JP2018036115A - Attitude detection system for vehicle - Google Patents

Attitude detection system for vehicle Download PDF

Info

Publication number
JP2018036115A
JP2018036115A JP2016168474A JP2016168474A JP2018036115A JP 2018036115 A JP2018036115 A JP 2018036115A JP 2016168474 A JP2016168474 A JP 2016168474A JP 2016168474 A JP2016168474 A JP 2016168474A JP 2018036115 A JP2018036115 A JP 2018036115A
Authority
JP
Japan
Prior art keywords
vehicle
lateral deviation
magnetic
attitude
detection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016168474A
Other languages
Japanese (ja)
Other versions
JP6747182B2 (en
Inventor
道治 山本
Michiharu Yamamoto
道治 山本
知彦 長尾
Tomohiko Nagao
知彦 長尾
均 青山
Hitoshi Aoyama
均 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2016168474A priority Critical patent/JP6747182B2/en
Priority to CN201780051103.2A priority patent/CN109642783B/en
Priority to SG11201901653XA priority patent/SG11201901653XA/en
Priority to US16/328,286 priority patent/US20210300388A1/en
Priority to PCT/JP2017/030274 priority patent/WO2018043272A1/en
Priority to EP17846277.6A priority patent/EP3508811B1/en
Publication of JP2018036115A publication Critical patent/JP2018036115A/en
Application granted granted Critical
Publication of JP6747182B2 publication Critical patent/JP6747182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/042Detecting movement of traffic to be counted or controlled using inductive or magnetic detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F11/00Road engineering aspects of Embedding pads or other sensitive devices in paving or other road surfaces, e.g. traffic detectors, vehicle-operated pressure-sensitive actuators, devices for monitoring atmospheric or road conditions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0261Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic plots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/50Magnetic or electromagnetic sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection

Abstract

PROBLEM TO BE SOLVED: To provide an attitude detection system for a vehicle for detecting the attitude of a vehicle with respect to the road surface.SOLUTION: An attitude detection system 1 for a vehicle for detecting the attitude of a vehicle 5 travelling on a road surface 100S on which magnetic markers 10 are laid includes: lateral deviation measuring means for measuring the lateral deviation with respect to each magnetic marker 10; and lateral deviation differentiating means for determining the difference between the lateral deviations from any one magnetic marker 10 that are measured by a plurality of lateral deviation measuring means 11 located at at least two positions separate from each other in the front and back direction of the vehicle 5.SELECTED DRAWING: Figure 2

Description

本発明は、走行中の車両の姿勢を検出するための姿勢検出システムに関する。   The present invention relates to an attitude detection system for detecting the attitude of a running vehicle.

従来より、車両の走行を安定させるために各種の制御技術が提案されている(例えば下記の特許文献1参照。)。このような制御技術では、走行中の車両の姿勢等を検出して走行状況を精度高く把握することが、より良い車両制御のために必須となっている。走行中の車両の姿勢等を検出するために、ヨーレイトセンサや加速度センサなどの各種のセンサが活用されている。   Conventionally, various control techniques have been proposed in order to stabilize the running of a vehicle (see, for example, Patent Document 1 below). In such a control technique, it is essential for better vehicle control to detect the posture of the vehicle while traveling and to grasp the traveling state with high accuracy. Various sensors, such as a yaw rate sensor and an acceleration sensor, are used to detect the posture of a running vehicle.

特開2006−117176号公報JP 2006-117176 A

ヨーレイトセンサや加速度センサなどのセンサは、センサに作用する力を計測することで車両の相対的な姿勢変化を特定できるのみであり、路面に対する車両の姿勢を把握することは困難であるという問題がある。   A sensor such as a yaw rate sensor or an acceleration sensor can only identify the relative attitude change of the vehicle by measuring the force acting on the sensor, and it is difficult to grasp the attitude of the vehicle with respect to the road surface. is there.

本発明は、前記従来の問題点に鑑みてなされたものであり、路面に対する車両の姿勢を検出する車両用の姿勢検出システムを提供しようとするものである。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a vehicle attitude detection system that detects the attitude of a vehicle with respect to a road surface.

本発明は、磁気マーカが敷設された路面を走行中の車両の姿勢を検出するための車両用の姿勢検出システムであって、
磁気マーカに対する横ずれ量を計測する横ずれ量計測手段と、
車両の前後方向に離隔する少なくとも2箇所に位置する複数の横ずれ量計測手段がいずれか一の磁気マーカについて計測した横ずれ量の差分を求める横ずれ量差分手段と、を備える車両用の姿勢検出システムにある(請求項1)。
The present invention is a vehicle attitude detection system for detecting the attitude of a vehicle traveling on a road surface on which a magnetic marker is laid,
Lateral deviation amount measuring means for measuring the lateral deviation amount with respect to the magnetic marker;
A posture detection system for a vehicle, comprising: a lateral deviation amount difference unit that obtains a difference between lateral deviation amounts measured by any one of a plurality of lateral deviation amount measurement units located at at least two locations separated in the longitudinal direction of the vehicle. (Claim 1).

本発明の車両用の姿勢検出システムは、路面に敷設された磁気マーカを利用して車両の姿勢を検出する装置である。この姿勢検出システムは、車両の前後方向に離隔する複数の横ずれ量計測手段を用い、同じ磁気マーカについてそれぞれ横ずれ量を計測する。そして、車両の姿勢を表す指標として、車両の前後方向の位置が異なる横ずれ量計測手段が計測した横ずれ量の差分を求める。   The posture detection system for a vehicle according to the present invention is a device that detects the posture of a vehicle using a magnetic marker laid on a road surface. This posture detection system uses a plurality of lateral deviation amount measuring means spaced apart in the front-rear direction of the vehicle, and measures lateral deviation amounts for the same magnetic marker. Then, as an index representing the posture of the vehicle, a difference between the lateral deviation amounts measured by the lateral deviation amount measuring means having different positions in the longitudinal direction of the vehicle is obtained.

以上のように本発明の姿勢検出システムによれば、磁気マーカを利用して路面に対する車両の姿勢の検出が可能である。   As described above, according to the posture detection system of the present invention, the posture of the vehicle with respect to the road surface can be detected using the magnetic marker.

実施例1における、姿勢検出システムを構成する車両を見込む正面図。The front view which anticipates the vehicle which comprises the attitude | position detection system in Example 1. FIG. 実施例1における、姿勢検出システムの構成図。1 is a configuration diagram of a posture detection system in Embodiment 1. FIG. 実施例1における、姿勢検出システムを構成する車載装置の電気的な構成を示すブロック図。1 is a block diagram showing an electrical configuration of an in-vehicle device that constitutes a posture detection system in Embodiment 1. FIG. 実施例1における、磁気センサの構成を示すブロック図。FIG. 3 is a block diagram illustrating a configuration of a magnetic sensor in the first embodiment. 実施例1における、磁気マーカを通過する際の車幅方向の磁気分布の時間的な変化を例示する説明図。FIG. 3 is an explanatory diagram illustrating temporal changes in the magnetic distribution in the vehicle width direction when passing through a magnetic marker in the first embodiment. 実施例1における、磁気マーカを通過する際の磁気計測値のピーク値の時間的な変化を例示する説明図。FIG. 3 is an explanatory diagram illustrating a temporal change in a peak value of a magnetic measurement value when passing through a magnetic marker in the first embodiment. 実施例1における、横ずれ量の計測方法の説明図。FIG. 3 is an explanatory diagram of a lateral deviation amount measuring method according to the first embodiment. 実施例1における、姿勢検出システムによる処理の流れを示すフロー図。FIG. 3 is a flowchart showing the flow of processing by the posture detection system in the first embodiment. 実施例1における、後ろ側のセンサユニットによる検出期間の説明図。Explanatory drawing of the detection period by the back side sensor unit in Example 1. FIG. 実施例1における、車両姿勢検出処理の流れを示すフロー図。FIG. 3 is a flowchart showing a flow of vehicle posture detection processing in the first embodiment. 実施例1における、前側のセンサユニットによる横ずれ量と、後ろ側のセンサユニットによる横ずれ量と、の説明図。FIG. 3 is an explanatory diagram of a lateral deviation amount by a front sensor unit and a lateral deviation amount by a rear sensor unit in the first embodiment. 実施例1における、前後のセンサユニットによる横ずれ量の差分Ofd、及び車体ずれ角Afの説明図。Explanatory drawing of difference Ofd of lateral deviation amount by the sensor unit of the front and back, and vehicle body deviation angle Af in Example 1. FIG. 実施例1における、ニュートラルステアの走行状況の説明図。Explanatory drawing of the driving | running | working condition of neutral steer in Example 1. FIG. 実施例1における、オーバーステアの走行状況の説明図。Explanatory drawing of the driving | running | working condition of an oversteer in Example 1. FIG. 実施例1における、アンダーステアの走行状況の説明図。Explanatory drawing of the driving condition of understeer in Example 1. FIG. 実施例2における、磁気マーカが敷設された走行路に沿って車両が走行する状況の説明図。Explanatory drawing of the condition where a vehicle drive | works along the traveling path where the magnetic marker was laid in Example 2. FIG. 実施例2における、走行路の経路方向と、車両の操舵方向と、の関係の説明図。Explanatory drawing of the relationship between the path | route direction of a traveling path, and the steering direction of a vehicle in Example 2. FIG.

本発明の好適な態様について説明する。
前記横ずれ量の差分に対応する車両の旋回方向の角度を取得する姿勢角検出手段を備えると良い(請求項2)。
車両の前後方向の位置が異なる複数の横ずれ量計測手段が同じ磁気マーカについて計測した横ずれ量の差分は、車両姿勢を表す指標として取り扱い可能である。ただし、この横ずれ量の差分は、対応する横ずれ量計測手段の前後方向の距離の影響を受け、この距離が長くなれば値が大きくなる。これに対して、上記の旋回方向の角度は、2つの横ずれ量計測手段の前後方向の距離の長短に無関係な正規化された指標となっている。
A preferred embodiment of the present invention will be described.
It is preferable to provide posture angle detection means for acquiring an angle in the turning direction of the vehicle corresponding to the difference in the lateral deviation amount.
Differences in lateral deviation amounts measured for the same magnetic marker by a plurality of lateral deviation amount measuring means having different positions in the front-rear direction of the vehicle can be handled as an index representing the vehicle posture. However, the difference between the lateral deviation amounts is affected by the distance in the front-rear direction of the corresponding lateral deviation amount measuring means, and the value increases as the distance increases. On the other hand, the angle in the turning direction is a normalized index that is irrelevant to the length of the distance in the front-rear direction of the two lateral deviation measuring units.

走行路の経路方向に離隔して位置する2つの磁気マーカについていずれか一の横ずれ量計測手段が計測した横ずれ量の差分が所定の閾値未満のときに姿勢の検出を実行すると良い(請求項3)。
走行路の経路方向に沿わない走行状況としては、車線変更等の状況を想定できる。このように走行路の経路方向に沿わず、車両の進路変更を伴う走行状況では、前記複数の横ずれ量計測手段が同じ磁気マーカについて計測した横ずれ量の差分(の絶対値)が、車両姿勢に関わらず大きくなる可能性がある。2つの磁気マーカについて同じ横ずれ量計測手段が計測した横ずれ量の差分について閾値判断を実施すれば、走行路の経路方向に沿う走行状況か否かを精度高く判別できる。走行路の経路方向に沿う走行状況のときに車両姿勢の検出を実行すれば、検出の精度を高く確保できる。
It is preferable to detect the posture when the difference between the lateral deviation amounts measured by any one of the lateral deviation amount measuring means is less than a predetermined threshold for two magnetic markers that are located apart in the path direction of the travel path. ).
As a traveling situation that does not follow the route direction of the traveling path, a situation such as a lane change can be assumed. Thus, in a traveling situation that does not follow the route direction of the traveling path and involves a change in the course of the vehicle, the difference (absolute value) of the lateral deviation amounts measured for the same magnetic marker by the plurality of lateral deviation amount measuring means is the vehicle posture. Regardless, it can grow. If threshold determination is performed on the difference between the lateral deviation amounts measured by the same lateral deviation amount measuring means for the two magnetic markers, it is possible to determine with high accuracy whether or not the traveling situation is along the route direction of the traveling path. If detection of the vehicle posture is executed in a traveling situation along the route direction of the traveling path, high detection accuracy can be ensured.

車両が備える操舵輪の操舵方向である操舵角を計測する手段を備え、単位時間当たりの操舵角の変化量が所定の閾値未満のときに姿勢の検出を実行すると良い(請求項4)。
操舵輪が急激に操舵された走行状況では、前記複数の横ずれ量計測手段が同じ磁気マーカについて計測した横ずれ量の差分(の絶対値)が、車両姿勢に関わらず大きくなる可能性がある。そこで、単位時間当たりの操舵角の変化量が所定の閾値未満のときに姿勢の検出を実行すれば、検出の精度を確保し易くなる。
A means for measuring a steering angle, which is a steering direction of a steering wheel provided in the vehicle, may be provided, and posture detection may be executed when the amount of change in the steering angle per unit time is less than a predetermined threshold.
In a traveling situation in which the steered wheels are steered suddenly, the difference (absolute value) of the lateral deviation amounts measured for the same magnetic marker by the plurality of lateral deviation amount measuring means may become large regardless of the vehicle posture. Thus, if the posture detection is executed when the amount of change in the steering angle per unit time is less than a predetermined threshold, the detection accuracy can be easily ensured.

単位時間当たりの車両の進行方向の変化量が所定の閾値未満のときに姿勢の検出を実行すると良い(請求項5)。
車両の進行方向が急激に変動するような走行状況では、前記複数の横ずれ量計測手段が同じ磁気マーカについて計測した横ずれ量の差分(の絶対値)が大きくなる可能性があり、この差分に基づく姿勢の検出が適切ではなくなる。そこで、単位時間当たりの車両の進行方向の変化量が所定の閾値未満のときに姿勢の検出を実行すると良い。
It is preferable to detect the posture when the amount of change in the traveling direction of the vehicle per unit time is less than a predetermined threshold (Claim 5).
In a driving situation in which the traveling direction of the vehicle fluctuates abruptly, the difference (absolute value) of the lateral deviation amounts measured for the same magnetic marker by the plurality of lateral deviation amount measuring means may become large. Attitude detection is not appropriate. Therefore, it is preferable to detect the posture when the amount of change in the traveling direction of the vehicle per unit time is less than a predetermined threshold.

走行路の経路方向を表す経路データを取得する手段、車両が備える操舵輪の操舵方向である操舵角を計測する手段、及び経路データが表す経路方向と操舵角の計測値に対応する操舵方向との一致度を演算する手段、を備え、該一致度が所定の閾値以上のときに姿勢の検出を実行すると良い(請求項6)。   Means for acquiring route data representing the route direction of the traveling road, means for measuring a steering angle which is a steering direction of a steering wheel provided in the vehicle, and a steering direction corresponding to the measured value of the route direction and the steering angle represented by the route data; Means for calculating the degree of coincidence, and posture detection may be executed when the degree of coincidence is equal to or greater than a predetermined threshold.

走行路の経路方向と操舵方向との一致度が所定の閾値以上のときに走行路に沿う走行状況であると判断し、姿勢の検出を実行すると良い。経路方向と操舵方向との一致度としては、例えば、経路方向における100m先の位置と操舵方向における100m先の位置との偏差の逆数や、経路方向が表す曲線と操舵方向が表す曲線との相関係数等を採用できる。   When the degree of coincidence between the route direction of the travel path and the steering direction is greater than or equal to a predetermined threshold, it is determined that the travel situation is along the travel path, and the posture is detected. The degree of coincidence between the route direction and the steering direction is, for example, the reciprocal of the deviation between the position 100 m ahead in the route direction and the position 100 m ahead in the steering direction, or the phase between the curve represented by the route direction and the curve represented by the steering direction. The number of relationships can be adopted.

本発明の実施の形態につき、以下の実施例を用いて具体的に説明する。
(実施例1)
本例は、路面に敷設された磁気マーカ10を利用して車両の姿勢(車両姿勢)を検出するための姿勢検出システム1に関する例である。この内容について、図1〜図15を用いて説明する。
The embodiment of the present invention will be specifically described with reference to the following examples.
Example 1
This example is an example related to the attitude detection system 1 for detecting the attitude of the vehicle (vehicle attitude) using the magnetic marker 10 laid on the road surface. This will be described with reference to FIGS.

姿勢検出システム1は、図1〜図3のごとく、路面100Sに敷設された磁気マーカ10を利用して車両姿勢を検出するための車両用のシステムである。姿勢検出システム1は、磁気センサCn(nは1〜15の整数)を含む前側及び後ろ側のセンサユニット11と、センサユニット11を制御する制御ユニット12と、の組み合わせを含む車載装置を含めて構成されている。以下、姿勢検出システム1を構成する磁気マーカ10を概説した後、センサユニット11及び制御ユニット12を含む車載装置の構成を説明する。   The posture detection system 1 is a vehicle system for detecting a vehicle posture using a magnetic marker 10 laid on a road surface 100S as shown in FIGS. The posture detection system 1 includes an in-vehicle device including a combination of front and rear sensor units 11 including a magnetic sensor Cn (n is an integer of 1 to 15) and a control unit 12 that controls the sensor unit 11. It is configured. Hereinafter, after outline of the magnetic marker 10 constituting the posture detection system 1, the configuration of the in-vehicle device including the sensor unit 11 and the control unit 12 will be described.

磁気マーカ10は、図1及び図2のごとく、車両5が走行する車線100の中央に沿うように敷設される道路マーカである。この磁気マーカ10は、直径20mm、高さ28mmの柱状をなし、路面100Sに設けた孔への収容が可能である。磁気マーカ10をなす磁石は、磁性材料である酸化鉄の磁粉を基材である高分子材料中に分散させたフェライトプラスチックマグネットであり、最大エネルギー積(BHmax)=6.4kJ/mという特性を備えている。この磁気マーカ10は、路面100Sに穿設された孔に収容された状態で敷設される。 As shown in FIGS. 1 and 2, the magnetic marker 10 is a road marker laid along the center of the lane 100 in which the vehicle 5 travels. The magnetic marker 10 has a columnar shape with a diameter of 20 mm and a height of 28 mm, and can be accommodated in a hole provided in the road surface 100S. The magnet constituting the magnetic marker 10 is a ferrite plastic magnet in which magnetic powder of iron oxide, which is a magnetic material, is dispersed in a polymer material, which is a base material, and has a characteristic of maximum energy product (BHmax) = 6.4 kJ / m 3. It has. The magnetic marker 10 is laid while being accommodated in a hole formed in the road surface 100S.

本例の磁気マーカ10の仕様の一部を表1に示す。

Figure 2018036115
この磁気マーカ10は、磁気センサCnの取付け高さとして想定する範囲100〜250mmの上限の250mm高さにおいて、8μT(8×10−6T)の磁束密度の磁気を作用できる。 A part of the specification of the magnetic marker 10 of this example is shown in Table 1.
Figure 2018036115
The magnetic marker 10 can act with a magnetism having a magnetic flux density of 8 μT (8 × 10 −6 T) at an upper limit of 250 mm, which is an upper limit of a range of 100 to 250 mm assumed as a mounting height of the magnetic sensor Cn.

次に、姿勢検出システム1を構成するセンサユニット11及び制御ユニット12について説明する。
センサユニット11は、図1及び図2のごとく、車両5の底面に当たる車体フロア50に取り付けられるユニットである。センサユニット11は、磁気マーカ10に対する車両5の横ずれ量を計測するための横ずれ量計測手段の一例をなしている。姿勢検出システム1では、車両5の前後方向における離隔して位置する2箇所にセンサユニット11が配置されている。なお、以下の説明では、車両の前後方向における前側のセンサユニット11と後ろ側のセンサユニット11との間隔をセンサスパンSとする。
Next, the sensor unit 11 and the control unit 12 constituting the attitude detection system 1 will be described.
As shown in FIGS. 1 and 2, the sensor unit 11 is a unit attached to a vehicle body floor 50 that hits the bottom surface of the vehicle 5. The sensor unit 11 is an example of a lateral deviation amount measuring means for measuring the lateral deviation amount of the vehicle 5 with respect to the magnetic marker 10. In the posture detection system 1, sensor units 11 are arranged at two positions that are spaced apart in the front-rear direction of the vehicle 5. In the following description, the interval between the front sensor unit 11 and the rear sensor unit 11 in the front-rear direction of the vehicle is referred to as a sensor span S.

前側のセンサユニット11は、フロントバンパーの内側付近に取り付けられ、後ろ側のセンサユニット11は、リアバンパーの内側付近に取り付けられている。本例の車両5の場合、路面100Sを基準とした取付け高さがいずれも200mmとなっている。
各センサユニット11は、図2及び図3のごとく、車幅方向に沿って一直線上に配列された15個の磁気センサCnと、図示しないCPU等を内蔵した検出処理回路110と、を備えている。磁気センサCnは、0.1mの等間隔で15個配列され、両端の磁気センサの間隔が1.4mとなっている。
The front sensor unit 11 is attached near the inside of the front bumper, and the rear sensor unit 11 is attached near the inside of the rear bumper. In the case of the vehicle 5 of this example, the mounting height with respect to the road surface 100S is 200 mm.
As shown in FIGS. 2 and 3, each sensor unit 11 includes 15 magnetic sensors Cn arranged in a straight line along the vehicle width direction, and a detection processing circuit 110 incorporating a CPU (not shown). Yes. Fifteen magnetic sensors Cn are arranged at equal intervals of 0.1 m, and the interval between the magnetic sensors at both ends is 1.4 m.

検出処理回路110(図3)は、磁気マーカ10を検出するためのマーカ検出処理などの各種の演算処理を実行する演算回路である。この検出処理回路110は、各種の演算を実行するCPU(central processing unit)のほか、ROM(read only memory)やRAM(random access memory)などのメモリ素子等の素子を利用して構成されている。   The detection processing circuit 110 (FIG. 3) is an arithmetic circuit that executes various arithmetic processes such as a marker detection process for detecting the magnetic marker 10. The detection processing circuit 110 is configured by using an element such as a ROM (read only memory) or a RAM (random access memory), in addition to a CPU (central processing unit) that executes various operations. .

検出処理回路110は、各磁気センサCnが出力するセンサ信号を取得してマーカ検出処理等を実行する。検出処理回路110が演算した磁気マーカ10の検出結果は、全て制御ユニット12に入力される。検出結果としては、磁気マーカ10を検出したか否かに加えて、磁気マーカ10に対する横ずれ量がある。なお、前側及び後ろ側のセンサユニット11は、いずれも3kHz周期でマーカ検出処理を実行可能である。   The detection processing circuit 110 acquires a sensor signal output from each magnetic sensor Cn and executes marker detection processing and the like. All the detection results of the magnetic marker 10 calculated by the detection processing circuit 110 are input to the control unit 12. As a detection result, in addition to whether or not the magnetic marker 10 has been detected, there is a lateral shift amount with respect to the magnetic marker 10. Note that both the front and rear sensor units 11 can execute marker detection processing at a cycle of 3 kHz.

ここで、磁気センサCnの構成を説明しておく。本例では、磁気センサCnとして、MI素子21と駆動回路とが一体化された1チップのMIセンサを採用している(図4参照。)。MI素子21は、CoFeSiB系合金製のほぼ零磁歪であるアモルファスワイヤ211と、このアモルファスワイヤ211の周囲に巻回されたピックアップコイル213と、を含む素子である。磁気センサCnは、アモルファスワイヤ211にパルス電流を印加したときにピックアップコイル213に発生する電圧を計測することで、アモルファスワイヤ211に作用する磁気を検出する。MI素子21は、感磁体であるアモルファスワイヤ211の軸方向に検出感度を有している。本例のセンサユニット11の各磁気センサCnでは、鉛直方向に沿ってアモルファスワイヤ211が配設されている。   Here, the configuration of the magnetic sensor Cn will be described. In this example, a one-chip MI sensor in which the MI element 21 and the drive circuit are integrated is employed as the magnetic sensor Cn (see FIG. 4). The MI element 21 is an element including an amorphous wire 211 made of a CoFeSiB alloy and having substantially zero magnetostriction, and a pickup coil 213 wound around the amorphous wire 211. The magnetic sensor Cn detects magnetism acting on the amorphous wire 211 by measuring a voltage generated in the pickup coil 213 when a pulse current is applied to the amorphous wire 211. The MI element 21 has detection sensitivity in the axial direction of the amorphous wire 211 that is a magnetic sensitive body. In each magnetic sensor Cn of the sensor unit 11 of this example, an amorphous wire 211 is disposed along the vertical direction.

駆動回路は、アモルファスワイヤ211にパルス電流を供給するパルス回路23と、ピックアップコイル213で生じた電圧を所定タイミングでサンプリングして出力する信号処理回路25と、を含む電子回路である。パルス回路23は、パルス電流の元となるパルス信号を生成するパルス発生器231を含む回路である。信号処理回路25は、パルス信号に連動して開閉される同期検波251を介してピックアップコイル213の誘起電圧を取り出し、増幅器253により所定の増幅率で増幅する回路である。この信号処理回路25で増幅された信号がセンサ信号として外部に出力される。   The drive circuit is an electronic circuit including a pulse circuit 23 that supplies a pulse current to the amorphous wire 211 and a signal processing circuit 25 that samples and outputs a voltage generated in the pickup coil 213 at a predetermined timing. The pulse circuit 23 is a circuit including a pulse generator 231 that generates a pulse signal that is a source of a pulse current. The signal processing circuit 25 is a circuit that takes out an induced voltage of the pickup coil 213 through a synchronous detection 251 that is opened and closed in conjunction with a pulse signal, and amplifies it with a predetermined amplification factor by an amplifier 253. The signal amplified by the signal processing circuit 25 is output to the outside as a sensor signal.

磁気センサCnは、磁束密度の測定レンジが±0.6ミリテスラであって、測定レンジ内の磁束分解能が0.02マイクロテスラという高感度のセンサである。このような高感度は、アモルファスワイヤ211のインピーダンスが外部磁界に応じて敏感に変化するというMI効果を利用するMI素子21により実現されている。さらに、この磁気センサCnは、3kHz周期での高速サンプリングが可能で、車両の高速走行にも対応している。本例では、磁気センサCnによる磁気計測の周期が3kHzに設定され、磁気センサCnは、磁気計測を実施する毎に検出処理回路110にセンサ信号を入力する。   The magnetic sensor Cn is a highly sensitive sensor having a magnetic flux density measurement range of ± 0.6 millitesla and a magnetic flux resolution within the measurement range of 0.02 microtesla. Such high sensitivity is realized by the MI element 21 utilizing the MI effect that the impedance of the amorphous wire 211 changes sensitively according to the external magnetic field. Further, the magnetic sensor Cn can perform high-speed sampling at a cycle of 3 kHz, and is compatible with high-speed driving of the vehicle. In this example, the period of the magnetic measurement by the magnetic sensor Cn is set to 3 kHz, and the magnetic sensor Cn inputs a sensor signal to the detection processing circuit 110 every time the magnetic measurement is performed.

磁気センサCnの仕様の一部を表2に示す。

Figure 2018036115
Table 2 shows a part of the specifications of the magnetic sensor Cn.
Figure 2018036115

上記のように、磁気マーカ10は、磁気センサCnの取付け高さとして想定する範囲100〜250mmにおいて8μT(8×10−6T)以上の磁束密度の磁気を作用できる。磁束密度8μT以上の磁気を作用する磁気マーカ10であれば、磁束分解能が0.02μTの磁気センサCnを用いて確実性高く検出可能である。 As described above, the magnetic marker 10 can act with magnetism having a magnetic flux density of 8 μT (8 × 10 −6 T) or more in the range of 100 to 250 mm assumed as the mounting height of the magnetic sensor Cn. If the magnetic marker 10 acts on magnetism having a magnetic flux density of 8 μT or more, it can be detected with high reliability using the magnetic sensor Cn having a magnetic flux resolution of 0.02 μT.

次に、制御ユニット12は、図1〜図3のごとく、前側及び後ろ側のセンサユニット11を制御すると共に、各センサユニット11の検出結果を利用して車両姿勢を検出するユニットである。制御ユニット12による車両姿勢の検出結果は、図示しない車両ECUに入力され、スロットル制御やブレーキ制御や各輪のトルク制御など走行安全性を高めるための各種の車両制御に利用される。   Next, as shown in FIGS. 1 to 3, the control unit 12 is a unit that controls the front and rear sensor units 11 and detects the vehicle posture using the detection results of the sensor units 11. The detection result of the vehicle posture by the control unit 12 is input to a vehicle ECU (not shown), and is used for various vehicle controls for improving driving safety such as throttle control, brake control, and torque control of each wheel.

制御ユニット12は、各種の演算を実行するCPUのほか、ROMやRAMなどのメモリ素子等が実装された電子基板(図示略)を備えるユニットである。制御ユニット12は、前側のセンサユニット11、後ろ側のセンサユニット11の動作を制御すると共に、各センサユニット11の検出結果を利用して車両姿勢を検出する。   The control unit 12 is a unit including an electronic board (not shown) on which a memory element such as a ROM or a RAM is mounted in addition to a CPU that executes various operations. The control unit 12 controls the operation of the front sensor unit 11 and the rear sensor unit 11 and detects the vehicle posture using the detection result of each sensor unit 11.

制御ユニット12は、以下の各手段としての機能を備えている。
(a)期間設定手段:前側のセンサユニット11が磁気マーカ10を検出したとき、後ろ側のセンサユニット11が同じ磁気マーカ10を検出できる時点を予測し、その検出できる時点を含む時間的な期間を検出期間として設定する手段。
(b)横ずれ量差分手段:前側のセンサユニット11が計測した磁気マーカ10に対する横ずれ量と、後ろ側のセンサユニット11が計測した横ずれ量と、の差分を演算する手段。
(c)姿勢角検出手段:前側及び後ろ側のセンサユニット11の横ずれ量の差分から車両姿勢を検出する手段。検出する車両姿勢の内容については、後で詳しく説明する。
The control unit 12 has functions as the following means.
(A) Period setting means: when the front sensor unit 11 detects the magnetic marker 10, the time point when the rear sensor unit 11 can detect the same magnetic marker 10 is predicted, and the time period including the time point when the same can be detected Means for setting as a detection period
(B) Lateral deviation amount difference means: means for calculating the difference between the lateral deviation amount with respect to the magnetic marker 10 measured by the front sensor unit 11 and the lateral deviation amount measured by the rear sensor unit 11.
(C) Attitude angle detection means: means for detecting the vehicle attitude from the difference in lateral deviation between the front and rear sensor units 11. The contents of the detected vehicle posture will be described in detail later.

次に、各センサユニット11が磁気マーカ10を検出するための(1)マーカ検出処理、(2)姿勢検出システム1の全体動作の流れ、(3)車両姿勢検出処理、についてそれぞれ説明する。
(1)マーカ検出処理
前側及び後ろ側のセンサユニット11は、制御ユニット12による制御により3kHzの周期でマーカ検出処理を実行する。センサユニット11は、マーカ検出処理の実行周期(p1〜p7)毎に、15個の磁気センサCnのセンサ信号が表す磁気計測値をサンプリングして車幅方向の磁気分布を得る(図5参照。)。この車幅方向の磁気分布のうちのピーク値は、同図のごとく、磁気マーカ10を通過するときに最大となる(図5中のp4の周期)。
Next, (1) marker detection processing for each sensor unit 11 to detect the magnetic marker 10, (2) flow of overall operation of the posture detection system 1, and (3) vehicle posture detection processing will be described.
(1) Marker detection processing The front and rear sensor units 11 execute marker detection processing at a cycle of 3 kHz under the control of the control unit 12. The sensor unit 11 obtains a magnetic distribution in the vehicle width direction by sampling the magnetic measurement values represented by the sensor signals of the 15 magnetic sensors Cn at each execution period (p1 to p7) of the marker detection process (see FIG. 5). ). The peak value of the magnetic distribution in the vehicle width direction becomes maximum when passing through the magnetic marker 10 as shown in the figure (period p4 in FIG. 5).

磁気マーカ10が敷設された車線100に沿って車両5が走行する際には、上記の車幅方向の磁気分布のピーク値が、図6のように磁気マーカ10を通過する毎に大きくなる。マーカ検出処理では、このピーク値に関する閾値判断が実行され、所定の閾値以上であったときに磁気マーカ10を検出したと判断される。   When the vehicle 5 travels along the lane 100 on which the magnetic marker 10 is laid, the peak value of the magnetic distribution in the vehicle width direction increases every time it passes through the magnetic marker 10 as shown in FIG. In the marker detection process, a threshold value determination regarding this peak value is executed, and it is determined that the magnetic marker 10 has been detected when it is equal to or greater than a predetermined threshold value.

センサユニット11は、磁気マーカ10を検出したとき、磁気センサCnの磁気計測値の分布である車幅方向の磁気分布のうちのピーク値の車幅方向の位置を特定する。このピーク値の車幅方向の位置を利用すれば、磁気マーカ10に対する車両5の横ずれ量を演算できる。車両5では中央の磁気センサC8が車両5の中心線上に位置するようにセンサユニット11が取り付けられているため、磁気センサC8に対する上記のピーク値の車幅方向の位置の偏差が、磁気マーカ10に対する車両5の横ずれ量となる。   When detecting the magnetic marker 10, the sensor unit 11 specifies the position in the vehicle width direction of the peak value of the magnetic distribution in the vehicle width direction, which is the distribution of the magnetic measurement values of the magnetic sensor Cn. If the position of the peak value in the vehicle width direction is used, the lateral deviation amount of the vehicle 5 with respect to the magnetic marker 10 can be calculated. In the vehicle 5, the sensor unit 11 is attached so that the central magnetic sensor C 8 is positioned on the center line of the vehicle 5. Therefore, the deviation of the position in the vehicle width direction of the peak value with respect to the magnetic sensor C 8 is the magnetic marker 10. The amount of lateral displacement of the vehicle 5 with respect to

特に、本例のセンサユニット11は、図7のごとく、磁気センサCnの磁気計測値の分布である車幅方向の磁気分布について曲線近似(2次近似)を実行し、近似曲線のピーク値の車幅方向の位置を特定している。近似曲線を利用すれば、15個の磁気センサの間隔よりも細かい精度でピーク値の位置を特定でき、磁気マーカ10に対する車両5の横ずれ量を精度高く計測できる。   In particular, as shown in FIG. 7, the sensor unit 11 of this example performs curve approximation (secondary approximation) on the magnetic distribution in the vehicle width direction, which is the distribution of magnetic measurement values of the magnetic sensor Cn, and the peak value of the approximate curve is obtained. The position in the vehicle width direction is specified. If the approximate curve is used, the position of the peak value can be specified with an accuracy finer than the interval between the 15 magnetic sensors, and the lateral deviation amount of the vehicle 5 with respect to the magnetic marker 10 can be measured with high accuracy.

(2)姿勢検出システム1の全体動作
姿勢検出システム1の全体動作について、主に制御ユニット12を主体として、図8のフロー図を用いて説明する。
制御ユニット12は、前側のセンサユニット11に上記のマーカ検出処理を実行させ(S101、第1の検出ステップ)、磁気マーカ10を検出するまで繰り返し実行させる(S102:NO)。制御ユニット12は、前側のセンサユニット11から磁気マーカ10を検出した旨の入力を受けたとき(S102:YES)、後ろ側のセンサユニット11にマーカ検出処理を実行させる時間的な期間である検出期間を設定する(S103、期間設定ステップ)。
(2) Overall Operation of Attitude Detection System 1 The overall operation of the attitude detection system 1 will be described with reference to the flowchart of FIG.
The control unit 12 causes the front sensor unit 11 to execute the marker detection process (S101, first detection step), and repeatedly executes the detection until the magnetic marker 10 is detected (S102: NO). When the control unit 12 receives an input indicating that the magnetic marker 10 has been detected from the front sensor unit 11 (S102: YES), the control unit 12 is a time period for causing the rear sensor unit 11 to execute marker detection processing. A period is set (S103, period setting step).

具体的には、制御ユニット12は、図9のごとく、まず、車速センサで計測した車速(車両の速度)V(m/秒)により上記のセンサスパンS(m)を除算した所要時間δtaを、前側のセンサユニット11による磁気マーカ10の検出の時点である時刻t1に加算する。このように時刻t1に所要時間δtaを加算すれば、後ろ側のセンサユニット11が磁気マーカ10を検出できる時点の時刻t2を予測できる。そして、制御ユニット12は、基準距離である1(m)を車速V(m/秒)で除算した区間時間δtbを時刻t2から差し引いた時刻(t2−δtb)を始期とし、区間時間δtbを時刻t2に加算した時刻(t2+δtb)を終期とした時間的な区間を検出期間として設定する。なお、基準距離については、センサユニット11の検出範囲等を考慮して適宜変更可能である。   Specifically, as shown in FIG. 9, the control unit 12 first calculates a required time δta obtained by dividing the sensor span S (m) by the vehicle speed (vehicle speed) V (m / second) measured by the vehicle speed sensor. The time t1, which is the time when the magnetic marker 10 is detected by the front sensor unit 11, is added. In this way, by adding the required time δta to the time t1, the time t2 when the rear sensor unit 11 can detect the magnetic marker 10 can be predicted. Then, the control unit 12 starts the time (t2−δtb) obtained by subtracting the section time δtb obtained by dividing the reference distance 1 (m) by the vehicle speed V (m / second) from the time t2, and uses the section time δtb as the time. A time interval in which the time (t2 + δtb) added to t2 ends is set as the detection period. The reference distance can be appropriately changed in consideration of the detection range of the sensor unit 11 and the like.

制御ユニット12は、上記のステップS103で設定した検出期間(図9)内において、後ろ側のセンサユニット11にマーカ検出処理を繰り返し実行させる(S104:NO→S114、第2の検出ステップ)。このマーカ検出処理の内容については、ステップS101の前側のセンサユニット11によるマーカ検出処理と同様である。   The control unit 12 causes the rear sensor unit 11 to repeatedly execute marker detection processing within the detection period (FIG. 9) set in step S103 (S104: NO → S114, second detection step). The contents of this marker detection process are the same as the marker detection process by the front sensor unit 11 in step S101.

制御ユニット12は、検出期間(図9)において後ろ側のセンサユニット11で磁気マーカ10を検出できれば(S104:YES→S105:YES)、車両姿勢を検出するための次に説明する車両姿勢検出処理を実行する(S106)。一方、前側のセンサユニット11で磁気マーカ10を検出できたが(S102:YES)、上記の検出期間(図9)において、後ろ側のセンサユニット11で磁気マーカ10を検出できなかった場合には(S104:YES→S105:NO)、制御ユニット12は、前側のセンサユニット11によるマーカ検出処理(S101)に戻って上記の一連の処理を繰り返して実行する。   If the control unit 12 can detect the magnetic marker 10 with the rear sensor unit 11 in the detection period (FIG. 9) (S104: YES → S105: YES), the vehicle attitude detection process described below for detecting the vehicle attitude is performed. Is executed (S106). On the other hand, if the magnetic sensor 10 can be detected by the front sensor unit 11 (S102: YES), but the magnetic marker 10 cannot be detected by the rear sensor unit 11 in the above detection period (FIG. 9). (S104: YES → S105: NO), the control unit 12 returns to the marker detection process (S101) by the front sensor unit 11 and repeats the above series of processes.

(3)車両姿勢検出処理
制御ユニット12が実行する車両姿勢検出処理(図8中のステップS106)は、図10のごとく、前後のセンサユニット11が計測した横ずれ量の差分を演算するステップ(S201)と、進行方向に対する車体のずれを表す車体ずれ角を演算するステップ(S202)と、を含む処理である。
(3) Vehicle posture detection processing The vehicle posture detection processing (step S106 in FIG. 8) executed by the control unit 12 is a step of calculating the difference between the lateral deviation amounts measured by the front and rear sensor units 11 as shown in FIG. 10 (S201). And a step (S202) of calculating a vehicle body deviation angle representing a vehicle body displacement with respect to the traveling direction.

ステップS201では、図11のごとく、車両5が磁気マーカ10を通過したとき、前側のセンサユニット11が計測した横ずれ量Of1と、後ろ側のセンサユニット11が計測した横ずれ量Of2と、の差分Ofd(図12参照。)を次式により演算する。

Figure 2018036115
In step S201, as shown in FIG. 11, when the vehicle 5 passes the magnetic marker 10, the difference Ofd between the lateral deviation amount Of1 measured by the front sensor unit 11 and the lateral deviation amount Of2 measured by the rear sensor unit 11. (See FIG. 12) is calculated by the following equation.
Figure 2018036115

ステップS202では、図12のごとく、車両5の前後方向の車体の軸Axに対する車両5の進行方向Dirのなす角(旋回方向の角度)である車体ずれ角Afを演算する。この車体ずれ角Afは、横ずれ量の差分Ofd及びセンサスパンSを含む次式により算出される。

Figure 2018036115
In step S202, as shown in FIG. 12, a vehicle body deviation angle Af that is an angle formed by the traveling direction Dir of the vehicle 5 with respect to the vehicle axis Ax in the front-rear direction of the vehicle 5 is calculated. The vehicle body deviation angle Af is calculated by the following equation including the lateral deviation amount difference Ofd and the sensor span S.
Figure 2018036115

曲率半径が無限大の走行路として把握可能な直線路を含めて、一定曲率の経路に沿って車両が走行している最中では、理想的には、前輪の軌跡に対して、いわゆる内輪差の分だけ後輪の軌跡が内周側となる。例えば交差点の角を直角に曲がる際には内輪差が顕在化する一方、高速道路等の曲率半径が大きなカーブを走行する状況では、内輪差を無視できることから、前輪及び後輪の軌跡はほぼ一致する。   When the vehicle is traveling along a path with a constant curvature, including a straight path that can be grasped as a traveling path with an infinite curvature radius, the so-called inner ring difference is ideally compared to the trajectory of the front wheels. The locus of the rear wheel is on the inner circumference side by that amount. For example, when turning the corner of an intersection at a right angle, the difference between the inner wheels becomes obvious, but when traveling on a curve with a large radius of curvature such as on an expressway, the inner wheel difference can be ignored, so the trajectories of the front and rear wheels are almost the same. To do.

一定曲率の経路に沿って車両5が走行している最中において、オーバーステアもアンダーステアも発生していない安定性の高いニュートラルステアの走行状況が実現されていれば、前側及び後ろ側のセンサユニット11が計測する横ずれ量Of1(図12参照。)及びOf2が一致し差分Ofdがほぼゼロとなる。前後のセンサユニット11が計測する横ずれ量の差分Ofdがゼロになれば、この差分Ofdに基づく車体ずれ角Afがゼロになる。   While the vehicle 5 is traveling along a path of constant curvature, if a stable driving state of neutral steer where neither oversteering nor understeering occurs is realized, the front and rear sensor units The lateral deviation amount Of1 (refer to FIG. 12) measured by 11 and Of2 match, and the difference Ofd becomes almost zero. When the difference Ofd in the lateral deviation measured by the front and rear sensor units 11 becomes zero, the vehicle body deviation angle Af based on the difference Ofd becomes zero.

図13のように右カーブを走行中の場合、オーバーステアもアンダーステアも発生していない安定性の高い走行状況下では、車体ずれ角Afがゼロとなり、右カーブをなす円弧の接線方向をなす車両5の進行方向Dirに対して車体の軸Axが一致する。一方、一定曲率の経路に沿って車両5が走行している最中にも関わらず、差分Ofd及び車体ずれ角Afの絶対値が大きくなっている走行状況では、前輪あるいは後輪に車幅方向の滑り等が生じてアンダーステアやオーバーステアが発生している可能性がある。   When the vehicle is running on the right curve as shown in FIG. 13, the vehicle body deviation angle Af is zero and the vehicle is in the tangential direction of the arc forming the right curve under the stable driving condition in which neither oversteer nor understeer occurs. The axis Ax of the vehicle body coincides with the five traveling directions Dir. On the other hand, in the driving situation where the absolute value of the difference Ofd and the vehicle body deviation angle Af is large even though the vehicle 5 is traveling along a path of constant curvature, There is a possibility that understeering or oversteering has occurred due to slippage.

例えば、右カーブの走行路に沿って走行している状況において、図14のごとく、時計回りを正とした車体ずれ角Afがゼロよりも大きければ、後輪が右カーブの外側に逃げたり、前輪が内側に巻き込むオーバーステアの状況が想定される。また例えば、右カーブの走行路に沿って走行している状況において、図15のごとく、車体ずれ角Afがゼロよりも小さい負値であれば、前輪が左カーブの外側に逃げるアンダーステアの状況が想定される。   For example, in a situation where the vehicle is traveling along a right curve traveling path, as shown in FIG. 14, if the vehicle body deviation angle Af with the clockwise direction being positive is larger than zero, the rear wheel may escape to the outside of the right curve, An oversteer situation is assumed where the front wheels are caught inside. Further, for example, in a situation where the vehicle is traveling along a right curve traveling path, as shown in FIG. 15, if the vehicle body deviation angle Af is a negative value smaller than zero, there is an understeer situation in which the front wheels escape to the outside of the left curve. is assumed.

このように車体ずれ角Afは、車両5の進行方向Dirに対する車体の向きの旋回方向の角度的なずれを表す指標であり、前後のセンサユニット11のセンサスパンSの大小に依らない正規化された指標となっている。   Thus, the vehicle body deviation angle Af is an index representing the angular deviation of the turning direction of the vehicle body direction with respect to the traveling direction Dir of the vehicle 5 and is normalized regardless of the magnitude of the sensor span S of the front and rear sensor units 11. It is an indicator.

なお、横ずれ量の差分Ofd(図12参照。)についても車両5の姿勢を表す指標として利用可能である。前後のセンサユニット11が計測する横ずれ量の差分Ofdがゼロの状況は、図13のように、車両5の進行方向Dirに対して車体の軸Axが一致する走行状況である。一方、横ずれ量の差分Ofdの絶対値が大きい状況は、図14や図15のように、車両5の進行方向Dirに対して車体の軸Axが一致しない走行状況である。   The lateral displacement amount difference Ofd (see FIG. 12) can also be used as an index representing the attitude of the vehicle 5. The situation where the difference Ofd in the lateral deviation measured by the front and rear sensor units 11 is zero is a traveling situation where the axis Ax of the vehicle body coincides with the traveling direction Dir of the vehicle 5, as shown in FIG. On the other hand, the situation where the absolute value of the lateral displacement difference Ofd is large is a traveling situation where the axis Ax of the vehicle body does not coincide with the traveling direction Dir of the vehicle 5, as shown in FIGS.

以上のように、姿勢検出システム1は、走行路に敷設された磁気マーカ10を利用して車両姿勢を検出するシステムである。この姿勢検出システム1によれば、路面に対する車両姿勢を確実性高く検出できる。   As described above, the posture detection system 1 is a system that detects the vehicle posture using the magnetic marker 10 laid on the traveling road. According to this posture detection system 1, the vehicle posture with respect to the road surface can be detected with high reliability.

姿勢検出システム1は、車両5の前後方向に離隔して位置する2つのセンサユニット11で磁気マーカ10に対する横ずれ量をそれぞれ計測し、その差分Ofdを求めている。横ずれ量の差分Ofdは、そのままでも車両姿勢を表す指標となり得るが、本例では、さらに、横ずれ量の差分Ofdに対応する車体ずれ角Afを算出している。横ずれ量の差分Ofdは、車両5の旋回方向の角度に依存すると共に、センサスパンSが長くなるほど値が大きくなる指標である。これに対して、車体ずれ角Afは、前後のセンサユニット11のセンサスパンSの長短に依らない正規化された指標となっている。   The posture detection system 1 measures the amount of lateral deviation with respect to the magnetic marker 10 by using two sensor units 11 that are separated from each other in the front-rear direction of the vehicle 5, and obtains the difference Ofd. Although the lateral deviation amount difference Ofd can be used as an index representing the vehicle posture as it is, in this example, the vehicle body deviation angle Af corresponding to the lateral deviation amount difference Ofd is further calculated. The lateral deviation amount difference Ofd is an index that depends on the angle of the vehicle 5 in the turning direction and increases as the sensor span S increases. On the other hand, the vehicle body deviation angle Af is a normalized index that does not depend on the length of the sensor span S of the front and rear sensor units 11.

本例では、センサユニット11を車両5の前後方向における2箇所に設けている。これに代えて、車両5の前後方向における3箇所以上にセンサユニット11を設けることも良い。前後方向の位置が異なる任意の2箇所の組み合わせについて、それぞれ差分Ofdや車体ずれ角Afなどの指標を求めることで、車両姿勢を検出しても良い。   In this example, the sensor units 11 are provided at two locations in the front-rear direction of the vehicle 5. Instead of this, the sensor units 11 may be provided at three or more locations in the front-rear direction of the vehicle 5. The vehicle posture may be detected by obtaining indices such as the difference Ofd and the vehicle body deviation angle Af for any two combinations having different positions in the front-rear direction.

前側のセンサユニット11あるいは後ろ側のセンサユニット11によるマーカ検出処理において、前側のセンサユニット11の磁気センサと後ろ側のセンサユニット11の磁気センサとの間で磁気計測値の差分を演算し、この演算値を利用して磁気マーカ10を検出することも良い。この差分演算によれば、前側の磁気センサが検出する磁気成分を後ろ側の磁気センサが検出する磁気成分から差し引いた差分の磁気成分を生成でき、地磁気等のコモンノイズ等の抑制に効果がある。なお、差分演算に当たっては、車幅方向の位置が同じ磁気センサ同士で差分を求めることも良い。   In the marker detection process by the front sensor unit 11 or the rear sensor unit 11, a difference in magnetic measurement value is calculated between the magnetic sensor of the front sensor unit 11 and the magnetic sensor of the rear sensor unit 11, and this It is also possible to detect the magnetic marker 10 using the calculated value. According to this difference calculation, a difference magnetic component obtained by subtracting the magnetic component detected by the front magnetic sensor from the magnetic component detected by the rear magnetic sensor can be generated, which is effective in suppressing common noise such as geomagnetism. . In the difference calculation, the difference may be obtained between magnetic sensors having the same position in the vehicle width direction.

本例では、鉛直方向に感度を持つ磁気センサCnを採用したが、進行方向に感度を持つ磁気センサであっても良く、車幅方向に感度を持つ磁気センサであっても良い。さらに、例えば車幅方向と進行方向の2軸方向や、車幅方向と鉛直方向の2軸方向や、進行方向と鉛直方向の2軸方向に感度を持つ磁気センサを採用しても良く、例えば車幅方向と進行方向と鉛直方向の3軸方向に感度を持つ磁気センサを採用しても良い。複数の軸方向に感度を持つ磁気センサを利用すれば、磁気の大きさと共に磁気の作用方向を計測でき、磁気ベクトルを生成できる。磁気ベクトルの差分や、その差分の進行方向の変化率を利用して、磁気マーカ10の磁気と外乱磁気との区別を行なうことも良い。
なお、本例では、フェライトプラスチックマグネットの磁気マーカを例示したが、フェライトラバーマグネットの磁気マーカであっても良い。
In this example, the magnetic sensor Cn having sensitivity in the vertical direction is employed. However, a magnetic sensor having sensitivity in the traveling direction may be used, or a magnetic sensor having sensitivity in the vehicle width direction may be used. Further, for example, a magnetic sensor having sensitivity in the biaxial direction of the vehicle width direction and the traveling direction, the biaxial direction of the vehicle width direction and the vertical direction, or the biaxial direction of the traveling direction and the vertical direction may be employed. A magnetic sensor having sensitivity in the three axial directions of the vehicle width direction, the traveling direction, and the vertical direction may be employed. If a magnetic sensor having sensitivity in a plurality of axial directions is used, the magnetic action direction can be measured together with the magnitude of the magnetism, and a magnetic vector can be generated. It is also possible to distinguish between the magnetism of the magnetic marker 10 and the disturbance magnetism using the difference of the magnetic vectors and the rate of change in the traveling direction of the difference.
In this example, a magnetic marker of a ferrite plastic magnet is illustrated, but a magnetic marker of a ferrite rubber magnet may be used.

(実施例2)
本例は、実施例1の姿勢検出システムに基づき、検出対象の走行状況を限定することで車両姿勢の検出精度の向上を図る例である。この内容について、図16及び図17を参照して説明する。
(Example 2)
In this example, based on the attitude detection system of the first embodiment, the detection accuracy of the vehicle attitude is improved by limiting the traveling state of the detection target. The contents will be described with reference to FIGS.

車両5の走行軌跡が一定曲率ではなく、曲率の変動区間に磁気マーカ10が位置している場合には、前後のセンサユニット11が計測する横ずれ量に差が生じて差分Ofdが大きくなる可能性がある。このような状況では、前後のセンサユニット11がいずれか一の磁気マーカ10について計測した横ずれ量の差分Ofdや車体ずれ角Af等が、車両5の姿勢を精度高く反映していない可能性がある。   When the traveling locus of the vehicle 5 is not a constant curvature and the magnetic marker 10 is located in the curvature variation section, there is a possibility that the difference Ofd is increased due to a difference in the amount of lateral deviation measured by the front and rear sensor units 11. There is. In such a situation, the lateral displacement amount difference Ofd measured by the front and rear sensor units 11 with respect to any one of the magnetic markers 10 and the vehicle body displacement angle Af may not accurately reflect the attitude of the vehicle 5. .

そこで、本例の姿勢検出システムでは、下記の(1)〜(4)の走行状況の場合に車両姿勢の検出を実行し、これにより検出精度を確保している。
(1)走行路の経路方向に離隔して位置する2つの磁気マーカ10についていずれか一のセンサユニット11が計測した横ずれ量の差分が所定の閾値未満の場合。
この場合には、図16のように磁気マーカ10が経路方向に沿って敷設された走行路に沿って車両5が走行している状況と考えられる。一般的には、走行路における曲率が異なるカーブの接続区間は、曲率の変化が滑らかになるように設計されている。それ故、走行路に沿って車両5が安定して走行している状況であれば、前後のセンサユニット11がいずれか一の磁気マーカ10について計測する横ずれ量の差分等が過大になるおそれが少ない。上記の接続区間において、曲率の変化が非常に滑らかに設定された高速道路の場合であれば、このような傾向が特に顕著である。
Therefore, in the posture detection system of this example, the vehicle posture is detected in the following traveling conditions (1) to (4), thereby ensuring the detection accuracy.
(1) A case where the difference between the lateral deviation amounts measured by any one of the sensor units 11 with respect to two magnetic markers 10 that are spaced apart in the route direction of the traveling path is less than a predetermined threshold.
In this case, it is considered that the vehicle 5 is traveling along a traveling path in which the magnetic marker 10 is laid along the path direction as shown in FIG. In general, connecting sections of curves having different curvatures on the road are designed so that the change in curvature is smooth. Therefore, if the vehicle 5 is traveling stably along the travel path, the difference in the amount of lateral deviation measured by the front and rear sensor units 11 for any one of the magnetic markers 10 may be excessive. Few. Such a tendency is particularly noticeable in the case of an expressway where the change in curvature is set very smoothly in the connecting section.

(2)車両5が備える操舵輪の操舵方向である操舵角を計測する操舵角センサ等の手段を備えていることを前提として、単位時間当たりの操舵角の変化量が所定の閾値未満の場合。
単位時間当たりの操舵角の変化量、すなわち操舵角の変化速度が速く所定の閾値以上である場合には、車両5の進行方向が急激に変化する。このように車両5の進行方向が急激に変化する区間に磁気マーカ10が位置していれば、当然に、前後のセンサユニット11がいずれか一の磁気マーカ10について計測する横ずれ量の差分が大きくなる可能性がある。このような場合には、この横ずれ量の差分によって車両5の姿勢を精度高く検出できない可能性が高くなる。
(2) When the change amount of the steering angle per unit time is less than a predetermined threshold on the premise that the vehicle 5 includes means such as a steering angle sensor that measures the steering angle that is the steering direction of the steered wheels. .
When the change amount of the steering angle per unit time, that is, the change speed of the steering angle is fast and exceeds a predetermined threshold value, the traveling direction of the vehicle 5 changes abruptly. In this way, if the magnetic marker 10 is positioned in a section where the traveling direction of the vehicle 5 changes suddenly, naturally, the difference between the lateral deviation amounts measured by the front and rear sensor units 11 for any one of the magnetic markers 10 is large. There is a possibility. In such a case, there is a high possibility that the attitude of the vehicle 5 cannot be detected with high accuracy due to the difference in the lateral displacement amount.

(3)単位時間当たりの車両5の進行方向の変化量が所定の閾値未満の場合。
単位時間当たりの車両5の進行方向の変化量、すなわち車両5の旋回方向の角度の変化速度が速く所定の閾値以上である場合には、上記の(2)の場合と同様、前後のセンサユニット11が計測する横ずれ量の差分によって車両5の姿勢を精度高く検出できない可能性が高くなる。なお、車両5の旋回方向の角度の変化速度は、例えばヨーレイトセンサによって計測しても良く、前方カメラが撮像した連続画像において遠景や構造物等が横に流れる速度の変化から計測しても良い。
(3) When the amount of change in the traveling direction of the vehicle 5 per unit time is less than a predetermined threshold.
When the amount of change in the traveling direction of the vehicle 5 per unit time, that is, when the rate of change of the angle of the turning direction of the vehicle 5 is fast and is equal to or greater than a predetermined threshold, the sensor unit before and after the above (2) There is a high possibility that the attitude of the vehicle 5 cannot be detected with high accuracy due to the difference in the amount of lateral deviation measured by 11. Note that the change speed of the angle of the turning direction of the vehicle 5 may be measured by, for example, a yaw rate sensor, or may be measured from a change in the speed at which a distant view or a structure flows laterally in a continuous image captured by the front camera. .

(4)走行路の経路方向を表す経路データを取得する手段、車両5が備える操舵輪の操舵方向である操舵角を計測する手段、及び経路データが表す経路方向と操舵角の計測値に対応する操舵方向との一致度を演算する手段、を備えることを前提として、この一致度が所定の閾値以上の場合。 (4) Corresponding to means for acquiring route data representing the route direction of the traveling road, means for measuring the steering angle that is the steering direction of the steering wheel provided in the vehicle 5, and corresponding to the measured values of the route direction and the steering angle represented by the route data When the degree of coincidence is equal to or greater than a predetermined threshold on the premise that the degree of coincidence with the steering direction is calculated.

車両5が走行路に沿って走行している状況であれば、前後のセンサユニット11がいずれか一の磁気マーカ10について計測する横ずれ量の差分等を指標として車両5の姿勢を精度高く検出できることは上記の(1)の場合の通りである。経路方向と操舵方向との一致度が高い場合には、車両5が走行路に沿って走行している状況と判断できる。   If the vehicle 5 is traveling along the traveling path, the attitude of the vehicle 5 can be detected with high accuracy using, as an index, the difference between the lateral deviation amounts measured by the front and rear sensor units 11 for any one of the magnetic markers 10. Is as in (1) above. When the degree of coincidence between the route direction and the steering direction is high, it can be determined that the vehicle 5 is traveling along the traveling path.

経路方向Drと操舵方向Dsの一致度としては、例えば、図17のごとく、経路方向Drにおける100m前方の位置と、操舵方向Dsにおける100m前方の位置と、の偏差(距離)の逆数を採用しても良い。さらには、同図のごとく、車両5を原点とした車体の軸Axの方向及び車幅方向により規定される2次元座標において、経路方向Drを表す曲線と、操舵方向Dsを表す曲線と、の相関係数を上記の一致度として採用しても良い。なお、経路データは、ナビゲーションシステムや自動運転システムが利用する地図データ等から取得可能である。
その他の構成及び作用効果については実施例1と同様である。
As the degree of coincidence between the route direction Dr and the steering direction Ds, for example, as shown in FIG. 17, the reciprocal of the deviation (distance) between the position 100 m ahead in the route direction Dr and the position 100 m ahead in the steering direction Ds is adopted. May be. Further, as shown in the figure, in a two-dimensional coordinate defined by the direction of the vehicle body axis Ax with the vehicle 5 as the origin and the vehicle width direction, a curve representing the route direction Dr and a curve representing the steering direction Ds are: You may employ | adopt a correlation coefficient as said matching degree. The route data can be acquired from map data used by a navigation system or an automatic driving system.
Other configurations and operational effects are the same as in the first embodiment.

以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して上記具体例を多様に変形、変更あるいは適宜組み合わせた技術を包含している。   As described above, specific examples of the present invention have been described in detail as in the embodiments. However, these specific examples merely disclose an example of the technology included in the scope of claims. Needless to say, the scope of the claims should not be construed as limited by the configuration, numerical values, or the like of the specific examples. The scope of the claims includes techniques obtained by variously modifying, changing, or appropriately combining the above specific examples using known techniques and knowledge of those skilled in the art.

1 姿勢検出システム
10 磁気マーカ
100 車線
100S 路面
11 センサユニット(横ずれ量計測手段)
110 検出処理回路
12 制御ユニット(期間設定手段、横ずれ量差分手段、姿勢角検出手段)
21 MI素子
5 車両
DESCRIPTION OF SYMBOLS 1 Posture detection system 10 Magnetic marker 100 Lane 100S Road surface 11 Sensor unit (lateral deviation measuring means)
110 detection processing circuit 12 control unit (period setting means, lateral deviation difference means, attitude angle detection means)
21 MI element 5 Vehicle

Claims (6)

磁気マーカが敷設された路面を走行中の車両の姿勢を検出するための車両用の姿勢検出システムであって、
磁気マーカに対する横ずれ量を計測する横ずれ量計測手段と、
車両の前後方向に離隔する少なくとも2箇所に位置する複数の横ずれ量計測手段がいずれか一の磁気マーカについて計測した横ずれ量の差分を求める横ずれ量差分手段と、を備える車両用の姿勢検出システム。
An attitude detection system for a vehicle for detecting an attitude of a vehicle traveling on a road surface on which a magnetic marker is laid,
Lateral deviation amount measuring means for measuring the lateral deviation amount with respect to the magnetic marker;
A vehicle attitude detection system comprising: a lateral deviation amount difference unit that obtains a difference between lateral deviation amounts measured for any one magnetic marker by a plurality of lateral deviation amount measurement units located in at least two locations separated in the longitudinal direction of the vehicle.
請求項1において、前記横ずれ量の差分に対応する車両の旋回方向の角度を取得する姿勢角検出手段を備える車両用の姿勢検出システム。   The attitude detection system for a vehicle according to claim 1, further comprising attitude angle detection means for acquiring an angle in a turning direction of the vehicle corresponding to the difference in the lateral deviation amount. 請求項1又は2において、走行路の経路方向に離隔して位置する2つの磁気マーカについていずれか一の横ずれ量計測手段が計測した横ずれ量の差分が所定の閾値未満のときに姿勢の検出を実行する車両用の姿勢検出システム。   3. The posture detection according to claim 1, wherein the difference between the lateral deviation amounts measured by any one of the lateral deviation amount measuring means is less than a predetermined threshold with respect to two magnetic markers positioned apart in the route direction of the travel path. An attitude detection system for a vehicle to be executed. 請求項1〜3のいずれか1項において、車両が備える操舵輪の操舵方向である操舵角を計測する手段を備え、単位時間当たりの操舵角の変化量が所定の閾値未満のときに姿勢の検出を実行する車両用の姿勢検出システム。   The vehicle according to any one of claims 1 to 3, further comprising means for measuring a steering angle that is a steering direction of a steered wheel provided in the vehicle, wherein the posture is changed when a change amount of the steering angle per unit time is less than a predetermined threshold value. An attitude detection system for a vehicle that performs detection. 請求項1〜4のいずれか1項において、単位時間当たりの車両の進行方向の変化量が所定の閾値未満のときに姿勢の検出を実行する車両用の姿勢検出システム。   The posture detection system for a vehicle according to any one of claims 1 to 4, wherein the posture detection is performed when the amount of change in the traveling direction of the vehicle per unit time is less than a predetermined threshold value. 請求項1〜5のいずれか1項において、走行路の経路方向を表す経路データを取得する手段、車両が備える操舵輪の操舵方向である操舵角を計測する手段、及び経路データが表す経路方向と操舵角の計測値に対応する操舵方向との一致度を演算する手段、を備え、該一致度が所定の閾値以上のときに姿勢の検出を実行する車両用の姿勢検出システム。   The route direction represented by the route data represented by any one of claims 1 to 5, means for acquiring route data representing a route direction of the traveling road, means for measuring a steering angle that is a steering direction of a steering wheel provided in the vehicle, and And a vehicle attitude detection system for detecting attitude when the degree of coincidence is equal to or greater than a predetermined threshold.
JP2016168474A 2016-08-30 2016-08-30 Attitude detection system for vehicles Active JP6747182B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016168474A JP6747182B2 (en) 2016-08-30 2016-08-30 Attitude detection system for vehicles
CN201780051103.2A CN109642783B (en) 2016-08-30 2017-08-24 Attitude detection system for vehicle
SG11201901653XA SG11201901653XA (en) 2016-08-30 2017-08-24 Vehicular orientation detection system
US16/328,286 US20210300388A1 (en) 2016-08-30 2017-08-24 Vehicular orientation detection system
PCT/JP2017/030274 WO2018043272A1 (en) 2016-08-30 2017-08-24 Vehicular orientation detection system
EP17846277.6A EP3508811B1 (en) 2016-08-30 2017-08-24 Vehicular orientation detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016168474A JP6747182B2 (en) 2016-08-30 2016-08-30 Attitude detection system for vehicles

Publications (2)

Publication Number Publication Date
JP2018036115A true JP2018036115A (en) 2018-03-08
JP6747182B2 JP6747182B2 (en) 2020-08-26

Family

ID=61300800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016168474A Active JP6747182B2 (en) 2016-08-30 2016-08-30 Attitude detection system for vehicles

Country Status (6)

Country Link
US (1) US20210300388A1 (en)
EP (1) EP3508811B1 (en)
JP (1) JP6747182B2 (en)
CN (1) CN109642783B (en)
SG (1) SG11201901653XA (en)
WO (1) WO2018043272A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965815B2 (en) * 2018-04-12 2021-11-10 愛知製鋼株式会社 Marker detection system and operation method of marker detection system
JP7155596B2 (en) 2018-05-02 2022-10-19 愛知製鋼株式会社 automatic parking system
US11604476B1 (en) 2018-10-05 2023-03-14 Glydways Inc. Road-based vehicle guidance system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347456A (en) * 1991-05-22 1994-09-13 The Regents Of The University Of California Intelligent roadway reference system for vehicle lateral guidance and control
JPH09183383A (en) * 1995-10-31 1997-07-15 Honda Motor Co Ltd Automatic steering controller
JPH09269831A (en) * 1996-03-29 1997-10-14 Mazda Motor Corp Vehicle controller
JPH10160486A (en) * 1996-11-28 1998-06-19 Sumitomo Electric Ind Ltd Apparatus for detecting position of vehicle
US20110264320A1 (en) * 2008-06-23 2011-10-27 Arcelormittal-Stainless & Nickel Alloys Method of guiding a vehicle
JP2012137823A (en) * 2010-12-24 2012-07-19 Nippon Yusoki Co Ltd Unmanned carrier travel controller and unmanned carrier

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913376A (en) * 1995-10-31 1999-06-22 Honda Giken Kogyo Kabushiki Kaisha Automatic steering control apparatus
JP3808559B2 (en) * 1995-10-31 2006-08-16 本田技研工業株式会社 Autonomous vehicle
KR970066776A (en) * 1996-03-29 1997-10-13 헨리 D.G. 웰레스 Vehicle control device
JP3430832B2 (en) * 1997-01-27 2003-07-28 日産自動車株式会社 Road curvature estimator
EP1020707B1 (en) * 1997-09-29 2003-01-15 Aichi Steel Works, Ltd. Magnetic apparatus for detecting position of vehicle
US20030146031A1 (en) * 2002-02-01 2003-08-07 Hoton How Method of obtaining annotated electronic tracks on road
DE102005024382A1 (en) * 2005-05-27 2006-12-07 Robert Bosch Gmbh Lane departure warning for motor vehicles
JP4229141B2 (en) * 2006-06-19 2009-02-25 トヨタ自動車株式会社 Vehicle state quantity estimation device and vehicle steering control device using the device
DE102011018615B4 (en) * 2011-04-21 2022-12-01 Sew-Eurodrive Gmbh & Co Kg System, in particular installation, with a vehicle that can be moved on a floor
EP2637072B1 (en) * 2012-03-05 2017-10-11 Volvo Car Corporation Path following of a target vehicle
EP2913249A4 (en) * 2012-10-25 2015-12-23 Nissan Motor Vehicle travel support device
US9278691B1 (en) * 2014-09-18 2016-03-08 Flextronics Ap, Llc Vehicle lane departure system based on magnetic field flux detection
CN104597905B (en) * 2015-01-13 2017-02-22 广西大学 Route tracking method for magnetic navigation AGV

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347456A (en) * 1991-05-22 1994-09-13 The Regents Of The University Of California Intelligent roadway reference system for vehicle lateral guidance and control
JPH09183383A (en) * 1995-10-31 1997-07-15 Honda Motor Co Ltd Automatic steering controller
JPH09269831A (en) * 1996-03-29 1997-10-14 Mazda Motor Corp Vehicle controller
JPH10160486A (en) * 1996-11-28 1998-06-19 Sumitomo Electric Ind Ltd Apparatus for detecting position of vehicle
US20110264320A1 (en) * 2008-06-23 2011-10-27 Arcelormittal-Stainless & Nickel Alloys Method of guiding a vehicle
JP2012137823A (en) * 2010-12-24 2012-07-19 Nippon Yusoki Co Ltd Unmanned carrier travel controller and unmanned carrier

Also Published As

Publication number Publication date
JP6747182B2 (en) 2020-08-26
EP3508811A4 (en) 2020-06-10
US20210300388A1 (en) 2021-09-30
CN109642783B (en) 2020-12-01
CN109642783A (en) 2019-04-16
EP3508811B1 (en) 2024-01-10
SG11201901653XA (en) 2019-03-28
WO2018043272A1 (en) 2018-03-08
EP3508811A1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP6766527B2 (en) Vehicle system and course estimation method
JP6828314B2 (en) Learning system and learning method for vehicles
CN108291945B (en) Magnetic mark detection method and magnetic mark detection device
JP7260856B2 (en) VEHICLE DRIVING CONTROL METHOD AND VEHICLE CONTROL SYSTEM
US11308811B2 (en) Marker detection method and vehicular system
WO2018012407A1 (en) Magnetic marker detection system and magnetic marker detection method
WO2018043272A1 (en) Vehicular orientation detection system
WO2018181050A1 (en) Marker detection system and marker detection method
WO2019054183A1 (en) Position capturing system and position capturing method
US11347236B2 (en) Marker detection method and vehicular system
JP7151747B2 (en) Vehicle system and route estimation method
JP6631385B2 (en) Magnetic marker polarity determination method and polarity determination device
EP4318436A1 (en) Magnetic marker detection method and system
WO2022270507A1 (en) Magnetic marker detection method and detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R150 Certificate of patent or registration of utility model

Ref document number: 6747182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250