JP2017207457A - Region displacement calculation system, region displacement calculation method, and region displacement calculation program - Google Patents

Region displacement calculation system, region displacement calculation method, and region displacement calculation program Download PDF

Info

Publication number
JP2017207457A
JP2017207457A JP2016101945A JP2016101945A JP2017207457A JP 2017207457 A JP2017207457 A JP 2017207457A JP 2016101945 A JP2016101945 A JP 2016101945A JP 2016101945 A JP2016101945 A JP 2016101945A JP 2017207457 A JP2017207457 A JP 2017207457A
Authority
JP
Japan
Prior art keywords
displacement
observation
difference
point
reference point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016101945A
Other languages
Japanese (ja)
Other versions
JP6696083B2 (en
Inventor
謙一 本田
Kenichi Honda
謙一 本田
典親 浅田
Norichika Asada
典親 浅田
成生 虫明
Naruo Mushiake
成生 虫明
匠 佐藤
Takumi Sato
匠 佐藤
渉 佐藤
Wataru Sato
渉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Kogyo Co Ltd
Original Assignee
Kokusai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Kogyo Co Ltd filed Critical Kokusai Kogyo Co Ltd
Priority to JP2016101945A priority Critical patent/JP6696083B2/en
Publication of JP2017207457A publication Critical patent/JP2017207457A/en
Application granted granted Critical
Publication of JP6696083B2 publication Critical patent/JP6696083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a region displacement calculation system which can be applied to a plane surface and can increase the accuracy of displacement by an interference SAR by removing as many errors of the amount of displacement actually measured as possible.SOLUTION: The region displacement calculation system includes direct displacement storage means, plane observation displacement storage means, point observation displacement acquisition means, displacement difference calculation means, provisional representation displacement difference calculation means, determination error calculation means, checking means, singular point exclusion means, representation displacement difference confirmation means and plane observation displacement correction means, the determination error calculation means obtaining a "deviation" which is the difference between the displacement difference and the provisional representation displacement difference at each reference point and obtaining a "determination error" based on the deviations at plural reference points.SELECTED DRAWING: Figure 3

Description

本願発明は、比較的広い範囲の変位を取得する技術に関するものであり、より具体的には、差分干渉合成開口レーダで得られる変位と実際に計測された結果を組み合わせることによって、面的に(広い範囲を対象に)実際の変位を取得することのできる領域変位算出システムと、その方法及びプログラムに関するものである。   The present invention relates to a technique for acquiring a relatively wide range of displacement, and more specifically, by combining the displacement obtained by the differential interference synthetic aperture radar and the actually measured result, The present invention relates to a region displacement calculation system capable of acquiring an actual displacement (for a wide range), a method and a program thereof.

ダムなどの大規模構造物の変形をモニタリングする場合、あるいは広範囲の土地の変化を面的に監視する場合、従来ではいくつかの計測点を代表して計測することで全体の変化を評価していた。つまり、直接的には点の情報のみを取得しているだけであって、他の範囲は当該点の情報をもとに推定していたわけである。   When monitoring deformation of large-scale structures such as dams, or when monitoring land changes over a wide area, the total change has been evaluated by measuring several representative measurement points. It was. That is, only the point information is obtained directly, and the other ranges are estimated based on the point information.

広範囲の監視対象を面的に計測する技術としては、合成開口レーダ(SAR:Synthetic Aperture Radar)が知られている。2014年5月には陸域観測技術衛星2号「だいち2号」(ALOS−2)が打ち上げられ、さらなるSARの活用が期待されるところである。なお、2時期のSARの計測結果を比較する差分干渉合成開口レーダ(以下、単に「干渉SAR」という。)で解析すれば数センチオーダーの変位量を得ることができる。   Synthetic aperture radar (SAR) is known as a technique for measuring a wide range of objects to be monitored. In May 2014, Land Observing Satellite-2 “Daichi-2” (ALOS-2) was launched, and further utilization of SAR is expected. A displacement amount on the order of several centimeters can be obtained by analyzing with a differential interference synthetic aperture radar (hereinafter simply referred to as “interference SAR”) that compares the SAR measurement results of two periods.

干渉SARは、2時期の観測結果から得られた位相の差(位相差)を利用して、地形の変化を把握する手法である。なお干渉SARの結果は、図6に示すような縞模様のSAR干渉画像として表されるのが一般的である。あらかじめ位相差を複数のレンジ(以下、「位相差レンジ」という。)に分けておき、干渉SARの結果(つまり位相差)をこの位相差レンジに分類するとともに、同一の位相差レンジを示す範囲に対して位相差レンジごとに定められた色(あるいはグレースケール)を付与することでSAR干渉画像は作成される。   Interference SAR is a technique for grasping a change in landform using a phase difference (phase difference) obtained from observation results of two periods. The result of the interference SAR is generally represented as a striped SAR interference image as shown in FIG. The phase difference is divided into a plurality of ranges (hereinafter referred to as “phase difference range”) in advance, and the result of interference SAR (that is, the phase difference) is classified into this phase difference range, and the range showing the same phase difference range A SAR interference image is created by assigning a color (or gray scale) determined for each phase difference range to.

干渉SARで得られる位相差は、波長の端数分の差であって整数分の波長差までは分からない(例えば、30度の位相差と390度の位相差の区別ができない)。したがって、波長が既知であったとしても、位相差から実際の変動距離(長さ)を求めることができないわけである。ただし、SAR干渉画像(図6)で隣接する位相差レンジどうしは、整数分の波長に関しては同じ長さ(波長数)であると考えられるため、所定範囲内の相対的な変化は把握できる。   The phase difference obtained by the interference SAR is a difference corresponding to a fraction of the wavelength and is not known up to an integer wavelength difference (for example, a phase difference of 30 degrees and a phase difference of 390 degrees cannot be distinguished). Therefore, even if the wavelength is known, the actual variation distance (length) cannot be obtained from the phase difference. However, the phase difference ranges adjacent to each other in the SAR interference image (FIG. 6) are considered to have the same length (number of wavelengths) with respect to the integer number of wavelengths, and therefore a relative change within a predetermined range can be grasped.

また、干渉SARにより得られる結果は衛星視線方向(SARアンテナと地表を結ぶ直線の方向)のものであり、いわば実際の変位を示すものではない。例えば図7の例で説明すると、実際には破線方向(左上から右下)に向かって移動したにもかかわらず、干渉SARでは衛星視線方向に遠ざかるように移動したと判断される。   In addition, the result obtained by the interference SAR is in the direction of the line of sight of the satellite (the direction of the straight line connecting the SAR antenna and the ground surface), and does not indicate the actual displacement. For example, referring to the example of FIG. 7, it is determined that the interference SAR has moved away from the satellite line-of-sight direction in spite of actually moving in the direction of the broken line (upper left to lower right).

干渉SARの結果から実際の変位(以下、「干渉SARによる変位」という。)を求めるには、不動点あるいは既知の変位(大きさと方向)といった絶対量を与える必要がある。例えば、ある位相レンジを示す範囲が、衛星測位システム(GNSS:Global Navigation Satellite System)の計測結果から不動(変化がなかった)であると分かった場合、その位相レンジを基準としてSAR干渉画像に示される全ての位相レンジで変位量を推定することができる。また、既知の変位方向が取得できれば、干渉SARの結果から所望の方向(例えば鉛直方向)の変位量を推定することもできる。   In order to obtain the actual displacement (hereinafter referred to as “displacement due to the interference SAR”) from the result of the interference SAR, it is necessary to give an absolute amount such as a fixed point or a known displacement (size and direction). For example, when the range indicating a certain phase range is determined to be immobile (no change) from the measurement result of the satellite positioning system (GNSS), it is indicated in the SAR interference image using the phase range as a reference. The amount of displacement can be estimated in all phase ranges. If a known displacement direction can be acquired, the amount of displacement in a desired direction (for example, the vertical direction) can be estimated from the result of the interference SAR.

干渉SARは、一度に広範囲の計測を行うことができ、しかも定期的(あるいは不定期)に結果を自動取得できるといった利点があることから、干渉SARによってより効果的、効率的に地形の変化を把握する試みはこれまでも行われてきた。例えば特許文献1では、飛行物体から落下された複数のGNSS受信機をSARで観測し(つまり、SAR画像を取得し)、さらにGNSS受信機で取得した位置座標を用いてSAR画像の調整(縮尺と方位の補正)を行うとともに、調整されたSAR画像と地図情報を重ね合わせることで、災害等による地形の変化を迅速に把握する技術を提案している。   Interferometric SAR has the advantage of being able to perform a wide range of measurements at once and automatically obtaining results periodically (or irregularly), so interfering SAR can more effectively and efficiently change terrain. Attempts to grasp have been made. For example, in Patent Document 1, a plurality of GNSS receivers dropped from a flying object are observed by SAR (that is, SAR images are acquired), and SAR image adjustment (scaled) is performed using position coordinates acquired by the GNSS receiver. And azimuth correction) and superimposing the adjusted SAR image and map information to propose a technique for quickly grasping a change in topography due to a disaster or the like.

しかしながら特許文献1は、SAR画像と地図情報を比較するものであって、人が目視することで何らかの地形変化を読み取る技術であり、しかも2次元の(X−Y平面上での)変化しか把握できない。つまり、鉛直方向の変位を含む3次元の変位量を取得することはできず、構造物や地形の詳細な変化を把握する技術としては適していない。   However, Patent Document 1 compares SAR images with map information, and is a technique for reading some terrain changes by human observation, and only grasps two-dimensional changes (on the XY plane). Can not. That is, a three-dimensional displacement amount including a vertical displacement cannot be obtained, and is not suitable as a technique for grasping a detailed change in a structure or terrain.

特開2004−157397号公報Japanese Patent Laid-Open No. 2004-157397

既述のとおり、干渉SARによって変位を求めるには、GNSS等による実測の変位量を必要とする。つまり、干渉SARによる変位は、実測変位量の精度に依存するわけである。例えば、GNSS等で得た1点のみの変位量を利用する場合、その計測誤差がそのまま干渉SARによる変位全体に波及し、多数点の変位量を利用する場合は、そのうち大きな誤差をもつ変位量が干渉SARによる変位に影響を及ぼすことになる。   As described above, in order to obtain the displacement by the interference SAR, a displacement amount actually measured by GNSS or the like is required. That is, the displacement due to the interference SAR depends on the accuracy of the actually measured displacement amount. For example, when the displacement amount of only one point obtained by GNSS or the like is used, the measurement error directly affects the entire displacement due to the interference SAR, and when the displacement amount of many points is used, the displacement amount having a large error among them. Affects the displacement due to the interference SAR.

本願発明の課題は、従来が抱える問題を解決することであり、すなわち一度に広い範囲(面的な領域)を対象とすることができ、しかも実測の変位がもつ誤差を可能な限り排除することで干渉SARによる変位の精度を向上させることができる、領域変位算出システムと、その方法及びプログラムを提供することである。   The problem of the present invention is to solve the problems of the prior art, that is, to be able to target a wide range (surface area) at once and to eliminate as much as possible the error of the measured displacement. It is an object to provide a region displacement calculation system, a method and a program thereof that can improve the accuracy of displacement due to interference SAR.

本願発明は、GNSS等による直接的な計測結果を用いて、干渉SARで得られる面的な観測結果を補正することで、同じく面的な領域の(広範囲にわたって)実際の変位を把握する、という点に着目したものであり、従来にはなかった発想に基づいてなされた発明である。   According to the present invention, by using the direct measurement result obtained by GNSS or the like and correcting the surface observation result obtained by the interference SAR, the actual displacement of the surface area (over a wide range) is grasped. This invention focuses on the point, and is an invention made based on an idea that has not existed in the past.

本願発明の領域変位算出システムは、計測対象とする面的な領域(つまり、比較的広い領域のことであり、以下、「対象領域」という。)の変位を求めるシステムであり、直接変位記憶手段と、面観測変位記憶手段、点観測変位取得手段、変位差算出手段、暫定代表変位差算出手段、判定用誤差算出手段、照合手段、特異点除外手段、代表変位差確定手段、面観測変位補正手段を備えたものである。なお、対象領域には複数の基準点が設置されている。直接変位記憶手段は、基準点を直接計測して得られた「直接変位」を記憶するものであり、面観測変位記憶手段は、干渉SAR(差分干渉合成開口レーダ)によって得られた対象領域の変位である「面観測変位」を記憶するものである。また、点観測変位取得手段は、面観測変位と基準点位置に基づいて基準点における干渉SARの結果である「点観測変位」を得るものであり、変位差算出手段は、基準点の直接変位と点観測変位に基づいて基準点ごとに「変位差」を求めるものである。暫定代表変位差算出手段は、複数の基準点の変位差に基づいて「暫定代表変位差」を求めるもので、判定用誤差算出手段は、基準点ごとに変位差と暫定代表変位差との差である「偏差」を求めるとともに、複数の基準点の偏差に基づいて「判定用誤差」を求めるものである。照合手段は、判定用誤差を判定条件(あらかじめ定めた閾値に基づく条件)に照らし合わせるものであり、特異点除外手段は、判定用誤差が判定条件から外れるときは最も大きな偏差を示す基準点を除外したうえで、暫定代表変位差算出手段に暫定代表変位差を算出させるものである。代表変位差確定手段は、判定用誤差が判定条件を満たすときは、この暫定代表変位差を対象領域の代表変位差として確定するものである。そして、面観測変位補正手段は、確定した代表変位差に基づいて面観測変位を補正するものである。   The area displacement calculation system according to the present invention is a system for obtaining the displacement of a planar area to be measured (that is, a relatively wide area, hereinafter referred to as “target area”), and a direct displacement storage means. Surface observation displacement storage means, point observation displacement acquisition means, displacement difference calculation means, provisional representative displacement difference calculation means, judgment error calculation means, verification means, singular point exclusion means, representative displacement difference determination means, surface observation displacement correction Means are provided. A plurality of reference points are installed in the target area. The direct displacement storage means stores “direct displacement” obtained by directly measuring the reference point, and the surface observation displacement storage means stores the target region obtained by interference SAR (differential interference synthetic aperture radar). The “surface observation displacement” which is the displacement is stored. The point observation displacement acquisition means obtains “point observation displacement” as a result of the interference SAR at the reference point based on the surface observation displacement and the reference point position, and the displacement difference calculation means calculates the direct displacement of the reference point. And “displacement difference” for each reference point based on the point observation displacement. The provisional representative displacement difference calculating means obtains a “temporary representative displacement difference” based on the displacement differences of a plurality of reference points, and the determination error calculating means calculates the difference between the displacement difference and the provisional representative displacement difference for each reference point. And “determination error” based on the deviations of a plurality of reference points. The collating unit compares the determination error with a determination condition (a condition based on a predetermined threshold value), and the singular point exclusion unit determines a reference point indicating the largest deviation when the determination error deviates from the determination condition. After the exclusion, the temporary representative displacement difference calculating means is made to calculate the temporary representative displacement difference. The representative displacement difference determining means determines the provisional representative displacement difference as the representative displacement difference of the target area when the determination error satisfies the determination condition. Then, the surface observation displacement correcting means corrects the surface observation displacement based on the determined representative displacement difference.

本願発明の領域変位算出システムは、2以上の観測時期における面観測変位を利用して対象領域の変位を求めるものとすることもできる。この場合の直接変位記憶手段は、2以上の計測時期における直接変位を記憶し、面観測変位記憶手段は、2以上の観測時期における面観測変位を記憶する。また点観測変位取得手段は、観測時期ごとに点観測変位を取得し、変位差算出手段は、観測時期に対応する計測時期の直接変位とその観測時期の点観測変位に基づいて観測時期ごとに変位差を求める。そして、暫定代表変位差算出手段は、観測時期ごとに暫定代表変位差を求め、判定用誤差算出手段は、観測時期ごとに基準点の偏差を求めるとともに複数の偏差に基づいて判定用誤差を求める。   The region displacement calculation system of the present invention can also determine the displacement of the target region using surface observation displacements at two or more observation periods. In this case, the direct displacement storage means stores direct displacement at two or more measurement periods, and the surface observation displacement storage means stores surface observation displacements at two or more observation periods. The point observation displacement acquisition means acquires the point observation displacement for each observation period, and the displacement difference calculation means calculates the observation difference for each observation period based on the direct displacement of the measurement period corresponding to the observation period and the point observation displacement of that observation period. Find the displacement difference. The temporary representative displacement difference calculating means obtains a temporary representative displacement difference for each observation period, and the determination error calculating means obtains a reference point deviation for each observation period and obtains a determination error based on a plurality of deviations. .

本願発明の領域変位算出システムは、次の特徴を有する特異点除外手段を備えたものとすることもできる。すなわちこの場合の特異点除外手段は、基準点ごとに2以上の観測時期における偏差の二乗和である「基準点単位偏差二乗和」を求めるとともに、最も大きな基準点単位偏差二乗和を示す基準点を除外する。   The region displacement calculation system according to the present invention may include a singular point exclusion unit having the following characteristics. In other words, the singular point exclusion means in this case obtains a “reference point unit deviation sum of squares” that is a sum of squares of deviations at two or more observation periods for each reference point, and a reference point indicating the largest reference point unit deviation sum of squares Is excluded.

本願発明の領域変位算出システムは、さらに次の特徴を有する特異点除外手段を備えたものとすることもできる。すなわちこの場合の特異点除外手段は、観測時期ごとに複数の基準点の偏差の二乗和である「時期単位偏差二乗和」を求めるとともに、最も大きな時期単位偏差二乗和を示す観測時期を除外する。   The region displacement calculation system according to the present invention may further include singular point exclusion means having the following characteristics. That is, the singular point exclusion means in this case obtains the “sum of the time unit deviation squares” that is the sum of the squares of the deviations of the plurality of reference points for each observation time, and excludes the observation time that shows the largest sum of squares of the time unit deviation .

本願発明の領域変位算出方法は、対象領域の変位を求める方法であり、直接変位取得工程と、面観測変位取得工程、点観測変位取得工程、変位差算出工程、暫定代表変位差算出工程、判定用誤差算出工程、照合工程、特異点除外工程、代表変位差確定工程、面観測変位補正工程を備えた方法である。直接変位取得工程では、基準点を直接計測してぞれぞれの基準点の「直接変位」を取得し、面観測変位取得工程では、干渉SARによって「面観測変位」を取得する。また、点観測変位取得工程では、面観測変位と基準点の位置に基づいて「点観測変位」を得る。変位差算出工程では、基準点の直接変位と点観測変位に基づいて基準点ごとに「変位差」を求め、暫定代表変位差算出工程では、複数の基準点の変位差に基づいて「暫定代表変位差」を求める。判定用誤差算出工程では、基準点ごとに変位差と暫定代表変位差との差である「偏差」を求めるとともに、複数の基準点の偏差に基づいて「判定用誤差」を求める。照合工程では、判定用誤差を判定条件に照らし合わせ、特異点除外工程では、判定用誤差が判定条件から外れるときは最も大きな偏差を示す基準点を除外する。そして、代表変位差確定工程では、判定用誤差が判定条件を満たすときは、暫定代表変位差を対象領域の代表変位差として確定し、面観測変位補正工程では、確定した代表変位差に基づいて面観測変位を補正する。なお、判定用誤差が判定条件から外れるときは、再度、暫定代表変位差算出工程において、特異点除外工程で除外した基準点を除く変位差に基づいて、暫定代表変位差が求められる。   The region displacement calculation method of the present invention is a method for obtaining the displacement of the target region, and includes a direct displacement acquisition step, a surface observation displacement acquisition step, a point observation displacement acquisition step, a displacement difference calculation step, a provisional representative displacement difference calculation step, and a determination. This is a method comprising an error calculation step, a collation step, a singular point exclusion step, a representative displacement difference determination step, and a surface observation displacement correction step. In the direct displacement acquisition step, the reference point is directly measured to acquire “direct displacement” of each reference point, and in the surface observation displacement acquisition step, “surface observation displacement” is acquired by the interference SAR. In the point observation displacement acquisition step, “point observation displacement” is obtained based on the surface observation displacement and the position of the reference point. In the displacement difference calculation step, a “displacement difference” is obtained for each reference point based on the direct displacement of the reference point and the point observation displacement. In the temporary representative displacement difference calculation step, the “temporary representative "Displacement difference" is obtained. In the determination error calculation step, “deviation”, which is the difference between the displacement difference and the temporary representative displacement difference, is obtained for each reference point, and “determination error” is obtained based on the deviations of a plurality of reference points. In the collation process, the determination error is checked against the determination condition, and in the singular point exclusion process, when the determination error deviates from the determination condition, the reference point showing the largest deviation is excluded. Then, in the representative displacement difference determination step, when the determination error satisfies the determination condition, the provisional representative displacement difference is determined as the representative displacement difference of the target region. In the surface observation displacement correction step, based on the determined representative displacement difference. Correct the surface observation displacement. When the determination error deviates from the determination condition, the temporary representative displacement difference is obtained again in the temporary representative displacement difference calculation step based on the displacement difference excluding the reference point excluded in the singular point exclusion step.

本願発明の領域変位算出方法は、2以上の観測時期における面観測変位を利用して対象領域の変位を求める方法とすることもできる。この場合、直接変位取得工程では、2以上の計測時期で直接変位を取得し、面観測変位取得工程では、2以上の観測時期で面観測変位を取得する。また、点観測変位取得工程では、観測時期ごとに点観測変位を取得し、変位差算出工程では、観測時期に対応する計測時期の直接変位とその観測時期の点観測変位に基づいて観測時期ごとに変位差を求める。そして、暫定代表変位差算出工程では、観測時期ごとに暫定代表変位差を求め、判定用誤差算出工程では、観測時期ごとに基準点の偏差を求めるとともに、複数の偏差に基づいて判定用誤差を求める。   The region displacement calculation method of the present invention may be a method for obtaining the displacement of the target region using the surface observation displacement at two or more observation periods. In this case, in the direct displacement acquisition step, the direct displacement is acquired at two or more measurement times, and in the surface observation displacement acquisition step, the surface observation displacement is acquired at two or more observation times. In the point observation displacement acquisition process, point observation displacement is acquired for each observation period, and in the displacement difference calculation process, each observation period is determined based on the direct displacement of the measurement period corresponding to the observation period and the point observation displacement of that observation period. Find the displacement difference. In the provisional representative displacement difference calculation step, a provisional representative displacement difference is obtained for each observation period, and in the determination error calculation step, a reference point deviation is obtained for each observation period, and a determination error is calculated based on a plurality of deviations. Ask.

本願発明の領域変位算出プログラムは、対象領域の変位を求める処理を、コンピュータに実行させるプログラムであり、点観測変位取得処理と、変位差算出処理、暫定代表変位差算出処理、判定用誤差算出処理、照合処理、特異点除外処理、代表変位差確定処理、面観測変位補正処理をコンピュータに実行させるものである。点観測変位取得処理は、干渉SARによって得られた「面観測変位」と基準点の位置に基づいて「点観測変位」を得る。変位差算出処理は、基準点の「直接変位」と点観測変位に基づいて基準点ごとに「変位差」を求め、暫定代表変位差算出処理は、複数の基準点の変位差に基づいて「暫定代表変位差」を求める。判定用誤差算出処理は、基準点ごとに変位差と暫定代表変位差との差である「偏差」を求めるとともに、複数の基準点の偏差に基づいて「判定用誤差」を求め、照合処理は、判定用誤差を判定条件に照らし合わせる。特異点除外処理は、判定用誤差が判定条件から外れるときは、最も大きな偏差を示す基準点を除外したうえで、暫定代表変位差算出処理に暫定代表変位差を算出させる。そして、代表変位差確定処理は、判定用誤差が判定条件を満たすときは、暫定代表変位差を対象領域の代表変位差として確定し、面観測変位補正処理は、確定した代表変位差に基づいて面観測変位を補正する。   The area displacement calculation program of the present invention is a program that causes a computer to execute a process for obtaining a displacement of a target area, and includes a point observation displacement acquisition process, a displacement difference calculation process, a provisional representative displacement difference calculation process, and a determination error calculation process. The computer executes a matching process, a singular point exclusion process, a representative displacement difference determination process, and a surface observation displacement correction process. The point observation displacement acquisition process obtains “point observation displacement” based on the “surface observation displacement” obtained by the interference SAR and the position of the reference point. The displacement difference calculation process obtains a “displacement difference” for each reference point based on the “direct displacement” and the point observation displacement of the reference point, and the provisional representative displacement difference calculation process calculates the “difference difference” based on the displacement differences of a plurality of reference points. "Provisional representative displacement difference" is obtained. The determination error calculation process obtains “deviation” that is the difference between the displacement difference and the provisional representative displacement difference for each reference point, and obtains “determination error” based on the deviation of a plurality of reference points. The determination error is checked against the determination condition. In the singular point exclusion process, when the determination error deviates from the determination condition, the temporary representative displacement difference calculation process is made to calculate the temporary representative displacement difference after excluding the reference point showing the largest deviation. Then, the representative displacement difference determination process determines the provisional representative displacement difference as the representative displacement difference of the target area when the determination error satisfies the determination condition, and the surface observation displacement correction process is based on the determined representative displacement difference. Correct the surface observation displacement.

本願発明の領域変位算出システム、領域変位算出方法、及び領域変位算出プログラムには、次のような効果がある。
(1)面的に(一度に広範囲にわたって)、しかも定期的(あるいは不定期)に、対象領域の実際の変位を自動取得できる。
(2)人による作業や判断を大幅に省略できることから、作業コストを低減することができるとともに、人的ミスが排除され、専門知識や経験に依存することがない。
The region displacement calculation system, region displacement calculation method, and region displacement calculation program of the present invention have the following effects.
(1) It is possible to automatically acquire the actual displacement of the target area in terms of area (over a wide range at once) and periodically (or irregularly).
(2) Since work and judgment by a person can be largely omitted, work costs can be reduced, human errors are eliminated, and there is no dependence on specialized knowledge or experience.

対象領域と複数の基準点を示す平面図。The top view which shows an object area | region and several reference points. 1時期のみ計測を行う場合の本願発明の主な処理(工程)を示すフロー図。The flowchart which shows the main processes (process) of this invention in the case of measuring only for one time. 本願発明の領域変位算出システムを説明するブロック図。The block diagram explaining the area | region displacement calculation system of this invention. 2以上の時期で計測を行う場合の本願発明の主な処理(工程)を示すフロー図。The flowchart which shows the main processes (process) of this invention in the case of measuring at two or more time. 計測時期と観測時期が異なり、しかもそれぞれ実施回数が異なる場合の、観測時期と計測時を示すモデル図。A model diagram showing the observation time and measurement time when the measurement time and observation time are different and the number of times of execution is different. 干渉SARの結果を示すSAR干渉画像図。The SAR interference image figure which shows the result of interference SAR. 実際の変位と干渉SARで得られる変化の違いを示すモデル図。The model figure which shows the difference of the change obtained by an actual displacement and interference SAR.

本願発明の領域変位算出システム、領域変位算出方法、及び領域変位算出プログラムの一例を、図を参照しながら説明する。   An example of the region displacement calculation system, region displacement calculation method, and region displacement calculation program of the present invention will be described with reference to the drawings.

1.全体概要
本願発明は、ダムといった大規模構造物や、広範囲の土地など、比較的広い領域である「対象領域」全体の変位を把握するものである。そして、この対象領域内にはあらかじめ複数の基準点が設置されている。図1は、対象領域TAと複数の基準点P〜Pを示す平面図である。この図では、対象領域TA内に8個の基準点Pが設置されているが、当然ながら対象領域TAの面積や重要度に応じて設置する基準点Pの数は適宜設計することができる。
1. Overall Outline The present invention grasps the displacement of the entire “target area” which is a relatively wide area such as a large-scale structure such as a dam or a wide area. A plurality of reference points are set in advance in the target area. FIG. 1 is a plan view showing a target area TA and a plurality of reference points P 1 to P 8 . In this figure, eight reference points P are set in the target area TA, but the number of reference points P to be set can be appropriately designed according to the area and importance of the target area TA.

また本願発明では、干渉SARによる結果に加え、基準点Pを直接計測して得られる変位を利用する。したがってこの基準点Pは、例えばGNSSにおける受信機、あるいはトータルステーション計測におけるターゲットなど、直接測量にとって好適なものがよい。なお、GNSSやトータルステーション計測で得られる結果は直接的な変位であることから、ここでは「直接変位」ということとする。   In the present invention, in addition to the result of the interference SAR, a displacement obtained by directly measuring the reference point P is used. Accordingly, this reference point P is preferably suitable for direct surveying, such as a receiver in GNSS or a target in total station measurement. In addition, since the result obtained by GNSS and total station measurement is a direct displacement, it shall be called "direct displacement" here.

一方、既述のとおり干渉SARは、位相差を用いて変位量を求める手法であり、いわば所定範囲内の相対的な変位であるが、1度の計測で面的な領域(広い範囲)を網羅することができる。このように干渉SARによって得られる結果は面的な変位であることから、ここでは「面観測変位」ということとする。   On the other hand, as described above, the interference SAR is a technique for obtaining a displacement amount using a phase difference, which is a relative displacement within a predetermined range. Can be covered. Since the result obtained by the interference SAR is a surface displacement, it is referred to as “surface observation displacement” here.

相対的な変位である面観測変位を基に実際の変位(いわば絶対量の変位)を求めるには、直接変位という絶対量を与えることになるが、面観測変位と直接変位を照らし合わせるには面観測変位を基に点の情報を取得する必要がある。そのため、基準点Pの平面位置における面観測変位の値(位相差)を求め、これを「点観測変位」とする。つまり、基準点Pには点観測変位と直接変位が付与されるわけである。本願発明は、対象領域TA内にある複数(図1では8個)の基準点Pがもつ点観測変位と直接変位を用いて、面観測変位から実際の変位を把握することが1つの特徴である。   To obtain the actual displacement (so-called absolute displacement) based on the surface displacement, which is a relative displacement, an absolute amount called direct displacement is given, but to compare the surface displacement with the direct displacement. It is necessary to acquire point information based on the surface observation displacement. Therefore, the value (phase difference) of the surface observation displacement at the plane position of the reference point P is obtained, and this is referred to as “point observation displacement”. That is, the point observation displacement and the direct displacement are given to the reference point P. One feature of the present invention is that the actual displacement is grasped from the surface observation displacement by using the point observation displacement and the direct displacement of a plurality of (8 in FIG. 1) reference points P in the target area TA. is there.

以下、本願発明を構成する主な要素ごとに詳しく説明する。なお、本願発明は2時期のSAR観測を比較するものであり、当然ながら1回目のみの観測では変位を求めることができず、2回目の観測から変位を求めることができるようになる。つまり2回目の観測で1回目の変位を求め、3回目の観測で2回目の変位を求めることとなる。ここでは混乱を避けるため、変位を求める回数を基準とし、実際には2回目の計測を便宜上1回目としてカウントする(要は初回の計測はカウントしない)こととする。そして、1時期のみ(つまり1回目のみ)計測を行う場合と、2以上の時期で計測を行う場合に分けて説明する。   Hereinafter, each main element constituting the present invention will be described in detail. Note that the present invention compares SAR observations at two periods. Naturally, the displacement cannot be obtained by the first observation, but the displacement can be obtained from the second observation. That is, the first displacement is obtained by the second observation, and the second displacement is obtained by the third observation. Here, in order to avoid confusion, the number of times of obtaining the displacement is used as a reference, and in actuality, the second measurement is counted as the first time for convenience (in short, the first measurement is not counted). A case where measurement is performed only at one time (that is, only the first time) and a case where measurement is performed at two or more times will be described separately.

2.1時期のみの計測
図1は、1時期のみ計測を行う場合の本願発明の主な処理(工程)を示すフロー図である。以下、この図に従って詳しく説明する。
2.1 Measurement of only time period FIG. 1 is a flowchart showing main processes (steps) of the present invention in the case of measuring only one time period. Details will be described below with reference to this figure.

まず、干渉SARによって対象領域TAの観測を行って面観測変位Φ’を取得し(Step101)、対象領域TA内にある基準点Pの直接変位dを求める(Step102)。この直接変位dは、GNSSやトータルステーションを用いた計測(以下、「実測」という。)によって基準点Pの位置座標(3次元)を求め、前回の実測の結果(位置座標)と比較することで算出され、当然ながら基準点Pごとに直接変位dは得られる。ここでは、n個の基準点Pの場合で説明しており、それぞれを区別する意味で基準点P、直接変位dともに添え字i(i=1〜n)を付している。なお、干渉SARによる観測時期と実測を行う計測時期は、同じ時期とすることもできるし、異なる時期としてもよい。 First, the target area TA is observed by the interference SAR to obtain the surface observation displacement Φ ′ (Step 101), and the direct displacement d i of the reference point P i in the target area TA is obtained (Step 102). For this direct displacement d i , the position coordinate (three-dimensional) of the reference point P i is obtained by measurement using a GNSS or a total station (hereinafter referred to as “actual measurement”), and compared with the previous measurement result (position coordinate). Naturally, the displacement d i is obtained directly for each reference point P i . Here, the case of n reference points P i is described, and the reference point P i and the direct displacement d i are attached with a subscript i (i = 1 to n) in order to distinguish them. Note that the observation time by the interference SAR and the measurement time for actual measurement may be the same time or different times.

面観測変位Φ’と直接変位dが得られると、これらを基に点観測変位φを取得する(Step103)。既述のとおり点観測変位φは、基準点P位置(平面位置)における干渉SARによる観測結果(位相差)であり、対象領域TAに設置された基準点Pの数だけ求められることから、基準点P、直接変位dと同様に添え字iを付している。 When the surface observation displacement Φ ′ and the direct displacement d i are obtained, the point observation displacement φ i is acquired based on these (Step 103). As described above, the point observation displacement φ i is an observation result (phase difference) by the interference SAR at the reference point P i position (plane position), and is obtained by the number of reference points P i installed in the target area TA. From the reference point P i and the direct displacement d i , the subscript i is added.

ここまでで得られた直接変位dと点観測変位φに基づいて、暫定代表変位差M’を算出する(Step104)。この暫定代表変位差M’は、従来から知られている種々の統計処理によって求めることができる。例えば、基準点Pごとに直接変位dと点観測変位φの差(以下、「変位差D」という。)を求め、これら複数(この場合n個)の変位差Dの平均(算術平均)値を暫定代表変位差M’とすることができる。なお、変位差Dは基準点Pごとに得られるが、暫定代表変位差M’は複数の基準点P〜Pの代表値、すなわち対象領域TAの代表値である。 The temporary representative displacement difference M ′ is calculated based on the direct displacement d i and the point observation displacement φ i obtained so far (Step 104). The temporary representative displacement difference M ′ can be obtained by various statistical processes that have been conventionally known. For example, for each reference point P i , the difference between the direct displacement d i and the point observation displacement φ i (hereinafter referred to as “displacement difference D i ”) is obtained, and the average of these plural (in this case, n) displacement differences D i is obtained. The (arithmetic mean) value can be the provisional representative displacement difference M ′. The displacement difference D i is obtained for each reference point P i , but the temporary representative displacement difference M ′ is a representative value of the plurality of reference points P 1 to P n , that is, a representative value of the target area TA.

変位差Dと暫定代表変位差M’が得られると、これらに基づいて判定用誤差Eが算出される(Step105)。この判定用誤差Eは、従来から知られている種々の統計処理によって求めることができ、例えば、下式のように変位差Dと暫定代表変位差M’の差(以下、「偏差」という。)の二乗和(以下、「偏差二乗和」という。)を用いて算出することができる。

Figure 2017207457
When displacement difference D i between the provisional representative displacement difference M 'is obtained, the determination error E is calculated based on these (Step 105). The determination error E can be obtained by various conventionally known statistical processes. For example, the difference between the displacement difference Di and the provisional representative displacement difference M ′ (hereinafter referred to as “deviation”) as shown in the following equation. )) (Hereinafter referred to as “deviation square sum”).
Figure 2017207457

判定用誤差Eが得られると、あらかじめ定めた閾値εと照らし合わせる(Step106)。ここで判定用誤差Eが閾値εを超える場合(Yes)は、後述する「特異点」を除外し(Step107)、判定用誤差Eが閾値εを超えない場合(No)は、暫定代表変位差M’をそのまま対象領域TAの代表値として確定する(Step108)。   When the determination error E is obtained, it is compared with a predetermined threshold value ε (Step 106). Here, when the determination error E exceeds the threshold ε (Yes), “singular points” described later are excluded (Step 107), and when the determination error E does not exceed the threshold ε (No), the provisional representative displacement difference M ′ is determined as it is as a representative value of the target area TA (Step 108).

判定用誤差Eが閾値εを超える場合に除外される特異点は、暫定代表変位差M’を求めるために用いた値のうちいわば最も異常な値を示す基準点Pである。この異常値の判定は、種々の観点によって行うことができ、例えば直接変位dと点観測変位φの差(つまり変位差D)が最も大きな値を示すものを特異点とすることができる。具体的には、全ての基準点Pにおいて変位差Dと暫定代表変位差M’の偏差(絶対値)を求め、その中で最も大きな偏差を示す基準点Pを特異点とする。 The singular point that is excluded when the determination error E exceeds the threshold ε is the reference point P i that indicates the most abnormal value among the values used to obtain the temporary representative displacement difference M ′. The determination of the abnormal value can be performed from various viewpoints. For example, a point having the largest difference between the direct displacement d i and the point observation displacement φ i (that is, the displacement difference D i ) is determined as a singular point. it can. Specifically, the deviation (absolute value) of the displacement difference D i and the temporary representative displacement difference M ′ is obtained at all the reference points P i , and the reference point P i showing the largest deviation among them is set as a singular point.

判定用誤差Eが閾値εを超える場合は、特異点を除外したうえで再度、暫定代表変位差M’を算出し(Step104)、判定用誤差Eを求め(Step105)、判定用誤差Eと閾値εと照らし合わせる(Step106)。そして、判定用誤差Eが閾値εを超えないと判断されるまで、特異点を除外しながらStep104〜Step106が繰り返し行われる。   When the determination error E exceeds the threshold ε, the singular point is excluded and the temporary representative displacement difference M ′ is calculated again (Step 104), the determination error E is obtained (Step 105), and the determination error E and the threshold are calculated. Compare with ε (Step 106). Then, Step 104 to Step 106 are repeatedly performed while excluding singular points until it is determined that the determination error E does not exceed the threshold ε.

既述のとおり、Step106で判定用誤差Eが閾値εを超えないと判断されると、暫定代表変位差M’を「代表変位差M(対象領域TAの代表値)」として確定する(Step108)。ところで、干渉SARによって得られる結果は、いわば所定範囲内の相対的な変位であり、不動点(あるいは既知の変位)などの絶対量を与えることで実際の変位(干渉SARによる変位)を求めることができることはこれまで説明したとおりである。そして本願発明では、代表変位差Mを絶対量として面観測変位Φ’に与える。つまり、相対的変位である面観測変位Φ’を代表変位差Mで補正する(代表変位差Mだけオフセットする)ことで、確定面観測変位Φ(干渉SARによる変位)を得る。これにより実測の変位がもつ誤差が軽減され、すなわち確定面観測変位Φ(干渉SARによる変位)の精度を向上させることができるわけである。   As described above, when it is determined in Step 106 that the determination error E does not exceed the threshold ε, the temporary representative displacement difference M ′ is determined as “representative displacement difference M (representative value of the target area TA)” (Step 108). . By the way, the result obtained by the interference SAR is a relative displacement within a predetermined range, and an actual displacement (displacement by the interference SAR) is obtained by giving an absolute amount such as a fixed point (or a known displacement). What can be done is as described above. In the present invention, the representative displacement difference M is given to the surface observation displacement Φ ′ as an absolute amount. That is, the definite surface observation displacement Φ (displacement due to the interference SAR) is obtained by correcting the surface observation displacement Φ ′, which is a relative displacement, with the representative displacement difference M (offset by the representative displacement difference M). As a result, the error of the actually measured displacement is reduced, that is, the accuracy of the deterministic surface observation displacement Φ (displacement due to the interference SAR) can be improved.

次に、本願発明の領域変位算出システムの主な構成について説明する。図3は、本願発明の領域変位算出システム100を説明するブロック図である。基準点情報記憶手段101には、基準点Pの座標(例えば設置当初)や識別番号など、当該基準点Pに関する属性情報が、基準点Pごとに記憶される。面観測変位記憶手段102は、1又は2以上の観測時期で得られた面観測変位Φ’を観測時期ごとに記憶するもので、直接変位記憶手段103は、1又は2以上の計測時期で得られた直接変位dを計測時期ごと且つ基準点Pごとに記憶するものである。 Next, the main configuration of the region displacement calculation system of the present invention will be described. FIG. 3 is a block diagram illustrating the region displacement calculation system 100 of the present invention. In the reference point information storage means 101, attribute information related to the reference point P i such as the coordinates of the reference point P i (for example, the initial installation) and the identification number are stored for each reference point P i . The surface observation displacement storage means 102 stores the surface observation displacement Φ ′ obtained at one or more observation periods for each observation period, and the direct displacement storage means 103 is obtained at one or more measurement periods. The obtained direct displacement d i is stored for each measurement time and for each reference point P i .

点観測変位取得手段104は、基準点情報記憶手段101から各基準点Pの位置(平面座標)を読み出し、面観測変位記憶手段102から所定の観測時期で得られた面観測変位Φ’を読み出すとともに、各基準点Pの位置と面観測変位Φ’に基づいて点観測変位φを取得する。変位算出手段105は、点観測変位取得手段104で得られた点観測変位φと、直接変位記憶手段103から読み出した直接変位dに基づいて、基準点Pごとに変位差Dを算出する。 Point observed displacement acquiring unit 104, the position of each reference point P i from the reference point information storage unit 101 reads out the (plane coordinates), the surface observation displacement [Phi 'obtained from the surface observation displacement storage unit 102 at a predetermined observation period At the same time, the point observation displacement φ i is acquired based on the position of each reference point P i and the surface observation displacement Φ ′. The displacement calculation means 105 calculates the displacement difference D i for each reference point P i based on the point observation displacement φ i obtained by the point observation displacement acquisition means 104 and the direct displacement d i read from the direct displacement storage means 103. calculate.

暫定代表変位差算出手段106は、変位算出手段105で得た基準点Pの変位差Dに基づいて暫定代表変位差M’を算出し、判定用誤差算出手段107は、暫定代表変位差算出手段106で得た暫定代表変位差M’や変位差Dに基づいて判定用誤差Eを算出する。 Preliminary representative displacement difference calculating unit 106, based on the displacement difference D i of the reference point P obtained in the displacement calculating unit 105 calculates the provisional representative displacement difference M ', judgment error calculating unit 107, the provisional representative displacement difference calculated calculating a determination error E based on the provisional representative displacement difference M 'and differential displacement D i obtained by means 106.

照合手段108は、閾値記憶手段109から読み出した閾値εと判定用誤差算出手段107で得た判定用誤差Eと照らし合わせ、判定用誤差Eが閾値εを超えない場合はその照合結果を代表変位差確定手段111に送り、判定用誤差Eが閾値εを超える場合は照合結果を特異点除外手段110に送る。そして特異点除外手段110は、既述した特異点を除外したうえで、再度、暫定代表変位差M’を算出するよう暫定代表変位差算出手段106に対して指令を出す。   The matching unit 108 compares the threshold value ε read from the threshold value storage unit 109 with the determination error E obtained by the determination error calculation unit 107, and if the determination error E does not exceed the threshold value ε, the matching result is represented as a representative displacement. When the determination error E exceeds the threshold value ε, the result of matching is sent to the singular point exclusion means 110. Then, the singular point excluding unit 110 excludes the above-described singular point and issues a command to the temporary representative displacement difference calculating unit 106 again to calculate the temporary representative displacement difference M ′.

照合手段108から照合結果(判定用誤差Eが閾値εを超えない)を受けた代表変位差確定手段111は、暫定代表変位差M’を代表変位差Mとして確定し、面観測変位補正手段112は、面観測変位Φ’を代表変位差Mで補正することで確定面観測変位Φを得る。ここで得られた確定面観測変位Φは、異なる観測時期のものとして面観測変位記憶手段102に記憶される。   The representative displacement difference determination unit 111 that has received the verification result (the determination error E does not exceed the threshold ε) from the verification unit 108 determines the temporary representative displacement difference M ′ as the representative displacement difference M, and the surface observation displacement correction unit 112. Obtains the definite plane observation displacement Φ by correcting the plane observation displacement Φ ′ with the representative displacement difference M. The determined plane observation displacement Φ obtained here is stored in the plane observation displacement storage means 102 as having a different observation period.

3.2以上の時期での計測
図3は、2以上の時期で計測を行う場合の本願発明の主な処理(工程)を示すフロー図である。以下、この図に従って詳しく説明する。
3. Measurement at Time More Than 2 FIG. 3 is a flowchart showing main processes (steps) of the present invention when measurement is made at time more than two. Details will be described below with reference to this figure.

まず、干渉SARによって対象領域TAの観測を行って面観測変位Φ’を取得し(Step201)、対象領域TA内にある基準点Pの直接変位dijを求める(Step202)。このケースでは、面観測変位Φ’を取得するための干渉SARによる観測、直接変位dを取得するための計測、ともに2以上の時期で実施される必要があり、ここでは面観測変位Φ’の取得時期(観測時期)、直接変位dijの取得時期(観測時期)がそれぞれm回である場合で説明する。なお、観測時期を区別する意味で面観測変位Φ’ に添え字j(j=1〜m)を付し、同様に計測時期を区別する意味で直接変位dijにも添え字j(j=1〜m)を付している。直接変位dijの添え字i(i=1〜n)が、対象領域TAにある複数の基準点Pを区別する意味で付しているのはこれまで説明したとおりである。 First, the target area TA is observed by the interference SAR to obtain the surface observation displacement Φ j ′ (Step 201), and the direct displacement d ij of the reference point P i in the target area TA is obtained (Step 202). In this case, both the observation by the interference SAR for acquiring the surface observation displacement Φ j ′ and the measurement for acquiring the direct displacement d i need to be performed at two or more times. Here, the surface observation displacement Φ The case where the acquisition time (observation time) of j ′ and the acquisition time (observation time) of the direct displacement d ij are each m times will be described. In addition, the subscript j (j = 1 to m) is added to the surface observation displacement Φ j ′ in order to distinguish the observation time, and the subscript j (j is also added to the direct displacement d ij in the same manner to distinguish the measurement time. = 1 to m). As described above, the subscript i (i = 1 to n) of the direct displacement d ij is attached for the purpose of distinguishing the plurality of reference points P i in the target area TA.

面観測変位Φ’と直接変位dijが得られると、これらを基に点観測変位φijを取得する(Step203)。既述のとおり、点観測変位φijの添え字iは、対象領域TAにある複数の基準点Pを区別する意味で付されたものであり、添え字jは、観測時期を区別する意味で付されたものである。 When the surface observation displacement Φ j ′ and the direct displacement d ij are obtained, the point observation displacement φ ij is acquired based on these (Step 203). As described above, the subscript i of the point observation displacement φ ij is attached to distinguish the plurality of reference points P i in the target area TA, and the subscript j means to distinguish the observation period. It is attached.

ここまでで得られた直接変位dijと点観測変位φijに基づいて、暫定代表変位差M’を算出する(Step204)。なお、暫定代表変位差M’の添え字jは、観測時期を区別する意味で付されたものである。ここで使用される直接変位dijは、点観測変位φijを取得した観測時期に「対応する計測時期」に取得されたものである。観測時期と計測時期が同時期であれば、あるいは図4のように観測時期、計測時期がともにm回ずつであれば、観測時期に「対応する計測時期」は容易に判断できる。しかしながら、図5に示すように計測時期が観測時期とは異なり、しかもそれぞれ実施回数が異なる場合は、観測時期と計測時期との対応が必然的とはならないこともある。この場合、観測時期に最も近い時期(直前/直後)を「対応する計測時期」とすることもできるし、図5に示すように観測時期の前後の計測時期の結果に基づいて観測時期における直接変位dijを求め、つまり擬似的に観測時期において直接変位dijが取得されたものとみなし、この直接変位dijを「対応する計測時期」に取得されたものとすることもできる。 Based on the direct displacement d ij and the point observation displacement φ ij obtained so far, a provisional representative displacement difference M j ′ is calculated (Step 204). Note that the subscript j of the provisional representative displacement difference M j ′ is added to distinguish the observation periods. The direct displacement d ij used here is acquired at “corresponding measurement time” to the observation time when the point observation displacement φ ij is acquired. If the observation period and the measurement period are the same period, or if the observation period and the measurement period are both m times as shown in FIG. 4, the “corresponding measurement period” can be easily determined. However, as shown in FIG. 5, when the measurement period is different from the observation period and the number of executions is different, the correspondence between the observation period and the measurement period may not be necessarily required. In this case, the time closest to the observation time (immediately before / immediately) can be set as the “corresponding measurement time”, or directly in the observation time based on the result of the measurement time before and after the observation time as shown in FIG. It is also possible to obtain the displacement d ij , that is, to assume that the direct displacement d ij is acquired in a pseudo-observation time, and to acquire the direct displacement d ij at the “corresponding measurement time”.

暫定代表変位差M’は、観測時期ごとに求められ、従来から知られている種々の統計処理によって算出することができる。例えば、ある観測時期において基準点Pごとに点観測変位φijと直接変位dij(対応する計測時期のもの)の変位差Dijを求め、これら複数(この場合n個)の変位差Dijの平均(算術平均)値を、当該観測時期における暫定代表変位差M’とすることができる。これを観測時期(j=1〜m)だけ繰り返し行い、観測時期ごとの暫定代表変位差M’を算出する。 The provisional representative displacement difference M j ′ is obtained for each observation period, and can be calculated by various statistical processes conventionally known. For example, the displacement difference D ij between the point observation displacement φ ij and the direct displacement d ij (of the corresponding measurement time) is obtained for each reference point P i at a certain observation time, and a plurality of (n in this case) displacement differences D are obtained. The average (arithmetic average) value of ij can be the provisional representative displacement difference M j ′ at the observation time. This is repeated for the observation period (j = 1 to m), and the temporary representative displacement difference M j ′ for each observation period is calculated.

観測時期ごとの暫定代表変位差M’と各基準点Pの変位差Dijが得られると、これらに基づいて判定用誤差Eが算出される(Step205)。この判定用誤差Eは、従来から知られている種々の統計処理によって求めることができ、例えば、下式のように各観測時期における偏差二乗和(変位差Dijと暫定代表変位差M’の偏差の二乗和)を求め、さらに全ての観測時期の偏差二乗和を総和したものに基づいて算出される値を、判定用誤差Eとすることができる。

Figure 2017207457
When the provisional representative displacement difference M j ′ for each observation period and the displacement difference D ij of each reference point P i are obtained, a determination error E is calculated based on these (Step 205). The determination error E can be obtained by various conventionally known statistical processes. For example, the deviation sum of squares (displacement difference D ij and provisional representative displacement difference M j ′) at each observation period as shown in the following equation. The value calculated based on the sum of the square sums of deviations of all observation periods can be used as the determination error E.
Figure 2017207457

判定用誤差Eが得られると、あらかじめ定めた閾値εと照らし合わせる(Step206)。ここで判定用誤差Eが閾値εを超える場合(Yes)は、「特異点」を除外し(Step207)、判定用誤差Eが閾値εを超えない場合(No)は、暫定代表変位差M’をそのまま当該観測時期(例えば最新の観測時期)における対象領域TAの代表値として確定する(Step208)。 When the determination error E is obtained, it is compared with a predetermined threshold value ε (Step 206). If the determination error E exceeds the threshold ε (Yes), “singularity” is excluded (Step 207), and if the determination error E does not exceed the threshold ε (No), the temporary representative displacement difference M j 'Is determined as it is as a representative value of the target area TA in the observation period (for example, the latest observation period) (Step 208).

判定用誤差Eが閾値εを超える場合に除外される特異点は、「基準点単位偏差二乗和Sp」が最も大きな値を示す基準点とすることができる。この「基準点単位偏差二乗和Sp」」は、下式に示すように、複数(j=1〜m)の観測時期の偏差二乗和の総和を基準点ごとに求めたものである。

Figure 2017207457
A singular point that is excluded when the determination error E exceeds the threshold ε can be a reference point having the largest “reference point unit deviation square sum Sp i ”. This “reference point unit deviation square sum Sp i ” is obtained for each reference point as the sum of the square sums of deviations of a plurality (j = 1 to m) of observation periods as shown in the following equation.
Figure 2017207457

あるいは、特異点として「時期単位偏差二乗和St」が最も大きな値を示す観測時期(時期であるが、便宜上特異点とする)とすることができる。この「時期単位偏差二乗和St」は、下式に示すように、複数(i=1〜n)の基準点Pの偏差二乗和の総和を観測時期ごとに求めたものである。

Figure 2017207457
Alternatively, the observation period (the period is a singular point for convenience) in which the “time unit deviation sum of squares St j ” has the largest value can be used as the singular point. This “time unit deviation sum of squares St j ” is the sum of deviation square sums of a plurality (i = 1 to n) of reference points P i for each observation period, as shown in the following equation.
Figure 2017207457

判定用誤差Eが閾値εを超える場合は、特異点を除外したうえで再度、暫定代表変位差M’を算出し(Step204)、判定用誤差Eを求め(Step205)、判定用誤差Eと閾値εと照らし合わせる(Step206)。そして、判定用誤差Eが閾値εを超えないと判断されるまで、特異点を除外しながらStep204〜Step206が繰り返し行われる。 When the determination error E exceeds the threshold ε, the singular point is excluded and the temporary representative displacement difference M j ′ is calculated again (Step 204), the determination error E is obtained (Step 205), and the determination error E and The threshold value ε is checked (Step 206). Then, Step 204 to Step 206 are repeatedly performed while excluding singular points until it is determined that the determination error E does not exceed the threshold ε.

既述のとおり、Step206で判定用誤差Eが閾値εを超えないと判断されると、暫定代表変位差M’を「当該観測時期(例えば最新の観測時期)における代表変位差M」として確定する(Step208)。そして、当該観測時期(例えば最新の観測時期)における面観測変位Φ’を代表変位差Mで補正する(代表変位差Mだけオフセットする)ことで、当該観測時期における確定面観測変位Φ(干渉SARによる変位)を得る。これにより実測の変位がもつ誤差が軽減され、すなわち確定面観測変位Φ(干渉SARによる変位)の精度を向上させることができるわけである。 As described above, when it is determined in Step 206 that the determination error E does not exceed the threshold ε, the provisional representative displacement difference M j ′ is determined as “representative displacement difference M in the relevant observation period (for example, the latest observation period)”. (Step 208). Then, by correcting the surface observation displacement Φ j ′ at the observation time (for example, the latest observation time) with the representative displacement difference M (offset by the representative displacement difference M), the fixed surface observation displacement Φ (interference) at the observation time is corrected. Displacement by SAR). As a result, the error of the actually measured displacement is reduced, that is, the accuracy of the deterministic surface observation displacement Φ (displacement due to the interference SAR) can be improved.

本願発明の領域変位算出システム、領域変位算出方法、及び領域変位算出プログラムは、ダム等の構造物や、地すべりや深層崩壊のおそれがある斜面など、変位のモニタリングが有効である場所に特に効果的に利用することができる。本願発明を利用すれば、大規模構造物の早期補強・補修を可能にし、地すべり等を監視することで斜面災害の回避が可能になることを考えれば、産業上利用できるうえに社会的にも貢献が期待できる発明といえる。   The region displacement calculation system, region displacement calculation method, and region displacement calculation program of the present invention are particularly effective in places where displacement monitoring is effective, such as structures such as dams, slopes that may cause landslides and deep collapse. Can be used. If the invention of the present application is used, it will be possible to reinforce and repair large-scale structures at an early stage, and it will be possible to avoid slope disasters by monitoring landslides. It can be said that the invention is expected to contribute.

100 領域変位算出システム
101 基準点情報記憶手段
102 面観測変位記憶手段
103 直接変位記憶手段
104 点観測変位取得手段
105 変位算出手段
106 暫定代表変位差算出手段
107 判定用誤差算出手段
108 照合手段
109 閾値記憶手段
110 特異点除外手段
111 代表変位差確定手段
112 面観測変位補正手段
P 基準点
TA 対象領域
DESCRIPTION OF SYMBOLS 100 Area displacement calculation system 101 Reference point information storage means 102 Surface observation displacement storage means 103 Direct displacement storage means 104 Point observation displacement acquisition means 105 Displacement calculation means 106 Temporary representative displacement difference calculation means 107 Judgment error calculation means 108 Verification means 109 Threshold value Storage means 110 Singular point exclusion means 111 Representative displacement difference determination means 112 Surface observation displacement correction means P Reference point TA Target area

Claims (7)

複数の基準点が設置された対象領域の変位を求める領域変位算出システムであって、
前記基準点を直接計測して得られた「直接変位」を記憶する直接変位記憶手段と、
差分干渉合成開口レーダによって得られた前記対象領域の変位である「面観測変位」を記憶する面観測変位記憶手段と、
前記面観測変位、及び前記基準点の位置に基づいて、該基準点における差分干渉合成開口レーダの結果である「点観測変位」を得る点観測変位取得手段と、
前記基準点の前記直接変位と前記点観測変位に基づいて、該基準点ごとに「変位差」を求める変位差算出手段と、
複数の前記基準点の前記変位差に基づいて、「暫定代表変位差」を求める暫定代表変位差算出手段と、
前記基準点ごとに前記変位差と前記暫定代表変位差との差である「偏差」を求めるとともに、複数の前記基準点の該偏差に基づいて「判定用誤差」を求める判定用誤差算出手段と、
前記判定用誤差を、あらかじめ定めた閾値に基づく判定条件に照らし合わせる照合手段と、
前記判定用誤差が前記判定条件から外れるときは、最も大きな前記偏差を示す基準点を除外したうえで、前記暫定代表変位差算出手段に前記暫定代表変位差を算出させる特異点除外手段と、
前記判定用誤差が前記判定条件を満たすときは、前記暫定代表変位差を前記対象領域の代表変位差として確定する代表変位差確定手段と、
確定した前記代表変位差に基づいて、前記面観測変位を補正する面観測変位補正手段と、
を備えたことを特徴とする領域変位算出システム。
An area displacement calculation system for obtaining a displacement of a target area where a plurality of reference points are installed,
Direct displacement storage means for storing “direct displacement” obtained by directly measuring the reference point;
A surface observation displacement storage means for storing a “surface observation displacement” that is a displacement of the target area obtained by the differential interference synthetic aperture radar;
Point observation displacement acquisition means for obtaining a “point observation displacement” as a result of the differential interference synthetic aperture radar at the reference point based on the surface observation displacement and the position of the reference point;
A displacement difference calculating means for obtaining a “displacement difference” for each reference point based on the direct displacement of the reference point and the point observation displacement;
Temporary representative displacement difference calculating means for obtaining a “temporary representative displacement difference” based on the displacement differences of a plurality of the reference points;
A determination error calculating means for obtaining a “deviation” that is a difference between the displacement difference and the provisional representative displacement difference for each reference point, and obtaining a “determination error” based on the deviation of the plurality of reference points; ,
Collating means for comparing the determination error with a determination condition based on a predetermined threshold;
When the determination error deviates from the determination condition, after removing the reference point indicating the largest deviation, the singular point exclusion means for causing the temporary representative displacement difference calculation means to calculate the temporary representative displacement difference;
When the determination error satisfies the determination condition, representative displacement difference determination means for determining the temporary representative displacement difference as a representative displacement difference of the target area;
Surface observation displacement correction means for correcting the surface observation displacement based on the determined representative displacement difference;
An area displacement calculation system comprising:
前記直接変位記憶手段は、2以上の計測時期における前記直接変位を記憶し、
前記面観測変位記憶手段は、2以上の観測時期における前記面観測変位を記憶し、
前記点観測変位取得手段は、前記観測時期ごとに前記点観測変位を取得し、
前記変位差算出手段は、前記観測時期に対応する前記計測時期の前記直接変位と、該観測時期の前記点観測変位に基づいて、前記観測時期ごとに前記変位差を求め、
前記暫定代表変位差算出手段は、前記観測時期ごとに前記暫定代表変位差を求め、
前記判定用誤差算出手段は、前記観測時期ごとに前記基準点の前記偏差を求めるとともに、複数の該偏差に基づいて前記判定用誤差を求める、
ことを特徴とする請求項1記載の領域変位算出システム。
The direct displacement storage means stores the direct displacement at two or more measurement times,
The surface observation displacement storage means stores the surface observation displacement at two or more observation periods,
The point observation displacement acquisition means acquires the point observation displacement for each observation period,
The displacement difference calculating means obtains the displacement difference for each observation period based on the direct displacement of the measurement period corresponding to the observation period and the point observation displacement of the observation period,
The temporary representative displacement difference calculating means obtains the temporary representative displacement difference for each observation period,
The determination error calculating means calculates the deviation of the reference point for each observation period, and determines the determination error based on a plurality of the deviations.
The region displacement calculation system according to claim 1.
前記特異点除外手段は、前記基準点ごとに2以上の前記観測時期における前記偏差の二乗和である「基準点単位偏差二乗和」を求めるとともに、最も大きな該基準点単位偏差二乗和を示す基準点を除外する、
ことを特徴とする請求項2記載の領域変位算出システム。
The singular point exclusion means obtains a “reference point unit deviation sum of squares” that is a sum of squares of the deviations at two or more observation periods for each reference point, and a reference indicating the largest reference point unit deviation sum of squares Exclude points,
The region displacement calculation system according to claim 2.
前記特異点除去手段は、前記観測時期ごとに複数の前記基準点の前記偏差の二乗和である「時期単位偏差二乗和」を求めるとともに、最も大きな該時期単位偏差二乗和を示す観測時期を除外する、
ことを特徴とする請求項2記載の領域変位算出システム。
The singularity removal means obtains a “sum of unit deviation of squares” that is a sum of squares of the deviations of a plurality of the reference points for each observation period, and excludes an observation period that shows the largest sum of squares of the period unit deviation. To
The region displacement calculation system according to claim 2.
複数の基準点が設置された対象領域の変位を求める領域変位算出方法であって、
前記基準点を直接計測して、ぞれぞれの基準点の「直接変位」を取得する直接変位取得工程と、
差分干渉合成開口レーダによって、前記対象領域の変位である「面観測変位」を取得する面観測変位取得工程と、
前記面観測変位、及び前記基準点の位置に基づいて、該基準点における差分干渉合成開口レーダの結果である「点観測変位」を得る点観測変位取得工程と、
前記基準点の前記直接変位と前記点観測変位に基づいて、該基準点ごとに「変位差」を求める変位差算出工程と、
複数の前記基準点の前記変位差に基づいて、「暫定代表変位差」を求める暫定代表変位差算出工程と、
前記基準点ごとに前記変位差と前記暫定代表変位差との差である「偏差」を求めるとともに、複数の前記基準点の該偏差に基づいて「判定用誤差」を求める判定用誤差算出工程と、
前記判定用誤差を、あらかじめ定めた閾値に基づく判定条件に照らし合わせる照合工程と、
前記判定用誤差が前記判定条件から外れるときは、最も大きな前記偏差を示す基準点を除外する特異点除外工程と、
前記判定用誤差が前記判定条件を満たすときは、前記暫定代表変位差を前記対象領域の代表変位差として確定する代表変位差確定工程と、
確定した前記代表変位差に基づいて、前記面観測変位を補正する面観測変位補正工程と、
を備え、
前記判定用誤差が前記判定条件から外れるときは、再度、前記暫定代表変位差算出工程において、前記特異点除外工程で除外した前記基準点を除く前記変位差に基づいて、前記暫定代表変位差を求める、
ことを特徴とする領域変位算出方法。
A region displacement calculation method for obtaining a displacement of a target region where a plurality of reference points are installed,
A direct displacement acquisition step of directly measuring the reference point and acquiring "direct displacement" of each reference point;
A surface observation displacement acquisition step of acquiring a “surface observation displacement” that is a displacement of the target area by a differential interference synthetic aperture radar;
A point observation displacement acquisition step for obtaining a “point observation displacement” that is a result of the differential interference synthetic aperture radar at the reference point based on the surface observation displacement and the position of the reference point;
A displacement difference calculating step for obtaining a “displacement difference” for each reference point based on the direct displacement of the reference point and the point observation displacement;
A provisional representative displacement difference calculating step for obtaining a “temporary representative displacement difference” based on the displacement differences of a plurality of the reference points;
A determination error calculation step for obtaining a “deviation” that is a difference between the displacement difference and the provisional representative displacement difference for each reference point, and obtaining a “determination error” based on the deviation of the plurality of reference points; ,
A matching step of comparing the determination error with a determination condition based on a predetermined threshold;
When the determination error deviates from the determination condition, a singular point exclusion step of excluding the reference point showing the largest deviation,
When the determination error satisfies the determination condition, a representative displacement difference determination step for determining the provisional representative displacement difference as a representative displacement difference of the target region;
A surface observation displacement correction step for correcting the surface observation displacement based on the determined representative displacement difference;
With
When the determination error deviates from the determination condition, the temporary representative displacement difference is calculated based on the displacement difference excluding the reference point excluded in the singular point exclusion step again in the temporary representative displacement difference calculation step. Ask,
A region displacement calculation method characterized by the above.
前記直接変位取得工程では、2以上の計測時期で前記直接変位を取得し、
前記面観測変位取得工程では、2以上の観測時期で前記面観測変位を取得し、
前記点観測変位取得工程では、前記観測時期ごとに前記点観測変位を取得し、
前記変位差算出工程では、前記観測時期に対応する前記計測時期の前記直接変位と、該観測時期の前記点観測変位に基づいて、前記観測時期ごとに前記変位差を求め、
前記暫定代表変位差算出工程では、前記観測時期ごとに前記暫定代表変位差を求め、
前記判定用誤差算出工程では、前記観測時期ごとに前記基準点の前記偏差を求めるとともに、複数の該偏差に基づいて前記判定用誤差を求める、
ことを特徴とする請求項5記載の領域変位算出方法。
In the direct displacement acquisition step, the direct displacement is acquired at two or more measurement times,
In the surface observation displacement acquisition step, the surface observation displacement is acquired at two or more observation periods,
In the point observation displacement acquisition step, the point observation displacement is acquired for each observation period,
In the displacement difference calculating step, the displacement difference is determined for each observation period based on the direct displacement of the measurement period corresponding to the observation period and the point observation displacement of the observation period,
In the provisional representative displacement difference calculating step, the provisional representative displacement difference is obtained for each observation period,
In the determination error calculation step, the deviation of the reference point is obtained for each observation period, and the determination error is obtained based on a plurality of the deviations.
The region displacement calculation method according to claim 5.
複数の基準点が設置された対象領域の変位を求める処理を、コンピュータに実行させるプログラムであって、
差分干渉合成開口レーダによって得られた前記対象領域の変位である「面観測変位」、及び前記基準点の位置に基づいて、該基準点における差分干渉合成開口レーダの結果である「点観測変位」を得る点観測変位取得処理と、
前記基準点を直接計測して得られた「直接変位」、及び該基準点の前記点観測変位に基づいて、該基準点ごとに「変位差」を求める変位差算出処理と、
複数の前記基準点の前記変位差に基づいて、「暫定代表変位差」を求める暫定代表変位差算出処理と、
前記基準点ごとに前記変位差と前記暫定代表変位差との差である「偏差」を求めるとともに、複数の前記基準点の該偏差に基づいて「判定用誤差」を求める判定用誤差算出処理と、
前記判定用誤差を、あらかじめ定めた閾値に基づく判定条件に照らし合わせる照合処理と、
前記判定用誤差が前記判定条件から外れるときは、最も大きな前記偏差を示す基準点を除外したうえで、前記暫定代表変位差算出処理に前記暫定代表変位差を算出させる特異点除外処理と、
前記判定用誤差が前記判定条件を満たすときは、前記暫定代表変位差を前記対象領域の代表変位差として確定する代表変位差確定処理と、
確定した前記代表変位差に基づいて、前記面観測変位を補正する面観測変位補正処理と、
を前記コンピュータに実行させることを特徴とする領域変位算出プログラム。
A program for causing a computer to execute a process for obtaining a displacement of a target area where a plurality of reference points are installed,
Based on the position of the reference point based on the displacement of the target area obtained by the differential interference synthetic aperture radar and the position of the reference point, the point observation displacement is the result of the differential interference synthetic aperture radar at the reference point. Point observation displacement acquisition processing to obtain
Displacement difference calculation processing for obtaining a “displacement difference” for each reference point based on the “direct displacement” obtained by directly measuring the reference point and the point observation displacement of the reference point;
Temporary representative displacement difference calculation processing for obtaining a “temporary representative displacement difference” based on the displacement differences of a plurality of the reference points;
A determination error calculation process for obtaining a “deviation” that is a difference between the displacement difference and the provisional representative displacement difference for each reference point, and for obtaining a “determination error” based on the deviation of the plurality of reference points; ,
A matching process for comparing the determination error with a determination condition based on a predetermined threshold;
When the determination error deviates from the determination condition, after removing the reference point indicating the largest deviation, the singular point exclusion process that causes the temporary representative displacement difference calculation process to calculate the temporary representative displacement difference; and
When the determination error satisfies the determination condition, representative displacement difference determination processing for determining the provisional representative displacement difference as a representative displacement difference of the target area;
Surface observation displacement correction processing for correcting the surface observation displacement based on the determined representative displacement difference;
To cause the computer to execute a region displacement calculation program.
JP2016101945A 2016-05-20 2016-05-20 Area displacement calculation system, area displacement calculation method, and area displacement calculation program Active JP6696083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016101945A JP6696083B2 (en) 2016-05-20 2016-05-20 Area displacement calculation system, area displacement calculation method, and area displacement calculation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016101945A JP6696083B2 (en) 2016-05-20 2016-05-20 Area displacement calculation system, area displacement calculation method, and area displacement calculation program

Publications (2)

Publication Number Publication Date
JP2017207457A true JP2017207457A (en) 2017-11-24
JP6696083B2 JP6696083B2 (en) 2020-05-20

Family

ID=60416511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016101945A Active JP6696083B2 (en) 2016-05-20 2016-05-20 Area displacement calculation system, area displacement calculation method, and area displacement calculation program

Country Status (1)

Country Link
JP (1) JP6696083B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168508A (en) * 2017-12-01 2018-06-15 浙江大学城市学院 A kind of subway tunnel sinking deformation monitoring method based on Adaptive Second integration
CN108507454A (en) * 2018-03-09 2018-09-07 北京理工大学 One kind being based on navigation satellite Bi-InSAR deformation inverting image extraction methods
CN108627834A (en) * 2018-06-07 2018-10-09 北京城建勘测设计研究院有限责任公司 A kind of subway road structure monitoring method and device based on ground InSAR
CN108983232A (en) * 2018-06-07 2018-12-11 中南大学 A kind of InSAR two dimension earth's surface deformation monitoring method based on adjacent rail data
JP2019215252A (en) * 2018-06-13 2019-12-19 株式会社安藤・間 Dynamic monitoring system, and dynamic monitoring method
JP2020020740A (en) * 2018-08-03 2020-02-06 日本電気株式会社 SAR image analysis system
JP2021009069A (en) * 2019-07-01 2021-01-28 国際航業株式会社 Building damage estimation system
JP2021021703A (en) * 2019-07-30 2021-02-18 株式会社パスコ Displacement correction processing device and displacement correction processing program
JP2021032828A (en) * 2019-08-29 2021-03-01 日本電気株式会社 High accuracy map generation method, high accuracy map generation device, and high accuracy map generation program
WO2022213673A1 (en) * 2021-04-06 2022-10-13 中国矿业大学 Method for extracting three-dimensional surface deformation by combining unmanned aerial vehicle doms and satellite-borne sar images
WO2024004215A1 (en) * 2022-07-01 2024-01-04 株式会社Synspective Ground movement analysis device and ground movement analysis method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266652A (en) * 2004-05-31 2007-10-11 Matsushita Electric Ind Co Ltd Moving object detection device, moving object detection method, moving object detection program, video decoder, video encoder, imaging apparatus, and video management system
US20090237297A1 (en) * 2008-02-06 2009-09-24 Halliburton Energy Services, Inc. Geodesy Via GPS and INSAR Integration
JP2009236545A (en) * 2008-03-26 2009-10-15 Mitsubishi Space Software Kk Image processing apparatus, image processing system, image processing method, and image processing program
JP2012533744A (en) * 2009-07-20 2012-12-27 ソレタンシュ フレシネ Investigation method of ground change

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266652A (en) * 2004-05-31 2007-10-11 Matsushita Electric Ind Co Ltd Moving object detection device, moving object detection method, moving object detection program, video decoder, video encoder, imaging apparatus, and video management system
US20090237297A1 (en) * 2008-02-06 2009-09-24 Halliburton Energy Services, Inc. Geodesy Via GPS and INSAR Integration
JP2009236545A (en) * 2008-03-26 2009-10-15 Mitsubishi Space Software Kk Image processing apparatus, image processing system, image processing method, and image processing program
JP2012533744A (en) * 2009-07-20 2012-12-27 ソレタンシュ フレシネ Investigation method of ground change

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GE, LINLIN ET AL.: "Integrated GPS And Interferometric SAR Techniques For Highly Dense Crustal Deformation Monitoring", PROCEEDINGS OF THE 14TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE O, JPN6020010992, 14 September 2001 (2001-09-14), US, pages 2552 - 2563, XP056009017, ISSN: 0004238900 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168508B (en) * 2017-12-01 2020-06-19 浙江大学城市学院 Subway tunnel settlement deformation monitoring method based on self-adaptive quadratic integral
CN108168508A (en) * 2017-12-01 2018-06-15 浙江大学城市学院 A kind of subway tunnel sinking deformation monitoring method based on Adaptive Second integration
CN108507454A (en) * 2018-03-09 2018-09-07 北京理工大学 One kind being based on navigation satellite Bi-InSAR deformation inverting image extraction methods
CN108507454B (en) * 2018-03-09 2019-12-03 北京理工大学 One kind being based on navigation satellite Bi-InSAR deformation inverted image extracting method
CN108627834A (en) * 2018-06-07 2018-10-09 北京城建勘测设计研究院有限责任公司 A kind of subway road structure monitoring method and device based on ground InSAR
CN108983232A (en) * 2018-06-07 2018-12-11 中南大学 A kind of InSAR two dimension earth's surface deformation monitoring method based on adjacent rail data
JP7113673B2 (en) 2018-06-13 2022-08-05 株式会社安藤・間 Movement monitoring system and movement monitoring method
JP2019215252A (en) * 2018-06-13 2019-12-19 株式会社安藤・間 Dynamic monitoring system, and dynamic monitoring method
JP2020020740A (en) * 2018-08-03 2020-02-06 日本電気株式会社 SAR image analysis system
JP7244794B2 (en) 2018-08-03 2023-03-23 日本電気株式会社 SAR image analysis system
JP2021009069A (en) * 2019-07-01 2021-01-28 国際航業株式会社 Building damage estimation system
JP7335733B2 (en) 2019-07-01 2023-08-30 国際航業株式会社 Building damage estimation system
JP2021021703A (en) * 2019-07-30 2021-02-18 株式会社パスコ Displacement correction processing device and displacement correction processing program
JP7263176B2 (en) 2019-07-30 2023-04-24 株式会社パスコ Displacement correction processing device and displacement correction processing program
JP2021032828A (en) * 2019-08-29 2021-03-01 日本電気株式会社 High accuracy map generation method, high accuracy map generation device, and high accuracy map generation program
JP7235204B2 (en) 2019-08-29 2023-03-08 日本電気株式会社 High-precision displacement map generation method, high-precision displacement map generation device, and high-precision displacement map generation program
WO2022213673A1 (en) * 2021-04-06 2022-10-13 中国矿业大学 Method for extracting three-dimensional surface deformation by combining unmanned aerial vehicle doms and satellite-borne sar images
WO2024004215A1 (en) * 2022-07-01 2024-01-04 株式会社Synspective Ground movement analysis device and ground movement analysis method

Also Published As

Publication number Publication date
JP6696083B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6696083B2 (en) Area displacement calculation system, area displacement calculation method, and area displacement calculation program
US20160133008A1 (en) Crack data collection method and crack data collection program
CN106597416B (en) A kind of error correcting method of the LiDAR data depth displacement of ground GPS auxiliary
CN103940356A (en) Building overall-deformation monitoring method based on three-dimensional laser scanning technology
Knyaz et al. Photogrammetric technique for timber stack volume contol
WO2018180338A1 (en) Information processing device, server device, control method, program, and storage medium
EP3023912A1 (en) Crack data collection apparatus and server apparatus to collect crack data
CN107367245B (en) Invalid point detection and elimination method in optical three-dimensional profile measurement
US10705225B2 (en) Preparation system for surveying operation
US11247705B2 (en) Train wheel measurement process, and associated system
Antova Registration process of laser scan data in the field of deformation monitoring
KR101074277B1 (en) Boundary extraction apparatus and method of structure
KR101255022B1 (en) Detecting method of building crack using point group
KR101255901B1 (en) Apparatus for measuring vertical deformation of structure under construction and apparatus for computing compensation value against column shortening of structure under construction
CN106595472B (en) The precision of Digital Photogrammetric System determines method
CN115184935A (en) Method, device, equipment and medium for monitoring deformation of power transmission corridor
CN115507752A (en) Monocular vision distance measurement method and system based on parallel environment elements
Bang et al. Integration of terrestrial and airborne LiDAR data for system calibration
Jeong et al. The use of existing global elevation dataset for absolute orientation of high resolution image without GCPs
US20230358897A1 (en) Positioning method and device for growing trees, construction elements or geological features
CN114299079B (en) Dense point cloud data-oriented engine blade section line data acquisition method
Hassan AUTOMATIC SELECTION OF OVERLAPPING STRIP PAIRS/REGIONS FOR OPTIMIZED LIDAR SYSTEM CALIBRATION
JP7113673B2 (en) Movement monitoring system and movement monitoring method
Said et al. Up dating large scale maps using High Resolution Satellite Image
Gargula The concept for numerical development of modular networks integrated with the GNSS measurements

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200324

R150 Certificate of patent or registration of utility model

Ref document number: 6696083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250