JP2018057092A - Power storage device control method, power storage device control apparatus, and power storage system - Google Patents

Power storage device control method, power storage device control apparatus, and power storage system Download PDF

Info

Publication number
JP2018057092A
JP2018057092A JP2016187717A JP2016187717A JP2018057092A JP 2018057092 A JP2018057092 A JP 2018057092A JP 2016187717 A JP2016187717 A JP 2016187717A JP 2016187717 A JP2016187717 A JP 2016187717A JP 2018057092 A JP2018057092 A JP 2018057092A
Authority
JP
Japan
Prior art keywords
power storage
storage device
power
value
predicted value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016187717A
Other languages
Japanese (ja)
Inventor
潤 香田
Jun Koda
潤 香田
充 相磯
Mitsuru Aiiso
充 相磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Holdings Inc filed Critical Tokyo Electric Power Co Holdings Inc
Priority to JP2016187717A priority Critical patent/JP2018057092A/en
Publication of JP2018057092A publication Critical patent/JP2018057092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device control method, a power storage device control apparatus, and a power storage system which allow efficient operation of a power storage device even when an estimated value obtained by estimating a future load demand contains a great error.SOLUTION: A control method for a power storage device 20 which supplies power to a load 50, comprises: a step of calculating an estimated value of power to be consumed by a load 50 after the current time point on the basis of an actual value of power consumed by the load 50 during a predetermined time period till the current time point; and a step of determining a discharge amount of the power storage device for a next time point following the current time point on the basis of the estimated value, wherein the step for calculating an estimated value and the step for determining a discharge amount are repeatedly performed at a predetermined time interval.SELECTED DRAWING: Figure 1

Description

本発明は、電力貯蔵機器の制御方法、電力貯蔵機器制御装置及び電力貯蔵システムに関する。   The present invention relates to a method for controlling a power storage device, a power storage device control device, and a power storage system.

電力需要家内に設置する電力貯蔵システムの設置目的にはいくつかあるが、その一つに電気料金の削減が挙げられる。具体的には、貯めた電気を高需要時に放電することで、最大電力抑制による契約電力減、すなわち電気料金の基本料金の削減が図られる。電力貯蔵システムは、一般に、実際に電力を充電・放電する電力貯蔵機器と、その充放電を制御する電力貯蔵機器制御装置(以下、単に「制御装置」と呼ぶ)からなる。制御装置が充放電量を決定するにあたっては、将来の高需要時に放電するために電力を温存する必要がある一方、最大電力を抑制するために、高需要時に適切な量を放電したり、最大電力を更新しない範囲で適時に充電して後の放電に備えたりするなど、充放電の適切なコントロールが重要である。そのため、従来は電力需要(負荷で使用された電力)を監視し、電力需要が契約電力を超えた分を放電するように制御し、結果として受電電力を契約電力以内とするような種々の制御装置が開発されてきた(例えば、特許文献1参照)。   There are several purposes for installing power storage systems installed in electricity consumers, one of which is to reduce electricity charges. Specifically, by discharging the stored electricity during high demand, the contract power can be reduced by suppressing the maximum power, that is, the basic charge of the electricity charge can be reduced. The power storage system generally includes a power storage device that actually charges and discharges power and a power storage device control device (hereinafter simply referred to as “control device”) that controls the charge and discharge. When the controller determines the charge / discharge amount, it is necessary to conserve power in order to discharge at the time of high demand in the future. On the other hand, in order to suppress the maximum power, Appropriate control of charge and discharge is important, such as charging in a timely manner within a range where power is not renewed and preparing for subsequent discharge. Therefore, in the past, power demand (power used in the load) was monitored, and control was performed to discharge the amount of power demand exceeding the contract power, resulting in various controls to keep the received power within the contract power. An apparatus has been developed (see, for example, Patent Document 1).

特開2016−116401号公報JP-A-2006-116401

契約電力が所与であるならば、従来の制御装置でも電力貯蔵機器の効率的な制御が可能である。しかしながら、近年普及している契約電力を実量制(過去1年間の最大需要電力が契約電力)とする契約では、当日の需要カーブを予測し(需要予測を行い)、その需要カーブと現時点での電池残量とをもとに充放電を割り当てることによる、受電電力を最大限抑制した形での充放電を行う必要がある。ところが、一需要家の需要予測を精度よく行うことは困難であり、予測値には大きな誤差を含み、このため上記の制御は、事実上は困難であるという課題があった。   If the contract power is given, the conventional control device can efficiently control the power storage device. However, in contracts where the contract power that has become popular in recent years is the actual amount system (maximum demand power in the past year is contract power), the demand curve of the day is predicted (demand forecast), and the demand curve and the current It is necessary to perform charging / discharging in a form in which received power is suppressed to the maximum by assigning charging / discharging based on the remaining battery level. However, it is difficult to accurately predict the demand of one consumer, and the predicted value includes a large error. Therefore, there is a problem that the above control is practically difficult.

本発明はこのような課題に鑑みてなされたものであり、負荷の将来需要を予測した予測値に大きな誤差を含む場合でも、電力貯蔵機器を効率良く稼働させることができる電力貯蔵機器の制御方法、この電力貯蔵機器の制御方法が実装された電力貯蔵機器制御装置、及び、この電力貯蔵機器制御装置を有する電力貯蔵システムを提供することを目的とする。   The present invention has been made in view of such a problem, and a method for controlling a power storage device capable of operating the power storage device efficiently even when the predicted value of the future demand for the load includes a large error. An object of the present invention is to provide a power storage device control device in which the control method of the power storage device is mounted, and a power storage system having the power storage device control device.

前記課題を解決するために、本発明に係る電力貯蔵機器の制御方法は、負荷に電力を供給する電力貯蔵機器の制御方法であって、現在の時刻から所定期間前までの負荷による使用電力の実績値に基づいて、現在の時刻より後の負荷による使用電力の予測値を算出するステップと、この予測値に基づいて、現在の次の時刻の電力貯蔵機器の放電量を決定するステップと、を有し、所定の時間間隔で、予測値を算出するステップ及び放電量を決定するステップを繰り返し実行することを特徴とする。   In order to solve the above-mentioned problem, a control method for a power storage device according to the present invention is a control method for a power storage device that supplies power to a load. A step of calculating a predicted value of power used by a load after the current time based on the actual value, a step of determining a discharge amount of the power storage device at the current next time based on the predicted value, The step of calculating the predicted value and the step of determining the discharge amount are repeatedly executed at predetermined time intervals.

また、本発明に係る電力貯蔵機器の制御方法において、予測値を算出するステップは、実績値に基づいて、現在の時刻より後の負荷による使用電力の予測値の中心値及び誤差幅を算出し、予測値の中心値及び誤差幅により、補正された予測値を算出するように構成され、放電量を決定するステップは、補正された予測値に基づいて、現在の次の時刻の電力貯蔵機器の放電量を決定するように構成されることが好ましい。   Further, in the method for controlling the power storage device according to the present invention, the step of calculating the predicted value calculates the center value and the error width of the predicted value of the power used by the load after the current time based on the actual value. The corrected predicted value is calculated according to the center value and the error width of the predicted value, and the step of determining the discharge amount is based on the corrected predicted value and the power storage device at the current next time It is preferable to be configured to determine the amount of discharge.

また、本発明に係る電力貯蔵機器の制御方法において、予測値を算出するステップは、次式により補正された予測値を算出することが好ましい。
Pe′(t)=Pe(t)+α×σ(t)
但し、
Pe(t):予測値の中心値
σ(t):標準偏差
α:係数
α×σ(t):誤差幅
t:時刻
Moreover, in the control method of the power storage device according to the present invention, the step of calculating the predicted value preferably calculates the predicted value corrected by the following equation.
Pe ′ (t) = Pe (t) + α × σ (t)
However,
Pe (t): Center value of predicted value σ (t): Standard deviation α: Coefficient α × σ (t): Error width t: Time

また、本発明に係る電力貯蔵機器の制御方法において、係数は負の値であることが好ましい。   Moreover, in the control method of the power storage device according to the present invention, the coefficient is preferably a negative value.

また、本発明に係る電力貯蔵機器の制御方法は、電力貯蔵機器の残量に基づいて係数を変化させることが好ましい。   Moreover, it is preferable that the control method of the power storage device according to the present invention changes the coefficient based on the remaining amount of the power storage device.

また、本発明に係る電力貯蔵機器制御装置は、上述した電力貯蔵機器の制御方法が実装され、電力貯蔵機器の放電動作を制御することを特徴とする。   Moreover, the power storage device control apparatus according to the present invention is characterized in that the above-described control method for the power storage device is mounted and controls the discharge operation of the power storage device.

また、本発明に係る電力貯蔵システムは、負荷に電力を供給する電力貯蔵機器と、この電力貯蔵機器の放電動作を制御する上述した電力貯蔵機器制御装置と、を有することを特徴とする。   In addition, a power storage system according to the present invention includes a power storage device that supplies power to a load, and the above-described power storage device control device that controls a discharge operation of the power storage device.

本発明を以上のように構成すると、負荷の将来需要を予測した予測値に大きな誤差を含む場合でも、電力貯蔵機器を効率良く稼働させることができる電力貯蔵機器の制御方法、この電力貯蔵機器の制御方法が実装された電力貯蔵機器制御装置、及び、この電力貯蔵機器制御装置を有する電力貯蔵システムを提供することができる。   When the present invention is configured as described above, even when a predicted value that predicts the future demand of the load includes a large error, the method of controlling the power storage device that can efficiently operate the power storage device, It is possible to provide a power storage device control device in which a control method is implemented, and a power storage system including the power storage device control device.

電力貯蔵システムの構成を示すブロック図である。It is a block diagram which shows the structure of an electric power storage system. 充放電量決定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of charging / discharging amount determination processing. 負荷の使用電力の予測値を説明するためのグラフである。It is a graph for demonstrating the predicted value of the electric power used of load. 充放電量決定処理における係数αと削減達成率との関係を説明するためのグラフである。It is a graph for demonstrating the relationship between the coefficient (alpha) and reduction achievement rate in a charging / discharging amount determination process. 充放電量決定処理により電力貯蔵機器が運転されたときの結果を示すグラフである。It is a graph which shows a result when an electric power storage apparatus is drive | operated by the charging / discharging amount determination process.

以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて本発明に係る電力貯蔵機器の制御方法が実装された電力貯蔵機器制御装置(制御装置)を有する電力貯蔵システムの構成について説明する。この電力貯蔵システム10は、二次電池等で構成される電力貯蔵機器20と、この電力貯蔵機器20の運転状態を制御する制御装置30とから構成されている。電力貯蔵機器20は、制御装置30からの指令信号に応じて、系統40から電力供給を受けて電力を蓄える(充電する)か、若しくは、蓄えられた電力を負荷50に供給する(放電する)ように構成されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the configuration of a power storage system having a power storage device control device (control device) in which the method for controlling a power storage device according to the present invention is implemented will be described with reference to FIG. The power storage system 10 includes a power storage device 20 configured by a secondary battery or the like, and a control device 30 that controls an operation state of the power storage device 20. In response to a command signal from the control device 30, the power storage device 20 receives power supply from the system 40 and stores (charges) power or supplies the stored power to the load 50 (discharges). It is configured as follows.

制御装置30は、電力貯蔵機器20を制御するためのデータ等を記憶する記憶部32と、記憶部32に記憶されたデータに基づいて電力貯蔵機器20の充放電量を決定する処理部31と、を有して構成されている。なお、処理部31はコンピュータのCPU等で構成され、記憶部32はハードディスク等で構成される。また、この処理部31で実行される主な機能としては、負荷50で使用される電力(現在の需要)を計測し、所定の時間間隔(例えば30分)で、その時間間隔の間の使用電力を記憶部32に履歴情報として記憶する処理と、記憶部32に記憶された負荷50の使用電力の履歴情報(上述した、例えば30分ごとの値)から、需要予測を行って電力貯蔵機器20の充放電量を決定する処理と、を有している。   The control device 30 includes a storage unit 32 that stores data for controlling the power storage device 20, and a processing unit 31 that determines the charge / discharge amount of the power storage device 20 based on the data stored in the storage unit 32. , And is configured. The processing unit 31 is configured by a computer CPU or the like, and the storage unit 32 is configured by a hard disk or the like. The main function executed by the processing unit 31 is to measure the power (current demand) used by the load 50, and use it during a predetermined time interval (for example, 30 minutes). From the process of storing power as history information in the storage unit 32 and the history information of power used by the load 50 stored in the storage unit 32 (as described above, for example, the value every 30 minutes), the power storage device And 20 processes for determining the charge / discharge amount.

それでは、制御装置30の処理部31で実行される電力貯蔵機器20の充放電量を決定する処理(以下、「充放電量決定処理」と呼ぶ)について図2〜図5を用いて説明する。なお、ここでは、所定の時間間隔を30分とする(すなわち、30分毎に使用電力を記憶し、また、電力貯蔵機器20の充放電量を30分刻みで決定する)ように構成した場合について説明する。   Then, the process (henceforth a "charge / discharge amount determination process") which determines the charge / discharge amount of the electric power storage apparatus 20 performed by the process part 31 of the control apparatus 30 is demonstrated using FIGS. In this case, the predetermined time interval is set to 30 minutes (that is, the power used is stored every 30 minutes, and the charge / discharge amount of the power storage device 20 is determined every 30 minutes). Will be described.

この充放電量決定処理は、上述した所定の時間間隔(30分)で、処理部31により実行される処理であり、図2に示すように、処理部31は、充放電量決定処理を開始すると、まず、記憶部32から、現在の時刻(「tn」とする)から所定期間前まで(例えば「3ヶ月前まで」)の使用電力の履歴情報(実績値、実績需要)を読み出す(ステップS100)。そして、この履歴情報から、現在の次の時刻(「tn+1」とする)から所定時間先までの負荷40の予測需要、すなわち、この負荷50で使用される電力の予測値(予測値の中心値であるが、以下、単に「予測値」と呼ぶ)を算出する(ステップS110)。この所定時間は例えば24時間であって、以下「N」とし(但し、30分刻みであるためN=48となる)、時刻tにおける予測値(中心値)をPe(t)とすると、Pe(tn+1),Pe(tn+2),…,Pe(tn+N)が算出される。予測需要の算出方法は、例えば、上述した履歴情報を用いて回帰分析により行われるが、他の方法を用いてもよい。なお、このステップS110で予測値Pe(t)を求めるときに、中心値であるPe(t)を算出した時刻毎の標準偏差(この標準偏差をσ(t)とすると、σ(tn+1),σ(tn+2),…,σ(tn+N))を算出する。 This charge / discharge amount determination process is a process executed by the processing unit 31 at the predetermined time interval (30 minutes) described above. As shown in FIG. 2, the processing unit 31 starts the charge / discharge amount determination process. Then, first, the history information (actual value, actual demand) of the electric power used from the current time (“t n ”) to a predetermined period before (for example, “until three months ago”) is read from the storage unit 32 ( Step S100). And from this history information, the predicted demand of the load 40 from the current next time (“t n + 1 ”) to the predetermined time ahead, that is, the predicted value (predicted value) of the power used in this load 50 (Hereinafter, simply referred to as “predicted value”) is calculated (step S110). This predetermined time is, for example, 24 hours, and is hereinafter referred to as “N” (provided that N = 48 since 30 minutes), and Pe (t) is the predicted value (center value) at time t. (T n + 1 ), Pe (t n + 2 ),..., Pe (t n + N ) are calculated. The calculation method of the predicted demand is performed by regression analysis using the history information described above, for example, but other methods may be used. When the predicted value Pe (t) is obtained in step S110, the standard deviation for each time when the central value Pe (t) is calculated (when this standard deviation is σ (t), σ (t n + 1 ), σ (t n + 2 ),..., Σ (t n + N )) are calculated.

図3は、8時30分までの実績需要(負荷50で実際に使用された電力の履歴情報であって、図3において太い実線で表示されている)に基づいて、9時からの予測需要を求めたグラフである。細い実線は予測値(中心値)Pe(t)を示している。また、図3の横軸は時刻を示し、縦軸は使用電力(実績需要及び予測値)を示している。なお、図3は、使用電力の実績値(実績需要)を合わせて表示するため、0時から23時30分の24時間分のグラフとしているが、実際の予測値Pe(t)及び標準偏差σ(t)は、9時から翌日の8時30分までの24時間分が算出される。   FIG. 3 shows the predicted demand from 9:00 based on the actual demand up to 8:30 (history information of the power actually used at the load 50, which is indicated by a thick solid line in FIG. 3). It is the graph which calculated | required. A thin solid line indicates a predicted value (center value) Pe (t). In addition, the horizontal axis of FIG. 3 indicates time, and the vertical axis indicates power used (actual demand and predicted value). Note that FIG. 3 is a graph for 24 hours from 23 o'clock to 23:30 in order to display the actual value (actual demand) of the power used, but the actual predicted value Pe (t) and the standard deviation σ (t) is calculated for 24 hours from 9:00 to 8:30 on the next day.

次に、処理部31は、予測値Pe(t)と標準偏差σ(t)により、以下に示す式(1)に基づいて、各時刻の負荷50の使用電力の予測値の補正値(時刻tにおける補正値をPe′(t)とすると、Pe′(tn+1),Pe′(tn+2),…,Pe′(tn+N))を算出する(ステップS120)。なお、以降の説明において、この式(1)におけるα×σ(t)を誤差幅と呼ぶ。 Next, the processing unit 31 uses the predicted value Pe (t) and the standard deviation σ (t) to correct the predicted value of the used power of the load 50 at each time (time) based on the following formula (1). If the correction value at t is Pe ′ (t), then Pe ′ (t n + 1 ), Pe ′ (t n + 2 ),..., Pe ′ (t n + N )) are calculated (step S120). In the following description, α × σ (t) in the equation (1) is referred to as an error width.

Pe′(t)=Pe(t)+α×σ(t) (t=tn+1,tn+2,…,tn+N) (1)
但し、
α:係数
Pe ′ (t) = Pe (t) + α × σ (t) (t = t n + 1 , t n + 2 ,..., T n + N ) (1)
However,
α: Coefficient

そして、処理部31は、現在の時刻の需要P(tn)と、24時間分の予測需要の補正値Pe′(t)と、過去の最大電力(既往最大電力)と、現在の時刻の電力貯蔵機器20の電池残量とに基づいて、現在の次の時刻(tn+1)の電力貯蔵機器20の充放電量D(tn+1)を決定し、この充放電量D(tn+1)に基づいて電力貯蔵機器20に対して指令信号を出力する(ステップS130)。なお、ここでは充放電量の決定方法の説明は省略するが、公知の手法を用いることができる。また、充放電量D(tn+1)は、その値の正負により、充電量か放電量かを区別してもよい。 The processing unit 31 then calculates the demand P (t n ) at the current time, the predicted value Pe ′ (t) for the predicted demand for 24 hours, the past maximum power (the past maximum power), and the current time based on the battery remaining amount of the power storage device 20, determines the charge and discharge amount D of the electric power storage device 20 of the current at the next time (t n + 1) (t n + 1), the discharge amount D ( Based on t n + 1 ), a command signal is output to the power storage device 20 (step S130). In addition, although description of the determination method of charging / discharging amount is abbreviate | omitted here, a well-known method can be used. Further, the charge / discharge amount D (t n + 1 ) may be discriminated between the charge amount and the discharge amount based on the sign of the value.

一般に、数学的手法により予測値を求める場合、予測値の中心値(最も発生する可能性が高い値であって上述した予測値Pe(t))の他に、信頼区間(所定の確率で値がこの範囲内に収まるという範囲)を規定するための値であって、上述した標準偏差σ(t)を求めることができる。予測需要を用いて電力貯蔵機器20の電力充放電パターンを決定するにあたっては、最も確実性の高い中心値(予測値Pe(t))を用いるのが一般的である。これは、実際の需要が予測値と一致するならば、最適な制御となり、問題はない。   In general, when a predicted value is obtained by a mathematical method, in addition to the center value of the predicted value (the value that is most likely to occur and the predicted value Pe (t) described above), a confidence interval (a value with a predetermined probability) is used. Is a value that defines a range within the range), and the standard deviation σ (t) described above can be obtained. In determining the power charge / discharge pattern of the power storage device 20 using the predicted demand, it is common to use the center value (predicted value Pe (t)) with the highest certainty. This is optimal control if the actual demand matches the predicted value, and there is no problem.

しかし、一需要家の予測需要を精度良く求めることは困難で、実際の需要が予測値を外れることはごく普通のことである。そのため、中心値(予測値Pe(t))を使う手法では、実際の需要が予測値を外れた場合には、最適制御からは大きく異なった制御となり、電力貯蔵機器20の効果が十分に発揮できないこととなる。   However, it is difficult to accurately determine the predicted demand of one consumer, and it is normal that actual demand deviates from the predicted value. Therefore, in the method using the central value (predicted value Pe (t)), when the actual demand deviates from the predicted value, the control is greatly different from the optimal control, and the effect of the power storage device 20 is sufficiently exhibited. It will not be possible.

本実施形態においては、負荷50の予測需要として、予測値の中心値(Pe(t))ではなく、上述した式(1)に示すように、その信頼区間(上振値=外れたとしてもこの値以下、下振値=外れたとしてもこの値以上)である誤差幅α×σ(t)に基づいて補正値Pe′(t)を算出し、この補正値Pe′(t)を用いることにより、予測が外れた場合でも最適性を大きく損なうことのない制御が可能となる。上述した式(1)において、係数αが正の値のときに誤差幅α×σ(t)も正の値となるため、予測需要は上振値となり、係数αが負の値のときに誤差幅α×σ(t)も負の値となるため、予測需要は下振値となり、係数αが0のときに予測需要は予測値の中心値となる。また、図3には、上振値が破線で示され、下振値が一点鎖線で示されている。負荷50の予測需要として上振れ側を採用する場合は、途中で電力貯蔵機器20の電池残量が空になり、以降無制御となるリスクは小さくなるものの、電池残量を十分活用しないリスクは高くなる。一方、下振れ側を採用する場合は、電力貯蔵機器20の電池残量を少なくして十分活用することができるが、途中で電池残量が空になる(0になる)リスクが高くなる。   In the present embodiment, the predicted demand of the load 50 is not the central value (Pe (t)) of the predicted value, but as shown in the above-described equation (1), A correction value Pe ′ (t) is calculated on the basis of an error width α × σ (t) that is equal to or less than this value and lower than this value even if it is off), and this correction value Pe ′ (t) is used. As a result, it is possible to perform control without greatly impairing the optimality even when the prediction is lost. In the above equation (1), when the coefficient α is a positive value, the error width α × σ (t) is also a positive value. Therefore, the predicted demand is an upside value, and the coefficient α is a negative value. Since the error width α × σ (t) is also a negative value, the predicted demand is a downward value, and when the coefficient α is 0, the predicted demand is the center value of the predicted value. In FIG. 3, the upside value is indicated by a broken line, and the downside value is indicated by a one-dot chain line. When the upside is adopted as the predicted demand of the load 50, the remaining battery level of the power storage device 20 becomes empty on the way, and the risk of no control thereafter becomes small, but the risk of not fully utilizing the remaining battery level is Get higher. On the other hand, when the downside is employed, the remaining amount of the battery of the power storage device 20 can be sufficiently utilized, but there is a high risk that the remaining amount of the battery becomes empty (becomes 0).

実際に、信頼区間のどの値を用いるかは、需要の形状や変動の度合い、電力会社との受電契約の形態、電力貯蔵機器20の容量や効率等により異なるため、一概に定めることはできず、事前のシミュレーション等により決定する。例えば、電力会社との受電契約において、基本料金(契約電力(kW)に応じて定まる月額料金)が低額で、契約電力(kW)超過時の違約金が高額であるならば、予測の上振れ側、例えば99%上振値(99%の確率でこの値以下となる値)を用いて極力、契約超過をさせないことが最も経済的な制御となるであろう。また、需要に対し電力貯蔵機器20の容量が大きい場合は、下振れ側を用いて積極的に受電電力を下げることが最も経済的な制御となるであろう。   Actually, which value of the confidence interval is used depends on the shape of the demand, the degree of fluctuation, the form of the power receiving contract with the power company, the capacity and efficiency of the power storage device 20, and so cannot be determined in general. Determined by prior simulation. For example, in a power receiving contract with a power company, if the basic charge (monthly charge determined according to the contracted power (kW)) is low and the penalty for exceeding the contracted power (kW) is high, the forecast will rise. For example, the most economical control would be to avoid over-contracting as much as possible using, for example, a 99% upside value (a value that falls below this value with a probability of 99%). In addition, when the capacity of the power storage device 20 is large with respect to demand, the most economical control will be to actively lower the received power using the downside.

図4は、電力の使用パターンが異なる複数の需要家(A1,A2,B1,C1,D1)に対して、本実施形態に係る充放電決定処理を用いて電力貯蔵機器20を運転したときの削減達成率を、式(1)の係数αを変化させて、すなわち、誤差幅α×σ(t)を変化させて予測需要を算出し、この予測需要に基づいて電力貯蔵機器20を制御したときを比較したグラフを示している。このグラフにおいて、横軸が係数αを示し、縦軸が削減達成率を表している。ここで、削減達成率は、以下のように定義している。   FIG. 4 shows a case where the power storage device 20 is operated using the charge / discharge determination process according to the present embodiment for a plurality of consumers (A1, A2, B1, C1, D1) having different power usage patterns. The reduction achievement rate is calculated by changing the coefficient α of the equation (1), that is, by changing the error width α × σ (t), and the power storage device 20 is controlled based on the predicted demand. A graph comparing the times is shown. In this graph, the horizontal axis represents the coefficient α, and the vertical axis represents the reduction achievement rate. Here, the reduction achievement rate is defined as follows.

削減達成率[%]
=(導入前最大需要−最大需要)/(導入前最大需要−最抑制最大需要)
Reduction achievement rate [%]
= (Maximum demand before introduction-Maximum demand) / (Maximum demand before introduction-Maximum demand on suppression)

削減達成率が100%のときは、需要を完全に予測できた最適制御の場合と同一の結果となったことを示している。この図4から明らかなように、係数αを負の値(特に、α<−2.5、α<−3.0、または、α<−4.0)とすることにより、需要パターンが異なっても、電力貯蔵機器20を効率良く運転し、且つ安定した削減達成率を得ることができることが分かる。   When the reduction achievement rate is 100%, it indicates that the result is the same as in the case of the optimal control in which the demand can be completely predicted. As is apparent from FIG. 4, the demand pattern varies depending on the coefficient α having a negative value (in particular, α <−2.5, α <−3.0, or α <−4.0). However, it turns out that the power storage device 20 can be operated efficiently and a stable reduction achievement rate can be obtained.

図5は、本実施形態に係る充放電量決定処理により、電力貯蔵機器20を制御した結果の一例を示すグラフである。過去の最大電力(既往最大電力)は超えているが、電力貯蔵機器20を活用しないとしたときの最大電力(導入前最大電力)を低減させた最大電力(導入後最大電力)になるように電力貯蔵機器20が運転されており、且つ、電池残量もほぼ使い切っているため、この電力貯蔵機器20が最適に運用されていることが分かる。   FIG. 5 is a graph illustrating an example of a result of controlling the power storage device 20 by the charge / discharge amount determination process according to the present embodiment. The past maximum power (existing maximum power) is exceeded, but the maximum power (maximum power before introduction) when not using the power storage device 20 is reduced (maximum power after introduction). Since the power storage device 20 is operated and the remaining battery level is almost used up, it can be seen that the power storage device 20 is optimally operated.

なお、以上の説明では、誤差幅α×σ(t)を求めるための係数αを一定の値に固定した場合について説明したが、補正値(上振値又は下振値)を決定するための係数αは制御の期間中一定である必要はなく、負荷50の状態や電力貯蔵機器20の状態に応じて変化させてもよい。具体的には、電力貯蔵機器20の電池残量が多い時点においては積極活用側(下振れ側であって、係数αが負の値)で制御し、電池残量が少ない時点においては保守側(上振れ側であって、係数αが正の値)を採用することによって、より最適な制御が可能となる。   In the above description, the case where the coefficient α for obtaining the error width α × σ (t) is fixed to a constant value has been described, but a correction value (upward value or downward value) is determined. The coefficient α need not be constant during the control period, and may be changed according to the state of the load 50 and the state of the power storage device 20. Specifically, when the remaining battery level of the power storage device 20 is high, control is performed on the active use side (downward side and the coefficient α is negative), and on the maintenance side when the remaining battery level is low. By adopting (upward side and coefficient α is a positive value), more optimal control is possible.

また、式(1)による補正値Pe′(t)で電力貯蔵機器20の充放電量を決定するのではなく、予測値の中心値Pe(t)で決定する場合は、上述したステップS120において、α=0として補正値を求めてもよいし、補正値を求めるステップS120を実行せず、ステップS130で予測値の中心値を用いて電力貯蔵機器20の充放電量を決定するように構成してもよい。   Further, when determining the charge / discharge amount of the power storage device 20 with the correction value Pe ′ (t) according to the expression (1) instead of determining with the center value Pe (t) of the predicted value, in the above-described step S120 The correction value may be obtained by setting α = 0, or the step S120 for obtaining the correction value is not executed, and the charge / discharge amount of the power storage device 20 is determined using the center value of the predicted value in step S130. May be.

以下に、本実施形態に係る電力貯蔵機器の制御方法の主な効果をまとめる。   Below, the main effects of the control method of the power storage device according to the present embodiment are summarized.

第1に、本実施形態に係る電力貯蔵機器の制御方法は、従来の一日の需要予測(日負荷曲線)を基に電力貯蔵機器20の充放電を制御するのではなく、所定の時間間隔(例えば30分)で逐次先の需要予測を繰り返し、その変化する予測需要に対し、最大電力を抑制する目標値を過去の最大電力履歴や電池残量を考慮しながら計算し、充放電量を決定するプロセスを繰り返すことで、最大電力の抑制量を最大化することに近づけることができる。   1stly, the control method of the power storage device which concerns on this embodiment does not control charging / discharging of the power storage device 20 based on the conventional daily demand forecast (daily load curve), but a predetermined time interval. (For example, 30 minutes) The demand forecast is repeated sequentially, and the target value for suppressing the maximum power is calculated for the changing forecast demand in consideration of the past maximum power history and the remaining battery level, and the charge / discharge amount is calculated. By repeating the determining process, the maximum power suppression amount can be approached to be maximized.

なお、各需要家の負荷が電力を使用するパターンは、曜日等により大きく異なるが(例えば、休日は設備が稼働しないため、使用電力が低くなり、また、昼休みに使用電力が低下しない)、上述したように、本実施形態に係る電力貯蔵機器の制御方法を用いることにより、所定期間(例えば、3ヶ月分)の履歴情報(実績需要)に基づいて予測需要(予測値Pe(t))と誤差幅(α×σ(t))を求めることにより、運転当日の電力の使用パターンを考慮することなく、電力貯蔵機器20を効率良く稼働させることができる。   The pattern in which the load of each consumer uses power varies greatly depending on the day of the week, etc. (for example, the equipment does not operate on holidays, so the power used is low, and the power used does not drop during the lunch break). As described above, by using the control method of the power storage device according to the present embodiment, the predicted demand (predicted value Pe (t)) and the historical information (actual demand) for a predetermined period (for example, three months) By obtaining the error width (α × σ (t)), the power storage device 20 can be efficiently operated without considering the power usage pattern on the day of operation.

第2に、本実施形態に係る電力貯蔵機器の制御方法は、予測した需要(予測値Pe(t))をそのまま用いるのではなく、必要に応じ上振予測値や下振予測値(補正値Pe′(t))を利用してすることにより、予測の誤差を補い、電力貯蔵機器20が放電しすぎることによる後のピークに対する電池枯渇のリスク及び、放電しなさすぎることによる電池の最大限利用を妨げるリスクの両者のバランスをとることで、最大限のピーク電力抑制に寄与することができる。   Secondly, the control method of the power storage device according to the present embodiment does not use the predicted demand (predicted value Pe (t)) as it is, but the upswing predicted value or the downswing predicted value (correction value) as necessary. By using Pe ′ (t)), the prediction error is compensated, the risk of battery depletion for a later peak due to excessive discharge of the power storage device 20, and the maximum use of the battery by not discharging too much By balancing both of the risks that hinder the peak, it is possible to contribute to maximum peak power suppression.

10 電力貯蔵システム
20 電力貯蔵機器
30 電力貯蔵機器制御装置(制御装置)
40 系統
50 負荷
DESCRIPTION OF SYMBOLS 10 Electric power storage system 20 Electric power storage apparatus 30 Electric power storage apparatus control apparatus (control apparatus)
40 system 50 load

Claims (7)

負荷に電力を供給する電力貯蔵機器の制御方法であって、
現在の時刻から所定期間前までの前記負荷による使用電力の実績値に基づいて、現在の時刻より後の前記負荷による使用電力の予測値を算出するステップと、
前記予測値に基づいて、現在の次の時刻の前記電力貯蔵機器の放電量を決定するステップと、を有し、
所定の時間間隔で、前記予測値を算出するステップ及び前記放電量を決定するステップを繰り返し実行することを特徴とする電力貯蔵機器の制御方法。
A method of controlling a power storage device that supplies power to a load,
Calculating a predicted value of power used by the load after the current time based on the actual value of power used by the load from a current time to a predetermined period before;
Determining a discharge amount of the power storage device at a current next time based on the predicted value, and
A method for controlling a power storage device, wherein the step of calculating the predicted value and the step of determining the discharge amount are repeatedly executed at predetermined time intervals.
前記予測値を算出するステップは、前記実績値に基づいて、現在の時刻より後の前記負荷による使用電力の予測値の中心値及び誤差幅を算出し、前記予測値の中心値及び前記誤差幅により、補正された予測値を算出するように構成され、
前記放電量を決定するステップは、前記補正された予測値に基づいて、現在の次の時刻の前記電力貯蔵機器の放電量を決定するように構成されることを特徴とする請求項1に記載の電力貯蔵機器の制御方法。
The step of calculating the predicted value calculates a center value and an error width of a predicted value of power used by the load after the current time based on the actual value, and calculates the center value and the error width of the predicted value. Is configured to calculate a corrected predicted value,
The step of determining the discharge amount is configured to determine a discharge amount of the power storage device at a current next time based on the corrected predicted value. Control method for power storage equipment.
前記予測値を算出するステップは、次式により前記補正された予測値を算出することを特徴とする請求項2に記載の電力貯蔵機器の制御方法。
Pe′(t)=Pe(t)+α×σ(t)
但し、
Pe(t):前記予測値の中心値
σ(t):標準偏差
α:係数
α×σ(t):前記誤差幅
t:時刻
The method for controlling the power storage device according to claim 2, wherein the step of calculating the predicted value calculates the corrected predicted value by the following equation.
Pe ′ (t) = Pe (t) + α × σ (t)
However,
Pe (t): Center value of the predicted value σ (t): Standard deviation α: Coefficient α × σ (t): The error width t: Time
前記係数は負の値であることを特徴とする請求項3に記載の電力貯蔵機器の制御方法。   The method of claim 3, wherein the coefficient is a negative value. 前記電力貯蔵機器の残量に基づいて前記係数を変化させることを特徴とする請求項3または4に記載の電力貯蔵機器の制御方法。   The method of controlling a power storage device according to claim 3 or 4, wherein the coefficient is changed based on a remaining amount of the power storage device. 請求項1〜5のいずれか一項に記載の電力貯蔵機器の制御方法が実装され、電力貯蔵機器の放電動作を制御することを特徴とする電力貯蔵機器制御装置。   The power storage device control apparatus according to any one of claims 1 to 5, wherein the control method for the power storage device is mounted and discharge operation of the power storage device is controlled. 負荷に電力を供給する電力貯蔵機器と、
前記電力貯蔵機器の放電動作を制御する請求項6に記載の電力貯蔵機器制御装置と、を有することを特徴とする電力貯蔵システム。
A power storage device for supplying power to the load;
A power storage system comprising: the power storage device control device according to claim 6 which controls a discharge operation of the power storage device.
JP2016187717A 2016-09-27 2016-09-27 Power storage device control method, power storage device control apparatus, and power storage system Pending JP2018057092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016187717A JP2018057092A (en) 2016-09-27 2016-09-27 Power storage device control method, power storage device control apparatus, and power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016187717A JP2018057092A (en) 2016-09-27 2016-09-27 Power storage device control method, power storage device control apparatus, and power storage system

Publications (1)

Publication Number Publication Date
JP2018057092A true JP2018057092A (en) 2018-04-05

Family

ID=61837308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016187717A Pending JP2018057092A (en) 2016-09-27 2016-09-27 Power storage device control method, power storage device control apparatus, and power storage system

Country Status (1)

Country Link
JP (1) JP2018057092A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021052588A (en) * 2019-06-06 2021-04-01 国立大学法人九州大学 Electric power demand forecasting device and electric power demand forecasting method
JP2021069264A (en) * 2019-10-28 2021-04-30 京セラ株式会社 Power control system, power control unit, power control method, and program
CN117424269A (en) * 2023-12-19 2024-01-19 广州汇电云联数科能源有限公司 Control method, device, terminal and medium for charging power of energy storage converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11308771A (en) * 1998-04-24 1999-11-05 Hitachi Ltd Power supply controller
JP2013027214A (en) * 2011-07-24 2013-02-04 Denso Corp Power supply system
JP2015047041A (en) * 2013-08-29 2015-03-12 京セラ株式会社 Energy management apparatus, energy management method, and energy management system
JP2016073155A (en) * 2014-10-01 2016-05-09 中国電力株式会社 Demand prediction device, demand prediction method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11308771A (en) * 1998-04-24 1999-11-05 Hitachi Ltd Power supply controller
JP2013027214A (en) * 2011-07-24 2013-02-04 Denso Corp Power supply system
JP2015047041A (en) * 2013-08-29 2015-03-12 京セラ株式会社 Energy management apparatus, energy management method, and energy management system
JP2016073155A (en) * 2014-10-01 2016-05-09 中国電力株式会社 Demand prediction device, demand prediction method, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021052588A (en) * 2019-06-06 2021-04-01 国立大学法人九州大学 Electric power demand forecasting device and electric power demand forecasting method
JP2021069264A (en) * 2019-10-28 2021-04-30 京セラ株式会社 Power control system, power control unit, power control method, and program
JP7215986B2 (en) 2019-10-28 2023-01-31 京セラ株式会社 POWER CONTROL SYSTEM, POWER CONTROL DEVICE, POWER CONTROL METHOD AND PROGRAM
CN117424269A (en) * 2023-12-19 2024-01-19 广州汇电云联数科能源有限公司 Control method, device, terminal and medium for charging power of energy storage converter
CN117424269B (en) * 2023-12-19 2024-04-05 广州汇电云联数科能源有限公司 Control method, device, terminal and medium for charging power of energy storage converter

Similar Documents

Publication Publication Date Title
JP5485392B2 (en) Charge / discharge control device
US11271400B2 (en) Power control device, operation plan planning method, and recording medium
US9620979B2 (en) Storage battery control apparatus, storage battery control method, and storage battery system
EP2933896B1 (en) Charging and discharging control method, charging and discharging control system and charging and discharging control device
US20160003918A1 (en) Monitoring apparatus, control apparatus, and control system
US9727898B2 (en) System and method for managing battery discharge during critical peak pricing intervals
US20160226250A1 (en) Storage battery management device, storage battery, method of managing storage battery, and storage medium
JP2017050126A (en) Battery management device, battery system and hybrid vehicle control system
WO2015122196A1 (en) Occupancy state determination device, delivery system, occupancy state determination method, occupancy state determination program, and delivery terminal
WO2015037307A1 (en) Power storage control device, management system, power storage control method, power storage control program, and memory medium
JP6692365B2 (en) Power control system, method and control device
JPWO2015004849A1 (en) Power control method, power control apparatus, power control system
JP2018057092A (en) Power storage device control method, power storage device control apparatus, and power storage system
JP6386744B2 (en) Storage battery control device and method thereof
JP2021065097A (en) Demand monitoring device, demand monitoring system, demand monitoring method, and demand monitoring program
JP2013215011A (en) Demand controller
JP2013215012A (en) Demand controller
JP2016220450A (en) Power supply controller, power supply system, power source control method, and program
US20180268327A1 (en) Multi-Layer Adaptive Power Demand Management For Behind The Meter Energy Management Systems
JP6794141B2 (en) Information processing equipment, information processing systems, and information processing programs
WO2017022000A1 (en) Information processing apparatus, charge or discharge scheduling method, and program
JP2007101209A (en) Computing device of capacity of secondary battery, and secondary battery monitoring device and method
WO2016151614A1 (en) Energy management module, energy supply system, and energy supply method
JP6048527B2 (en) Control device
JP2018023188A (en) Charge/discharge schedule setting program, charge/discharge schedule setting method, and charge/discharge schedule setting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200813