が必要であった。
In order to solve the above problem, the present inventor made improvements to the probability distributions of “arrival intervals at all ship destinations” and “arrival intervals at each ship destination” described in the first embodiment. In consideration of the seasonal variation, we tried to model the probability distribution of the arrival interval at each ship destination.
In order to add a seasonal variation factor to the probability distribution of the arrival interval of each ship's delivery destination, we came up with the idea that this probability distribution should change by time, but the probability of occurrence of seasonal variation is It varies depending on the object and the year, and the generation factors vary widely, so it is very difficult to set seasonal variations quantitatively for each object. Furthermore, since the number of ship arrival times by number of delivery destinations is small, more track record information was needed to estimate seasonal variations with high accuracy.

そこで、船の全納品先への到着に着目し、実績情報が多数ある全納品先への船の入港時刻を用いて、季節変動を含めた船の全納品先への到着間隔の確率分布をモデル化し、そのモデル化した確率分布を用いて、船の各納品先への到着間隔の確率分布を作成すればよいことに想到した。
具体的には、第1の実施形態では一定として扱ってきた平均到着率λを時刻sで時間変化する関数λ(s)としてモデル化することにより、季節変動まで考慮して、船の全納品先への到着間隔の確率分布を作成する。そして、第1の実施形態と同様に、船の各納品先への到着間隔の確率分布を、船の全納品先への到着間隔の確率分布の畳み込み積分で与えれば、季節変動まで考慮して、船の各納品先への到着間隔をモデル化できるとの結論に至った。
Therefore, paying attention to the arrival of the ship to all the delivery destinations, the probability distribution of the arrival interval to all the delivery destinations of the ship, including seasonal variations, is calculated using the time of arrival of the ship to all the delivery destinations with a lot of track record information. I came up with the idea of creating a probability distribution of arrival intervals at ship destinations using the modeled probability distribution.
Specifically, the average delivery rate λ, which has been treated as constant in the first embodiment, is modeled as a function λ (s) that changes with time at time s. Create a probability distribution of arrival intervals. As in the first embodiment, if the probability distribution of the arrival interval to each ship destination of the ship is given by the convolution integral of the probability distribution of the arrival interval to all ship destinations, the seasonal variation is taken into consideration. It came to a conclusion that it was possible to model the interval of arrival at each ship destination.

このように平均到着率λ(s)の非一様性まで考慮した到着過程を非一様ポアソン過程と呼ぶ。非一様ポアソン過程は、個々のイベントは独立に到着するが、平均到着率が時間により変化する現象を表わす過程である。
次に、具体的に、船の全納品先への到着間隔が非一様ポアソン過程に従うときに、λ(s)及び安全在庫を決定する流れを説明する。ただし、以下に示す方法は、船の全納品先への到着間隔が非一様ポアソン過程に従う場合に限らない。例えば船の全納品先への到着間隔の確率分布がガンマ分布等の独立同分布に従い、その平均到着率が時間変化するような計数過程(非一様リニューアル過程)であっても構わない。非一様リニューアル過程は、非特許文献2に示す時間伸縮理論を用いれば、非一様ポアソン過程と同等に扱える。
The arrival process taking into account non-uniformity of the average arrival rate λ (s) is called a non-uniform Poisson process. The non-uniform Poisson process is a process that represents a phenomenon in which individual events arrive independently but the average arrival rate changes with time.
Next, the flow for determining λ (s) and safety stock when the arrival intervals at all ship destinations follow a non-uniform Poisson process will be described. However, the method shown below is not limited to the case where the arrival interval to all ship destinations follows a non-uniform Poisson process. For example, it may be a counting process (non-uniform renewal process) in which the probability distribution of the arrival intervals to all ship destinations follows an independent same distribution such as a gamma distribution and the average arrival rate changes with time. The non-uniform renewal process can be handled in the same way as the non-uniform Poisson process if the time-stretching theory shown in Non-Patent Document 2 is used.

平均到着率λ(s)は、対象物ごとにその形状や周波数成分が異なるため、実績情報に基づいて決定しなければならない。平均到着率λ(s)を実績情報から推定する手法について以下に説明する。
まず、平均到着率λ(s)は、式(4)に示す指数フーリエ級数でモデル化する。次に、この指数フーリエ級数のパラメータを統計的な情報量規準に基づいて決定することで、対象物一つ一つに適合したパラメータを決定する。
Since the average arrival rate λ (s) has a different shape and frequency component for each object, the average arrival rate λ (s) must be determined based on performance information. A method for estimating the average arrival rate λ (s) from the performance information will be described below.
First, the average arrival rate λ (s) is modeled by an exponential Fourier series shown in Equation (4). Next, parameters suitable for each object are determined by determining the parameters of the exponential Fourier series based on a statistical information criterion.

Figure 2018073200
Figure 2018073200

式(4)の指数フーリエ級数において、Ai,Biはモデル形状を与える変数、Pは周期である。指数フーリエ級数では、周期Pを設定することによって、様々な周期の変動をモデル化することができる。例えばP=1年とすれば、一年周期の季節変動をモデル化することができる。また、モデル形状を与える変数Ai,Biは、そのパラメータ数によって様々な周波数成分をモデル化することができる。
本実施形態では、平均到着率λ(s)のパラメータは、式(5)のように赤池情報量規準(AIC:Akaike's Information Criterion)を用いて決定する。AICとは、モデルの評価指標の一つであり、式(5)の第一項はモデルの対数尤度関数、第二項はパラメータ数を表わす。AICは、尤度関数の最大化によりパラメータを決定する最尤推定法に加えて、モデルの複雑さを表すパラメータ数が評価指標として追加された基準である。AICでは複数のモデル同士を比較して、モデルの当てはまりの良さと複雑さのバランスが最も良いモデルを決定できる。
In the exponential Fourier series of Equation (4), A i and B i are variables that give a model shape, and P is a period. In the exponential Fourier series, by setting the period P, fluctuations in various periods can be modeled. For example, if P = 1 year, it is possible to model seasonal variation in a year cycle. Further, the variables A i and B i giving the model shape can model various frequency components depending on the number of parameters.
In the present embodiment, the parameter of the average arrival rate λ (s) is determined using Akaike's Information Criterion (AIC) as shown in Equation (5). AIC is one of the evaluation indexes of the model, and the first term of the equation (5) represents the log likelihood function of the model, and the second term represents the number of parameters. AIC is a standard in which the number of parameters representing the complexity of a model is added as an evaluation index in addition to the maximum likelihood estimation method that determines a parameter by maximizing a likelihood function. In AIC, a plurality of models can be compared with each other, and a model having the best balance between goodness of model fit and complexity can be determined.

Figure 2018073200
Figure 2018073200

ここで、非一様ポアソン過程に従う全納品先への入港時刻の時系列{sin i=1の尤度関数は、時刻si-1からsiまで船到着事象が生じず、時刻siにおいて船到着事象が生じる確率として、式(6)で表わされる。 Here, the likelihood function of the time series {s i } n i = 1 of port arrival times to all delivery destinations according to the non-uniform Poisson process is that the ship arrival event does not occur from time s i-1 to s i , and the time The probability of a ship arrival event occurring at s i is expressed by equation (6).

Figure 2018073200
Figure 2018073200

個々の船到着事象が独立であると仮定すれば、式(7)のように、尤度関数は積の形式で表現できる。   Assuming that each ship arrival event is independent, the likelihood function can be expressed in the form of a product as shown in Equation (7).

Figure 2018073200
Figure 2018073200

以上のように、式(4)で示した平均到着率λ(s)を式(7)に代入して尤度関数を作成し、その尤度関数が最大となるパラメータを最尤推定法により求め、得られた対数尤度と、モデルのパラメータ数を式(5)に代入してAICを求めてモデル同士を比較すれば、複数のモデルから最も当てはまりが良いモデルを決定することができる。   As described above, the likelihood function is created by substituting the average arrival rate λ (s) shown in Expression (4) into Expression (7), and the parameter that maximizes the likelihood function is determined by the maximum likelihood estimation method. If the obtained log likelihood and the number of parameters of the model are substituted into the equation (5) and AIC is obtained and the models are compared with each other, it is possible to determine the best fit model from a plurality of models.

以下、本発明を適用した第2の実施形態に係る安全在庫決定手法について述べる。なお、第1の実施形態に係る安全在庫決定手法との相違点を中心に説明し、第1の実施形態との共通点については詳細な説明を省略する。
図9に、第2の実施形態に係る安全在庫決定装置200の機能構成を示す。入力部201、納期遅れ許容値設定部202、第2の確率分布計算部204、安全在庫計算部205、出力部206、入力装置207及びディスプレイ208は、第1の実施形態における入力部101、納期遅れ許容値設定部102、第2の確率分布計算部104、安全在庫計算部105、出力部106、入力装置107及びディスプレイ108と同様であり、その説明を省略する。
第1の実施形態との違いとして、第1の確率分布計算部203は、平均到着率λ(s)を推定する推定部203aを備える。
また、周期Pを設定する周期設定部209を備える。周期Pは、ユーザが入力装置207を介して適宜設定することができる。また、デフォルト値が用いられるようにしてもよい。季節変動を考慮するという観点からいえば、殆どの場合、一年周期の季節変動をモデル化するためにP=1年と設定するものと考えられる。
Hereinafter, the safety stock determination method according to the second embodiment to which the present invention is applied will be described. In addition, it demonstrates centering around difference with the safety stock determination method which concerns on 1st Embodiment, and abbreviate | omits detailed description about a common point with 1st Embodiment.
FIG. 9 shows a functional configuration of the safety stock determination apparatus 200 according to the second embodiment. The input unit 201, the due date delay allowable value setting unit 202, the second probability distribution calculation unit 204, the safety stock calculation unit 205, the output unit 206, the input device 207, and the display 208 are the input unit 101, the delivery date in the first embodiment. This is the same as the allowable delay value setting unit 102, the second probability distribution calculation unit 104, the safety stock calculation unit 105, the output unit 106, the input device 107, and the display 108, and a description thereof will be omitted.
As a difference from the first embodiment, the first probability distribution calculation unit 203 includes an estimation unit 203a that estimates the average arrival rate λ (s).
In addition, a cycle setting unit 209 that sets the cycle P is provided. The period P can be appropriately set by the user via the input device 207. A default value may be used. From the viewpoint of considering the seasonal variation, in most cases, it is considered that P = 1 year is set in order to model the seasonal variation of the annual cycle.

次に、安全在庫決定装置200による安全在庫決定方法を説明する。
図10は、第2の実施形態に係る安全在庫決定装置200による安全在庫決定処理を示すフローチャートである。
ステップS11、S12は、第1の実施形態におけるステップS1、S2と同様であり、ここではその説明を省略する。
Next, a safety stock determination method by the safety stock determination device 200 will be described.
FIG. 10 is a flowchart showing a safety stock determination process performed by the safety stock determination device 200 according to the second embodiment.
Steps S11 and S12 are the same as steps S1 and S2 in the first embodiment, and a description thereof is omitted here.

ステップS13で、第1の確率分布計算部203の推定部203aは、ステップS11で取り込んだ納品先別の入港時刻情報に基づいて、平均到着率λ(s)を推定する。本実施形態では、周期Pは1年とし、最大一年周期の季節変動をモデル化するものとする。
図11に、ある対象物についての納品先別の入港時刻情報の例を示す。第1の実施形態でも述べたように、時系列順に納品先がA,C,A,・・・となっているが、納品先の識別をなくせば、船が全納品先に「2015/1/6 15:00」、「2015/1/12 21:00」、「2015/1/14 6:00」、・・・の順で到着したものとすることができる。
In step S13, the estimation unit 203a of the first probability distribution calculation unit 203 estimates the average arrival rate λ (s) based on the port arrival time information for each delivery destination captured in step S11. In the present embodiment, it is assumed that the period P is one year and the seasonal variation of the maximum one-year period is modeled.
In FIG. 11, the example of the port arrival time information according to the delivery destination about a certain target object is shown. As described in the first embodiment, the delivery destinations are A, C, A,... In chronological order. However, if the delivery destinations are not identified, the ship will send all the delivery destinations to “2015/1. / 6 15:00 ”,“ 2015/1/12 21:00 ”,“ 2015/1/14 6:00 ”, and so on.

図12及び表8に、図11の入港時刻情報から得られる全納品先への入港時刻から、AICを用いてモデルを決定した結果を示す。
図12(a)は平均到着率λ(s)の推定結果を示すグラフであり、AICが最も低かったパラメータ数が5個の場合の推定結果を描いている。また、図12(b)は全納品先への入港時刻に線分を表示したものである。図12から見てとれるように、船の到着頻度は、2015年5月から2015年7月付近が最も低かったことが分かる。
表8は、式(4)のパラメータ数と、パラメータの値と、AICの関係を表わす。表8から見てとれるように、図11の入港時刻情報では、パラメータ数が5のときにAICが最も低いことが分かる。このようにAICを用いてモデルを決定することによって、モデルの当てはまり度とパラメータ数のバランスを考慮したモデルを決定することができた。
FIG. 12 and Table 8 show the results of determining a model using AIC from the arrival times at all delivery destinations obtained from the arrival time information of FIG.
FIG. 12A is a graph showing the estimation result of the average arrival rate λ (s), and shows the estimation result when the number of parameters having the lowest AIC is five. FIG. 12B shows line segments at the time of arrival at all delivery destinations. As can be seen from FIG. 12, it can be seen that the arrival frequency of the ship was lowest between May 2015 and July 2015.
Table 8 shows the relationship between the number of parameters of equation (4), parameter values, and AIC. As can be seen from Table 8, it can be seen from the port entry time information of FIG. 11 that the AIC is the lowest when the number of parameters is 5. Thus, by determining a model using AIC, it was possible to determine a model that considered the balance between the degree of model fit and the number of parameters.

Figure 2018073200
Figure 2018073200

次に、ステップS14で、第1の確率分布計算部203は、船の全納品先への到着間隔の確率分布を求める。ステップS14は、第1の実施形態では一定として扱ってきた平均到着率を時刻sで時間変化する関数λ(s)とすること以外はステップS3と同様であり、ここではその説明を省略する。   Next, in step S14, the first probability distribution calculation unit 203 obtains a probability distribution of arrival intervals at all ship destinations of the ship. Step S14 is the same as step S3 except that the average arrival rate treated as constant in the first embodiment is a function λ (s) that changes with time at time s, and the description thereof is omitted here.

次に、ステップS15で、第2の確率分布計算部204は、船の各納品先への到着間隔の確率分布を求める。ステップS15は、第1の実施形態では一定として扱ってきた平均到着率を時刻sで時間変化する関数λ(s)とすること以外はステップS4と同様であり、船の納品先iへの到着間隔の確率分布をgi(s,t)とすると、Ni及びλ(s)の2つのパラメータを用いることで、式(8)のようにガンマ分布でモデル化できる。 Next, in step S15, the second probability distribution calculation unit 204 obtains a probability distribution of arrival intervals at each ship destination of the ship. Step S15 is the same as Step S4 except that the average arrival rate, which has been treated as constant in the first embodiment, is a function λ (s) that changes with time at time s, and arrives at the ship destination i. When the probability distribution of the interval is g i (s, t), it is possible to model with a gamma distribution as shown in Expression (8) by using two parameters N i and λ (s).

Figure 2018073200
Figure 2018073200

各納品先への入船回数qi、ガンマ分布のパラメータNiは、図11の入港時刻情報から計算し、表9、表10に示す値を与えた。 The number of times of arrival at each delivery destination q i and the parameter N i of the gamma distribution were calculated from the arrival time information of FIG. 11 and given the values shown in Tables 9 and 10.

Figure 2018073200
Figure 2018073200

Figure 2018073200
Figure 2018073200

以上のように、AICを基準として推定した平均到着率λ(s)と、ガンマ分布のパラメータNiを決めたことによって、非一様性まで考慮して船の各納品先への到着間隔の確率分布をモデル化できた。 As described above, the average arrival rate estimating the AIC as a reference lambda (s), by decided parameter N i of the gamma distribution, the ship in consideration to the non-uniformity of the arrival time of each delivery destination The probability distribution could be modeled.

推定結果の妥当性は、第1の実施形態と同様に、KS検定等を用いた統計検定を実施することが望ましい。ただし、式(8)の確率分布は、時刻sに依存する関数であるため、第1の実施形態のように納品先別の入港時刻情報と直接比較することは難しい。
そこで、安全在庫計算期間内において、式(8)の確率分布に従う乱数を十分多い回数発生させ、得られた標本と、納品先別の入港時刻情報とを比較することでKS検定を実施する。乱数は、まず式(8)の確率分布を非特許文献2に記載の時間伸縮理論にて非一様ポアソン過程に変換する。その後、非特許文献3に記載のアルゴリズムに従って、非一様ポアソン過程に従う乱数を生成した(希薄化アルゴリズム)。
図13は、船の各納品先への到着間隔と、希薄化アルゴリズムによりランダムに生成した標本とを比較したグラフである。表11に、両標本に対して、実績とモデルの標本の母代表値に差はないという帰無仮説の下、有意水準5%で両側のKS検定を実施した結果を示す。納品先A,B,Cに対して、モデルをそれぞれ1685、746、665回発生させ、KS検定を行った結果、KS検定のP値は全ての拠点で有意水準5%を上回っており、帰無仮説は棄却されなかった。すなわち、実績とモデルの標本の母代表値に差があるとは言えなかった。
As with the first embodiment, the validity of the estimation result is desirably a statistical test using a KS test or the like. However, since the probability distribution of Expression (8) is a function that depends on the time s, it is difficult to directly compare with the port arrival time information for each delivery destination as in the first embodiment.
Therefore, a KS test is performed by generating a sufficiently large number of random numbers according to the probability distribution of equation (8) within the safety stock calculation period and comparing the obtained sample with the port entry time information for each delivery destination. For random numbers, first, the probability distribution of equation (8) is converted into a non-uniform Poisson process by the time expansion / contraction theory described in Non-Patent Document 2. Thereafter, random numbers that follow a non-uniform Poisson process were generated according to the algorithm described in Non-Patent Document 3 (dilution algorithm).
FIG. 13 is a graph comparing the arrival interval of a ship to each delivery destination and a sample randomly generated by a dilution algorithm. Table 11 shows the results of performing two-sided KS tests at a significance level of 5% for both samples under the null hypothesis that there is no difference between the actual value and the population representative value of the model sample. As a result of generating models 1685, 746, and 665 times for delivery destinations A, B, and C, and performing KS test, the P value of KS test exceeded the significance level of 5% at all sites. The hypothesis was not rejected. That is, it cannot be said that there is a difference between the actual value and the mother representative value of the model sample.

Figure 2018073200
Figure 2018073200

次に、ステップS16で、安全在庫計算部205は、各納品先で持つべき安全在庫を計算する。
式(8)で与えられた船の納品先iへの到着間隔の確率分布の下で、納期達成率を1−α%以上に保つためには、確率分布gi(s,t)を1−α%網羅する点と、確率分布gi(s,t)の平均値の差分を安全在庫日数として与えればよい。安全在庫日数をZ(s)[日]、船の納品先iへの到着間隔の確率分布gi(s,t)の累積分布関数をGi(・)と置き、累積分布関数の逆関数をG-1(・)と置くと、納期達成率1−α%以上に保つ安全在庫日数は式(9)となる。
Next, in step S16, the safety stock calculation unit 205 calculates the safety stock that each delivery destination should have.
In order to keep the delivery rate achievement rate 1-α% or more under the probability distribution of the arrival interval of the ship to the delivery destination i given by the equation (8), the probability distribution g i (s, t) is set to 1 The difference between the points covered by -α% and the average value of the probability distribution g i (s, t) may be given as the number of safety stock days. The safety distribution days are set to Z (s) [days], the probability distribution g i (s, t) of the arrival interval at the ship destination i is set to G i (·), and the inverse function of the cumulative distribution function Is set to G −1 (·), the safety stock days to keep the delivery rate 1-α% or more is given by the equation (9).

Figure 2018073200
Figure 2018073200

ただし、第1の実施形態でも述べたように、式(9)により計算される安全在庫日数は、納期遅れをα%以下に保つ計算式であり、在庫切れがこの確率で発生することはない。なぜならば、式(9)により計算される安全在庫日数は在庫の使用量一定を仮定しているからである。実務上は、ある対象物の在庫が少ないと予め分かっている場合、船の予定到着時間を見越して、事前に他の対象物への使用振り替え等で、在庫切れが発生しないように生産を調整できる。   However, as described in the first embodiment, the safety stock days calculated by the formula (9) is a calculation formula that keeps the delay in delivery to α% or less, and the stockout does not occur with this probability. . This is because the safety stock days calculated by Equation (9) assume a constant usage amount of stock. In practice, if it is known in advance that the inventory of a certain object is small, the production is adjusted so that the planned arrival time of the ship is anticipated and the use is transferred to another object in advance so that it will not run out of stock. it can.

図14に、納期遅れ許容値α%を5%として設定し、納品先別に安全在庫日数[日]を計算した結果を示す。図14に示すように、平均到着率を時刻sで時間変化する関数λ(s)としてモデル化したことにより、季節に応じて安全在庫日数を計算できていることがわかる。特に図12に示したように、図11の入港時刻情報では、5月から7月にかけて供給量が減ることが確認できていたが、図14に示すように、上記期間は普段よりも多めに安全在庫日数を持つような結果が得られた。   FIG. 14 shows the result of calculating the safety stock days [days] for each delivery destination by setting the delivery delay allowable value α% as 5%. As shown in FIG. 14, it is understood that the safety stock days can be calculated according to the season by modeling the average arrival rate as a function λ (s) that changes with time at time s. In particular, as shown in FIG. 12, in the port entry time information of FIG. 11, it was confirmed that the supply amount decreased from May to July, but as shown in FIG. 14, the above period is larger than usual. Results with safety stock days were obtained.

安全在庫は、納品先別の平均使用量[t/日]を計算し、得られた安全在庫日数[日]に掛け合わせて求める。表12に、平均使用量[t/日]の計算結果を示す。また、表13に、安全在庫日数[日]に平均使用量[t/日]を掛けて、安全在庫[t]を計算した結果を示す。このように、非一様ポアソン過程を用いて船の全納品先への到着間隔の確率分布をモデル化することにより、季節変動まで考慮して安全在庫を計算することができた。   The safety stock is obtained by calculating the average usage [t / day] for each delivery destination and multiplying the obtained safety stock days [days]. Table 12 shows the calculation result of the average usage [t / day]. Table 13 shows the result of calculating the safety stock [t] by multiplying the safety stock days [days] by the average usage [t / day]. In this way, by using the non-uniform Poisson process to model the probability distribution of arrival intervals at all ship destinations, we were able to calculate the safety stock considering seasonal variations.

Figure 2018073200
Figure 2018073200

Figure 2018073200
Figure 2018073200

次に、ステップS17で、出力部206は、ステップS16において計算した安全在庫の結果を出力する。   In step S17, the output unit 206 outputs the safety stock result calculated in step S16.

ところで、本実施形態で求めた安全在庫は過去実績に基づく値であり、将来の供給予定まで見越して安全在庫を決定することを考える。
ここで、将来の平均到着率の季節変動の現れ方が、過去実績から推定した平均到着率λ(s)の季節変動の現れ方と変わらず、さらに畳み込み積分の回数Niも過去から変わらないと仮定する。すると、将来の平均到着率λ将来(s)は、実績情報を用いて決定した平均到着率λ過去(s)を将来の供給量に合うように定数倍すれば、平均到着率λ将来(s)の予測値が求められる。具体的には、実績情報を用いて決定した平均到着率の平均値をλ過去平均、将来予想される平均到着率の平均値をλ将来平均と置き、実績情報を用いて推定した平均到着率λ過去(s)と置けば、将来予想される季節変動を表わす平均到着率λ将来(s)は式(10)によって決定することができる。
By the way, the safety stock obtained in the present embodiment is a value based on past results, and it is considered that the safety stock is determined in anticipation of a future supply schedule.
Here, how to appear in the seasonal variation of the average arrival rate of the future, not the same as appear the way of seasonal variation of the average arrival rate, which was estimated from past experience λ (s), also unchanged from the past further convolution number N i of the integration Assume that Then, the future average arrival rate λ future (s) is obtained by multiplying the average arrival rate λ past (s) determined using the actual information by a constant so as to match the future supply amount. ) Is predicted. Specifically, the average arrival rate estimated using the actual information is set with the average value of the average arrival rate determined using the actual information as λ past average and the average value of the expected average arrival rate as the λ future average. If λ past (s) is set, the average arrival rate λ future (s) representing a seasonal variation expected in the future can be determined by the equation (10).

Figure 2018073200
Figure 2018073200

平均到着率は、対象物の解析対象期間における入荷量の累積値(以下、累積入荷量)に比例する。したがって、将来予想される平均到着率の平均値λ将来平均は、累積入荷量の将来予測値が分かれば、式(11)でモデル化できる。式(11)のa,bは定数であり、単回帰分析等を用いて実績情報から推定すればよい。   The average arrival rate is proportional to the cumulative value of the arrival amount of the target object during the analysis target period (hereinafter, the cumulative arrival amount). Therefore, the average value λ future average of the expected average arrival rate can be modeled by the equation (11) if the future predicted value of the accumulated arrival amount is known. In Equation (11), a and b are constants, and may be estimated from the record information using single regression analysis or the like.

Figure 2018073200
Figure 2018073200

このように、将来の供給条件が過去と異なる場合にも、事前に船の全納品先への到着間隔の確率分布の予測モデルを設けることで安全在庫を決定することができる。もし、畳み込み積分の回数Niも将来変更が予想される場合は、まず式(12)に示すように、式(11)から得られたλ将来平均に解析対象期間を掛け合わせて全納品先への予想入船数Q´を求める。 Thus, even when the future supply conditions are different from the past, the safety stock can be determined by providing a prediction model of the probability distribution of arrival intervals at all ship destinations in advance. If the number N i is also changed future convolution is anticipated, first, as shown in equation (12), all the delivery destination by multiplying the future average analysis period λ obtained from Equation (11) Calculate the expected number of ships entering Q '.

Figure 2018073200
Figure 2018073200

次に、式(13)に示すように、全納品先への予想入船数Q´に対象物別・納品先別の予定使用量の割合を掛けてNiを求めれば、Niの予測値を求めることができる。 Next, as shown in equation (13), by obtaining the N i is multiplied by the ratio of the object-specific, delivery destination another scheduled usage expected Irifune number Q'to all delivery destination, the predicted value of N i Can be requested.

Figure 2018073200
Figure 2018073200

以上より計算された、Niとλ将来平均を用いれば、将来の供給予定まで見越して安全在庫を決定することができる。 Calculated from the above, by using the average N i and λ future, it is possible to determine a safety stock in anticipation to supply schedule in the future.

また、過去の実績情報を用いて推定する平均到着率λ過去(s)の解析期間は、単年でも複数年でも構わない。例えば、もし実務者が過去複数年の平均的な季節変動をモデル化したい場合は、複数年の実績情報に対して平均到着率λ過去(s)を推定すればよい。もし、実績の中で最も季節変動影響が大きかった年でも、納期順守率を一定以上に防ぐように安全在庫を設定したい場合は、その単年のデータ対して平均到着率λ過去(s)を推定すればよい。このように、解析対象期間を変えて季節変動をモデル化することで、より現実の要求に合致した安全在庫量を決定することができる。   Further, the analysis period of the average arrival rate λ past (s) estimated using past performance information may be a single year or a plurality of years. For example, if the practitioner wants to model the average seasonal variation of the past multiple years, the average arrival rate λ past (s) may be estimated for the performance information of the multiple years. If you want to set a safety stock to prevent the delivery rate compliance rate from exceeding a certain level even in the year with the greatest seasonal variation effect, the average arrival rate λ past (s) for the data for that single year. It may be estimated. As described above, by modeling the seasonal variation by changing the analysis target period, it is possible to determine the safe stock amount that more closely matches the actual requirement.

なお、本実施形態においては、平均到着率λ(s)に指数フーリエ級数を使用したが、これに限定されず、例えばフーリエ級数や多項式が用いられてもよい。
また、情報量基準としてAICを使用したが、これに限定されず、モデルの決定に関する他の情報量基準を使用することも可能である。例えばベイズ情報量基準(BIC)等の情報量基準が用いられてもよい。
In this embodiment, an exponential Fourier series is used for the average arrival rate λ (s). However, the present invention is not limited to this, and for example, a Fourier series or a polynomial may be used.
In addition, although AIC is used as the information criterion, the present invention is not limited to this, and other information criterion regarding the determination of the model can be used. For example, an information criterion such as a Bayesian information criterion (BIC) may be used.

以上、本発明を実施形態と共に説明したが、上記実施形態は本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
本発明を適用した安全在庫決定装置は、例えばCPU、ROM、RAM等を備えたコンピュータ装置により実現される。なお、図1、図9では安全在庫決定装置100、200を一台の装置として図示したが、例えば複数台の装置により構成される形態でもかまわない。
また、本発明は、本発明の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータがプログラムを読み出して実行することによっても実現可能である。
Although the present invention has been described together with the embodiments, the above-described embodiments are merely examples of implementation in carrying out the present invention, and the technical scope of the present invention is interpreted in a limited manner by these. It must not be. That is, the present invention can be implemented in various forms without departing from the technical idea or the main features thereof.
The safety stock determination device to which the present invention is applied is realized by a computer device including a CPU, a ROM, a RAM, and the like, for example. 1 and 9, the safety stock determination devices 100 and 200 are illustrated as one device, but may be configured by a plurality of devices, for example.
The present invention also provides software (program) that implements the functions of the present invention to a system or apparatus via a network or various storage media, and the system or apparatus computer reads out and executes the program. It is feasible.

100、200:安全在庫決定装置
101、201:入力部
102、202:納期遅れ許容値設定部
103、203:第1の確率分布計算部
203a:推定部
104、204:第2の確率分布計算部
105、205:安全在庫計算部
106、206:出力部
209:周期設定部
300:データベース
DESCRIPTION OF SYMBOLS 100, 200: Safety stock determination apparatus 101, 201: Input part 102, 202: Delivery date delay allowable value setting part 103, 203: 1st probability distribution calculation part 203a: Estimation part 104, 204: 2nd probability distribution calculation part 105, 205: Safety stock calculation unit 106, 206: Output unit 209: Period setting unit 300: Database

Claims (15)

一又は複数の出荷元から複数の納品先に納品される対象物に関して、各納品先で持つべき安全在庫を決定する安全在庫決定装置であって、
安全在庫を決定したい対象物について、過去の実績情報として、納品時刻情報、及び、納品先ごとの前記対象物の使用量の情報である使用量情報を取り込む入力手段と、
前記入力手段で取り込んだ納品時刻情報に基づいて、前記納品時刻情報に含まれる複数の納品先を一つの納品先と仮定し(以下、全納品先と呼ぶ)、前記全納品先への納品間隔の確率分布を求める第1の確率分布計算手段と、
前記入力手段で取り込んだ使用量情報と、前記第1の確率分布計算手段で求めた前記全納品先への納品間隔の確率分布とに基づいて、前記納品時刻情報に含まれる各納品先への納品間隔の確率分布を求める第2の確率分布計算手段と、
前記入力手段で取り込んだ使用量情報と、前記第2の確率分布計算手段で求めた前記各納品先への納品間隔の確率分布とに基づいて、前記各納品先で持つべき安全在庫を計算する安全在庫計算手段とを備えたことを特徴とする安全在庫決定装置。
A safety stock determination device for determining a safety stock to be held at each delivery destination with respect to an object delivered from one or a plurality of delivery sources to a plurality of delivery destinations,
For an object for which safety stock is to be determined, input means for fetching usage time information that is delivery time information and usage amount information of the object for each delivery destination as past performance information;
Based on the delivery time information captured by the input means, a plurality of delivery destinations included in the delivery time information are assumed to be one delivery destination (hereinafter referred to as all delivery destinations), and delivery intervals to all delivery destinations First probability distribution calculating means for obtaining a probability distribution of
Based on the usage information captured by the input means and the probability distribution of delivery intervals to all delivery destinations obtained by the first probability distribution calculation means, the delivery destination information included in the delivery time information is sent to each delivery destination. A second probability distribution calculating means for obtaining a probability distribution of delivery intervals;
Based on the usage information fetched by the input means and the probability distribution of the delivery interval to each delivery destination obtained by the second probability distribution calculation means, the safety stock to be possessed by each delivery destination is calculated. A safety stock determination device comprising a safety stock calculation means.
前記第2の確率分布計算手段は、前記全納品先への納品回数のうち納品先i(iは納品先を表わす記号)への納品は、前記納品先ごとの前記対象物の使用量に応じて、Ni回に一回あると仮定することで、納品先iへの納品間隔を、前記全納品先への納品間隔の確率分布をNi回畳み込み積分した確率分布で与えることを特徴とする請求項1に記載の安全在庫決定装置。 The second probability distribution calculating means determines whether the delivery to the delivery destination i (i is a symbol indicating the delivery destination) out of the number of deliveries to all the delivery destinations depends on the usage amount of the object for each delivery destination. Te, by assuming that there once in N i times, and characterized in providing a delivery interval of the delivery destination i, the probability distribution of the probability distribution of the delivery interval and convolving N i times to all delivery destination The safety stock determination apparatus according to claim 1. 前記第2の確率分布計算手段は、納品先iへの納品回数qi、全納品先への納品回数Qとして、畳み込み積分の回数NiをQ/qiで与えることを特徴とする請求項2に記載の安全在庫決定装置。 Claim wherein the second probability distribution calculating means, delivery times q i to delivery destination i, as delivery times Q to all delivery destination, characterized by providing a number N i of the convolution with Q / q i 2. The safety stock determination device according to 2. 納期遅れ許容値α%を設定する納期遅れ許容値設定手段を備え、
前記安全在庫計算手段は、さらに前記納期遅れ許容値設定手段で設定した納期遅れ許容値α%に基づいて、前記各納品先への納品間隔の確率分布を1−α%網羅する点と、前記各納品先への納品間隔の確率分布の平均との差分を安全在庫日数とし、この安全在庫日数に納品先別の平均使用量を掛け合わせて、前記各納品先で持つべき安全在庫を計算することを特徴とする請求項1乃至3のいずれか1項に記載の安全在庫決定装置。
Provided with a delivery delay tolerance value setting means for setting a delivery delay tolerance value α%,
The safety stock calculation means further covers 1-α% of the probability distribution of delivery intervals to each delivery destination based on the delivery delay allowable value α% set by the delivery delay allowable value setting means, The difference from the average of the probability distribution of the delivery interval to each delivery destination is the safety stock days, and the safety stock that each delivery destination should have is calculated by multiplying this safety stock days by the average usage for each delivery destination. The safety stock determination apparatus according to any one of claims 1 to 3, wherein
前記全納品先への納品は、出荷元からの直接の納品と、他の納品先を経由しての納品とを含むことを特徴とする請求項1乃至4のいずれか1項に記載の安全在庫決定装置。   5. The safety according to any one of claims 1 to 4, wherein the delivery to all delivery destinations includes delivery directly from a shipping source and delivery via another delivery destination. Inventory determination device. 前記第1の確率分布計算手段は、前記全納品先への納品間隔の確率分布が指数分布又はガンマ分布に従うとし、
前記第2の確率分布計算手段は、前記各納品先への納品間隔の確率分布がガンマ分布に従うとすることを特徴とする請求項1乃至5のいずれか1項に記載の安全在庫決定装置。
The first probability distribution calculating means assumes that a probability distribution of delivery intervals to all delivery destinations follows an exponential distribution or a gamma distribution,
The safety stock determination apparatus according to any one of claims 1 to 5, wherein the second probability distribution calculation unit assumes that a probability distribution of a delivery interval to each delivery destination follows a gamma distribution.
前記第1の確率分布計算手段は、前記全納品先への納品間隔の確率分布を、前記全納品先への単位時間当たりの平均納品回数(以下、平均納品率と称する)を用いた指数分布又はガンマ分布で表わし、
平均納品率を一定として扱うことを特徴とする請求項6に記載の安全在庫決定装置。
The first probability distribution calculating means uses a probability distribution of delivery intervals to all delivery destinations as an exponential distribution using an average delivery count per unit time (hereinafter referred to as an average delivery rate) to all delivery destinations. Or expressed as a gamma distribution,
The safety stock determination device according to claim 6, wherein the average delivery rate is treated as constant.
前記第1の確率分布計算手段は、前記全納品先への納品間隔の確率分布を、前記全納品先への単位時間当たりの平均納品回数(以下、平均納品率と称する)を用いた指数分布又はガンマ分布で表わし、
平均納品率を時間変化する関数としてモデル化することを特徴とする請求項6に記載の安全在庫決定装置。
The first probability distribution calculating means uses a probability distribution of delivery intervals to all delivery destinations as an exponential distribution using an average delivery count per unit time (hereinafter referred to as an average delivery rate) to all delivery destinations. Or expressed as a gamma distribution,
7. The safety stock determination apparatus according to claim 6, wherein the average delivery rate is modeled as a function changing with time.
前記第1の確率分布計算手段は、前記関数のパラメータを所定の情報量規準に基づいて決定することを特徴とする請求項8に記載の安全在庫決定装置。   9. The safety stock determination apparatus according to claim 8, wherein the first probability distribution calculation unit determines the parameter of the function based on a predetermined information criterion. 前記関数は指数フーリエ級数で表わされることを特徴とする請求項8又は9に記載の安全在庫決定装置。   10. The safety stock determination apparatus according to claim 8, wherein the function is expressed by an exponential Fourier series. 前記第1の確率分布計算手段は、安全在庫を決定する対象期間である将来の平均納品率を、過去の平均納品率の定数倍として求めることを特徴とする請求項8乃至10のいずれか1項に記載の安全在庫決定装置。   The said 1st probability distribution calculation means calculates | requires the future average delivery rate which is the object period which determines safety stock as a constant multiple of the past average delivery rate, The any one of Claims 8 thru | or 10 characterized by the above-mentioned. The safety stock determination device according to the item. 前記第1の確率分布計算手段は、前記定数倍とする定数を、将来の平均納品率の平均を過去の平均納品率の平均で除した値として求め、
前記将来の平均納品率の平均は、前記対象物の累積入荷量に比例するものとして、過去の実績情報を用いた単回帰分析により推定することを特徴とする請求項11に記載の安全在庫決定装置。
The first probability distribution calculation means obtains a constant to be the constant multiple as a value obtained by dividing an average of future average delivery rates by an average of past average delivery rates,
12. The safety stock determination according to claim 11, wherein an average of the future average delivery rate is estimated by a single regression analysis using past performance information, assuming that the average of the average delivery rate of the target is proportional to the cumulative amount of goods received. apparatus.
前記対象物が船による海上輸送により出荷元から納品先に納品され、
前記納品時刻情報として入港時刻情報を用い、
前記全納品先への納品間隔の確率分布として船の前記全納品先への到着間隔の確率分布を用い、
前記各納品先への納品間隔の確率分布として船の前記各納品先への到着間隔の確率分布を用いることを特徴とする請求項1乃至12のいずれか1項に記載の安全在庫決定装置。
The object is delivered from the shipper to the delivery destination by sea transport by ship,
Using the arrival time information as the delivery time information,
Using the probability distribution of the arrival interval to the all delivery destinations of the ship as the probability distribution of the delivery interval to the all delivery destinations,
The safety stock determination apparatus according to any one of claims 1 to 12, wherein a probability distribution of an arrival interval of a ship to each delivery destination is used as a probability distribution of a delivery interval to each delivery destination.
一又は複数の出荷元から複数の納品先に納品される対象物に関して、各納品先で持つべき安全在庫を決定する安全在庫決定方法であって、
入力手段が、安全在庫を決定したい対象物について、過去の実績情報として、納品時刻情報、及び、納品先ごとの前記対象物の使用量の情報である使用量情報を取り込むステップと、
第1の確率分布計算手段が、前記入力手段で取り込んだ納品時刻情報に基づいて、前記納品時刻情報に含まれる複数の納品先を一つの納品先と仮定し(以下、全納品先と呼ぶ)、前記全納品先への納品間隔の確率分布を求めるステップと、
第2の確率分布計算手段が、前記入力手段で取り込んだ使用量情報と、前記第1の確率分布計算手段で求めた前記全納品先への納品間隔の確率分布とに基づいて、前記納品時刻情報に含まれる各納品先への納品間隔の確率分布を求めるステップと、
安全在庫計算手段が、前記入力手段で取り込んだ使用量情報と、前記第2の確率分布計算手段で求めた前記各納品先への納品間隔の確率分布とに基づいて、前記各納品先で持つべき安全在庫を計算するステップとを有することを特徴とする安全在庫決定方法。
A safety stock determination method for determining a safety stock to be possessed by each delivery destination for an object delivered from one or a plurality of delivery sources to a plurality of delivery destinations,
The input means, for the object for which safety stock is to be determined, fetching, as past performance information, delivery time information, and usage information that is information on the usage of the object for each delivery destination;
The first probability distribution calculation means assumes a plurality of delivery destinations included in the delivery time information as one delivery destination based on the delivery time information captured by the input means (hereinafter referred to as all delivery destinations). Obtaining a probability distribution of delivery intervals to all delivery destinations;
Based on the usage information captured by the input means by the second probability distribution calculating means and the probability distribution of delivery intervals to all the delivery destinations obtained by the first probability distribution calculating means, the delivery time Obtaining a probability distribution of delivery intervals to each delivery destination included in the information;
The safety stock calculation means has at each delivery destination based on the usage amount information fetched by the input means and the probability distribution of delivery intervals to each delivery destination obtained by the second probability distribution calculation means. And calculating a safety stock to be calculated.
一又は複数の出荷元から複数の納品先に納品される対象物に関して、各納品先で持つべき安全在庫を決定するためのプログラムであって、
安全在庫を決定したい対象物について、過去の実績情報として、納品時刻情報、及び、納品先ごとの前記対象物の使用量の情報である使用量情報を取り込む入力手段と、
前記入力手段で取り込んだ納品時刻情報に基づいて、前記納品時刻情報に含まれる複数の納品先を一つの納品先と仮定し(以下、全納品先と呼ぶ)、前記全納品先への納品間隔の確率分布を求める第1の確率分布計算手段と、
前記入力手段で取り込んだ使用量情報と、前記第1の確率分布計算手段で求めた前記全納品先への納品間隔の確率分布とに基づいて、前記納品時刻情報に含まれる各納品先への納品間隔の確率分布を求める第2の確率分布計算手段と、
前記入力手段で取り込んだ使用量情報と、前記第2の確率分布計算手段で求めた前記各納品先への納品間隔の確率分布とに基づいて、前記各納品先で持つべき安全在庫を計算する安全在庫計算手段としてコンピュータを機能させるためのプログラム。
A program for determining a safety stock to be held at each delivery destination for an object delivered from one or more delivery sources to multiple delivery destinations,
For an object for which safety stock is to be determined, input means for fetching usage time information that is delivery time information and usage amount information of the object for each delivery destination as past performance information;
Based on the delivery time information captured by the input means, a plurality of delivery destinations included in the delivery time information are assumed to be one delivery destination (hereinafter referred to as all delivery destinations), and delivery intervals to all delivery destinations First probability distribution calculating means for obtaining a probability distribution of
Based on the usage information captured by the input means and the probability distribution of delivery intervals to all delivery destinations obtained by the first probability distribution calculation means, the delivery destination information included in the delivery time information is sent to each delivery destination. A second probability distribution calculating means for obtaining a probability distribution of delivery intervals;
Based on the usage information fetched by the input means and the probability distribution of the delivery interval to each delivery destination obtained by the second probability distribution calculation means, the safety stock to be possessed by each delivery destination is calculated. A program for causing a computer to function as a safety stock calculation means.
JP2016213596A 2016-10-31 2016-10-31 Safety stock determination device, method and program Active JP6740860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016213596A JP6740860B2 (en) 2016-10-31 2016-10-31 Safety stock determination device, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016213596A JP6740860B2 (en) 2016-10-31 2016-10-31 Safety stock determination device, method and program

Publications (2)

Publication Number Publication Date
JP2018073200A true JP2018073200A (en) 2018-05-10
JP6740860B2 JP6740860B2 (en) 2020-08-19

Family

ID=62114024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016213596A Active JP6740860B2 (en) 2016-10-31 2016-10-31 Safety stock determination device, method and program

Country Status (1)

Country Link
JP (1) JP6740860B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013252A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Fleet portfolio design apparatus, method and program
JP2020013261A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Yard waiting demurrage time prediction device, method and program
JP2020017127A (en) * 2018-07-26 2020-01-30 日本製鉄株式会社 Proper inventory determination support apparatus, method thereof, and program therefor
JP2021084742A (en) * 2019-11-27 2021-06-03 株式会社日立物流 Inventory planning device and inventory planning method
CN113537890A (en) * 2021-07-16 2021-10-22 国网江苏省电力有限公司 Calculation method of safety stock in electric power storage

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013252A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Fleet portfolio design apparatus, method and program
JP2020013261A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Yard waiting demurrage time prediction device, method and program
JP7103004B2 (en) 2018-07-17 2022-07-20 日本製鉄株式会社 Yard waiting time predictor, method and program
JP7107048B2 (en) 2018-07-17 2022-07-27 日本製鉄株式会社 FLEET PORTFOLIO DESIGN DEVICE, METHOD AND PROGRAM
JP2020017127A (en) * 2018-07-26 2020-01-30 日本製鉄株式会社 Proper inventory determination support apparatus, method thereof, and program therefor
JP7110793B2 (en) 2018-07-26 2022-08-02 日本製鉄株式会社 Appropriate inventory determination support device, method and program
JP2021084742A (en) * 2019-11-27 2021-06-03 株式会社日立物流 Inventory planning device and inventory planning method
CN113537890A (en) * 2021-07-16 2021-10-22 国网江苏省电力有限公司 Calculation method of safety stock in electric power storage
CN113537890B (en) * 2021-07-16 2024-02-02 国网江苏省电力有限公司 Calculation method of safety stock in electric power warehouse

Also Published As

Publication number Publication date
JP6740860B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6740860B2 (en) Safety stock determination device, method and program
Adulyasak et al. Benders decomposition for production routing under demand uncertainty
Feldman et al. Proactive event processing in action: a case study on the proactive management of transport processes (industry article)
Yang et al. Service parts inventory control with lateral transshipment and pipeline stockflexibility
Adhitya et al. Heuristic rescheduling of crude oil operations to manage abnormal supply chain events
Salimi et al. Designing a bio-fuel network considering links reliability and risk-pooling effect in bio-refineries
Wang Optimal sequence of container ships in a string
Yildiz et al. Production planning using evolving demand forecasts in the automotive industry
Tang et al. Investigation of berth allocation problem in container ports considering the variety of disruption
Stålhane et al. A dual-level stochastic fleet size and mix problem for offshore wind farm maintenance operations
Jiang et al. Coping with shortages caused by disruptive events in automobile supply chains
Azambuja et al. Risk assessment of a ready-mix concrete supply chain
JP2020013261A (en) Yard waiting demurrage time prediction device, method and program
De Kok Buffering against uncertainty in high-tech supply chains
Michna et al. The impact of lead time forecasting on the bullwhip effect
JP6613743B2 (en) Safety stock determination device, method and program
CN113762842A (en) Warehouse scheduling method, server and system
Plinta et al. Adaptive inventory control system for material items with continuous non-stationary demand
Barco et al. The effect of transfer lot size on manufacturing lead time: a stochastic analysis
Wang et al. A matheuristic for making order acceptance decisions in multi-product, multi-stage manufacturing systems
JP6519014B2 (en) Safety stock determination device, method and program
Pauls-Worm et al. Inventory control for a perishable product with non-stationary demand and service level constraints
Barros et al. A machine learning strategy for estimating supply lead times towards improved safety stock dimensioning
JP2019028819A (en) Production management assist system and method
Farahani et al. A hierarchical demand-driven production planning and control framework for the FMCG industry: An SAP-based approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R151 Written notification of patent or utility model registration

Ref document number: 6740860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151