JP2018037463A - Printed wiring board - Google Patents

Printed wiring board Download PDF

Info

Publication number
JP2018037463A
JP2018037463A JP2016167231A JP2016167231A JP2018037463A JP 2018037463 A JP2018037463 A JP 2018037463A JP 2016167231 A JP2016167231 A JP 2016167231A JP 2016167231 A JP2016167231 A JP 2016167231A JP 2018037463 A JP2018037463 A JP 2018037463A
Authority
JP
Japan
Prior art keywords
wiring
differential
width
parallel
meander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016167231A
Other languages
Japanese (ja)
Inventor
清彦 海谷
Kiyohiko Kaiya
清彦 海谷
政則 内藤
Masanori Naito
政則 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016167231A priority Critical patent/JP2018037463A/en
Publication of JP2018037463A publication Critical patent/JP2018037463A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a printed circuit board solving the problem in which impedance of differential wiring varies as a wiring gap varies by a meander part and when a wiring length difference is adjusted, a difference in phase is generated owing to the wiring length difference.SOLUTION: A printed wiring board 101 comprises differential wiring 2 having adjacent two pieces of wiring arranged in parallel, and the differential wiring 2 has at least one meander part 3 arranged at the inside wiring 2a before and after a bent part 22 for changing an extending direction of a parallel wiring part 21 to widen a wiring gap formed with the outer wiring 2b. A wiring width of the meander part 3 is thicker than a wiring width of the parallel wiring part 21.SELECTED DRAWING: Figure 1

Description

本開示は、差動配線を備えた印刷配線板に関する。   The present disclosure relates to a printed wiring board provided with differential wiring.

従来、差動信号伝送は、2本1組の配線(信号線)に互いに逆極性の信号(P/N)を流し、信号線間の電位差を利用して信号伝送を行う伝送方式である。差動信号の配線の進行方向が変わる(配線が曲がる)場合、内側および外側で配線長差から、スキュー(信号波形の位相のずれ)が発生し、同極性ノイズが発生する。そのため、配線の方法を調整する(配線長(信号遅延の時間)を同じにする)必要がある。例えば、特許文献1に記載のように、配線長の短い方に迂回延長配線部分(ミアンダ部)を形成して、配線長を調整する方法などが知られている。しかしながら、差動配線のインピーダンスは、ミアンダ部により配線間隙が変わると変化してしまう。また、配線の進行方向が変わる部分を平行のままとして、他の箇所で何らかの方法で配線長差を調整すると、配線長差により位相の差が出てしまう。   Conventionally, differential signal transmission is a transmission method in which signals (P / N) having opposite polarities are passed through a set of two wires (signal lines) and signal transmission is performed using a potential difference between the signal lines. When the traveling direction of the differential signal wiring changes (the wiring bends), a skew (shift in the phase of the signal waveform) occurs due to the wiring length difference between the inside and the outside, and noise of the same polarity is generated. Therefore, it is necessary to adjust the wiring method (the wiring length (signal delay time) should be the same). For example, as described in Patent Document 1, a method of adjusting a wiring length by forming a detour extension wiring portion (a meander portion) on a shorter wiring length is known. However, the impedance of the differential wiring changes when the wiring gap changes due to the meander portion. Further, if the wiring length difference is adjusted by some method in another place while the portion where the traveling direction of the wiring changes is left parallel, a phase difference is generated due to the wiring length difference.

特開2003−152290号公報JP 2003-152290 A

本開示は、近接する双配線を平行配置する差動配線を基板に備えた印刷配線板において、差動配線は、平行配線部の進行方向を変える屈曲部の前後において、ミアンダ部を内側の配線に、外側の配線との配線間隙が広がるように少なくとも一つ配置し、該ミアンダ部の配線幅が平行配線部の配線幅より太いことを特徴とする。   The present disclosure relates to a printed wiring board provided with differential wiring on a substrate in which adjacent twin wirings are arranged in parallel, and the differential wiring is arranged inside the meander portion before and after the bent portion that changes the traveling direction of the parallel wiring portion. Further, at least one wiring is arranged so that the wiring gap with the outer wiring is widened, and the wiring width of the meander part is larger than the wiring width of the parallel wiring part.

本開示の印刷配線板の第1の実施形態を示す説明図である。It is explanatory drawing which shows 1st Embodiment of the printed wiring board of this indication. 本開示の印刷配線板の第2の実施形態を示す説明図である。It is explanatory drawing which shows 2nd Embodiment of the printed wiring board of this indication. 図1に示す印刷配線板のTDR波形を示すグラフである。It is a graph which shows the TDR waveform of the printed wiring board shown in FIG. 図2に示す印刷配線板のTDR波形を示すグラフである。It is a graph which shows the TDR waveform of the printed wiring board shown in FIG. 図1に示す印刷配線板の透過特性の位相特性を示すグラフである。It is a graph which shows the phase characteristic of the transmission characteristic of the printed wiring board shown in FIG. 図2に示す印刷配線板の透過特性の位相特性を示すグラフである。It is a graph which shows the phase characteristic of the transmission characteristic of the printed wiring board shown in FIG. (a)および(b)は他の実施形態の印刷配線板を示す説明図である。(A) And (b) is explanatory drawing which shows the printed wiring board of other embodiment. (a)および(b)はそれぞれの図7に示す印刷配線板の透過特性の位相特性を示すグラフである。(A) And (b) is a graph which shows the phase characteristic of the transmission characteristic of each printed wiring board shown in FIG. 実施例における印刷配線板のそれぞれのTDR波形を示すグラフである。It is a graph which shows each TDR waveform of the printed wiring board in an Example.

(第1の実施形態)
本開示の印刷配線板の第1の実施形態を図1に基づいて説明する。印刷配線板101は、基板1に、近接する双配線を平行になるよう配置した差動配線2を備える。この差動配線2は、送信側の端子から受信側の端子まで、平行配線部21同士を繋ぎ、且つ平行配線部21の進行方向を変えるための屈曲部22を少なくとも1つは有する。なお、差動配線2は、途中で基板1の上下方向に貫通する層切り替えビア(図示せず)などで、基板1の異なる層に設けた配線と電気的に接続されてもよい。
(First embodiment)
1st Embodiment of the printed wiring board of this indication is described based on FIG. The printed wiring board 101 includes a differential wiring 2 in which adjacent double wirings are arranged in parallel to the substrate 1. The differential wiring 2 has at least one bent portion 22 for connecting the parallel wiring portions 21 from the transmitting side terminal to the receiving side terminal and for changing the traveling direction of the parallel wiring portion 21. The differential wiring 2 may be electrically connected to wiring provided in a different layer of the substrate 1 by a layer switching via (not shown) that penetrates in the vertical direction of the substrate 1 in the middle.

基板1は、絶縁性を有する素材(絶縁板)を複数積層して形成される。多層構造の基板1の各層の絶縁板に配線層、電源層(ベタ層)、グランド層(ベタ層)などの導体層が形成される。さらに、基板1の表面には、配線の保護のためのソルダーレジスト層(図示せず)が設けられていてもよい。
基板1を構成する絶縁板としては、例えば、エポキシ樹脂、ビスマレイミド−トリアジン樹脂、ポリイミド樹脂などの有機樹脂などが挙げられる。これらの有機樹脂は2種以上を混合して用いてもよい。また、絶縁性を有する素材として有機樹脂を使用する場合、有機樹脂に補強材を配合して使用するのが好ましい。補強材としては、例えば、ガラス繊維、ガラス不織布、アラミド不織布、アラミド繊維、ポリエステル繊維などの絶縁性布材が挙げられる。補強材は2種以上を併用してもよい。さらに、絶縁性を有する素材には、シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウム、酸化チタンなどの無機充填材が含まれていてもよい。
The substrate 1 is formed by laminating a plurality of insulating materials (insulating plates). Conductor layers such as a wiring layer, a power supply layer (solid layer), and a ground layer (solid layer) are formed on the insulating plates of the respective layers of the multilayer substrate 1. Furthermore, a solder resist layer (not shown) for protecting the wiring may be provided on the surface of the substrate 1.
As an insulating board which comprises the board | substrate 1, organic resins, such as an epoxy resin, a bismaleimide-triazine resin, a polyimide resin, etc. are mentioned, for example. These organic resins may be used in combination of two or more. Moreover, when using organic resin as a raw material which has insulation, it is preferable to mix | blend and use a reinforcing material in organic resin. Examples of the reinforcing material include insulating fabric materials such as glass fiber, glass nonwoven fabric, aramid nonwoven fabric, aramid fiber, and polyester fiber. Two or more reinforcing materials may be used in combination. Further, the insulating material may include inorganic fillers such as silica, barium sulfate, talc, clay, glass, calcium carbonate, and titanium oxide.

差動配線2は、印刷配線板1に設けられ、P/N(Positive/Negative)の差動信号を伝送する配線2a、2bの2本1組からなる配線である。この差動配線2の配線2aおよび2bを流れる信号は逆位相でなければならない。差動配線2は内側を配線2a、外側を配線2bとすると、平行配線部21では、配線2a、2bは同じ間隙で平行に配置されている。なお、平行配線部21における配線2a、2bの配線幅は同一である。
この差動配線2は、通常、導体で形成されている。導体としては、例えば銅、アルミニウム、金、銀などが挙げられる。加工性およびコストの観点から銅が望ましい。差動配線2は、例えば、化学銅めっき(無電解銅めっき)などの化学(無電解)めっき、電解銅めっきなどの電解めっき、銅箔などの金属箔によって形成される。さらに、差動配線2は、銅箔などの金属箔上に銅めっきなどのめっきを施すことによって形成されてもよい。なおミアンダ部3も差動配線2と同じ材質であるのがよい。
The differential wiring 2 is a wiring that is provided on the printed wiring board 1 and includes a set of two wirings 2a and 2b that transmit a P / N (Positive / Negative) differential signal. The signals flowing through the wires 2a and 2b of the differential wire 2 must be in opposite phases. When the differential wiring 2 is the wiring 2a on the inner side and the wiring 2b on the outer side, in the parallel wiring portion 21, the wirings 2a and 2b are arranged in parallel with the same gap. Note that the wiring widths of the wirings 2a and 2b in the parallel wiring portion 21 are the same.
The differential wiring 2 is usually formed of a conductor. Examples of the conductor include copper, aluminum, gold, and silver. Copper is desirable from the viewpoint of workability and cost. The differential wiring 2 is formed by, for example, chemical (electroless) plating such as chemical copper plating (electroless copper plating), electrolytic plating such as electrolytic copper plating, or metal foil such as copper foil. Further, the differential wiring 2 may be formed by performing plating such as copper plating on a metal foil such as copper foil. The meander portion 3 is preferably made of the same material as the differential wiring 2.

差動配線2の屈曲部22は、基板1のレイアウトなどにより平行配線部21の進行方向を変える(配線を曲げる)ものである。この屈曲部22の前後の平行配線部21には、内側の配線2aにミアンダ部3が少なくとも1つ設けられる。   The bent portion 22 of the differential wiring 2 changes the traveling direction of the parallel wiring portion 21 depending on the layout of the substrate 1 (bends the wiring). In the parallel wiring portion 21 before and after the bent portion 22, at least one meander portion 3 is provided on the inner wiring 2a.

ミアンダ部3は、配線長差を調整して位相の差を無くすものであり、配線2aをさらに内側(配線2bと反対方向)へ迂回延長させ、外側の配線2bとの配線間隙を広めたものである。ミアンダ部3と配線2bとの配線間隙は、平行配線部21の配線幅の2倍以上であるのがよい。ミアンダ部3と配線2bとの配線間隙を広げることで差動インピーダンスは高くなる。
また、ミアンダ部3の配線幅は、配線2aの配線幅より2倍以上太いのがよい。ミアンダ部3の配線幅が平行配線部21の配線幅より太いことで差動インピーダンスは低くなる。
The meander unit 3 is for adjusting the wiring length difference to eliminate the phase difference. The meander unit 3 further extends the wiring 2a by detouring inward (opposite the wiring 2b) and widens the wiring gap with the outer wiring 2b. It is. The wiring gap between the meander part 3 and the wiring 2b is preferably at least twice the wiring width of the parallel wiring part 21. The differential impedance is increased by widening the wiring gap between the meander unit 3 and the wiring 2b.
Further, the wiring width of the meander portion 3 is preferably twice or more thicker than the wiring width of the wiring 2a. Since the wiring width of the meander part 3 is larger than the wiring width of the parallel wiring part 21, the differential impedance is lowered.

上記したように、本開示の第1の実施形態では、ミアンダ部3と配線2bとの配線間隙を広げることで差動インピーダンスは高くして、且つミアンダ部3の配線幅を配線2aの配線幅より太くすることで差動インピーダンスを低くして、差動インピーダンスを安定させている。例えば差動インピーダンスを高くするために配線幅を細くすればよいが、配線幅の細さには限界があり、限界に近づくほど配線幅の精度は下がる。そのため、ミアンダ部3と配線2bとの配線間隙を広げることで差動インピーダンスを高くして、配線幅を太くして配線の精度を高め、差動インピーダンスの変動を抑制して、印刷配線板101の品質を安定させている。   As described above, in the first embodiment of the present disclosure, the differential impedance is increased by widening the wiring gap between the meander unit 3 and the wiring 2b, and the wiring width of the meander unit 3 is set to the wiring width of the wiring 2a. By making it thicker, the differential impedance is lowered to stabilize the differential impedance. For example, the wiring width may be narrowed in order to increase the differential impedance, but there is a limit to the narrowness of the wiring width, and the accuracy of the wiring width decreases as the limit is approached. Therefore, by increasing the wiring gap between the meander portion 3 and the wiring 2b, the differential impedance is increased, the wiring width is increased to increase the accuracy of the wiring, and fluctuations in the differential impedance are suppressed. The quality of the is stable.

(第2の実施形態)
次に、図2に基づいて本開示の第2の実施形態の印刷配線板102を説明する。なお、上記した印刷配線板101と同じ部材には同符号を付して説明は省略する。
(Second Embodiment)
Next, the printed wiring board 102 according to the second embodiment of the present disclosure will be described with reference to FIG. The same members as those of the printed wiring board 101 described above are denoted by the same reference numerals, and description thereof is omitted.

図2に示すように、印刷配線板102は、差動インピーダンスの調整のため、ミアンダ部3と対向する外側の配線2bに、平行配線部21の配線幅より太い幅広部4を有する。幅広部4の配線幅は、ミアンダ部3側(内側)に広げてもよいが、ミアンダ部3との配線間隙を考慮した場合、対向するミアンダ部3と反対側に配線2bの配線幅を広げた形状であるのがよい。なお、幅広部4の配線幅および長さはミアンダ部3の配線幅および長さと同じであるのがよい。この幅広部4を設けることにより、ミアンダ部3の配線幅のみを太くするより、さらに差動インピーダンスを低くする。また、この幅広部4が、対向するミアンダ部3と反対側に配線幅を広げた形状であった場合、ミアンダ部3との配線間隙を広くして、さらに差動インピーダンスを高くすることができ、より差動インピーダンスが安定する。   As shown in FIG. 2, the printed wiring board 102 has a wide portion 4 wider than the wiring width of the parallel wiring portion 21 on the outer wiring 2 b facing the meander portion 3 for adjusting the differential impedance. The wiring width of the wide portion 4 may be widened to the meander portion 3 side (inside). However, when the wiring gap with the meander portion 3 is taken into consideration, the wiring width of the wiring 2b is widened to the opposite side of the opposing meander portion 3. Good shape. The wiring width and length of the wide portion 4 are preferably the same as the wiring width and length of the meander portion 3. By providing the wide portion 4, the differential impedance is further lowered as compared with the case where only the wiring width of the meander portion 3 is increased. Further, when the wide portion 4 has a shape in which the wiring width is widened on the opposite side to the opposing meander portion 3, the wiring gap with the meander portion 3 can be widened to further increase the differential impedance. , More stable differential impedance.

印刷配線板102において、ミアンダ部3の配線間隙は平行配線部21の2倍以上であるのがよい。ミアンダ部3の配線幅は平行配線部21の配線幅の1.5倍以上であるのがよい。ミアンダ部3と対向する外側の配線2bの配線幅は平行配線部21の配線幅の1.5倍以上であるのがよい。上記した条件は少なくとも1つ満たせばよいが、全て満たすとより良い。   In the printed wiring board 102, the wiring gap of the meander part 3 is preferably at least twice that of the parallel wiring part 21. The wiring width of the meander part 3 is preferably at least 1.5 times the wiring width of the parallel wiring part 21. The wiring width of the outer wiring 2 b facing the meander part 3 is preferably 1.5 times or more the wiring width of the parallel wiring part 21. It is sufficient that at least one of the above conditions is satisfied, but it is better if all of the conditions are satisfied.

以下、実施例を挙げて本開示の印刷配線板を具体的に説明するが、本開示の印刷配線板はこれらの実施例に限定されるものではない。   Hereinafter, the printed wiring board of the present disclosure will be specifically described with examples, but the printed wiring board of the present disclosure is not limited to these examples.

(実施例)
(TDR特性)
図1および2に示す印刷配線板101および102を用いて、TDR(Time Domain Reflectometry)(時間領域反射測定)波形を、シミュレータ(HFSS、Ansys社製)により各印刷配線板のインピーダンスの変化をシミュレーションした。その結果を図3,4に示す。
(Example)
(TDR characteristics)
Using the printed wiring boards 101 and 102 shown in FIGS. 1 and 2, TDR (Time Domain Reflectometry) waveforms are simulated using a simulator (HFSS, manufactured by Ansys) to change the impedance of each printed wiring board. did. The results are shown in FIGS.

図3,4から、印刷配線板101および102において、差動配線2の差動インピーダンスが時間軸方向に関して、ほぼ一定であることがわかる。すなわち、特性インピーダンスの変動が無いことから、反射による信号波形の品質の劣化が無いことがわかる。これにより、差動配線2のP/N信号のグラフが一致し、差動信号としての特性があることがわかる。なお、差動インピーダンスが一定でばらつきがないとは、プラスマイナス5%以内を指す。この範囲であれば、製品(印刷配線板)としての差動インピーダンスのばらつきは、プラスマイナス10〜15%に収まる。   3 and 4, it can be seen that, in the printed wiring boards 101 and 102, the differential impedance of the differential wiring 2 is substantially constant with respect to the time axis direction. That is, since there is no variation in characteristic impedance, it can be seen that there is no deterioration in the quality of the signal waveform due to reflection. As a result, the graphs of the P / N signals of the differential wiring 2 match, and it can be seen that there is a characteristic as a differential signal. Note that the differential impedance is constant and has no variation means within plus or minus 5%. Within this range, the variation in differential impedance as a product (printed wiring board) falls within plus or minus 10 to 15%.

(透過特性)
図1および2に示す印刷配線板101および102を用いて、差動配線2のP/N信号の差動の効果を検証するために、シミュレータ(HFSS、Ansys社製)によってP信号およびN信号の透過特性(S21)をシミュレーションした。その位相特性の結果を図5,6に示す。このとき、印刷配線板101の差動配線2の配線幅は0.2mm、内側のミアンダ部の幅は0.52mmとし、ミアンダ部3と外側の配線2aとの配線間隙は0.66mmとした。また、印刷配線板102の差動配線2のミアンダ部3の幅は0.34mm、幅広部4の幅は0.34mm、配線間隙は0.75mmとした。
(Transmission characteristics)
In order to verify the differential effect of the P / N signal of the differential wiring 2 using the printed wiring boards 101 and 102 shown in FIGS. 1 and 2, a P signal and an N signal are obtained by a simulator (HFSS, manufactured by Ansys). The transmission characteristics (S21) were simulated. The results of the phase characteristics are shown in FIGS. At this time, the wiring width of the differential wiring 2 of the printed wiring board 101 is 0.2 mm, the width of the inner meander part is 0.52 mm, and the wiring gap between the meander part 3 and the outer wiring 2a is 0.66 mm. . Further, the width of the meander portion 3 of the differential wiring 2 of the printed wiring board 102 was 0.34 mm, the width of the wide portion 4 was 0.34 mm, and the wiring gap was 0.75 mm.

図5,6から、印刷配線板101および102において、2.5GHz付近で、差動配線2のP/N信号の位相が一致した。そのため、品質のよい差動信号が得られた。なお差動配線の位相の一致とは、差動配線の互いの位相が1度以内(視覚的にはグラフで線が重複するレベル)を指す。   5 and 6, in the printed wiring boards 101 and 102, the phase of the P / N signal of the differential wiring 2 matched in the vicinity of 2.5 GHz. Therefore, a high-quality differential signal was obtained. The coincidence of the phases of the differential wirings means that the phases of the differential wirings are within 1 degree (the level at which the lines overlap visually in the graph).

(比較例)
比較例として、図7(a)、(b)に示す印刷配線板103,104を得た。
印刷配線板103は、差動配線2´にミアンダ部を設けず、配線長を調整していない。そのため、内側の配線2a´と外側の配線2b´とで配線の差が1.127mmである。
印刷配線板104は、配線長の調整のためにミアンダ部34を設けたが、ミアンダ部34の配線幅を平行配線部の配線幅と同じにしたものである。
(Comparative example)
As comparative examples, printed wiring boards 103 and 104 shown in FIGS. 7A and 7B were obtained.
The printed wiring board 103 is not provided with a meander portion in the differential wiring 2 ′, and the wiring length is not adjusted. Therefore, the difference in wiring between the inner wiring 2a ′ and the outer wiring 2b ′ is 1.127 mm.
The printed wiring board 104 is provided with the meander portion 34 for adjusting the wiring length, but the wiring width of the meander portion 34 is the same as the wiring width of the parallel wiring portion.

上記したこれらの印刷配線板103、104を用いて、印刷配線板101,102と同様にTDR特性および透過特性をシミュレーションした。その結果をそれぞれ図8(a)、(b)および図9に示す。   Using these printed wiring boards 103 and 104, TDR characteristics and transmission characteristics were simulated in the same manner as the printed wiring boards 101 and 102. The results are shown in FIGS. 8 (a), (b) and FIG. 9, respectively.

図8(a)および図9からわかるように、印刷配線板103では、差動インピーダンスが一定であり、整合されているが、内側および外側の配線で配線長の差により、位相の差が出てしまった。また、図8(b)および図9からわかるように、印刷配線板104では、配線長の差をミアンダ部で調整したために、位相が一致するものの、差動インピーダンスが一定ではなかった。
一方、印刷配線板101,102は、図5,6および図9からわかるように差動インピーダンスが一定であり、且つ位相も一致しているので、印刷配線板の品質が安定した。
As can be seen from FIG. 8A and FIG. 9, in the printed wiring board 103, the differential impedance is constant and matched, but a phase difference occurs due to the difference in wiring length between the inner and outer wirings. I have. Further, as can be seen from FIGS. 8B and 9, in the printed wiring board 104, the difference in wiring length was adjusted by the meander portion, so that the phases matched but the differential impedance was not constant.
On the other hand, as can be seen from FIGS. 5, 6 and 9, the printed wiring boards 101 and 102 have a constant differential impedance and the same phase, so that the quality of the printed wiring boards is stable.

以上、詳細に説明したように、本開示によれば、印刷配線板において、差動配線の平行配線部の進行方向を変える屈曲部の前後において、ミアンダ部を内側の配線に、外側の配線との配線間隙が広がるように少なくとも一つ配置し、このミアンダ部の配線幅を平行配線部の配線幅より太くしたので、差動配線の配線精度を高くしたまま差動インピーダンスの変動を抑制して安定させることができ、その結果として印刷配線板の品質も安定する。   As described above in detail, according to the present disclosure, in the printed wiring board, before and after the bending portion that changes the traveling direction of the parallel wiring portion of the differential wiring, the meander portion is the inner wiring, the outer wiring is Since the wiring width of the meander part is made larger than the wiring width of the parallel wiring part, the fluctuation of the differential impedance is suppressed while keeping the wiring precision of the differential wiring high. As a result, the quality of the printed wiring board can be stabilized.

1 基板
2、2´ 差動配線
3、34 ミアンダ部
4 幅広部
2a、2b 配線
101〜104 印刷配線板
DESCRIPTION OF SYMBOLS 1 Board | substrate 2, 2 'Differential wiring 3, 34 Meander part 4 Wide part 2a, 2b Wiring 101-104 Printed wiring board

Claims (7)

近接する双配線を平行配置する差動配線を基板に備えた印刷配線板において、差動配線は、平行配線部の進行方向を変える屈曲部の前後において、ミアンダ部を内側の配線に、外側の配線との配線間隙が広がるように少なくとも一つ配置し、該ミアンダ部の配線幅が平行配線部の配線幅より太いことを特徴とする印刷配線板。   In a printed wiring board provided with differential wiring on a substrate, in which adjacent twin wirings are arranged in parallel, the differential wiring is connected to the inner wiring and the outer wiring before and after the bent portion that changes the traveling direction of the parallel wiring section. A printed wiring board, wherein at least one wiring gap between wirings is widened and a wiring width of the meander part is larger than a wiring width of a parallel wiring part. 前記ミアンダ部の配線間隙および配線幅の少なくとも一方は、平行配線部の配線幅の2倍以上である請求項1に記載の印刷配線板。   2. The printed wiring board according to claim 1, wherein at least one of the wiring gap and the wiring width of the meander part is at least twice the wiring width of the parallel wiring part. 近接する双配線を平行配置する差動配線を基板に備えた印刷配線板において、差動配線は、平行配線部の進行方向を変える屈曲部の前後において、ミアンダ部を内側の配線に、外側の配線との配線間隙が広がるように少なくとも一つ配置し、該ミアンダ部の配線幅およびミアンダ部と対向する外側の配線が平行配線部の配線幅より太いことを特徴とする印刷配線板。   In a printed wiring board provided with differential wiring on a substrate, in which adjacent twin wirings are arranged in parallel, the differential wiring is connected to the inner wiring and the outer wiring before and after the bent portion that changes the traveling direction of the parallel wiring section. A printed wiring board, wherein at least one wiring is arranged so as to widen a wiring gap with a wiring, and a wiring width of the meander part and an outer wiring facing the meander part are thicker than a wiring width of a parallel wiring part. 前記ミアンダ部と対向する外側の配線は、対向するミアンダ部と反対側に配線幅を広げた請求項3に記載の印刷配線板。   The printed wiring board according to claim 3, wherein the outer wiring facing the meander part has a wiring width widened on the side opposite to the opposing meander part. 前記ミアンダ部の配線間隙は平行配線部の配線幅の2倍以上である請求項3または4に記載の印刷配線板。   The printed wiring board according to claim 3 or 4, wherein a wiring gap of the meander part is at least twice as large as a wiring width of the parallel wiring part. 前記ミアンダ部の配線幅は平行配線部の配線幅の1.5倍以上である請求項3〜5のいずれかに記載の印刷配線板。   The printed wiring board according to claim 3, wherein a wiring width of the meander part is 1.5 times or more a wiring width of the parallel wiring part. 前記ミアンダ部と対向する外側の配線幅は平行配線部の配線幅の1.5倍以上である請求項3〜6のいずれかに記載の印刷配線板。   The printed wiring board according to claim 3, wherein an outer wiring width facing the meander part is 1.5 times or more of a wiring width of the parallel wiring part.
JP2016167231A 2016-08-29 2016-08-29 Printed wiring board Pending JP2018037463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016167231A JP2018037463A (en) 2016-08-29 2016-08-29 Printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167231A JP2018037463A (en) 2016-08-29 2016-08-29 Printed wiring board

Publications (1)

Publication Number Publication Date
JP2018037463A true JP2018037463A (en) 2018-03-08

Family

ID=61567634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167231A Pending JP2018037463A (en) 2016-08-29 2016-08-29 Printed wiring board

Country Status (1)

Country Link
JP (1) JP2018037463A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207947A (en) * 2018-05-29 2019-12-05 株式会社フジクラ Circuit board
KR20200056214A (en) * 2018-11-14 2020-05-22 고려대학교 산학협력단 Asymmetric coupling line capable of reducing the noise of a bent line and method of forming the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176151A (en) * 2010-02-25 2011-09-08 Hitachi Ltd Printed board
JP2014216449A (en) * 2013-04-25 2014-11-17 日本メクトロン株式会社 Printed wiring board and printed wiring board manufacturing method
JP2015138953A (en) * 2014-01-24 2015-07-30 富士通株式会社 Printed circuit board, and wiring arrangement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176151A (en) * 2010-02-25 2011-09-08 Hitachi Ltd Printed board
JP2014216449A (en) * 2013-04-25 2014-11-17 日本メクトロン株式会社 Printed wiring board and printed wiring board manufacturing method
JP2015138953A (en) * 2014-01-24 2015-07-30 富士通株式会社 Printed circuit board, and wiring arrangement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019207947A (en) * 2018-05-29 2019-12-05 株式会社フジクラ Circuit board
KR20200056214A (en) * 2018-11-14 2020-05-22 고려대학교 산학협력단 Asymmetric coupling line capable of reducing the noise of a bent line and method of forming the same
KR102174480B1 (en) * 2018-11-14 2020-11-04 고려대학교 산학협력단 Asymmetric coupling line capable of reducing the noise of a bent line and method of forming the same

Similar Documents

Publication Publication Date Title
US7022919B2 (en) Printed circuit board trace routing method
US7741876B2 (en) Differential transmission line
US9288893B2 (en) Implementations of twisted differential pairs on a circuit board
US9055676B2 (en) Differential signal transmission circuit and method for manufacturing same
CN102577639A (en) Printed circuit board
TW200806143A (en) Shifted segment layout for differential signal traces to mitigate bundle weave effect
US9258886B2 (en) Printed circuit board having differential line pairs with a percentage of their lengths disposed as an outer signal layer
JP2014116574A (en) Multilayer circuit board and high frequency circuit module
JP5527494B1 (en) Flat cable
JP2018037463A (en) Printed wiring board
US20090188699A1 (en) Printed circuit board
JP5392131B2 (en) Wiring board
US20180014402A1 (en) Wiring board and method for designing same
JP6847814B2 (en) Printed wiring board
JP2006270026A (en) Wiring structure, printed wiring board, integrated circuit, and electronic device
JP7034019B2 (en) Printed wiring board
US6710255B2 (en) Printed circuit board having buried intersignal capacitance and method of making
CN101394706A (en) Circuit board and design method therefor
JPWO2013146904A1 (en) Wiring board
JP2018056312A (en) Printed-circuit board
JP4912204B2 (en) Multilayer printed wiring board
JP2016207834A (en) Printed-circuit board
JP2006086825A (en) Multi-layer wiring board and signal stabilization method
JP2017050429A (en) Signal wiring substrate
JP2008235697A (en) Wiring circuit board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201201