JP2018068476A - Pulsation detector - Google Patents

Pulsation detector Download PDF

Info

Publication number
JP2018068476A
JP2018068476A JP2016209482A JP2016209482A JP2018068476A JP 2018068476 A JP2018068476 A JP 2018068476A JP 2016209482 A JP2016209482 A JP 2016209482A JP 2016209482 A JP2016209482 A JP 2016209482A JP 2018068476 A JP2018068476 A JP 2018068476A
Authority
JP
Japan
Prior art keywords
subject
detecting device
pulsation
vibrating membrane
mechanical impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016209482A
Other languages
Japanese (ja)
Other versions
JP6643216B2 (en
Inventor
拓己 山下
Takumi Yamashita
拓己 山下
尚希 梅屋
Naoki Umeya
尚希 梅屋
泰夫 前川
Yasuo Maekawa
泰夫 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PRIMO CO Ltd
Original Assignee
PRIMO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PRIMO CO Ltd filed Critical PRIMO CO Ltd
Priority to JP2016209482A priority Critical patent/JP6643216B2/en
Publication of JP2018068476A publication Critical patent/JP2018068476A/en
Application granted granted Critical
Publication of JP6643216B2 publication Critical patent/JP6643216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pulsation detector capable of easily measuring heart sound and pulse even in a state of moving relative to various sites of a subject.SOLUTION: A pulsation detector SNSR includes: a microphone 2 receiving sound pressure and converting it into an electric signal; a casing 1 to which the microphone is attached; and an air chamber 3 formed at a front side of the casing with it communicated with a sound pressure input surface of the microphone. The air chamber includes: a vibrating membrane 31 that is fixed to a peripheral edge part of the casing so as to include the microphone and whose outer surface can come into contact with a surface of a subject; and support members 32-34 that three-dimensionally support the vibrating membrane with their engaged with the inner surface of the vibrating membrane so as to form an internal space, and form different-magnitude mechanical impedances against pressing force to the subject, at different sites of the vibrating film.SELECTED DRAWING: Figure 2

Description

本発明は、拍動検出装置に係り、例えば心拍や脈拍などの拍動を検出する装置に適用して有効な技術に関する。   The present invention relates to a pulsation detection device, and more particularly to a technique that is effective when applied to a device that detects pulsation such as a heartbeat or a pulse.

従来、心拍や脈波(脈拍)を検出するために、マイクロホンを用いた拍動検出装置で血管内の圧力を測定する方法が広く用いられてきた。心音マイクロホン装置に代表されるような拍動検出装置には、空気伝導形と直接伝導形(加速度形、ペロッテ形)がある。   Conventionally, in order to detect a heartbeat and a pulse wave (pulse), a method of measuring a pressure in a blood vessel with a pulsation detection device using a microphone has been widely used. As a pulsation detecting device represented by a heart sound microphone device, there are an air conduction type and a direct conduction type (acceleration type, perrotte type).

空気伝導形は、音圧を電気信号に変換する音圧・電気変換として、例えばコイルが永久磁石の磁界中にセットされた小型ダイナミックスピーカのような動電型を採用するもの、或いは、振動膜と背極を持ったコンデンサマイクのような静電型を採用するものがあり、いずれも被検体表面とマイクロホンの間に空気室を介在させて動脈真上の圧力変化を検出している。空気伝導型は駆動検出装置の改良型としてマイクロホンの前面で被検体に当たる部分にシリコンゴムなどの振動膜を設けたもの、更に、マイクロホンが動脈真上に位置するように、振動膜に突起を設けたものなどがある。   The air conduction type employs an electrodynamic type such as a small dynamic speaker in which a coil is set in a magnetic field of a permanent magnet as a sound pressure / electrical conversion for converting a sound pressure into an electric signal, or a diaphragm In some cases, an electrostatic type such as a condenser microphone having a back electrode is used, and in either case, an air chamber is interposed between the subject surface and the microphone to detect a pressure change directly above the artery. The air conduction type is an improved version of the drive detection device, in which a vibration membrane such as silicon rubber is provided on the front surface of the microphone, where it touches the subject, and a projection is provided on the vibration membrane so that the microphone is positioned directly above the artery. There are things.

直接伝導形は、振動を電気信号に変換する振動・電気変換として、例えば圧電或いは電歪素子を利用し、ケース内に燐青銅などの支持バネで両端を弾性的に支持した錘の上に圧電素子を設けたような加速度型を採用したもの、或いは、振動・電気変換として例えば圧電素子又は導電コイルを利用し、ゴム円筒状の周辺支持具内に小さなペロッテ(接触子)がダンパーゴムを介して支持バネに接続され、その上端に設けられたコイルが永久磁石の磁界中にセットされたようなペロッテ型を採用したものがある。直接伝導型はケースやペロッテを直接動脈真上の皮膚に押し当てて血管内の圧力変動による振動を検出する。一般に、直接伝導型のペロッテ型の拍動検出装置は、体表面に300g近くの重量で圧着される。また、加速度形のものは、小型軽量(30g)で人体に判創膏で固定することができる。   In the direct conduction type, for example, a piezoelectric or electrostrictive element is used as vibration / electrical conversion for converting vibration into an electric signal, and the piezoelectric element is piezoelectrically supported on a weight whose ends are elastically supported by a support spring such as phosphor bronze. An acceleration type with an element or a piezoelectric element or conductive coil is used as vibration / electrical conversion, and a small perotte (contact) is placed in a rubber cylindrical peripheral support via a damper rubber. Some of them employ a Perrotte type that is connected to a support spring and a coil provided at the upper end thereof is set in a magnetic field of a permanent magnet. In the direct conduction type, a case or a perotte is pressed directly against the skin just above the artery to detect vibration due to pressure fluctuations in the blood vessel. In general, a direct conduction type Perotte type pulsation detecting device is pressure-bonded to the body surface with a weight of nearly 300 g. The acceleration type is small and light (30 g) and can be fixed to the human body with a plaster.

また、直接伝導型の拍動検出装置として特許文献1,2に記載されているように、マイクロホンの前面に振動伝達部材としてシリコンゴムなどの弾性体から成るバルク状の振動伝達部材を配置し、マイクロホン及び振動伝達部材の周側を制振部材で覆って感度を良くした構造が開示されている。   In addition, as described in Patent Documents 1 and 2 as a direct conduction type pulsation detection device, a bulk-like vibration transmission member made of an elastic body such as silicon rubber is arranged as a vibration transmission member on the front surface of the microphone, A structure is disclosed in which sensitivity is improved by covering the peripheral side of the microphone and the vibration transmitting member with a damping member.

特開2014−45917号公報Japanese Patent Laid-Open No. 2014-45717 特開2014−45918号公報JP, 2014-45918, A

上記の拍動検出装置は、音圧・電気変換や振動・電気変換に要する電力が非常に少なく、しかも単純な構造で構成できるので、低消費電力、低価格といった面で拍動検出装置に最も適した特徴を持っている。   The above pulsation detection device requires very little power for sound pressure / electrical conversion and vibration / electrical conversion, and can be configured with a simple structure, so it is most suitable for pulsation detection devices in terms of low power consumption and low cost. Has suitable characteristics.

しかしながら従来の拍動検出装置は、空気伝導形では、被検体の表面に接する開口部や振動膜の形状が平面、又は平面上に一部突起を設けたものであり、腕や指などの曲面や凹凸のある部分などで使用すると、一部分でしか接することができない。この点に関し、発明者の検討によれば空気室の前面に配置された振動膜には比較的大きな張力がかかっているので柔軟性に劣るためであると考えられる。また、特許文献1,2のようにマイクロホンの前面にバルク状の振動伝達部材を配置した構造は張力をかけた振動膜が不要であっても、バルク状の振動伝達部材も同様に被検体の曲面や凹凸に沿って柔軟に変形し難いことに変わりはない。被検体との接触部分の柔軟性に劣るという点は、マイクロホンを極力血管に近づけて拍動を検出することができないといった問題を含んでいる。また、マイクロホンによる感度は振動膜の面積、特に被検体との接触面積に大きく関係するので、単に振動膜を小型化してその全体を被検体に接触させればよいというものでないことは当然であり、振動膜を大きいままで用いたとしても振動膜の一部しか被検体に接触できないことに変わりなく、拍動の検出感度を思うように向上させることができないという問題があった。   However, the conventional pulsation detection device is an air conduction type in which the shape of the opening or the vibrating membrane in contact with the surface of the subject is a flat surface or a partial protrusion on the flat surface, and a curved surface such as an arm or a finger. If it is used on an uneven part, it can touch only a part. In this regard, according to the inventor's investigation, it is considered that the vibration film disposed in front of the air chamber is inferior in flexibility because a relatively large tension is applied. In addition, as in Patent Documents 1 and 2, the structure in which the bulk-shaped vibration transmission member is arranged on the front surface of the microphone does not require a tensioned vibration film, but the bulk-shaped vibration transmission member is similarly used for the subject. It is still difficult to deform flexibly along curved surfaces and irregularities. The inferior flexibility of the contact portion with the subject includes a problem that the pulsation cannot be detected by bringing the microphone as close to the blood vessel as possible. In addition, since the sensitivity of the microphone is greatly related to the area of the diaphragm, particularly the contact area with the subject, it is natural that the diaphragm cannot be simply reduced in size and brought into contact with the subject. Even if the vibrating membrane is used with a large size, only a part of the vibrating membrane can be brought into contact with the subject, and there is a problem that the detection sensitivity of pulsation cannot be improved as expected.

このような従来の空気伝導型の拍動検出装置の構造や大きさは、被検体の表面直下の血管に安定して極力近づけることを阻害し、利用に際して著しく不便なものになっていた。加速度型、ペロッテ型の拍動検出装置も、こうした被検体の凸凹部に接触子を押し付けて、狙った正しい位置に留めて常に安定した押圧し続けることは構造的にも操作上も難しく、検出感度の低下や不便な点は上記同様であった。しかも、利用者は検出に際して体を動かさないようにし、拍動検出装置が正常な位置に留まるようにすることが必要であった。   The structure and size of such a conventional air conduction type pulsation detection device has made it extremely inconvenient to use because it has prevented the blood vessel immediately below the surface of the subject from being stably approached as much as possible. Acceleration-type and Perrotte-type pulsation detection devices are also difficult to detect in terms of structure and operation because it is difficult to press the contact against the convex and concave portions of the subject and keep it in the correct position and keep it constantly pressed. The decrease in sensitivity and inconvenience were the same as above. In addition, it is necessary for the user not to move the body at the time of detection, so that the pulsation detecting device stays in a normal position.

本発明の目的は、被検体のさまざまな部位に対し動いている状態でも簡単に心音や脈拍などの測定を行うことができる拍動検出装置を提供することにある。   An object of the present invention is to provide a pulsation detecting device that can easily measure heart sounds and pulses even when moving with respect to various parts of a subject.

本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。   The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。本項の説明で括弧を付して参照する図面中の参照符号はそれが付された構成要素の概念に含まれるものを例示するに過ぎない。   The following is a brief description of an outline of typical inventions disclosed in the present application. Reference numerals in the drawings referred to with parentheses in the description of this section merely exemplify what are included in the concept of the components to which the reference numerals are attached.

〔1〕すなわち、拍動検出装置(SNSR)は、音圧を受けて電気信号に変換するマイクロホン(2)と、前記マイクロホンを取り付けたケーシング(1)と、前記マイクロホンの音圧入力面に連通させて前記ケーシングの正面側に形成された空気室(3,4)と、を有する。前記空気室は、前記マイクロホンを内包するように前記ケーシングの周縁部に固定されていて外表面を被検体(5)の表面に接触可能とする振動膜(31,41)と、前記振動膜の内表面に係合して内部空間(30,40)を形成するように当該振動膜を立体的に支えると共に被検体への押圧力に抗する大小異なる機械インピーダンスを前記振動膜の異なる部位に形成する支持部材(32〜34、42)と、を有する。   [1] That is, the pulsation detecting device (SNSR) communicates with a microphone (2) that receives sound pressure and converts it into an electrical signal, a casing (1) to which the microphone is attached, and a sound pressure input surface of the microphone. And an air chamber (3, 4) formed on the front side of the casing. The air chamber is fixed to the peripheral portion of the casing so as to contain the microphone, and has a vibrating membrane (31, 41) that allows the outer surface to be in contact with the surface of the subject (5); The vibration membrane is three-dimensionally supported so as to form an internal space (30, 40) by engaging with the inner surface, and different mechanical impedances are formed at different parts of the vibration membrane against the pressing force on the subject. And supporting members (32 to 34, 42).

上記によれば、支持部材で支持された振動膜を被検体の計測部位近傍の表面に押し付けながら、被検体内部の動脈から外れた骨部、筋又は腱の直上の空気室の部位(MIP2)が大きな機械インピーダンスによってその押圧力に抗し、動脈直上の空気室の部位(MIP1)が小さな機械インピーダンスによってその押圧力に抗するようにして、計測部位に対して振動膜の押圧位置を決定する。機械インピーダンスは、作用した力に対する変位の速度の割合であり、同じ力であれば変位の速度が小さいほど機械インピーダンスは大きくなる。機械インピーダンスの大きな部分では押圧力に対して大きく変位することなく振動膜を支え、機械インピーダンスの小さな部分では拍動に追従して振動膜が変位する。振動膜を被検体の計測部位近傍の表面に押し付けた状態で、骨部や筋などの直上の機械インピーダンスの大きな部分と、動脈などの直上の機械インピーダンスの小さな部分とが分離される。これにより、被検体に振動膜を強く押し付けても動脈直上の機械インピーダンスは小さな値を保つことができ、その部分の振動膜を動脈に近づけることができるから、機械インピーダンスの小さな部分では拍動に追従して変位する振動膜による音圧の周期的変化を感度良く検出することができる。そして、支持部材は振動膜の内表面に係合して内部空間を形成するように当該振動膜を立体的に支えるから、その内部空間は小さな機械インピーダンスの部位が大きく振動することを阻むことはない。したがって、血管内の圧力変化は周辺の筋や腱にじゃまされることなく正確に振動膜に伝わることになり、外来の音や振動による雑音に影響され難い、最適な心音や脈拍の検出が可能になる。   According to the above, while pressing the vibrating membrane supported by the support member against the surface in the vicinity of the measurement site of the subject, the portion of the air chamber just above the bone, muscle, or tendon removed from the artery inside the subject (MIP2) Resists the pressing force by a large mechanical impedance, and the part of the air chamber (MIP1) immediately above the artery resists the pressing force by a small mechanical impedance, and determines the pressing position of the diaphragm relative to the measurement site. . The mechanical impedance is a ratio of the displacement speed to the applied force. If the force is the same, the mechanical impedance increases as the displacement speed decreases. In the portion where the mechanical impedance is large, the vibrating membrane is supported without being greatly displaced with respect to the pressing force, and in the portion where the mechanical impedance is small, the vibrating membrane is displaced following the pulsation. In a state where the vibrating membrane is pressed against the surface near the measurement site of the subject, a portion having a large mechanical impedance immediately above a bone or muscle and a portion having a small mechanical impedance directly above an artery or the like are separated. As a result, even if the diaphragm is strongly pressed against the subject, the mechanical impedance directly above the artery can maintain a small value, and the diaphragm of that part can be brought close to the artery, so that the part with a small mechanical impedance is pulsated. Periodic changes in sound pressure due to a vibrating membrane that follows and displaces can be detected with high sensitivity. And since the support member three-dimensionally supports the diaphragm so as to engage with the inner surface of the diaphragm to form an inner space, the inner space prevents a small mechanical impedance part from vibrating greatly. Absent. Therefore, the pressure change in the blood vessel is accurately transmitted to the vibrating membrane without being disturbed by the surrounding muscles and tendons, and it is difficult to be influenced by noise from external sounds and vibrations, and it is possible to detect the optimal heart sound and pulse. become.

〔2〕前記ケーシングは前記空気室の内部空間を大気圧に連通させる所定の内径と長さを持つ気圧調整孔(12)を設けるのが好適である。マイクロホンは空気伝導型であり、音圧・電気変換が動電型によるものでも静電型によるものでもよい。マイクロホンは脈拍などの拍動の周期波形を測定できるだけの、十分な低周波の測定周波数帯域が必要である。したがって、空気室の内部空間を外気に通じる小さな孔の気圧調整孔の内径と長さによって気圧調整と下限周波数の調整を行うことができる。   [2] It is preferable that the casing is provided with a pressure adjusting hole (12) having a predetermined inner diameter and length that allows the internal space of the air chamber to communicate with the atmospheric pressure. The microphone is an air conduction type, and the sound pressure / electrical conversion may be of an electrodynamic type or of an electrostatic type. The microphone needs a measurement frequency band that is low enough to measure a periodic waveform of a pulse such as a pulse. Therefore, it is possible to adjust the atmospheric pressure and the lower limit frequency by the inner diameter and the length of the atmospheric pressure adjusting hole which is a small hole communicating with the outside air through the internal space of the air chamber.

〔3〕拍動検出装置の代表的な一つの形態(図1、図2、図7)として、前記支持部材は、ケーシングの任意の位置に立設された支柱(32,33,34)であり、支柱に接していない部位(MIP1)における振動膜の機械インピーダンスは支柱に接した部位(MIP2)における振動膜の機械インピーダンスよりも小さくされる。   [3] As one typical form of the pulsation detecting device (FIGS. 1, 2, and 7), the support member is a support column (32, 33, 34) provided upright at an arbitrary position of the casing. Yes, the mechanical impedance of the diaphragm in the part not in contact with the support (MIP1) is made smaller than the mechanical impedance of the diaphragm in the part in contact with the support (MIP2).

これによれば、支柱に接している振動膜の部分と支柱に接していない振動膜の部分で機械インピーダンスの大小が予め決定されている。したがって、支持部材で支持された振動膜を被検体の計測部位近傍の表面に押し付けるときは、被検体内部の動脈から外れた骨部、筋又は腱の直上に支柱を位置させて振動膜を安定に支え、動脈直上に配置した機械インピーダンスの小さな部位を拍動に追従させて変位させる。機械インピーダンスの大きな部分の振動膜は支柱によって支えられているので、測定に際して振動膜を被検体の表面に押し付けながら骨部、筋又は腱の位置を探ることができるから、振動膜の押し付け位置を容易に確定させることができる。   According to this, the magnitude of the mechanical impedance is determined in advance between the portion of the diaphragm that is in contact with the support and the portion of the diaphragm that is not in contact with the support. Therefore, when the vibrating membrane supported by the support member is pressed against the surface near the measurement site of the subject, the vibrating membrane is stabilized by positioning the strut directly above the bone, muscle or tendon outside the artery inside the subject. The part with a small mechanical impedance arranged just above the artery is displaced by following the pulsation. Since the diaphragm with a large mechanical impedance is supported by the support, the position of the diaphragm, muscle or tendon can be searched while pressing the diaphragm against the surface of the subject during measurement. It can be easily determined.

〔4〕上記において前記支柱は、粘弾性体又はゴム弾性体で形成するのがよい。振動膜を被検体の表面に押し付けたとき支柱のダンパー効果を期待することができる。   [4] In the above, the support column is preferably formed of a viscoelastic body or a rubber elastic body. When the vibrating membrane is pressed against the surface of the subject, the damper effect of the support can be expected.

〔5〕振動膜はマイクロホンを内包するようにケーシングの周縁部に固定され内部空間を形成して振動可能にされているので振動膜それ自体に特別な柔軟性が要求されるものではないが、前記振動膜を前記支柱よりも柔軟なゴム弾性体から構成することによって、更なる検出感度の向上に寄与する。   [5] The vibrating membrane is fixed to the peripheral portion of the casing so as to contain the microphone and forms an internal space so that the vibrating membrane can vibrate. Constructing the vibrating membrane from a rubber elastic body that is more flexible than the support column contributes to further improvement in detection sensitivity.

〔6〕上記において前記支柱として長さの異なる複数個の支柱を採用し、被検体と接触可能とされる振動膜の外表面の一部を他よりも長い支柱で支えて突出させてよい。これによれば、機械インピーダンスの大きな突出部分を被検体に強く押し当てても機械インピーダンスの小さな部位に作用する反力対が大きくなることを緩和することができ、結果として、被検体に振動膜を押し当て位置決めするときの安定性が増し、検出感度の更なる向上に寄与する。   [6] In the above, a plurality of struts having different lengths may be employed as the struts, and a part of the outer surface of the vibrating membrane that can be brought into contact with the subject may be supported and projected by a strut longer than the others. According to this, even if a projecting portion having a large mechanical impedance is strongly pressed against the subject, it is possible to mitigate an increase in the reaction force pair acting on a portion having a small mechanical impedance. This increases the stability when positioning by pressing and contributes to further improvement in detection sensitivity.

〔7〕上記において、振動膜の外表面の一部を突出させる形状として、中央部が凹状の立体的な形状を前記振動膜に採用してよい。   [7] In the above, a three-dimensional shape having a concave central portion may be adopted for the vibrating membrane as a shape for projecting a part of the outer surface of the vibrating membrane.

〔8〕上記同様に、振動膜の外表面の一部を突出させる形状として、中央部が凸状の立体的な形状を前記振動膜に採用してよい。   [8] In the same manner as described above, a three-dimensional shape having a convex center part may be adopted as the shape for projecting a part of the outer surface of the diaphragm.

〔9〕拍動検出装置の代表的な他の形態(図9、図10、図12、図13)として、前記支持部材を熱可塑性エラストマーから成る繊維の連続線条体を曲りくねらせたランダムループの接合構造体(42)とし、被検体への押圧力に抗する力が小さな部位(MIP1)における振動膜の機械インピーダンスは当該被検体への押圧力に抗する力が大きな部位(MIP2)における振動膜の機械インピーダンスよりも小さくなるようにする。   [9] As another typical form of the pulsation detecting device (FIG. 9, FIG. 10, FIG. 12, FIG. 13), the support member is randomly formed by winding a continuous filament of fibers made of thermoplastic elastomer. The mechanical structure of the vibrating membrane in the portion (MIP1) having a small force against the pressing force on the subject is a portion (MIP2) having a large force against the pressing force on the subject. To be smaller than the mechanical impedance of the vibrating membrane.

これによれば、振動膜の異なる部に発生される機械インピーダンスの大小は予め決定されず、実際に振動膜を被検体の表面に押し当てた状態で決定される。即ち、被検体内部の動脈から外れた骨部、筋又は腱の直上の空気室の部位では接合構造体が大きく圧縮して大きな機械インピーダンスを生じ、動脈直上の空気室の部位では接合構造体が左程圧縮せずに小さな機械インピーダンスを生ずる。このように、実際に振動膜を押し当てた場所に応じて空気室の機械インピーダンスの大小を動的に決定することができる。したがって、複雑な被検体の表面形状若しくは被検体の骨部や動脈など複雑な内部配置に都合良く合わせながら動脈の直上若しくは近傍に小さな機械インピーダンスの領域を容易に配置することができる。   According to this, the magnitude of the mechanical impedance generated in different parts of the vibration film is not determined in advance, but is determined in a state where the vibration film is actually pressed against the surface of the subject. That is, the joint structure is greatly compressed at the part of the air chamber just above the bone, muscle, or tendon outside the artery inside the subject to generate a large mechanical impedance, and at the part of the air chamber just above the artery, the joint structure is A small mechanical impedance is produced without compression to the left. Thus, the magnitude of the mechanical impedance of the air chamber can be dynamically determined according to the location where the vibration membrane is actually pressed. Therefore, it is possible to easily arrange a small mechanical impedance region immediately above or near the artery while conveniently adjusting to a complicated surface configuration of the subject or a complicated internal arrangement such as a bone part or an artery of the subject.

〔10〕前記連続線条体は例えば線径が0.1mm乃至3.0mmである。   [10] The continuous filaments have, for example, a wire diameter of 0.1 mm to 3.0 mm.

〔11〕上記において前記振動膜はゴム弾性体で形成するのがよい。振動膜はマイクロホンを内包するようにケーシングの周縁部に固定され内部空間を形成して振動可能にされているので振動膜それ自体に特別な柔軟性が要求されるものではないが、前記振動膜をゴム弾性体で構成することによって、更なる検出感度の向上に寄与する。   [11] In the above, the vibration film is preferably formed of a rubber elastic body. The vibrating membrane is fixed to the peripheral portion of the casing so as to contain the microphone and is formed to be able to vibrate by forming an internal space. Therefore, the vibrating membrane itself does not require special flexibility. Is made of a rubber elastic body, which contributes to further improvement in detection sensitivity.

〔12〕上記において前記振動膜の表裏方向における前記接合構造体の厚さ寸法を部分的に相違させ、被検体と接触可能とされる外表面の一部が前記接合構造体の厚さ寸法に応じて突出されているように前記振動膜を形成してよい。これによれば、機械インピーダンスの大きな突出部分を被検体に強く押し当てても機械インピーダンスの小さな部位に作用する反力が大きくなることを緩和することができ、結果として、被検体に振動膜を押し当て位置決めするときの安定性が増し、検出感度の更なる向上に寄与する。   [12] In the above, the thickness dimension of the bonding structure in the front and back direction of the vibration membrane is partially different, and a part of the outer surface that can be brought into contact with the subject is the thickness dimension of the bonding structure. The vibrating membrane may be formed so as to protrude accordingly. According to this, even if a projecting portion having a large mechanical impedance is strongly pressed against the subject, the reaction force acting on the portion having a small mechanical impedance can be mitigated, and as a result, a vibrating membrane can be applied to the subject. Stability at the time of pressing and positioning increases, which contributes to further improvement in detection sensitivity.

〔13〕振動膜の外表面の一部を突出させる形状として、中央部が凹状の立体的な形状を前記振動膜に採用してよい。   [13] A three-dimensional shape having a concave central portion may be adopted as the shape for projecting a part of the outer surface of the diaphragm.

〔14〕上記同様に、振動膜の外表面の一部を突出させる形状として、中央部が凸状の立体的な形状を前記振動膜に採用してよい。   [14] In the same manner as described above, a three-dimensional shape having a convex center part may be adopted as the shape for projecting a part of the outer surface of the diaphragm.

本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記の通りである。   The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.

すなわち、被検体のさまざまな部位に対し動いている状態でも簡単に心音や脈拍などの測定を行うことができる拍動検出装置を提供することができる。   That is, it is possible to provide a pulsation detecting device that can easily measure heart sounds and pulses even when moving with respect to various parts of the subject.

図1は本発明に係る拍動検出装置の第1の例を示す横断面図である。FIG. 1 is a cross-sectional view showing a first example of a pulsation detecting device according to the present invention. 図2は図1に示される拍動検出装置の一部切欠した斜視図である。2 is a partially cutaway perspective view of the pulsation detecting device shown in FIG. 図3は図1に示される拍動検出装置の底面図である。FIG. 3 is a bottom view of the pulsation detecting device shown in FIG. 図4は図1に示される拍動検出装置の側面図である。FIG. 4 is a side view of the pulsation detecting device shown in FIG. 図5は図1に示される拍動検出装置の気圧調整孔の例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of an air pressure adjusting hole of the pulsation detecting device shown in FIG. 図6は図1に示される拍動検出装置の使用例を示す説明図である。FIG. 6 is an explanatory diagram showing an example of use of the pulsation detecting device shown in FIG. 図7は本発明に係る拍動検出装置の第2の例を示す横断面図である。FIG. 7 is a cross-sectional view showing a second example of the pulsation detecting device according to the present invention. 図8は図7の拍動検出装置の使用例を示す説明図である。FIG. 8 is an explanatory view showing an example of use of the pulsation detecting device of FIG. 図9は本発明に係る拍動検出装置の第3の例を示す横断面図である。FIG. 9 is a cross-sectional view showing a third example of the pulsation detecting device according to the present invention. 図10は図9に示される拍動検出装置の一部切欠した斜視図である。FIG. 10 is a partially cutaway perspective view of the pulsation detecting device shown in FIG. 図11は図9の拍動検出装置の使用例を示す説明図である。FIG. 11 is an explanatory view showing an example of use of the pulsation detecting device of FIG. 図12は本発明に係る拍動検出装置の第4の例を示す横断面図である。FIG. 12 is a transverse sectional view showing a fourth example of the pulsation detecting device according to the present invention. 図13は本発明に係る拍動検出装置の第5の例を示す横断面図である。FIG. 13 is a cross-sectional view showing a fifth example of the pulsation detecting device according to the present invention. 図14は本発明に係る拍動検出装置による手首からの検出波形を例示する波形図である。FIG. 14 is a waveform diagram illustrating a detected waveform from the wrist by the pulsation detecting device according to the invention. 図15は従来の心音センサーによる手首からの検出波形を例示する波形図である。FIG. 15 is a waveform diagram illustrating a waveform detected from the wrist by a conventional heart sound sensor. 図16は本発明に係る拍動検出装置による指先先端部からの検出波形を例示する波形図である。FIG. 16 is a waveform diagram illustrating a detected waveform from the tip of the fingertip by the pulsation detecting device according to the invention. 図17は従来の心音センサーによる指先先端部からの検出波形を例示する波形図である。FIG. 17 is a waveform diagram illustrating a detection waveform from the tip of a fingertip by a conventional heart sound sensor. 図18は本発明の拍動検出装置を椅子の座面に組み込んだ状態を例示する説明図である。FIG. 18 is an explanatory view illustrating a state in which the pulsation detecting device of the present invention is incorporated in the seat surface of the chair. 図19は本発明に係る拍動検出装置による臀部からの検出波形を例示する波形図である。FIG. 19 is a waveform diagram illustrating a detection waveform from the buttocks by the pulsation detection device according to the invention. 図20は従来の心音センサーによる臀部からの検出波形を例示する波形図である。FIG. 20 is a waveform diagram illustrating a detection waveform from the buttocks by a conventional heart sound sensor.

図1及び図2には本発明に係る拍動検出装置の第1の例が示される。同図に示される拍動検出装置SNSRは心拍や脈拍などの拍動を検出する装置である。   1 and 2 show a first example of a pulsation detecting device according to the present invention. The pulsation detection device SNSR shown in the figure is a device that detects pulsations such as heartbeats and pulsations.

拍動検出装置SNSRは、音圧を受けて電気信号に変換するマイクロホン2と、マイクロホン2を取り付けたケーシング1と、マイクロホン2の音圧入力面に連通させてケーシング1の正面側に形成された空気室3と、を有する。空気室3は、マイクロホン2を内包するようにケーシング1の周縁部に固定されていて外表面を被検体5の表面に接触可能とする振動膜31と、前記振動膜の内表面に係合して内部空間30を形成するように当該振動膜31を立体的に支えると共に被検体への押圧力に抗する大小異なる機械インピーダンスを振動膜31の異なる部位MIP1,MIP2に形成する支持部材32〜34と、を有する。   The pulsation detection device SNSR is formed on the front side of the casing 1 in communication with the microphone 2 that receives sound pressure and converts it into an electrical signal, the casing 1 to which the microphone 2 is attached, and the sound pressure input surface of the microphone 2. And an air chamber 3. The air chamber 3 is fixed to the peripheral portion of the casing 1 so as to contain the microphone 2, and engages with the vibration film 31 that allows the outer surface to come into contact with the surface of the subject 5 and the inner surface of the vibration film. Support members 32 to 34 that three-dimensionally support the vibrating membrane 31 so as to form the internal space 30 and form different mechanical impedances at different portions MIP1 and MIP2 of the vibrating membrane 31 against the pressing force on the subject. And having.

図1の例では支持部材は、ケーシングの任意の位置に立設された支柱32,33,34であり、支柱32,33,34に接していない部位における振動膜31の機械インピーダンスMIP1は支柱32,33,34に接した部位における振動膜31の機械インピーダンスMIP2よりも小さくされる。図1の例では中央部の支柱33が最も長くされ、図3、図4から明らかなように振動膜31は山型の立体形状を有し、中央部が突出されている。内部空間30は図2からも明らかなように支柱33によって区切られることなく連通している。振動膜31はシリコンゴム或いは適宜のエラストマーで形成すればよい。支柱32,33,34は、粘弾性体又はゴム弾性体で形成するのがよい。振動膜を被検体5の表面に押し付けたとき支柱32,33,34のダンパー効果を期待することができるからである。振動膜31はマイクロホン2を内包するようにケーシング1の周縁部に固定され内部空間を形成して振動可能にされているので振動膜31それ自体に特別な柔軟性が要求されるものではないが、振動膜31を支柱32,33,34よりも柔軟なゴム弾性体から構成したり、薄く構成したりすることが望ましい。   In the example of FIG. 1, the support members are support columns 32, 33, 34 erected at an arbitrary position of the casing, and the mechanical impedance MIP 1 of the vibrating membrane 31 in a portion not in contact with the support columns 32, 33, 34 is the support column 32. , 33, 34 is made smaller than the mechanical impedance MIP <b> 2 of the vibrating membrane 31 at the part in contact with it. In the example of FIG. 1, the support column 33 at the center is the longest, and as is clear from FIGS. 3 and 4, the vibration film 31 has a mountain-shaped three-dimensional shape, and the center is projected. As apparent from FIG. 2, the internal space 30 communicates without being divided by the support 33. The vibration film 31 may be formed of silicon rubber or an appropriate elastomer. The support columns 32, 33, and 34 are preferably formed of a viscoelastic body or a rubber elastic body. This is because when the vibrating membrane is pressed against the surface of the subject 5, the damper effect of the columns 32, 33, and 34 can be expected. The vibrating membrane 31 is fixed to the peripheral portion of the casing 1 so as to enclose the microphone 2 and forms an internal space so as to be able to vibrate. Therefore, the vibrating membrane 31 itself does not require special flexibility. It is desirable that the vibration film 31 is made of a rubber elastic body that is more flexible than the support columns 32, 33, and 34, or is made thin.

前記ケーシング1には前記空気室3の内部空間30を大気圧に連通させる所定の内径と長さを持つ気圧調整孔12を有する。即ち、空気室3は気圧調整孔12の経路を除いて密閉されている。空気調整孔12は図1に例示されるように垂直に形成してもよいし、垂直形成だけでは必要な長さを得ることができない場合には図5の如く垂直孔及び水平孔を組み合わせればよい。   The casing 1 has an atmospheric pressure adjusting hole 12 having a predetermined inner diameter and length that allows the internal space 30 of the air chamber 3 to communicate with atmospheric pressure. That is, the air chamber 3 is sealed except for the path of the atmospheric pressure adjustment hole 12. The air adjustment hole 12 may be formed vertically as illustrated in FIG. 1, or when the required length cannot be obtained by the vertical formation alone, the vertical hole and the horizontal hole may be combined as shown in FIG. That's fine.

マイクロホン2は、空気伝導形で、音圧・電気変換が公知の動電型によるものでも静電型によるものでもよい。マイクロホン2は脈拍の周期波形を測定することを考慮して、十分な低周波の測定周波数帯域が必要であり、下限周波数を例えば0.5Hzとする。   The microphone 2 is of an air conduction type, and the sound pressure / electrical conversion may be of a known electrodynamic type or of an electrostatic type. In consideration of measuring the periodic waveform of the pulse, the microphone 2 requires a sufficiently low frequency measurement frequency band, and the lower limit frequency is set to 0.5 Hz, for example.

ケーシング1はマイクロホン2を収納すると同時に、振動膜31と共に空気室3を構成するための構造体の一部となっている。気圧調整孔12は空気室3の内部空間30の気圧を調整するためと、測定周波数の下限を調整するための小孔であり、外気に通じている。気圧調整孔12は孔が大きいほど、長さが短いほど下限周波数を上げる。ケーシング1の外周縁部には振動膜31が固定される、振動膜31の固定状態に関し、支柱32,33,34に接していない振動膜31は部分では被検体からの反力で容易に変位し若しくは撓み得るように過大な張力が作用されないようにケーシングに固定されている。振動膜31はケーシング1と一体成形で構成することも可能である。   The casing 1 accommodates the microphone 2 and at the same time forms a part of a structure for constituting the air chamber 3 together with the vibration film 31. The atmospheric pressure adjusting hole 12 is a small hole for adjusting the atmospheric pressure of the internal space 30 of the air chamber 3 and adjusting the lower limit of the measurement frequency, and communicates with the outside air. The atmospheric pressure adjusting hole 12 increases the lower limit frequency as the hole is larger and shorter. The vibration film 31 is fixed to the outer peripheral edge of the casing 1. With respect to the fixed state of the vibration film 31, the vibration film 31 that is not in contact with the pillars 32, 33, 34 is easily displaced by the reaction force from the subject in the portion. However, it is fixed to the casing so that excessive tension is not applied so that it can be bent. The vibration film 31 can be formed integrally with the casing 1.

空気室3は、振動膜31が捉えた血管内の圧力変化などを、空気の圧力変化として、音圧・電気変換器であるマイクロホン2に伝えるための、ケーシング1と振動膜31で囲まれた空間(内部空間30)を形成する。この内部空間30は3次元空間で、上述の如く中央部が飛び出すように形成されていて、その形は支柱32,33,34で支えられた振動膜31の形状に従うよう決められる。   The air chamber 3 is surrounded by the casing 1 and the vibration film 31 for transmitting the pressure change in the blood vessel captured by the vibration film 31 to the microphone 2 which is a sound pressure / electrical converter as the pressure change of the air. A space (internal space 30) is formed. The internal space 30 is a three-dimensional space, and is formed so that the central portion protrudes as described above, and its shape is determined according to the shape of the vibrating membrane 31 supported by the support columns 32, 33, and 34.

振動膜31は直接被検体5表面に接して動脈51内の圧力変化を検出するためのもので、圧力の変化は振動膜31を介して内部空間30に伝播し、空気の振動として音圧・電気変換器のマイクロホン2に伝わる。振動膜31の3次元立体構造は、音圧・電気変換の効率に関係する膜の実効面積を大きくできること、そして身体のあらゆる部分の任意の形状に、例えば凸凹があっても、合わせやすくスムーズに接触できるためである。   The vibrating membrane 31 directly contacts the surface of the subject 5 to detect a pressure change in the artery 51. The pressure change propagates to the internal space 30 through the vibrating membrane 31, and the sound pressure / It is transmitted to the microphone 2 of the electric converter. The three-dimensional structure of the vibrating membrane 31 can increase the effective area of the membrane related to the efficiency of sound pressure and electrical conversion, and it can be easily and smoothly adjusted even if there are irregularities in any shape of any part of the body, for example It is because it can touch.

上述の如く空気室3は二つの異なった機械インピーダンスの領域MIP1,MIP2に分けられて、それぞれの領域MIP1,MIP2が異なった役割をするよう構成されている。二つの異なった機械インピーダンスの領域のうち、機械インピーダンスが小さい値で構成される膜の領域(以下第1機械インピーダンス領域とも称する)MIP1は、血管内の圧力変化を検出するための従来の振動膜として用いる、一方の機械インピーダンスが大きい値の領域(以下第2機械インピーダンス領域とも称する)MIP2は第1機械インピーダンス領域MIP1の振動膜31を保持する部位として機能する。   As described above, the air chamber 3 is divided into two different mechanical impedance regions MIP1 and MIP2, and the respective regions MIP1 and MIP2 play different roles. Among two different mechanical impedance regions, a membrane region (hereinafter also referred to as a first mechanical impedance region) MIP1 having a small mechanical impedance value is a conventional vibrating membrane for detecting a pressure change in a blood vessel. One region having a large mechanical impedance value (hereinafter also referred to as a second mechanical impedance region) MIP2 used as a portion functions as a portion for holding the vibration film 31 of the first mechanical impedance region MIP1.

振動膜31の二つの異なった機械インピーダンス領域のうち、第1機械インピーダンス領域MIP1の機械インピーダンスの値は、拍動検出装置のセンサーとしての感度を決める上で重要となる。振動膜31は血管の近傍で圧力変化を検出するよう配置されるため、血管近傍の機械インピーダンスに近い値であることが好ましい。また、第1機械インピーダンス領域MIP1の膜の形状が被検体の表面に合わせて自由に変化できるよう、膜に無用な張力を加えないでできるだけ柔らかいほうが変化の自由度が増す。したがって、任意の曲面に接するときも振動膜31が曲面に沿って比較的自由に形を変えられることが望ましく、振動膜31の第1機械インピーダンス領域MIP1のインピーダンスの値は血管のインピーダンスに近くて、柔らかくするためにできるだけ小さい値に設定しておくのが好ましい。   Of the two different mechanical impedance regions of the diaphragm 31, the mechanical impedance value of the first mechanical impedance region MIP1 is important in determining the sensitivity of the pulsation detecting device as a sensor. Since the vibration film 31 is arranged so as to detect a pressure change in the vicinity of the blood vessel, it is preferably a value close to the mechanical impedance in the vicinity of the blood vessel. Further, the degree of freedom of change is increased when the film is soft as much as possible without applying unnecessary tension so that the shape of the film in the first mechanical impedance region MIP1 can be freely changed according to the surface of the subject. Accordingly, it is desirable that the vibrating membrane 31 can be changed relatively freely along the curved surface even when contacting an arbitrary curved surface, and the impedance value of the first mechanical impedance region MIP1 of the vibrating membrane 31 is close to the impedance of the blood vessel. In order to make it soft, it is preferable to set it as small as possible.

更に、振動膜31は、被検体の体に押し付けたときの力によって、第1機械インピーダンス領域MIP1の膜の張力が大きく変化して血管のインピーダンスの値に整合できなくなると、本来の性能が得られなくなる虞があるので、押し付けたときの第1機械インピーダンス領域MIP1のインピーダンス値の変化を極力小さくする構造が考慮されている。すなわち、第2機械インピーダンス領域MIP2は、第1機械インピーダンス領域MIP1の膜を撓まないよう形状を保持すると同時に、被検体の表面に押し付けたとき、第1機械インピーダンス領域MIP1が張力変化を起こし難くするように、振動膜31を支持するために支柱32,33,34が設けられていて、支柱32,33,34は、振動膜31を被検体の表面に押し当てたときにその反力を弾性的に支える非線形弾性機能と、振動膜31を構造的に支える機能が一体で構成されている。   Furthermore, when the vibration film 31 is unable to match the impedance value of the blood vessel because the tension of the film in the first mechanical impedance region MIP1 changes greatly due to the force when pressed against the body of the subject, the original performance is obtained. Since there is a possibility that it will not be possible, a structure is considered in which the change in the impedance value of the first mechanical impedance region MIP1 when pressed is minimized. That is, the second mechanical impedance region MIP2 retains the shape so as not to bend the membrane of the first mechanical impedance region MIP1, and at the same time, when pressed against the surface of the subject, the first mechanical impedance region MIP1 hardly causes a change in tension. In order to support the vibrating membrane 31, the support columns 32, 33, and 34 are provided, and the supporting columns 32, 33, and 34 apply the reaction force when the vibrating membrane 31 is pressed against the surface of the subject. The nonlinear elastic function that elastically supports and the function that structurally supports the vibration film 31 are integrally formed.

図6には拍動検出装置の使用例が示される。先ず、振動膜31を被検体5の計測部位近傍の表面に押し付けながら、被検体5の内部の動脈51から外れた骨部、筋又は腱50の直上の空気室30の部位MIP2が大きな機械インピーダンスによってその押圧力に抗し、動脈直上の空気室の部位MIP1が小さな機械インピーダンスによってその押圧力に抗するようにして、計測部位に対して振動膜31の押圧位置を決定する。第1機械インピーダンス領域MIP1の振動膜31を、動脈51の近くで血管を押さえつけ過ぎない程度の位置まで案内したら、動脈51から外れた筋や腱、又は骨部50の真上の被検体表面を第2インピーダンス領域で押し付けながら圧迫して振動膜31を計測位置に位置決めする。このとき支柱32,33,34は、筋や腱、又は骨部の真上で押圧力の反力を受ける振動膜31を支えることが可能にされ、動脈51の近傍の第1機械インピーダンス領域MIP1に機械インピーダンスを変化させるような余計な力がかからないように支える。第1機械インピーダンス領域MIP1は振動膜31の立体形状を保持して、動脈50の圧力変化に従って動く柔らかい膜として機能し、第2機械インピーダンス領域MIP2は、筋や腱、又は骨部の真上の体表面に強く押し当ててその反作用を受ける振動膜31を支える非線形バネとして機能する。第2機械インピーダンス領域MIP2は、第1機械インピーダンス領域MIP1の機械インピーダンスの値より大きいことは当然であり、振動膜31を押し付ける被検体の部分の機械インピーダンスの値に合わせた値に設定するのが望ましい。   FIG. 6 shows a usage example of the pulsation detecting device. First, while pressing the vibrating membrane 31 against the surface of the subject 5 near the measurement site, the part MIP2 of the air chamber 30 just above the bone, muscle, or tendon 50 outside the artery 51 inside the subject 5 has a large mechanical impedance. The pressure position of the vibrating membrane 31 is determined with respect to the measurement site by resisting the pressing force and the portion MIP1 of the air chamber just above the artery against the pressing force by a small mechanical impedance. When the diaphragm 31 in the first mechanical impedance region MIP1 is guided to a position where the blood vessel is not pressed down too close to the artery 51, the surface of the subject just above the muscle or tendon removed from the artery 51 or the bone 50 The vibration film 31 is positioned at the measurement position by pressing while pressing in the second impedance region. At this time, the struts 32, 33, and 34 can support the vibrating membrane 31 that receives the reaction force of the pressing force directly above the muscle, tendon, or bone, and the first mechanical impedance region MIP1 in the vicinity of the artery 51. To prevent excessive force from changing the mechanical impedance. The first mechanical impedance region MIP1 retains the three-dimensional shape of the vibrating membrane 31 and functions as a soft membrane that moves according to the pressure change of the artery 50, and the second mechanical impedance region MIP2 is directly above the muscle, tendon, or bone. It functions as a non-linear spring that supports the vibrating membrane 31 that is strongly pressed against the body surface and receives the reaction. The second mechanical impedance region MIP2 is naturally larger than the mechanical impedance value of the first mechanical impedance region MIP1, and is set to a value that matches the mechanical impedance value of the portion of the subject pressing the vibrating membrane 31. desirable.

第1の例によれば、機械インピーダンスの大きな部分(MIP2)では押圧力に対して大きく変位することなく振動膜31を支え、機械インピーダンスの小さな部分(MIP1)では拍動に追従して振動膜31が変位する。振動膜31を被検体5の計測部位近傍の表面に押し付けた状態で、骨部や筋51などの直上の機械インピーダンスの大きな部分MIP2と、動脈50などの直上の機械インピーダンスの小さな部分(MIP1)とが分離される。これにより、被検体5に振動膜を強く押し付けても動脈直上の機械インピーダンスは小さな値を保つことができ、その部分の振動膜31を動脈に近づけることができるから、機械インピーダンスの小さな部分(MIP1)では拍動に追従して変位する振動膜31による音圧の周期的変化を感度良く検出することができる。そして、支柱32,33,34は振動膜31の内表面に係合して内部空間を形成するように当該振動膜31を立体的に支えるから、その内部空間は小さな機械インピーダンスの部位MIP1が大きく振動することを阻むことはない。したがって、動脈50の圧力変化は周辺の筋や腱51にじゃまされることなく正確に振動膜31に伝わることになり、外来の音や振動による雑音に影響され難い、最適な心音や脈拍の検出が可能になる。支柱32,33,34に接している振動膜31の部分と支柱32,33,34に接していない振動膜31の部分で機械インピーダンスの大小が予め決定されている。したがって、支柱32,33,34で支持された振動膜31を被検体5の計測部位近傍の表面に押し付けるときは、被検体内部の動脈50から外れた骨部、筋又は腱51の直上に支柱32,33,34を位置させて振動膜31を安定に支え、動脈50直上に配置した機械インピーダンスの小さな部位MIP1を拍動に追従させて変位させる。機械インピーダンスの大きな部分MIP2の振動膜は支柱32,33,34によって支えられているので、測定に際して振動膜31を被検体5の表面に押し付けながら骨部、筋又は腱51の位置を探ることができるから、振動膜31の押し付け位置を容易に確定させることができる。   According to the first example, the portion having a large mechanical impedance (MIP2) supports the vibrating membrane 31 without being greatly displaced with respect to the pressing force, and the portion having a small mechanical impedance (MIP1) follows the pulsation to follow the vibrating membrane. 31 is displaced. In a state where the vibrating membrane 31 is pressed against the surface of the subject 5 near the measurement site, a portion MIP2 having a large mechanical impedance directly above the bone or muscle 51 and a portion having a small mechanical impedance directly above the artery 50 (MIP1) And are separated. Thereby, even if the vibrating membrane is strongly pressed against the subject 5, the mechanical impedance immediately above the artery can be kept small, and the vibrating membrane 31 at that portion can be brought close to the artery, so that a portion with a small mechanical impedance (MIP1 ), It is possible to detect the periodic change of the sound pressure due to the vibration film 31 that is displaced following the pulsation with high sensitivity. Since the support columns 32, 33, and 34 support the diaphragm 31 in a three-dimensional manner so as to engage with the inner surface of the diaphragm 31 to form an inner space, the inner space has a large mechanical impedance portion MIP1. There is no hindrance to vibration. Therefore, the pressure change in the artery 50 is accurately transmitted to the vibrating membrane 31 without being disturbed by the surrounding muscles and tendons 51, and is not easily affected by noises caused by extraneous sounds or vibrations. Is possible. The magnitude of the mechanical impedance is determined in advance between the portion of the diaphragm 31 that is in contact with the columns 32, 33, and 34 and the portion of the diaphragm 31 that is not in contact with the columns 32, 33, and 34. Therefore, when the vibrating membrane 31 supported by the columns 32, 33, and 34 is pressed against the surface of the subject 5 near the measurement site, the column is directly above the bone, muscle, or tendon 51 removed from the artery 50 inside the subject. 32, 33, and 34 are positioned to stably support the vibrating membrane 31, and the portion MIP1 having a small mechanical impedance arranged immediately above the artery 50 is displaced following the pulsation. Since the vibration membrane of the portion MIP2 having a large mechanical impedance is supported by the columns 32, 33, and 34, the position of the bone, muscle, or tendon 51 can be searched while pressing the vibration membrane 31 against the surface of the subject 5 during measurement. Therefore, the pressing position of the vibration film 31 can be easily determined.

図7には本発明に係る拍動検出装置の第2の例が示される。空気室3の形状は図1及び図2に限定されず適宜変更可能であり、例えば、指などのような形状に拍動検出装置を密着させるときには、図7の例に示すように振動膜31は被検体の表面に沿って凹面であると勝手が良い。図8の使用状態の説明図の如く、支柱32,33,34で振動膜31を凹状に支持してあれば、左右2箇所の第2機械インピーダンス領域MIP2で被検体5からの反力を受けることができ、拍動の検出に際して被検体5に拍動検出装置SNSRを安定的に押し付けて位置決めすることができる。その他の構成は図1の例と同様であるからそれと同じ機能を有する部材には同じ参照番号を付してその詳細な説明を省略する。   FIG. 7 shows a second example of the pulsation detecting device according to the present invention. The shape of the air chamber 3 is not limited to that shown in FIGS. 1 and 2 and can be changed as appropriate. For example, when the pulsation detecting device is brought into close contact with a shape such as a finger, as shown in the example of FIG. If it is concave along the surface of the subject, it is good. As shown in the explanatory diagram of the use state in FIG. 8, if the vibrating membrane 31 is supported in a concave shape by the support columns 32, 33, 34, the reaction force from the subject 5 is received in the second mechanical impedance regions MIP2 at the two left and right positions. The pulsation detection device SNSR can be stably pressed and positioned on the subject 5 when detecting the pulsation. Since the other configuration is the same as that of the example of FIG. 1, members having the same functions are denoted by the same reference numerals, and detailed description thereof is omitted.

図9及び図10には本発明に係る拍動検出装置の第3の例が示される。同図に示される拍動検出装置SNSRは、空気室4の支持部材を熱可塑性エラストマーから成る繊維の連続線条体を曲りくねらせたランダムループの接合構造体42とする。ランダムループは例えばスチレン系熱可塑性エラストマーを含む熱可塑性エラストマーから成り、繊維径が0.1mm〜3.0mm程度の連続線状体を曲りくねらせて成り、ランダムループの夫々のループを互いに溶融状態で接触してランダムループの3次元の接合構造体42が構成される。   9 and 10 show a third example of the pulsation detecting device according to the present invention. In the pulsation detecting device SNSR shown in the figure, the support member of the air chamber 4 is a joined structure 42 of random loops in which continuous filaments of fibers made of thermoplastic elastomer are wound. Random loops are made of thermoplastic elastomers including, for example, styrenic thermoplastic elastomers, and are formed by twisting continuous linear bodies with a fiber diameter of about 0.1 mm to 3.0 mm, and the random loops are melted together. In contact with each other, a three-dimensional joint structure 42 in a random loop is formed.

接合構造体42は前記と同様にケーシング1の縁部に固定され或いはケーシング1の縁部にケーシングに一体形成された振動膜41で覆われて、空気室4を構成する。接合構造体42は非線形弾性を有し、振動膜41の外側から押圧した部分だけが振動膜41と共に沈み込んで変位する。したがって、振動膜41のどの部分でも押し付ければ沈み込むことになり、平面でない被検体5の表面に振動膜41を押し付ければ、振動膜41はその表面の任意の形状に合わせて容易に変形する。押圧して沈み込んだ部分は押圧しない部分に比べて大きな反力を生ずる。この状態を基準に考えれば、被検体5への押圧力に抗する力が小さな部位である第1機械インピーダンス領域MIP1における振動膜の機械インピーダンスは、当該被検体5への押圧力に抗する力が大きな部位である第2機械インピーダンス領域MIP2における振動膜41の機械インピーダンスよりも小さくなる。第1インピーダンス領域MIP1の振動膜41は拍動に追従して変位し、第2インピーダンス領域MIP1の振動膜41は拍動に追従して変位し難く、第1インピーダンス領域MIP1の振動膜41に無用な振動が重畳されるのを防止するように振動膜41を被検体5表面に支持する。   The joint structure 42 is fixed to the edge of the casing 1 in the same manner as described above or covered with the vibration film 41 integrally formed on the edge of the casing 1 to form the air chamber 4. The joint structure 42 has nonlinear elasticity, and only the portion pressed from the outside of the vibration film 41 sinks and is displaced together with the vibration film 41. Therefore, if any part of the vibration film 41 is pressed, the vibration film 41 sinks. If the vibration film 41 is pressed against the surface of the subject 5 that is not flat, the vibration film 41 is easily deformed according to an arbitrary shape of the surface. To do. A portion that is depressed by pressing produces a larger reaction force than a portion that does not press. Considering this state as a reference, the mechanical impedance of the vibrating membrane in the first mechanical impedance region MIP1, which is a portion having a small force against the pressing force on the subject 5, is a force that resists the pressing force on the subject 5. Is smaller than the mechanical impedance of the vibrating membrane 41 in the second mechanical impedance region MIP2 which is a large portion. The vibration film 41 in the first impedance region MIP1 is displaced following the pulsation, and the vibration film 41 in the second impedance region MIP1 is hardly displaced following the pulsation, and is unnecessary for the vibration film 41 in the first impedance region MIP1. The vibration film 41 is supported on the surface of the subject 5 so as to prevent superfluous vibration from being superimposed.

図9、図10の例は、振動膜41の表裏方向における接合構造体42の厚さ寸法を部分的に相違させ、被検体5と接触可能とされる外表面の一部が前記接合構造体42の厚さ寸法に応じて突出されているように振動膜41を形成してあり、例えば、中央部が凹状の立体的な形状を前記振動膜41に採用する。その他の構成は図1の例と同様であるからそれと同じ機能を有する部材には同じ参照番号を付してその詳細な説明を省略する。   In the example of FIGS. 9 and 10, the thickness dimension of the bonding structure 42 in the front and back direction of the vibration film 41 is partially different, and a part of the outer surface that can be brought into contact with the subject 5 is the bonding structure. The vibration film 41 is formed so as to protrude in accordance with the thickness dimension of 42, and, for example, a three-dimensional shape having a concave central part is adopted for the vibration film 41. Since the other configuration is the same as that of the example of FIG. 1, members having the same functions are denoted by the same reference numerals, and detailed description thereof is omitted.

図9及び図10の拍動検出装置SNSRによれば、振動膜41の異なる部に発生される機械インピーダンスの大小は予め決定されず、実際に振動膜41を被検体5の表面に押し当てた状態で決定される。例えば図11に例示されるように、被検体5の内部の動脈51から外れた骨部、筋又は腱50の直上の空気室4の部位(第2機械インピーダンス領域MIP2)では接合構造体が大きく圧縮して大きな機械インピーダンスを生じ、動脈51直上の空気室4の部位(第1機械インピーダンス領域MIP1)では接合構造体42が左程圧縮せずに小さな機械インピーダンスを生ずる。このように、実際に振動膜41を押し当てた場所に応じて空気室4の機械インピーダンスの大小を動的に決定することができる。したがって、複雑な被検体5の表面形状若しくは被検体5の骨部や動脈50など複雑な内部配置に都合良く合わせながら動脈51の直上若しくは近傍に小さな機械インピーダンスの領域を容易に配置することができる。特に、振動膜41の中央部を凹状とするように振動膜の表裏方向における前記接合構造体の厚さ寸法を部分的に相違させることにより、機械インピーダンスの大きな突出部分を被検体5に強く押し当てても機械インピーダンスの小さな部位に作用する反力が大きくなることを緩和することができ、結果として、被検体5に振動膜を押し当て位置決めするときの安定性が増し、検出感度の更なる向上に寄与する。   According to the pulsation detection device SNSR of FIGS. 9 and 10, the magnitude of the mechanical impedance generated in different parts of the vibrating membrane 41 is not determined in advance, and the vibrating membrane 41 is actually pressed against the surface of the subject 5. Determined by state. For example, as illustrated in FIG. 11, the joint structure is large in a portion of the air chamber 4 (second mechanical impedance region MIP2) just above the bone, muscle, or tendon 50 that is removed from the artery 51 inside the subject 5. Compression generates a large mechanical impedance, and the joint structure 42 does not compress to the left at the portion of the air chamber 4 immediately above the artery 51 (first mechanical impedance region MIP1), and a small mechanical impedance is generated. As described above, the magnitude of the mechanical impedance of the air chamber 4 can be dynamically determined according to the place where the vibration film 41 is actually pressed. Therefore, a small mechanical impedance region can be easily arranged immediately above or in the vicinity of the artery 51 while conveniently adjusting to the complicated surface configuration of the subject 5 or a complicated internal arrangement such as the bone portion of the subject 5 or the artery 50. . In particular, by making the thickness dimension of the joint structure in the front and back directions of the vibration film partially different so that the center part of the vibration film 41 is concave, the protruding portion having a large mechanical impedance is strongly pressed against the subject 5. It is possible to mitigate an increase in reaction force acting on a portion having a small mechanical impedance even if the contact is applied. As a result, the stability when the diaphragm is pressed against the subject 5 is increased, and the detection sensitivity is further increased. Contributes to improvement.

図12には本発明に係る拍動検出装置の第4の例を示す。同図に示される拍動検出装置SNSRは振動膜41の外表面の一部を突出させる形状として、中央部が凸状の立体的な形状を振動膜41に採用した点が図9と異なる。図13は本発明には係る拍動検出装置の第5の例を示す。同図に示される拍動検出装置SNSRは振動膜41の外表面を平面状にした点が図9と異なる。図12及び図13においてその他の構成は図9の例と同様であるからそれと同じ機能を有する部材には同じ参照番号を付してその詳細な説明を省略する。   FIG. 12 shows a fourth example of the pulsation detecting device according to the present invention. The pulsation detecting device SNSR shown in the figure is different from FIG. 9 in that a three-dimensional shape having a convex central part is adopted for the vibrating membrane 41 as a shape for projecting a part of the outer surface of the vibrating membrane 41. FIG. 13 shows a fifth example of a pulsation detecting device according to the present invention. The pulsation detection device SNSR shown in the figure is different from FIG. 9 in that the outer surface of the vibration film 41 is planar. 12 and 13 are the same as those in the example of FIG. 9, members having the same functions are given the same reference numerals, and detailed descriptions thereof are omitted.

次に本発明に係る拍動検出装置を実際に人体の手首、指先端部及び臀部に利用した場合の実験例について説明する。   Next, an experimental example in which the pulsation detecting device according to the present invention is actually used for the wrist, finger tip, and hip of a human body will be described.

図14は本発明に係る拍動検出装置による手首からの検出波形を例示し、図15は従来の心音センサーによる手首からの検出波形を例示する。各図において縦軸は脈波の振幅値を表し、横軸は時間を表わす。前半の波形は歩行時の測定、後半は静止時での測定波形を示した。本発明の拍動検出装置SNSRによる測定波形は、歩行時でのR−Rインターバルのピークの位置が明白に示されているのに対し、従来方式の心音センサーは歩行による振動に拍動がかく乱されてピークが捉え難くなっている。   14 illustrates a detected waveform from the wrist by the pulsation detecting device according to the present invention, and FIG. 15 illustrates a detected waveform from the wrist by a conventional heart sound sensor. In each figure, the vertical axis represents the amplitude value of the pulse wave, and the horizontal axis represents time. The first half of the waveform was measured during walking, and the second half was measured at rest. The waveform measured by the pulsation detection device SNSR of the present invention clearly shows the position of the peak of the RR interval during walking, whereas the conventional heart sound sensor is disturbed by vibration due to walking. As a result, it is difficult to catch the peak.

図16は本発明に係る拍動検出装置による指先先端部からの検出波形を例示し、図17は従来の心音センサーによる指先先端部からの検出波形を例示する。前半の波形は歩行時の測定、後半は静止時での測定波形を示した。ここでも本発明の拍動検出装置SNSRによる測定波形は、歩行時でのR−Rインターバルのピークの位置が明白に示されているのに対し、従来の方式の心音センサーはピークの位置が外乱によってわかり難くなっている。   FIG. 16 illustrates a detection waveform from the tip of the fingertip by the pulsation detecting device according to the present invention, and FIG. 17 illustrates a detection waveform from the tip of the fingertip by the conventional heart sound sensor. The first half of the waveform was measured during walking, and the second half was measured at rest. Here again, the waveform measured by the pulsation detecting device SNSR of the present invention clearly shows the peak position of the RR interval during walking, whereas the conventional heart sound sensor has a disturbance in the peak position. It is difficult to understand.

図19は本発明に係る拍動検出装置SNSRによる臀部からの検出波形を例示し、図20は従来の心音センサーによる臀部からの検出波形を例示する。図19及び図20の測定では図18に例示されるように拍動検出装置SNSRを椅子6の座面に組み込んで用いた。図19及び図20の前半の波形は被検体(ここでは被験者)5が椅子6に座ってキーボードを操作しているときの波形であり、後半は静止しているときの波形を示す。ここでは、周波数が低い呼吸の波形も一緒に検出しているため、図14乃至図17とは異なった、ゆっくりしたうねりが加わった波形となっているが、本発明の拍動検出装置SNSRを使用することによりR−Rインターバルのピークを容易に検出することができる。従来方式の心音センサーでは図20のように静止時にわずかにピークが見つけられる程度であった。   FIG. 19 illustrates a detection waveform from the buttocks by the pulsation detection device SNSR according to the present invention, and FIG. 20 illustrates a detection waveform from the buttocks by a conventional heart sound sensor. 19 and 20, the pulsation detecting device SNSR was incorporated into the seat surface of the chair 6 as illustrated in FIG. The waveforms in the first half of FIGS. 19 and 20 are waveforms when the subject (here, the subject) 5 is sitting on the chair 6 and operating the keyboard, and the waveforms in the second half are stationary. Here, since the respiration waveform having a low frequency is also detected, the waveform is different from that shown in FIGS. 14 to 17 and has a slow undulation, but the pulsation detecting device SNSR of the present invention is used. By using it, the peak of the RR interval can be easily detected. In the conventional heart sound sensor, as shown in FIG.

以上の如く、本発明に係る拍動検出装置を用いることにより、ウォーキングやランニング中であっても、体の動きによって生じる雑音に影響されないで、安定した心音や脈拍測定を行うことができる。本発明に係る拍動検出装置は、被検体のさまざまな部位に対し動いている状態でも簡単に心音や脈拍などの測定を行うことができ、健康機器、医療機器、車載機器で必要とされる生体情報の安定的な取得の実現に資することができる。   As described above, by using the pulsation detecting device according to the present invention, stable heart sounds and pulse measurements can be performed without being affected by noise caused by body movements even during walking or running. The pulsation detecting device according to the present invention can easily measure heart sounds and pulses even in a state of moving with respect to various parts of the subject, and is required for health equipment, medical equipment, and in-vehicle equipment. It can contribute to realization of stable acquisition of biological information.

以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。   Although the invention made by the present inventor has been specifically described based on the embodiments, it is needless to say that the present invention is not limited thereto and can be variously modified without departing from the gist thereof.

例えば、ケーシングの形状は長方形状に限定されず円形など適宜の形状に変更可能である。支柱を用いる場合にその本数は3個に限定されず、例えばケーシングの長手方向の夫々の縁辺に沿って長さの異なるものを配置することも可能である。また、支部部材の一例である支柱にはゴム弾性又は粘弾性を呈する素材を用いることに限定されず、柔軟性のない樹脂等で形成することを妨げるものではない。拍動検出装置は心音や脈拍の測定に用いるだけでなく、体内音の測定に広く用いることが可能である。   For example, the shape of the casing is not limited to a rectangular shape and can be changed to an appropriate shape such as a circle. In the case of using the support columns, the number is not limited to three. For example, it is possible to arrange the columns having different lengths along the respective edges in the longitudinal direction of the casing. Moreover, it is not limited to using the raw material which exhibits rubber elasticity or viscoelasticity for the support | pillar which is an example of a branch member, It does not prevent forming with resin etc. which do not have a softness | flexibility. The pulsation detecting device can be widely used not only for measuring heart sounds and pulses but also for measuring body sounds.

SNSR 拍動検出装置
1 ケーシング
2 マイクロホン
3、4 空気室
5 被検体
MIP1 第1機械インピーダンス領域
MIP2 第2機械インピーダンス領域
30 内部空間
31 振動膜
32,33,34 支柱
40 内部空間
41 振動膜
42 接合構造体42
50 骨部、筋又は腱
51 動脈
SNSR pulsation detecting device 1 casing 2 microphone 3, 4 air chamber 5 subject MIP 1 first mechanical impedance region MIP 2 second mechanical impedance region 30 internal space 31 vibrating membranes 32, 33, 34 struts 40 internal space 41 vibrating membrane 42 bonding structure Body 42
50 Bone, muscle or tendon 51 Arteries

Claims (14)

音圧を受けて電気信号に変換するマイクロホンと、
前記マイクロホンを取り付けたケーシングと、
前記マイクロホンの音圧入力面に連通させて前記ケーシングの正面側に形成された空気室と、を有し、
前記空気室は、前記マイクロホンを内包するように前記ケーシングの周縁部に固定されていて外表面を被検体の表面に接触可能とする振動膜と、前記振動膜の内表面に係合して内部空間を形成するように当該振動膜を立体的に支えると共に被検体への押圧力に抗する大小異なる機械インピーダンスを前記振動膜の異なる部位に形成する支持部材と、を有する、拍動検出装置。
A microphone that receives sound pressure and converts it into an electrical signal;
A casing to which the microphone is attached;
An air chamber formed on the front side of the casing in communication with the sound pressure input surface of the microphone;
The air chamber is fixed to a peripheral portion of the casing so as to contain the microphone, and has a vibrating membrane that allows the outer surface to come into contact with the surface of the subject. A pulsation detecting device comprising: a support member that three-dimensionally supports the vibration membrane so as to form a space and forms mechanical impedances that are different in magnitude against a pressing force to the subject at different portions of the vibration membrane.
請求項1において、前記ケーシングは前記空気室の内部空間を大気圧に連通させる所定の内径と長さを持つ気圧調整孔を有する、拍動検出装置。   2. The pulsation detecting device according to claim 1, wherein the casing has a pressure adjusting hole having a predetermined inner diameter and length for communicating the internal space of the air chamber with atmospheric pressure. 請求項1において前記支持部材は、ケーシングの任意の位置に立設された支柱であり、支柱に接していない部位における振動膜の機械インピーダンスは支柱に接した部位における振動膜の機械インピーダンスよりも小さくされる、拍動検出装置。   2. The support member according to claim 1, wherein the support member is a support column erected at an arbitrary position of the casing, and a mechanical impedance of the vibration film in a portion not in contact with the support column is smaller than a mechanical impedance of the vibration film in a region in contact with the support column. Pulsation detection device. 請求項3において前記支柱は、粘弾性体又はゴム弾性体から成る、拍動検出装置。   4. The pulsation detecting device according to claim 3, wherein the support column is made of a viscoelastic body or a rubber elastic body. 請求項3又は4において前記振動膜は前記支柱よりも柔軟なゴム弾性体から成る、拍動検出装置。   5. The pulsation detecting device according to claim 3, wherein the vibration film is made of a rubber elastic body that is softer than the support column. 請求項3において前記支柱として長さの異なる複数個の支柱を有し、前記振動膜は被検体と接触可能とされる外表面の一部が他よりも長い支柱に支えられて突出されている、拍動検出装置。   4. The support column according to claim 3, wherein the support column includes a plurality of support columns having different lengths, and a part of an outer surface of the vibrating membrane that can contact the subject is supported by a support column that is longer than the other and protrudes. , Beat detection device. 請求項6において前記振動膜は中央部が凹状の立体的な形状を有する、拍動検出装置。   The pulsation detecting device according to claim 6, wherein the vibration film has a three-dimensional shape having a concave central portion. 請求項6において前記振動膜は中央部が凸状の立体的な形状を有する、拍動検出装置。   The pulsation detecting device according to claim 6, wherein the vibration film has a three-dimensional shape with a convex center part. 請求項1において前記支持部材は、熱可塑性エラストマーから成る繊維の連続線条体を曲りくねらせたランダムループの接合構造体であり、被検体への押圧力に抗する力が小さな部位における振動膜の機械インピーダンスは当該被検体への押圧力に抗する力が大きな部位における振動膜の機械インピーダンスよりも小さくされる、拍動検出装置。   2. The vibrating membrane according to claim 1, wherein the support member is a joint structure of a random loop in which continuous filaments of fibers made of a thermoplastic elastomer are twisted, and a force against a pressing force against a subject is small. The pulsation detecting device is configured such that the mechanical impedance is smaller than the mechanical impedance of the vibrating membrane at a site where the force against the pressing force to the subject is large. 請求項9において前記連続線条体は線径が0.1mm乃至3.0mmである、拍動検出装置。   The pulsation detecting device according to claim 9, wherein the continuous linear body has a wire diameter of 0.1 mm to 3.0 mm. 請求項9又は10において前記振動膜はゴム弾性体から成る、拍動検出装置。   The pulsation detecting device according to claim 9 or 10, wherein the vibration film is made of a rubber elastic body. 請求項9において前記振動膜の表裏方向における前記接合構造体の厚さ寸法は部分的に異なり、前記振動膜は被検体と接触可能とされる外表面の一部が前記接合構造体の厚さ寸法に応じて突出されている、拍動検出装置。   10. The thickness dimension of the joint structure in the front and back direction of the vibration membrane in claim 9 is partially different, and the vibration membrane has a part of the outer surface that can be brought into contact with a subject with a thickness of the joint structure. A pulsation detector that protrudes according to its dimensions. 請求項12において前記振動膜は中央部が凹状の立体的な形状を有する、拍動検出装置。   The pulsation detecting device according to claim 12, wherein the vibration film has a three-dimensional shape having a concave central portion. 請求項12において前記振動膜は中央部が凸状の立体的な形状を有する、拍動検出装置。   The pulsation detecting device according to claim 12, wherein the vibration film has a three-dimensional shape with a convex center part.
JP2016209482A 2016-10-26 2016-10-26 Beat detection device Active JP6643216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016209482A JP6643216B2 (en) 2016-10-26 2016-10-26 Beat detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016209482A JP6643216B2 (en) 2016-10-26 2016-10-26 Beat detection device

Publications (2)

Publication Number Publication Date
JP2018068476A true JP2018068476A (en) 2018-05-10
JP6643216B2 JP6643216B2 (en) 2020-02-12

Family

ID=62113098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016209482A Active JP6643216B2 (en) 2016-10-26 2016-10-26 Beat detection device

Country Status (1)

Country Link
JP (1) JP6643216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112971840A (en) * 2021-02-05 2021-06-18 复旦大学附属中山医院 Artery pulsation sound wave palm type analyzer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716497U (en) * 1993-08-30 1995-03-17 ルイス・リウ Touch type indirect conduction vibration type microphone
JPH10309272A (en) * 1997-05-12 1998-11-24 Nippon Colin Co Ltd Phonocardiograph
CN102772222A (en) * 2011-05-10 2012-11-14 重庆融海超声医学工程研究中心有限公司 Electronic stethoscope
US20140276150A1 (en) * 2013-03-15 2014-09-18 Ying Sun Apparatus for Acoustic Measurements of Physiological Signals with Automated Interface Controls
JP2014180308A (en) * 2013-03-18 2014-09-29 Tokyo Menitsukusu:Kk Electronic stethoscope
JP2015204870A (en) * 2014-04-17 2015-11-19 株式会社プリモ chest piece
US20160242730A1 (en) * 2015-02-23 2016-08-25 The Boston Consulting Group, Inc. Physiological monitoring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716497U (en) * 1993-08-30 1995-03-17 ルイス・リウ Touch type indirect conduction vibration type microphone
JPH10309272A (en) * 1997-05-12 1998-11-24 Nippon Colin Co Ltd Phonocardiograph
CN102772222A (en) * 2011-05-10 2012-11-14 重庆融海超声医学工程研究中心有限公司 Electronic stethoscope
US20140276150A1 (en) * 2013-03-15 2014-09-18 Ying Sun Apparatus for Acoustic Measurements of Physiological Signals with Automated Interface Controls
JP2014180308A (en) * 2013-03-18 2014-09-29 Tokyo Menitsukusu:Kk Electronic stethoscope
JP2015204870A (en) * 2014-04-17 2015-11-19 株式会社プリモ chest piece
US20160242730A1 (en) * 2015-02-23 2016-08-25 The Boston Consulting Group, Inc. Physiological monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112971840A (en) * 2021-02-05 2021-06-18 复旦大学附属中山医院 Artery pulsation sound wave palm type analyzer

Also Published As

Publication number Publication date
JP6643216B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
TWI631930B (en) Physiology signal sensing device
JP4120537B2 (en) Biological information detection device
JPWO2018043692A1 (en) Blood pressure measurement device, blood pressure measurement method, and recording medium recording blood pressure measurement program
TW200838472A (en) Optical power modulation
CN107530006A (en) Vibrational waveform sensor and waveform analysis device
US20040193033A1 (en) Noninvasive methods and apparatuses for measuring the intraocular pressure of a mammal eye
TW202023481A (en) Stethoscope and electronic stethoscope device
JP2018102727A (en) Biological sound measurement device
JP3561787B2 (en) Method and apparatus for imparting acoustic vibration sensation
KR20090107871A (en) Pulse realization apparatus
JP6643216B2 (en) Beat detection device
WO1997024976A1 (en) Apparatus for detecting living body signals
WO2021181735A1 (en) Bioacoustic sensor and stethoscope equipped therewith
KR102554695B1 (en) Blood pressure measurement device and method
JP4133341B2 (en) Method and apparatus for measuring intraocular pressure
JP2019010415A (en) Electronic manometer, blood pressure measurement method and electronic stethoscope
JP7367772B2 (en) Bioacoustic sensor and stethoscope equipped with it
JP2016174783A (en) Sensor device for detecting displacement of human body surface accompanying respiration
JP2015051158A (en) Skeletal muscle evaluation sensor
JP7178229B2 (en) pulse wave sensor
JPWO2018180288A1 (en) Fluid pressure detector
JP6706039B2 (en) Body sound auscultation device
JP7199187B2 (en) pulse wave sensor
JP3536512B2 (en) Biological signal detection device
JP2007014570A (en) Sphygmomanometer and control method of sphygmomanometer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190208

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R150 Certificate of patent or registration of utility model

Ref document number: 6643216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250