JP2018071995A - Cortisol concentration analysis chip and measuring method using the same - Google Patents

Cortisol concentration analysis chip and measuring method using the same Download PDF

Info

Publication number
JP2018071995A
JP2018071995A JP2016208127A JP2016208127A JP2018071995A JP 2018071995 A JP2018071995 A JP 2018071995A JP 2016208127 A JP2016208127 A JP 2016208127A JP 2016208127 A JP2016208127 A JP 2016208127A JP 2018071995 A JP2018071995 A JP 2018071995A
Authority
JP
Japan
Prior art keywords
cortisol
working electrode
measurement
concentration
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016208127A
Other languages
Japanese (ja)
Inventor
竹内 治
Osamu Takeuchi
治 竹内
尚己 桝本
Naomi Masumoto
尚己 桝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2016208127A priority Critical patent/JP2018071995A/en
Publication of JP2018071995A publication Critical patent/JP2018071995A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an analysis chip for measuring cortisol concentration and a measuring method using the same which are not required to use the standard concentration solution at every measurement (for each analysis chip) and which are capable of suppressing the influence of individual differences of chips due to lot differences of an antibody as a used material and manufacturing process variations, to measure the cortisol concentration with sufficient reproducibility.SOLUTION: A cortisol concentration analysis chip for electrochemical measurement, includes a plurality of working electrodes in which at least one of the working electrodes is a measuring working electrode modified with a cortisol antibody while at least one other working electrode is a correcting working electrode modified with a cortisol antibody and coupled to the cortisol antibody until the cortisol becomes saturated. The cortisol concentration analysis chip is used to measure cortisol concentration from the difference between the measured values of the measuring working electrode and the correcting working electrode.SELECTED DRAWING: Figure 1

Description

本発明は、コルチゾールの濃度測定用の分析チップおよびそれを用いたコルチゾール濃度の測定方法に関する。より詳細には、抗原抗体反応を利用して電気化学的に生体試料中のコルチゾール濃度を測定するための分析チップおよびそれを用いたコルチゾール濃度の測定方法に関する。   The present invention relates to an analysis chip for measuring the concentration of cortisol and a method for measuring the concentration of cortisol using the same. More particularly, the present invention relates to an analysis chip for electrochemically measuring a cortisol concentration in a biological sample using an antigen-antibody reaction and a method for measuring the cortisol concentration using the same.

コルチゾールは副腎皮質ホルモンの1つであり、唾液、血液、尿などに含まれ、ストレス応答により濃度変動することが知られており、典型的なストレス指標として認知されている。   Cortisol is one of corticosteroids, is contained in saliva, blood, urine, etc., and is known to change in concentration due to stress response, and is recognized as a typical stress index.

生体試料中のコルチゾール濃度を測定する方法としては、高速液体クロマトグラフィー法(HPLC)、液体クロマトグラフィー/質量分析法(LC/MS)、酵素結合免疫吸着法(ELISA)、電気化学分析などの一般的な分析方法を利用することができる。HPLC、LC/MSおよびELISAは、測定感度が高く定量に適しているが、測定には時間、コストさらには手間がかかり過ぎるという問題がある。この問題を解決する方法として、測定が容易で、装置にコストがかからない電気化学分析が行われている。   General methods such as high performance liquid chromatography (HPLC), liquid chromatography / mass spectrometry (LC / MS), enzyme-linked immunosorbent assay (ELISA), and electrochemical analysis are methods for measuring cortisol concentration in biological samples. Analytical methods can be used. HPLC, LC / MS, and ELISA have high measurement sensitivity and are suitable for quantification, but there are problems that the measurement requires too much time, cost, and labor. As a method for solving this problem, electrochemical analysis is performed which is easy to measure and does not cost the apparatus.

電気化学分析では、表面に自己組織化単分子膜等を介してコルチゾール抗体を修飾させた作用極を形成した電気化学分析チップを血液や唾液などの生体液試料に浸漬し、生体液試料中のコルチゾールとの抗原抗体反応の前後で電気化学分析を行い、その出力値の差分からコルチゾール濃度を測定する方法が一般的に利用されている。図3は、標準的な従来の電気化学分析チップの一例の平面図であり、図4はそのB−B断面の説明図である。   In electrochemical analysis, an electrochemical analysis chip having a working electrode modified with cortisol antibody via a self-assembled monolayer on the surface is immersed in a biological fluid sample such as blood or saliva. A method is generally used in which electrochemical analysis is performed before and after the antigen-antibody reaction with cortisol, and the cortisol concentration is measured from the difference between the output values. FIG. 3 is a plan view of an example of a standard conventional electrochemical analysis chip, and FIG. 4 is an explanatory view of a BB cross section thereof.

また、特許文献1では、コルチゾール濃度を高感度に測定できる方法として、コルチゾール抗体が自己組織化単分子膜などの単分子膜を介して固定化されたくし型電極を備えたセンサチップに、測定試料とペルオキシダーゼ酵素をコルチゾールに標識した酵素標識抗原を含む溶液を滴下して競合させ、基質溶液を添加する、酸化電流測定による電気化学イムノアッセイが開示されている。   In Patent Document 1, as a method for measuring cortisol concentration with high sensitivity, a measurement sample is provided on a sensor chip including a comb-shaped electrode on which a cortisol antibody is immobilized via a monomolecular film such as a self-assembled monolayer. An electrochemical immunoassay based on oxidation current measurement is disclosed, in which a solution containing an enzyme-labeled antigen in which cortisol is labeled with cortisol is added dropwise to cause competition.

特開2011−002430号公報JP 2011-002430 A

しかし、従来の図3および図4に示す電気化学分析チップや、特許文献1に記載されたくし型電極を用いた分析チップでは、電極に抗体を修飾しており、抗体のロット間差、製造工程のわずかな変動により電気化学分析の出力が変動するため測定値の信頼性および再現性に問題がある。よって、コルチゾール濃度に変換する際には、事前にコルチゾール非含有の標準溶液を測定し、次に同じ電極で測定対象の生体試料を測定し、それらの測定値を比較して、その変位から濃度に換算するか、あるいは同時に作製した2つの分析チップで標準溶液と測定対象の生体試料を電気化学測定し、その差分から濃度に換算する必要があり、手間とコストがかかるという問題があった。   However, in the conventional electrochemical analysis chip shown in FIG. 3 and FIG. 4 and the analysis chip using the comb-shaped electrode described in Patent Document 1, the electrode is modified with an antibody, the difference between antibody lots, the manufacturing process There is a problem in the reliability and reproducibility of the measured value because the output of the electrochemical analysis varies due to slight fluctuations. Therefore, when converting to the cortisol concentration, measure the cortisol-free standard solution in advance, then measure the biological sample to be measured with the same electrode, compare the measured values, and calculate the concentration from the displacement. In other words, it is necessary to perform electrochemical measurement of the standard solution and the biological sample to be measured using two analysis chips prepared at the same time, and to convert the difference into the concentration, which is troublesome and costly.

そこで、本発明は、測定時ごと(分析チップごと)に標準濃度溶液による測定を必要とすることなく、使用材料である抗体のロット間差や、製造工程のバラつきによるチップの個体差の影響を抑え、コルチゾール濃度を再現性良く測定することのできるコルチゾール濃度の測定用分析チップおよびそれを用いた測定方法を提供することを目的とする。   Therefore, the present invention does not require measurement with a standard concentration solution for each measurement time (each analysis chip), and does not affect the effects of differences in lots of antibodies used as materials or individual differences in chips due to variations in manufacturing processes. An object of the present invention is to provide an analysis chip for measuring cortisol concentration and a measurement method using the same, which can suppress and measure cortisol concentration with good reproducibility.

本発明者らは、上記目的を達成するため、図1に示すように分析チップ100上に複数の作用極(測定用作用極1と補正用作用極2)を形成したチップを用いることにより、標準濃度溶液の測定を測定時ごと(分析チップごと)に行うことなく、検査試料に対する測定用作用極1の測定値および補正用作用極2の測定値の差分から事前に求めた検量線を使用して試料中のコルチゾール濃度が求められることを見出し、本発明を完成した。   In order to achieve the above object, the present inventors use a chip in which a plurality of working electrodes (measuring working electrode 1 and correcting working electrode 2) are formed on an analysis chip 100 as shown in FIG. A standard curve obtained in advance from the difference between the measured value of the working electrode 1 for the measurement and the measured value of the working electrode 2 for the correction with respect to the test sample is used without measuring the standard concentration solution at each measurement time (each analysis chip). As a result, it was found that the concentration of cortisol in the sample was required, and the present invention was completed.

すなわち、本発明は、
[1]複数の作用極を含む電気化学測定によるコルチゾール濃度分析チップであって、
少なくとも1つの作用極がコルチゾール抗体で修飾された測定用作用極であり、
別の少なくとも1つの作用極が、コルチゾール抗体で修飾され、かつコルチゾールを該コルチゾール抗体に飽和状態になるまで結合させた補正用作用極である
コルチゾール濃度分析チップ、ならびに
[2]上記[1]記載のコルチゾール濃度分析チップの作用極上に測定対象の生体試料を供給する工程、
一定時間静置し、測定用作用極上のコルチゾール抗体と生体試料中のコルチゾールとの抗原抗体反応を進行させる工程、
測定用作用極および補正用作用極についてそれぞれ電気化学分析測定を行う工程、および
得られた測定値の差分から生体試料中のコルチゾール濃度を求める工程
を含むコルチゾール濃度の測定方法
に関する。
That is, the present invention
[1] Cortisol concentration analysis chip by electrochemical measurement including a plurality of working electrodes,
A measuring working electrode in which at least one working electrode is modified with a cortisol antibody;
Cortisol concentration analysis chip, wherein at least one other working electrode is modified with a cortisol antibody and cortisol is bound to the cortisol antibody until saturation, and [2] the above-mentioned [1] Supplying a biological sample to be measured on the working pole of the cortisol concentration analysis chip of
A step of allowing the antigen-antibody reaction between the cortisol antibody on the working electrode for measurement and the cortisol in the biological sample to proceed for a certain period of time;
The present invention relates to a method for measuring cortisol concentration, which includes a step of performing electrochemical analysis measurement for each of the measurement working electrode and the correction working electrode, and a step of obtaining the cortisol concentration in the biological sample from the difference between the obtained measurement values.

本発明のコルチゾール濃度の分析チップによれば、測定用作用極1と補正用作用極2とを同一チップ上に形成することで、測定時ごと(分析チップごと)に標準濃度溶液による測定を必要とすることなく、使用材料である抗体のロット間差や、製造工程のバラつきによるチップの個体差の影響を抑え、再現性のあるコルチゾール濃度の測定が可能となる。   According to the analysis chip for cortisol concentration of the present invention, the measurement working electrode 1 and the correction working electrode 2 are formed on the same chip, so that measurement with a standard concentration solution is required at every measurement time (each analysis chip). Therefore, it is possible to suppress the influence of the difference between the lots of the antibodies used as materials and the individual difference of the chip due to the variation in the manufacturing process, and to measure the cortisol concentration with reproducibility.

また、本発明のコルチゾール濃度の分析方法によれば、上述の本発明のコルチゾール濃度の分析チップを用い、測定用作用極および補正用作用極についてそれぞれ電気化学分析測定を行ない、得られた測定値の差分から生体試料中のコルチゾール濃度を求めることにより、測定時ごと(分析チップごと)に標準濃度溶液による測定を必要とすることなく、使用材料である抗体のロット間差や、製造工程のバラつきによるチップの個体差の影響を抑え、再現性のあるコルチゾール濃度の測定が可能となる。   In addition, according to the method for analyzing cortisol concentration of the present invention, using the above-mentioned analysis chip for cortisol concentration of the present invention, electrochemical measurement is performed for each of the measuring working electrode and the correcting working electrode, and the measured values obtained By obtaining the cortisol concentration in the biological sample from the difference between the samples, there is no need to measure with a standard concentration solution at each measurement time (each analysis chip), and there is a difference between lots of antibodies used as materials and variations in the manufacturing process. It is possible to measure the cortisol concentration with reproducibility by suppressing the influence of individual differences of chips.

本発明の分析チップの一例の平面説明図である。It is a plane explanatory view of an example of the analysis chip of the present invention. 図1の分析チップのA−A断面の説明図である。It is explanatory drawing of the AA cross section of the analysis chip | tip of FIG. 従来の分析チップの一例の平面説明図である。It is a plane explanatory view of an example of the conventional analysis chip. 図3の分析チップのB−B断面の説明図である。It is explanatory drawing of the BB cross section of the analysis chip | tip of FIG.

本発明の分析チップ100について、図1および図2を参照して説明するが、本発明はこれらの形態に限定されるものではなく、以下に説明する部材、配置等は、本発明の趣旨の範囲内で種々改変することができるものである。また、図面において、同一符号は同等あるいは同一部分を示す。   The analysis chip 100 of the present invention will be described with reference to FIG. 1 and FIG. 2, but the present invention is not limited to these forms, and the members, arrangements, and the like described below are the gist of the present invention. Various modifications can be made within the range. In the drawings, the same reference numerals denote the same or the same parts.

図1は、本発明の分析チップを上面から見た場合の平面形状の一実施形態を示す例であり、基板5上の同一面に、測定用作用極1と補正用作用極2が参照極3を挟んで両側に配置され、これら測定用作用極1、補正用作用極2および参照極3を囲むように対極4が設けられている。測定用作用極1は、基板5の端部に設けられた測定機器に接続するための測定用作用極端子1aとの間を導線1bにより接続されている。補正用作用極2、参照極3および対極4もそれぞれ導線2b、3bおよび4bにより、基板5の端部に設けられた測定機器に接続するためのそれぞれの端子2a、3aおよび4aに接続されている。図2は、図1のA−A断面の説明図であり、測定用作用極1および補正用作用極2の表面には自己組織化単分子膜6が形成され、そこにコルチゾール抗体7が固定されている。さらに、補正用作用電極2に固定されたコルチゾール抗体7には、コルチゾール8が飽和状態で結合している。   FIG. 1 is an example showing an embodiment of a planar shape when the analysis chip of the present invention is viewed from above, and a working electrode 1 for measurement and a working electrode 2 for correction are provided on the same surface on a substrate 5 as reference electrodes. A counter electrode 4 is provided so as to surround the measurement working electrode 1, the correction working electrode 2, and the reference electrode 3. The measuring working electrode 1 is connected to a measuring working electrode terminal 1a for connecting to a measuring device provided at the end of the substrate 5 by a conducting wire 1b. The working electrode 2 for correction, the reference electrode 3 and the counter electrode 4 are also connected to the respective terminals 2a, 3a and 4a for connection to the measuring device provided at the end of the substrate 5 by conducting wires 2b, 3b and 4b, respectively. Yes. FIG. 2 is an explanatory diagram of the AA cross section of FIG. 1, and a self-assembled monolayer 6 is formed on the surface of the working electrode 1 for measurement and the working electrode 2 for correction, and the cortisol antibody 7 is immobilized thereon. Has been. Further, cortisol 8 is bound in a saturated state to the cortisol antibody 7 fixed to the correction working electrode 2.

基板5の材質は、対象とする物質の測定に影響を及ぼさない絶縁性の材料であれば、特に限定されるものではなく、例えば、セラミックス、ガラス、シリコン、ポリ塩化ビニル、ポリプロピレン、ポリスチレン、ポリカーボネート、アクリル樹脂、ポリブチレンテレフタレート、ポリエチレンテレフタレート(PET)などの熱可塑性樹脂、エポキシ樹脂などの熱硬化樹脂、UV硬化樹脂などの合成樹脂材料などが挙げられる。   The material of the substrate 5 is not particularly limited as long as it is an insulating material that does not affect the measurement of the target substance. For example, ceramics, glass, silicon, polyvinyl chloride, polypropylene, polystyrene, polycarbonate And thermoplastic resins such as acrylic resin, polybutylene terephthalate and polyethylene terephthalate (PET), thermosetting resins such as epoxy resins, and synthetic resin materials such as UV curable resins.

基板5の形状は、矩形、円形、楕円形などとすることができるが、格子状に個片化する製造上の観点からは矩形が好ましい。   The shape of the substrate 5 can be a rectangle, a circle, an ellipse, or the like, but a rectangle is preferable from the viewpoint of manufacturing in the form of a lattice.

測定用作用極1および補正用作用極2の作用極としては、公知の電極材料を用いることができ、例えば、銅、アルミニウム、金、銀、塩化銀、白金、クロム、ニッケル、鉄、炭素からなる材料が挙げられ、作用極に対する修飾の種類によって、適切な材料を選択することができる。例えば、後述するように作用極にチオール基を介して修飾を行う場合には、作用極は、金、白金、銀および銅からなる群から選択することができる。また、測定用作用極1および補正用作用極2は、それぞれ同じ材料で形成することができる。   As the working electrode for the measuring working electrode 1 and the working working electrode 2, known electrode materials can be used, for example, from copper, aluminum, gold, silver, silver chloride, platinum, chromium, nickel, iron, carbon An appropriate material can be selected depending on the type of modification to the working electrode. For example, when the working electrode is modified via a thiol group as described later, the working electrode can be selected from the group consisting of gold, platinum, silver, and copper. Further, the measuring working electrode 1 and the correcting working electrode 2 can be formed of the same material.

基板5に形成される測定用作用極1から延びた導線1bとそれに続く測定用作用極端子1aは、例えば図1に示すように、測定用作用極1から基板端部まで延びており、測定用作用極1と同様の材料で形成することができる。同様に、例えば図1に示すように、補正用作用極2から延びた導線2bとそれに続く補正用作用極端子2aは、補正用作用極2から基板端部まで延びており、補正用作用極2と同様の材料で形成することができる。   A conducting wire 1b extending from the measuring working electrode 1 formed on the substrate 5 and a subsequent measuring working electrode terminal 1a extend from the measuring working electrode 1 to the end of the substrate, for example, as shown in FIG. The working electrode 1 can be formed of the same material. Similarly, for example, as shown in FIG. 1, a conducting wire 2b extending from the correction working electrode 2 and a subsequent correction working electrode terminal 2a extend from the correction working electrode 2 to the end of the substrate. 2 can be formed of the same material as 2.

測定用作用極1および補正用作用極2の両作用極には、コルチゾール抗体7が固定される。コルチゾール抗体7を固定化する方法としては、バイオセンサの分野において公知の種々の方法を用いることができるが、例えば、自己組織化単分子膜(SAM)を用いる方法が挙げられる。SAMとは、基板を有機分子を含む溶液に浸漬または有機分子を含む蒸気中に置くことにより、有機分子の官能基、例えばチオール基が基板表面に化学吸着され、自発的に該基板表面に形成される高密度かつ高配向な単分子膜である。具体的には、アルキルチオールやジスルフィド化合物からなるSAMや、固定基としてチオールを有し、ポリエチレングリコール(PEG)を配向させたSAM、ベンゼン環を有するSAM、炭素鎖長の異なるアルキルチオール類を混合したSAMなどが挙げられる。これらSAM構成分子は、基板に化学吸着される官能基とは別に、SAM表面に特性を持たせるための官能基を有することが好ましく、この官能基を利用して、コルチゾール抗体を固定化することができる。測定用作用極1および補正用作用極2に選択的なSAM修飾を行うためには、その他の電極部分をマスクし、測定用作用極1および補正用作用極2のみにSAMを形成させるか、あるいは電極部分全体にSAM形成処理を行った後、測定用作用極1および補正用作用極2以外の電極に電位を印加し、SAMを還元脱離させればよい。   Cortisol antibody 7 is fixed to both the working electrode 1 for measurement and the working electrode 2 for correction. As a method for immobilizing the cortisol antibody 7, various methods known in the field of biosensors can be used, and examples thereof include a method using a self-assembled monolayer (SAM). In SAM, a functional group of an organic molecule, such as a thiol group, is chemically adsorbed on the substrate surface by being immersed in a solution containing the organic molecule or placed in a vapor containing the organic molecule, and spontaneously formed on the substrate surface. It is a high density and highly oriented monomolecular film. Specifically, SAMs composed of alkyl thiols and disulfide compounds, SAMs with thiols as fixed groups and oriented polyethylene glycol (PEG), SAMs with benzene rings, and alkyl thiols with different carbon chain lengths are mixed. SAM and the like. These SAM constituent molecules preferably have a functional group for imparting characteristics to the SAM surface separately from the functional group that is chemisorbed on the substrate, and the cortisol antibody is immobilized using this functional group. Can do. In order to perform selective SAM modification on the measurement working electrode 1 and the correction working electrode 2, the other electrode portions are masked, and only the measurement working electrode 1 and the correction working electrode 2 are formed with the SAM. Alternatively, after the SAM formation process is performed on the entire electrode portion, a potential is applied to electrodes other than the measurement working electrode 1 and the correction working electrode 2 to reduce and desorb the SAM.

コルチゾール抗体7は、コルチゾールを特異的に認識することのできるポリクローナル抗体またはモノクローナル抗体であり、公知の方法により産生することもできるが、市販のものを用いることもできる。   The cortisol antibody 7 is a polyclonal antibody or a monoclonal antibody that can specifically recognize cortisol, and can be produced by a known method, but a commercially available antibody can also be used.

補正用作用極2に固定化されたコルチゾール抗体7には、コルチゾールを飽和状態になるまで結合させる。これは、補正用作用極2に選択的にコルチゾールを含む溶液を滴下し、補正用作用極2上のコルチゾール抗体と溶液中のコルチゾールとの抗原抗体反応が完了するのに十分な時間だけ静置すればよい。未反応のコルチゾールは除去しておく。   Cortisol antibody 7 immobilized on the corrective working electrode 2 is bound to cortisol until saturated. This is because a solution containing cortisol is selectively dropped onto the corrective working electrode 2 and left for a sufficient time to complete the antigen-antibody reaction between the cortisol antibody on the corrective working electrode 2 and the cortisol in the solution. do it. Unreacted cortisol is removed.

測定用作用極1および補正用作用極2の形状は、特に限定されるものではないが、同一の大きさおよび形状が好ましい。センサチップの小型化の観点から平板状、または薄膜状であることが好ましく、スパッタリング法、真空蒸着法、めっき法、種々の印刷法などにより成膜・パターン形成することができる。また、測定用作用極1および補正用作用極2は、くし型電極とすることもできる。   The shapes of the measurement working electrode 1 and the correction working electrode 2 are not particularly limited, but preferably have the same size and shape. From the viewpoint of miniaturization of the sensor chip, a flat plate or a thin film is preferable, and film formation / pattern formation can be performed by a sputtering method, a vacuum evaporation method, a plating method, various printing methods, and the like. Further, the measuring working electrode 1 and the correcting working electrode 2 may be comb-shaped electrodes.

参照極3および対極4には、公知の電極材料を用いることができ、例えば、銅、アルミニウム、金、銀、塩化銀、白金、クロム、ニッケル、鉄、炭素からなる材料が挙げられる。参照極3および対極4の形状は、特に限定されるものではないが、センサチップの小型化の観点から平板状、または薄膜状であることが好ましく、スパッタリング法、真空蒸着法、めっき法、種々の印刷法などにより成膜・パターン形成することができる。   A known electrode material can be used for the reference electrode 3 and the counter electrode 4, and examples thereof include materials made of copper, aluminum, gold, silver, silver chloride, platinum, chromium, nickel, iron, and carbon. The shapes of the reference electrode 3 and the counter electrode 4 are not particularly limited, but are preferably flat or thin from the viewpoint of miniaturization of the sensor chip, and include sputtering, vacuum deposition, plating, It is possible to form a film and pattern by the printing method.

基板5に形成される参照極3から延びた導線3bとそれに続く参照極端子3aは、参照極3から基板端部まで延びており、参照極3と同様の材料で形成することができる。同様に対極4から延びた導線4bとそれに続く対極端子4aは、対極4と同様の材料で形成することができる、   The conductive wire 3b extending from the reference electrode 3 formed on the substrate 5 and the subsequent reference electrode terminal 3a extend from the reference electrode 3 to the end of the substrate, and can be formed of the same material as that of the reference electrode 3. Similarly, the conductive wire 4b extending from the counter electrode 4 and the subsequent counter electrode terminal 4a can be formed of the same material as the counter electrode 4.

電極端子(1a、2a、3a、4a)は、それぞれ測定機器につなぎやすいように、基板の端部に設けることが好ましく、対応する電極(1、2、3、4)および導線(1b、2b、3b、4b)と一体として形成することができる。   The electrode terminals (1a, 2a, 3a, 4a) are preferably provided at the ends of the substrate so that they can be easily connected to measuring instruments. The corresponding electrodes (1, 2, 3, 4) and conductors (1b, 2b) 3b, 4b).

生体試料としては、体液、血液、唾液などが挙げられ、唾液が好ましい。   Examples of the biological sample include body fluid, blood, saliva and the like, and saliva is preferable.

分析チップ100の測定対象はコルチゾールである。例えば、ストレス指標としてコルチゾールを手軽に測定することができれば、近年のストレスチェックの義務化に伴うストレスチェックの簡便な測定方法を提供でき好適である。   The measurement target of the analysis chip 100 is cortisol. For example, if cortisol can be easily measured as a stress index, it is preferable to provide a simple measurement method for stress check accompanying the recent mandatory stress check.

生体試料は、測定用作用極1の表面および補正用作用極2の表面を全て同時に覆うように当該部分に適用する。具体的には、滴下による適用および浸漬による適用のいずれも用いることができる。   The biological sample is applied to the part so as to simultaneously cover the surface of the working electrode 1 for measurement and the surface of the working electrode 2 for correction. Specifically, both application by dripping and application by immersion can be used.

本発明のコルチゾール濃度の測定方法は、上述のような本発明のコルチゾール濃度分析チップを用いることを特徴とし、(1)作用極上に測定対象の生体試料を供給する工程、(2)一定時間静置し、測定用作用極1上のコルチゾール抗体と生体試料のコルチゾールとの抗原抗体反応を進行させる工程、(3)測定用作用極1および補正用作用極2についてそれぞれ電気化学分析測定を行う工程、および(4)得られた測定値の差分から生体試料中のコルチゾール濃度を求める工程を含む。   The cortisol concentration measurement method of the present invention is characterized by using the above-described cortisol concentration analysis chip of the present invention, (1) a step of supplying a biological sample to be measured on the working electrode, and (2) static measurement for a fixed time. And a step of causing an antigen-antibody reaction between the cortisol antibody on the measuring working electrode 1 and cortisol of the biological sample, and (3) a step of performing electrochemical analysis measurement on the measuring working electrode 1 and the correcting working electrode 2 respectively. And (4) a step of obtaining a cortisol concentration in the biological sample from the difference between the obtained measurement values.

工程(1)の作用極上への測定対象の生体試料の供給は、作用極表面への生体試料の滴下、または作用極の生体試料への浸漬等により行われる。供給領域は、測定用作用極1および補正用作用極2の全領域、参照極3および対極4を含むものであり、各導線(1b、2b、3b、4b)の一部を含んでもよいが、各電極端子(1a、2a、3a、4a)には生体試料が接触しないことが好ましい。   In step (1), the biological sample to be measured is supplied onto the working electrode by dropping the biological sample on the surface of the working electrode or immersing the working electrode in the biological sample. The supply region includes the entire region of the measurement working electrode 1 and the correction working electrode 2, the reference electrode 3 and the counter electrode 4, and may include a part of each conductive wire (1b, 2b, 3b, 4b). It is preferable that a biological sample does not contact each electrode terminal (1a, 2a, 3a, 4a).

工程(2)の静置時間は、作用極上のコルチゾール抗体と測定対象の生体試料中のコルチゾールとの抗原抗体反応が完了するのに十分な時間に設定する。   The standing time in the step (2) is set to a time sufficient for completing the antigen-antibody reaction between the cortisol antibody on the working electrode and the cortisol in the biological sample to be measured.

工程(3)の電気化学分析測定は、インピーダンス法、サイクリックボルタンメトリー法など既知の手法を利用することができる。   For the electrochemical analysis measurement in the step (3), a known method such as an impedance method or a cyclic voltammetry method can be used.

工程(4)のコルチゾール濃度は、測定用作用極1および補正用作用極2のそれぞれの測定値の差分から求められるが、その際、事前に作製したこの差分による検量線を使用する。差分による検量線の作製は、事前にコルチゾール濃度が既知である複数の生体試料を用いて測定用作用極1および補正用作用極2の電気化学分析を交互に行い、その測定値の差分とコルチゾール濃度から作製することができる。このような差分による検量線を使用することにより、測定ごと(分析チップごと)にコルチゾールの標準濃度溶液と比較することなく、コルチゾール濃度を求めることができる。したがって、分析チップ、測定機器および測定対象の生体試料のみでコルチゾール濃度を高い信頼性および再現性で測定することができ、非常に簡便であるため、ポイントオブケアへの適用が可能となる。   The cortisol concentration in the step (4) is obtained from the difference between the measured values of the measuring working electrode 1 and the correcting working electrode 2, and at this time, a calibration curve based on this difference prepared in advance is used. The calibration curve based on the difference is prepared by alternately performing electrochemical analysis of the working electrode 1 for measurement and the working electrode 2 for correction using a plurality of biological samples whose cortisol concentrations are known in advance, and the difference between the measured values and cortisol. It can be made from the concentration. By using a calibration curve based on such a difference, the cortisol concentration can be obtained without comparison with the standard concentration solution of cortisol for each measurement (each analysis chip). Therefore, the cortisol concentration can be measured with high reliability and reproducibility using only the analysis chip, the measuring device, and the biological sample to be measured, and it is very simple and can be applied to point-of-care.

100 分析チップ
1 測定用作用極
2 補正用作用極
3 参照極
4 対極
1a 測定用作用極端子
2a 補正用作用極端子
3a 参照極端子
4a 対極端子
5 基板
6 自己組織化単分子膜
7 コルチゾール抗体
8 コルチゾール
DESCRIPTION OF SYMBOLS 100 Analytical chip 1 Working electrode for measurement 2 Working electrode for correction 3 Reference electrode 4 Counter electrode 1a Working electrode terminal for measurement 2a Working electrode terminal for correction 3a Reference electrode terminal 4a Counter electrode terminal 5 Substrate 6 Self-assembled monolayer 7 Cortisol antibody 8 Cortisol

Claims (2)

複数の作用極を含む電気化学測定によるコルチゾール濃度分析チップであって、
少なくとも1つの作用極がコルチゾール抗体で修飾された測定用作用極であり、
別の少なくとも1つの作用極が、コルチゾール抗体で修飾され、かつコルチゾールを該コルチゾール抗体に飽和状態になるまで結合させた補正用作用極である
コルチゾール濃度分析チップ。
A chip for analyzing cortisol concentration by electrochemical measurement including a plurality of working electrodes,
A measuring working electrode in which at least one working electrode is modified with a cortisol antibody;
A cortisol concentration analysis chip, which is a correcting working electrode in which at least one other working electrode is modified with a cortisol antibody and cortisol is bound to the cortisol antibody until saturation.
請求項1記載のコルチゾール濃度分析チップの作用極上に測定対象の生体試料を供給する工程、
一定時間静置し、測定用作用極上のコルチゾール抗体と生体試料中のコルチゾールとの抗原抗体反応を進行させる工程、
測定用作用極および補正用作用極についてそれぞれ電気化学分析測定を行う工程、および
得られた測定値の差分から生体試料中のコルチゾール濃度を求める工程
を含むコルチゾール濃度の測定方法。
Supplying a biological sample to be measured onto the working electrode of the cortisol concentration analysis chip according to claim 1;
A step of allowing the antigen-antibody reaction between the cortisol antibody on the working electrode for measurement and the cortisol in the biological sample to proceed for a certain period of time;
A method for measuring cortisol concentration, comprising a step of performing electrochemical analysis measurement for each of the measurement working electrode and the correction working electrode, and a step of obtaining a cortisol concentration in a biological sample from the difference between the obtained measurement values.
JP2016208127A 2016-10-24 2016-10-24 Cortisol concentration analysis chip and measuring method using the same Pending JP2018071995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016208127A JP2018071995A (en) 2016-10-24 2016-10-24 Cortisol concentration analysis chip and measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016208127A JP2018071995A (en) 2016-10-24 2016-10-24 Cortisol concentration analysis chip and measuring method using the same

Publications (1)

Publication Number Publication Date
JP2018071995A true JP2018071995A (en) 2018-05-10

Family

ID=62112738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016208127A Pending JP2018071995A (en) 2016-10-24 2016-10-24 Cortisol concentration analysis chip and measuring method using the same

Country Status (1)

Country Link
JP (1) JP2018071995A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521652A (en) * 2020-06-03 2020-08-11 润方(长春)生物科技有限公司 Device and method for detecting procalcitonin in serum

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271862A (en) * 1986-08-30 1987-04-02 アンステイテユ、ナシヨナル、ド、ラ、サント、エ、ド、ラ、ルシエルシユ、メデイカル(アンセルム) Protein carrier modified so as to reversibly fixing antigen or immunological active substance, and application thereof to determination and purification of antigen or similar article
JPH01119754A (en) * 1987-11-04 1989-05-11 Raifu Technol Kenkyusho Analyzing method of physiological active substance
JPH01288767A (en) * 1988-05-17 1989-11-21 Mitsubishi Electric Corp Enzyme immunity sensor
JP2011002430A (en) * 2009-06-22 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> Cortisol measurement method and cortisol sensor chip
JP2011039070A (en) * 2003-09-10 2011-02-24 Abbott Point Of Care Inc Immunoassay device with immuno-reference electrode
JP2011107099A (en) * 2009-11-20 2011-06-02 Rohm Co Ltd Electrochemical analysis chip and electrochemical analysis method
US20150247816A1 (en) * 2014-03-03 2015-09-03 The Florida International University Board Of Trustees Label-free electrochemical biosensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271862A (en) * 1986-08-30 1987-04-02 アンステイテユ、ナシヨナル、ド、ラ、サント、エ、ド、ラ、ルシエルシユ、メデイカル(アンセルム) Protein carrier modified so as to reversibly fixing antigen or immunological active substance, and application thereof to determination and purification of antigen or similar article
JPH01119754A (en) * 1987-11-04 1989-05-11 Raifu Technol Kenkyusho Analyzing method of physiological active substance
JPH01288767A (en) * 1988-05-17 1989-11-21 Mitsubishi Electric Corp Enzyme immunity sensor
JP2011039070A (en) * 2003-09-10 2011-02-24 Abbott Point Of Care Inc Immunoassay device with immuno-reference electrode
JP2011002430A (en) * 2009-06-22 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> Cortisol measurement method and cortisol sensor chip
JP2011107099A (en) * 2009-11-20 2011-06-02 Rohm Co Ltd Electrochemical analysis chip and electrochemical analysis method
US20150247816A1 (en) * 2014-03-03 2015-09-03 The Florida International University Board Of Trustees Label-free electrochemical biosensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111521652A (en) * 2020-06-03 2020-08-11 润方(长春)生物科技有限公司 Device and method for detecting procalcitonin in serum
CN111521652B (en) * 2020-06-03 2022-08-05 润方(长春)生物科技有限公司 Device and method for detecting procalcitonin in serum

Similar Documents

Publication Publication Date Title
JP6928103B2 (en) Analyte detector that detects at least one analyte in at least one fluid sample
US9810660B2 (en) Fin-FET sensor with improved sensitivity and specificity
Li et al. A microfluidic paper‐based origami nanobiosensor for label‐free, ultrasensitive immunoassays
Lillehoj et al. Rapid electrochemical detection on a mobile phone
US11313828B2 (en) Ultra-highly sensitive electrochemical biosensor using beads and method for manufacturing the same
US20170016916A1 (en) Method for detecting cardiovascular disease biomarker
Zeng et al. A reference-less semiconductor ion sensor
Mistry et al. Design and development of an amperometric immunosensor based on screen-printed electrodes
Abad et al. Design and fabrication of a COP‐based microfluidic chip: Chronoamperometric detection of T roponin T
US20150355133A1 (en) Nano-well based electrical immunoassays
Firek et al. ISFET structures with chemically modified membrane for bovine serum albumin detection
WO2019145755A1 (en) A field effect transistor sensor and a corresponding array device
JP2018071995A (en) Cortisol concentration analysis chip and measuring method using the same
KR20130057056A (en) Sensors for detecting ion concentration using cnt and methods manufacturing the same
US20100204062A1 (en) Calibration methods for multiplexed sensor arrays
Honda et al. Toward a Practical Impedimetric Biosensor: A Micro-Gap Parallel Plate Electrode Structure That Suppresses Unexpected Device-to-Device Variations
CN114660151B (en) Preparation method and application of double-electric-field driving sensor
JP5191450B2 (en) Cortisol measuring method and cortisol sensor chip
KR101048478B1 (en) Biosensor for ultra trace sample detection and its manufacturing method
Tran Nhu et al. Comparison of Faradaic and Non-Faradaic Impedance Biosensors Using 2-Electrode and 3-Electrode Configurations for the Determination of Bovine Serum Albumin (BSA)
Halima et al. Electrochemical affinity sensors using field effect transducer devices for chemical analysis
JP2018031740A (en) Electrode and biosensor
Liang et al. Simultaneous detection of five indices of hepatitis B based on an integrated automatic microfluidic device
TWI758585B (en) Electrochemical measurement method and system
CN117825474A (en) Flat-plate extension gate organic field effect transistor and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406