JP2017203741A - Sensitivity correction method and quantitative measuring method - Google Patents

Sensitivity correction method and quantitative measuring method Download PDF

Info

Publication number
JP2017203741A
JP2017203741A JP2016096966A JP2016096966A JP2017203741A JP 2017203741 A JP2017203741 A JP 2017203741A JP 2016096966 A JP2016096966 A JP 2016096966A JP 2016096966 A JP2016096966 A JP 2016096966A JP 2017203741 A JP2017203741 A JP 2017203741A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving sensor
measurement
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016096966A
Other languages
Japanese (ja)
Inventor
哲 森島
Satoru Morishima
哲 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016096966A priority Critical patent/JP2017203741A/en
Publication of JP2017203741A publication Critical patent/JP2017203741A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for correcting a sensitivity with a higher accuracy and a method for quantitative measuring using the method for correcting a sensitivity.SOLUTION: According to the method, light from a light source is emitted to a reference material selected for a measurement object O so that light emitted from a reference substance S is measured by a light receiving sensor of a light receiving unit 20, and a correction expression showing a relation with the correspondence between the amount of light received by the light receiving sensor and the output value of a signal output from the light receiving sensor is calculated based on the measurement result.SELECTED DRAWING: Figure 4

Description

本発明は、感度補正方法及び定量測定方法に関する。   The present invention relates to a sensitivity correction method and a quantitative measurement method.

光学測定装置において、測定対象物からの光を受光するセンサの感度補正を行う場合、基準となる光を受光した状態及び遮光状態でのセンサの出力値を計測し、これに基づいて線形補正をする方法が用いられる。基準となる光としては、光源からの光がそのまま利用されることが一般的である(例えば、特許文献1)。   When performing sensitivity correction of a sensor that receives light from an object to be measured in an optical measurement device, the sensor output value is measured in a state in which the reference light is received and in a light-shielded state, and linear correction is performed based on this measurement. Is used. In general, light from a light source is used as it is as a reference light (for example, Patent Document 1).

特開2010−73863号公報JP 2010-73863 A

しかしながら、センサにおける受光強度と出力値との関係が線形ではない場合、上記の線形補正では、十分な補正ができないことが考えられる。また、線形補正を行うことによる誤差が生じることも考えられる。   However, when the relationship between the received light intensity and the output value in the sensor is not linear, it is considered that sufficient correction cannot be performed by the above linear correction. It is also conceivable that errors occur due to linear correction.

本発明は上記を鑑みてなされたものであり、より高い精度での補正が可能な感度補正方法及びこの感度補正方法を利用した定量測定方法を提供することを目的とする。   The present invention has been made in view of the above, and an object thereof is to provide a sensitivity correction method capable of correction with higher accuracy and a quantitative measurement method using the sensitivity correction method.

本願発明は、
(1)測定対象物に対して選択された基準物質に対して光源からの光を照射することで前記基準物質から出射された光を受光部の受光センサで計測し、当該計測結果に基づいて、前記受光センサにおいて受光する光の光量と前記受光センサから出力する信号の出力値との対応関係との対応関係を示す補正式を算出する感度補正方法、
及び、
(2)測定対象物に含まれる物質の濃度を算出する定量測定方法であって、
前記測定対象物に対して選択された基準物質に対して光源からの光を照射することで前記基準物質から出射された光を受光部の受光センサで計測し、当該計測結果に基づいて、前記受光センサにおいて受光する光の光量と前記受光センサから出力する信号の出力値との対応関係を示す補正式を算出し、当該補正式に基づいて感度補正を行う工程と、
定量測定を行う物質の濃度が既知の複数の試料のそれぞれに対してそれぞれ前記光源からの光を照射し、前記試料から出射する光を前記受光部の前記受光センサで計測し、計測結果に基づいて前記検量線を作成する工程と、
前記測定対象物に対して光源からの光を照射することで、前記測定対象物から出射された光を受光部の受光センサで計測し、計測結果と前記検量線とを比較することで、前記測定対象物の濃度を算出する工程と、
を有する定量測定方法、
である。
The present invention is
(1) The light emitted from the reference material is measured by the light receiving sensor of the light receiving unit by irradiating the reference material selected for the measurement target with light from the light source, and based on the measurement result A sensitivity correction method for calculating a correction formula indicating a correspondence relationship between a light amount of light received by the light receiving sensor and a correspondence relationship between an output value of a signal output from the light receiving sensor;
as well as,
(2) A quantitative measurement method for calculating a concentration of a substance contained in a measurement object,
The light emitted from the reference material is measured by a light receiving sensor of a light receiving unit by irradiating light from a light source to the reference material selected for the measurement object, and based on the measurement result, Calculating a correction equation indicating a correspondence relationship between the amount of light received by the light receiving sensor and an output value of a signal output from the light receiving sensor, and performing sensitivity correction based on the correction equation;
Each of a plurality of samples with known concentrations of substances to be quantitatively measured is irradiated with light from the light source, the light emitted from the sample is measured by the light receiving sensor of the light receiving unit, and based on the measurement result And creating the calibration curve,
By irradiating the measurement object with light from a light source, measuring the light emitted from the measurement object with a light receiving sensor of a light receiving unit, and comparing the measurement result with the calibration curve, Calculating the concentration of the measurement object;
A quantitative measurement method having
It is.

本発明によれば、より高い精度での補正が可能な感度補正方法及びこの感度補正方法を利用した定量測定方法が提供される。   According to the present invention, a sensitivity correction method capable of correction with higher accuracy and a quantitative measurement method using the sensitivity correction method are provided.

本発明の実施形態に係る光学測定装置の構成を説明する図である。It is a figure explaining the structure of the optical measuring device which concerns on embodiment of this invention. 従来の感度補正方法について説明する図である。It is a figure explaining the conventional sensitivity correction method. 従来の感度補正方法の補正式と受光センサの感度特性の関係について説明する図である。It is a figure explaining the relationship between the correction formula of the conventional sensitivity correction method, and the sensitivity characteristic of a light receiving sensor. 本発明の実施形態に係る感度補正方法について説明する図である。It is a figure explaining the sensitivity correction method which concerns on embodiment of this invention. 測定対象物のうちの最も濃度が濃い砂糖水の透過率と基準物質である水の透過率との差を示す図である。It is a figure which shows the difference of the transmittance | permeability of the sugar water with the highest density | concentration among measurement objects, and the transmittance | permeability of the water which is a reference | standard substance. 従来の感度補正方法を用いた場合の測定例について説明する図である。It is a figure explaining the example of a measurement at the time of using the conventional sensitivity correction method. 本発明の実施形態に係る感度補正方法を用いた場合の測定例について説明する図である。It is a figure explaining the example of a measurement at the time of using the sensitivity correction method which concerns on embodiment of this invention.

[本願発明の実施形態の説明]
最初に本願発明の実施態様を列記して説明する。
[Description of Embodiment of Present Invention]
First, embodiments of the present invention will be listed and described.

本願の感度補正方法は、(1)測定対象物に対して選択された基準物質に対して光源からの光を照射することで前記基準物質から出射された光を受光部の受光センサで計測し、当該計測結果に基づいて、前記受光センサにおいて受光する光の光量と前記受光センサから出力する信号の出力値との対応関係との対応関係を示す補正式を算出する。   In the sensitivity correction method of the present application, (1) the light emitted from the reference material is measured by the light receiving sensor of the light receiving unit by irradiating light from the light source to the reference material selected for the measurement object. Based on the measurement result, a correction formula is calculated that indicates the correspondence between the amount of light received by the light receiving sensor and the output of the signal output from the light receiving sensor.

上記の感度補正方法によれば、測定対象物に対して選択された基準物質に対して光源からの光を照射することで、受光部の受光センサで計測される光の計測結果に基づいて、受光センサの感度補正に係る補正式を算出する。このように、基準物質を利用した感度補正を行うことで、従来のように、光源からの光を受光センサで受光した場合の計測結果を補正に利用する場合と比較して、補正の精度が向上し、より高い精度での補正が可能となる。   According to the above sensitivity correction method, by irradiating light from the light source to the reference material selected for the measurement object, based on the measurement result of light measured by the light receiving sensor of the light receiving unit, A correction formula relating to sensitivity correction of the light receiving sensor is calculated. In this way, by performing sensitivity correction using a reference substance, the accuracy of correction can be improved compared to the case where the measurement result when the light from the light source is received by the light receiving sensor is used for correction as in the past. This improves the correction with higher accuracy.

(2)また、本願発明は上述の(1)に記載の感度補正方法において、前記受光センサは、1200nm〜2350nm内のある波長域の光に対する感度を有している。 (2) Moreover, this invention is a sensitivity correction method as described in said (1), The said light reception sensor has a sensitivity with respect to the light of a certain wavelength range within 1200 nm-2350 nm.

上記のように、受光センサが1200nm〜2350nm内のある波長域の光に対する感度を有している場合、近赤外光を利用した測定に好適に利用される。   As described above, when the light receiving sensor has sensitivity to light in a certain wavelength range within 1200 nm to 2350 nm, it is suitably used for measurement using near infrared light.

(3)また、本願発明は上述の(1)、(2)に記載の感度補正方法において、前記受光部には、受光センサが複数設けられ、複数の前記受光センサのそれぞれに対して、互いに異なる波長の光が入射し、複数の前記受光センサのそれぞれについて、入射する光の波長に対応した補正式を作成する。 (3) In the sensitivity correction method according to the above (1) or (2), the invention of the present application includes a plurality of light receiving sensors in the light receiving unit, and each of the plurality of light receiving sensors is mutually connected. Light having different wavelengths is incident, and a correction formula corresponding to the wavelength of the incident light is created for each of the plurality of light receiving sensors.

上記のように、複数の受光センサのそれぞれに互いに異なる波長の光が入射する場合、受光センサのそれぞれにおいて入射する光の波長に対応した補正式を作成することで、複数の受光センサそれぞれにおける感度補正を精度よく行うことができるため、より高い精度での補正が可能となる。   As described above, when light of different wavelengths is incident on each of the plurality of light receiving sensors, a correction formula corresponding to the wavelength of the light incident on each of the light receiving sensors is created, whereby the sensitivity of each of the plurality of light receiving sensors is determined. Since correction can be performed with high accuracy, correction with higher accuracy is possible.

(4)また、本願発明は上述の(1)〜(3)に記載の感度補正方法において、前記測定対象物は溶液であって、前記基準物質として前記測定対象物の溶媒が選択される。本発明において「溶液」とは、微視状態において2つ以上の相が分散混合していて、巨視的には一様な分散系溶液(たとえばコロイド溶液)を含む。 (4) Moreover, this invention is a sensitivity correction method as described in said (1)-(3), The said measurement object is a solution, The solvent of the said measurement object is selected as said reference | standard substance. In the present invention, the “solution” includes a macroscopically uniform dispersion solution (for example, a colloidal solution) in which two or more phases are dispersed and mixed in a microscopic state.

上記のように、測定対象物が溶液である場合には、測定対象物の溶媒を基準物質として選択することで、より高い精度での補正が可能となる。   As described above, when the measurement target is a solution, correction with higher accuracy is possible by selecting the solvent of the measurement target as the reference substance.

また、本願の定量測定方法は、(5)測定対象物に含まれる物質の濃度を算出する定量測定方法であって、前記測定対象物に対して選択された基準物質に対して光源からの光を照射することで前記基準物質から出射された光を受光部の受光センサで計測し、当該計測結果に基づいて、前記受光センサにおいて受光する光の光量と前記受光センサから出力する信号の出力値との対応関係を示す補正式を算出し、当該補正式に基づいて感度補正を行う工程と、定量測定を行う物質の濃度が既知の複数の試料のそれぞれに対してそれぞれ前記光源からの光を照射し、前記試料から出射する光を前記受光部の前記受光センサで計測し、計測結果に基づいて検量線を作成する工程と、前記測定対象物に対して光源からの光を照射することで、前記測定対象物から出射された光を受光部の受光センサで計測し、計測結果と前記検量線とを比較することで、前記測定対象物の濃度を算出する工程と、を有する。   Further, the quantitative measurement method of the present application is (5) a quantitative measurement method for calculating a concentration of a substance contained in a measurement object, wherein light from a light source is emitted with respect to a reference substance selected for the measurement object. The light emitted from the reference material is measured by the light receiving sensor of the light receiving unit, and based on the measurement result, the amount of light received by the light receiving sensor and the output value of the signal output from the light receiving sensor A correction formula indicating the correspondence relationship between the light source and the step of performing sensitivity correction based on the correction formula, and the light from the light source for each of a plurality of samples whose concentrations of the substance to be quantitatively measured are known. Irradiating and measuring the light emitted from the sample with the light receiving sensor of the light receiving unit, creating a calibration curve based on the measurement result, and irradiating the measurement object with light from a light source , The measurement pair The light emitted from the object is measured by the light receiving sensor of the light receiving section, by comparing the calibration curve and measurement result, and a step of calculating a concentration of the measurement object.

上記の定量測定方法によれば、測定対象物に対して選択された基準物質に対して光源からの光を照射することで、受光部の受光センサで計測される光の計測結果に基づいて、受光センサの感度補正に係る補正式を算出し、これに基づいて感度補正が行われた後に、測定対象物に含まれる物質の濃度の定量測定に係る工程が行われる。このように、基準物質を利用した感度補正を行った受光センサを利用して定量測定を行うことで、定量測定に関してもより高い精度で行うことができる。   According to the above quantitative measurement method, by irradiating the light from the light source to the reference material selected for the measurement object, based on the measurement result of the light measured by the light receiving sensor of the light receiving unit, After calculating a correction formula related to sensitivity correction of the light receiving sensor and performing sensitivity correction based on this, a process related to quantitative measurement of the concentration of the substance contained in the measurement object is performed. Thus, quantitative measurement can be performed with higher accuracy by performing quantitative measurement using a light receiving sensor that has been subjected to sensitivity correction using a reference substance.

[本願発明の実施形態の詳細]
本発明に係る感度補正方法及び定量測定方法の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Specific examples of the sensitivity correction method and the quantitative measurement method according to the present invention will be described below with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to the claim are included.

図1は、本実施形態に係る光学測定装置1の構成を示す図である。図1に示される光学測定装置1は、光源10から出射された測定光L1を測定対象物Oに照射し、その結果測定対象物Oから出射される光(図1の場合は透過光L2)を受光部20で検出することで、測定対象物Oに係る測定を行う装置であり、光源10と、受光部20と、分析部30と、を備える。図1に示す光学測定装置1では、測定対象物Oから出射される光として透過光L2を測定しているが、測定対象物Oから出射される光は拡散反射光であってもよい。その場合には、拡散反射光を検出可能なように、光源10及び受光部20の配置が変更される。   FIG. 1 is a diagram illustrating a configuration of an optical measurement apparatus 1 according to the present embodiment. The optical measuring device 1 shown in FIG. 1 irradiates the measuring object O with the measuring light L1 emitted from the light source 10, and as a result, the light emitted from the measuring object O (transmitted light L2 in the case of FIG. 1). Is detected by the light receiving unit 20, and performs measurement related to the measurement object O, and includes a light source 10, a light receiving unit 20, and an analysis unit 30. In the optical measurement apparatus 1 shown in FIG. 1, the transmitted light L2 is measured as light emitted from the measurement object O. However, the light emitted from the measurement object O may be diffuse reflection light. In that case, the arrangement of the light source 10 and the light receiving unit 20 is changed so that the diffusely reflected light can be detected.

光学測定装置1により測定が行われる測定対象物Oは、特に限定されない。ただし、光学測定装置1のように、測定対象物Oからの透過光L2を検出する装置である場合、測定対象物Oは測定光L1を透過可能であるものとなる。   The measuring object O to be measured by the optical measuring device 1 is not particularly limited. However, in the case of an apparatus that detects the transmitted light L2 from the measurement object O, such as the optical measurement apparatus 1, the measurement object O can transmit the measurement light L1.

光学測定装置1の光源10は、近赤外光からなる測定光L1を測定対象物Oが配置される領域に対して照射する。光源10としては、ハロゲンランプ等を用いることができる。また、種光源及び非線形媒質を備え、種光源から出射される光を非線形媒質に入力し、非線形媒質中における非線形光学効果によりスペクトルを広帯域に広げてスーパーコンティニウム(SC)光として出力するSC光源を光源10として用いることもできる。SC光源を光源10として用いた場合、ハロゲンランプと比較してSC光源による加熱が低減されるため、微生物が含まれる測定対象物など、加熱により変質の恐れのある測定対象物の測定に好適である。さらに、光源10は強度を変調する機能を有していてもよい。また、光源10としては、LEDやSLD光源の適用も可能である。これらの光源により、あらかじめ制御された波長特性を有する照明光が実現される。同時に加熱も回避することができる。   The light source 10 of the optical measuring device 1 irradiates the measurement light L1 made of near infrared light to the region where the measurement object O is arranged. As the light source 10, a halogen lamp or the like can be used. An SC light source that includes a seed light source and a nonlinear medium, inputs light emitted from the seed light source to the nonlinear medium, broadens the spectrum by a nonlinear optical effect in the nonlinear medium, and outputs the spectrum as supercontinuum (SC) light. Can also be used as the light source 10. When an SC light source is used as the light source 10, heating by the SC light source is reduced as compared with a halogen lamp, so that it is suitable for measuring a measurement object that may be altered by heating, such as a measurement object that contains microorganisms. is there. Furthermore, the light source 10 may have a function of modulating the intensity. Further, as the light source 10, an LED or an SLD light source can be applied. With these light sources, illumination light having a pre-controlled wavelength characteristic is realized. At the same time, heating can be avoided.

本実施形態において光源10が照射する近赤外光とは、波長範囲が1200nm〜2350nmの光である。また、本実施形態において、スペクトルとは、少なくとも2つの波長に係る光強度を含む情報をいう。   In the present embodiment, the near infrared light emitted by the light source 10 is light having a wavelength range of 1200 nm to 2350 nm. In the present embodiment, the spectrum refers to information including light intensities relating to at least two wavelengths.

なお、本実施形態において光源10が照射する測定光L1は、近赤外光に限定されない。近赤外光とは異なる波長域の測定光L1としては、例えば、可視光(波長範囲350nm〜800nm)、赤外光(波長範囲2500nm以上)等が挙げられる。   In the present embodiment, the measurement light L1 emitted by the light source 10 is not limited to near infrared light. Examples of the measurement light L1 having a wavelength range different from that of near infrared light include visible light (wavelength range 350 nm to 800 nm), infrared light (wavelength range 2500 nm or more), and the like.

受光部20は、受光センサを有し、光源10から照射される測定光L1のうち、測定対象物Oを透過した透過光L2を受光センサにおいて検出する。受光センサは、受光した光の強度に対応した値の信号を出力する。受光センサにおいて検出した透過光L2の強度情報は信号の出力値として、分析部30へ送られる。受光センサとしては、例えば、水銀、カドミウム及びテルルからなるMCT検出器、InGaAs検出器等を用いることができる。光源10からの測定光L1が近赤外光である場合、受光センサとしては近赤外光に対して感度を有していることが好ましく、特に、1200nm〜2350nm内のある波長域の光に対して感度を有していることが好ましい。   The light receiving unit 20 includes a light receiving sensor, and detects, in the light receiving sensor, transmitted light L2 that has passed through the measurement object O among the measuring light L1 emitted from the light source 10. The light receiving sensor outputs a signal having a value corresponding to the intensity of the received light. The intensity information of the transmitted light L2 detected by the light receiving sensor is sent to the analysis unit 30 as a signal output value. As the light receiving sensor, for example, an MCT detector made of mercury, cadmium and tellurium, an InGaAs detector, or the like can be used. When the measurement light L1 from the light source 10 is near-infrared light, the light receiving sensor preferably has sensitivity to near-infrared light, particularly for light in a certain wavelength range within 1200 nm to 2350 nm. It is preferable to have sensitivity.

受光部20は、分光測定器であってもよい。この場合、受光部20においては、受光センサがアレイ状に配置されると共に、受光センサの前段に分光器が設けられる。そして、測定対象物Oからの透過光L2は、分光器により分光され、分光された光が複数の受光センサそれぞれにおいて受光され、受光センサ毎に強度に対応する値の信号が出力される。   The light receiving unit 20 may be a spectrometer. In this case, in the light receiving unit 20, the light receiving sensors are arranged in an array, and a spectroscope is provided in front of the light receiving sensor. Then, the transmitted light L2 from the measurement object O is split by the spectroscope, and the split light is received by each of the plurality of light receiving sensors, and a signal having a value corresponding to the intensity is output for each light receiving sensor.

また、受光部20は、ハイパースペクトル画像を取得するハイパースペクトルセンサであってもよい。ハイパースペクトル画像は、一画素がN個の波長データにより構成されている画像であり、画素毎にそれぞれ複数の波長に対応した強度データからなるスペクトル情報が含まれている。すなわち、ハイパースペクトル画像は、画像を構成する画素毎に、それぞれ複数波長の強度データを持つという特徴から、画像としての二次元的要素と、スペクトルデータとしての要素をあわせ持った三次元的構成のデータである。なお、本実施形態では、ハイパースペクトル画像とは、1画素あたり少なくとも2つの波長帯域における強度データを保有している画素によって構成された画像のことをいう。   The light receiving unit 20 may be a hyperspectral sensor that acquires a hyperspectral image. The hyperspectral image is an image in which one pixel is composed of N pieces of wavelength data, and includes spectral information including intensity data corresponding to a plurality of wavelengths for each pixel. That is, a hyperspectral image has a three-dimensional configuration that combines two-dimensional elements as an image and elements as spectral data because of the feature that each pixel constituting the image has intensity data of multiple wavelengths. It is data. In the present embodiment, a hyperspectral image refers to an image composed of pixels having intensity data in at least two wavelength bands per pixel.

分析部30は、受光部20から送られる透過光L2の情報を受け取り、演算処理等を行う。なお、測定対象物Oに係る評価を行うための統計処理等が分析部30において行われる構成としてもよい。また、受光部20がハイパースペクトルセンサである場合、各画素に係るスペクトルの情報が分析部30に対して送られるので、分析部30においてこれらのスペクトル情報についての演算を行う構成とすることができる。   The analysis unit 30 receives information on the transmitted light L2 sent from the light receiving unit 20, and performs arithmetic processing and the like. In addition, it is good also as a structure by which the statistical processing etc. for performing the evaluation which concerns on the measuring object O are performed in the analysis part 30. In addition, when the light receiving unit 20 is a hyperspectral sensor, spectrum information relating to each pixel is sent to the analysis unit 30, and thus the analysis unit 30 can perform a calculation on the spectrum information. .

上記の構成を有する光学測定装置1による光学測定方法には、測定対象物Oに対して測定光L1を照射することで、当該測定対象物Oに係る透過光L2又は拡散反射光を検出する工程と、受光部20における透過光L2又は拡散反射光の受光強度に基づいて、測定対象物Oに係る評価を行う工程と、が含まれる。   In the optical measuring method by the optical measuring device 1 having the above-described configuration, the step of detecting the transmitted light L2 or the diffuse reflected light related to the measuring object O by irradiating the measuring object O with the measuring light L1. And a step of performing an evaluation related to the measurement object O based on the received light intensity of the transmitted light L2 or the diffuse reflected light in the light receiving unit 20.

ここで、本実施形態に係る光学測定装置1における受光部20の受光センサの感度補正について説明する。本実施形態における受光センサの感度補正とは、受光センサにおける光の受光量と、受光センサにおける信号から出力される信号の出力値との対応関係を規定しておき、受光センサからの信号の出力値から受光センサで受光した光の受光量を算出可能とすることを指す。   Here, the sensitivity correction of the light receiving sensor of the light receiving unit 20 in the optical measuring device 1 according to the present embodiment will be described. The sensitivity correction of the light receiving sensor in this embodiment is to define the correspondence between the amount of light received by the light receiving sensor and the output value of the signal output from the signal from the light receiving sensor, and to output the signal from the light receiving sensor. This means that the amount of light received by the light receiving sensor can be calculated from the value.

図2は、測定対象物Oに係る測定を行う前の受光センサの感度補正の手順を説明する図である。一般的に、光学測定装置1の受光部20に設けられる受光センサによる測定精度を安定させるため、測定対象物Oの測定を行う前に、図2(A)に示すように、遮光状態での受光センサの出力値を計測する。また、図2(B)に示すように、光源10からの基準光を照射した状態での受光センサの出力値を計測する。ここでは、基準光として測定光L1が用いられる。その後、図2(C)に示すように、光源10と受光部20との間に測定対象物Oを配置して、測定対象物Oに対して測定光L1を照射し、測定対象物Oから出射する透過光L2を受光して、測定対象物Oに係る測定を行う。図2(A)及び図2(B)に示すように、2つの出力値を用いて補正を行うことで、光源10からの基準光の光量の時間変動及び受光センサの感度の時間変動等に由来する誤差を低減させている。受光センサの出力値を利用した補正方法しては、線形補正が最も一般的であり、遮光状態の受光センサからの信号の出力値を0%とし、基準光を照射した状態での受光センサからの信号の出力値を100%として、受光センサにおける光の受光量と受光センサからの信号の出力値とが線形関係にあると仮定した上で、受光センサからの信号の出力値に基づいて受光量を0%〜100%の比率で算出するものである。   FIG. 2 is a diagram for explaining the procedure of correcting the sensitivity of the light receiving sensor before the measurement related to the measurement object O is performed. In general, in order to stabilize the measurement accuracy of the light receiving sensor provided in the light receiving unit 20 of the optical measuring device 1, before measuring the measurement object O, as shown in FIG. Measure the output value of the light receiving sensor. Further, as shown in FIG. 2B, the output value of the light receiving sensor in a state where the reference light from the light source 10 is irradiated is measured. Here, the measurement light L1 is used as the reference light. Thereafter, as shown in FIG. 2C, the measurement object O is disposed between the light source 10 and the light receiving unit 20, and the measurement object L is irradiated with the measurement light L1. The emitted transmitted light L2 is received, and measurement related to the measurement object O is performed. As shown in FIGS. 2A and 2B, correction is performed using two output values, so that the time variation of the light amount of the reference light from the light source 10 and the time variation of the sensitivity of the light receiving sensor are reduced. The error that comes from is reduced. As a correction method using the output value of the light receiving sensor, linear correction is the most common, and the output value of the signal from the light receiving sensor in the light shielding state is set to 0%, and the light receiving sensor in the state irradiated with the reference light is used. Assuming that the output value of this signal is 100%, it is assumed that there is a linear relationship between the amount of light received by the light receiving sensor and the output value of the signal from the light receiving sensor, and light is received based on the output value of the signal from the light receiving sensor. The amount is calculated at a ratio of 0% to 100%.

上記の線形補正による補正の手法では以下の点が問題となる。すなわち、受光センサにおける光の受光量と受光センサからの信号の出力値とが線形関係にあると仮定をしているが、実際には受光センサの感度特性が上記の仮定とは異なる可能性があるという点である。例えば、受光センサにおける光の受光量と、受光センサからの信号の出力値との関係が非線形的な関係であるにもかかわらず、上記の線形補正を実施した場合を考える。図3では、線形補正に基づく受光センサの受光量と信号の出力値との関係を示す直線と、実際の受光センサの感度特性に基づく受光センサの受光量と信号の出力値とを示している。   The following points are problems in the correction method using the linear correction described above. In other words, it is assumed that the amount of light received by the light receiving sensor and the output value of the signal from the light receiving sensor are in a linear relationship, but the sensitivity characteristic of the light receiving sensor may actually differ from the above assumption. It is a point. For example, consider the case where the above linear correction is performed even though the relationship between the amount of light received by the light receiving sensor and the output value of the signal from the light receiving sensor is non-linear. FIG. 3 shows a straight line indicating the relationship between the light reception amount of the light reception sensor based on the linear correction and the output value of the signal, and the light reception amount of the light reception sensor and the signal output value based on the sensitivity characteristic of the actual light reception sensor. .

線形補正では、光の受光量と補正後の受光センサにおける受光センサからの信号の出力値との関係を示す直線を示す補正式は、基準光を受光した際の信号の出力値(図3の点P1)に基づいて、図3の直線A1の関係を満たすものと仮定して作成される。一方、受光センサは、実際には、曲線A2で示す感度特性を有している場合には、直線A1と曲線A2とが離間している領域が生じる。受光センサからの信号の出力値が特定の値P2である場合に、受光センサが実際に受光した光の光量は、曲線A2との交点P3に対応する値であるはずであるが、補正式を利用すると直線A1との交点P4に対応する値が算出される。したがって、補正式により算出される受光センサの光の受光量と、受光センサが実際に受光した光の受光量との間で誤差が発生することになる。この問題を解決する一つの方法としては、光量が異なる基準光を複数準備して補正式を作成することで、実際の受光センサの感度特性により近い補正式を作成する方法が挙げられる。ただし、補正式を受光センサの感度特性と完全に一致させることは困難である。   In the linear correction, a correction formula indicating a straight line indicating the relationship between the amount of received light and the output value of the signal from the light receiving sensor in the corrected light receiving sensor is the output value of the signal when the reference light is received (in FIG. 3). Based on the point P1), it is created on the assumption that the relationship of the straight line A1 in FIG. 3 is satisfied. On the other hand, when the light receiving sensor actually has the sensitivity characteristic indicated by the curve A2, a region where the straight line A1 and the curve A2 are separated from each other is generated. When the output value of the signal from the light receiving sensor is a specific value P2, the amount of light actually received by the light receiving sensor should be a value corresponding to the intersection P3 with the curve A2, but the correction equation is When used, a value corresponding to the intersection P4 with the straight line A1 is calculated. Therefore, an error occurs between the amount of light received by the light receiving sensor calculated by the correction equation and the amount of light received by the light receiving sensor. As one method for solving this problem, there is a method of preparing a correction formula closer to the sensitivity characteristic of an actual light receiving sensor by preparing a plurality of reference lights having different light amounts and creating a correction formula. However, it is difficult to completely match the correction formula with the sensitivity characteristic of the light receiving sensor.

これに対して、本実施形態に係る光学測定装置1では、測定対象物Oに対応した基準物質Sを準備し、基準物質Sに係る測定を行い、その結果を受光センサの感度補正に利用することを特徴とする。基準物質Sとは、測定対象物Oに応じて設定されるものである。例えば、測定対象物Oが細胞を培養する培養液のような水系の溶液の場合には、基準物質Sとして測定対象物Oの主成分となる水を選択することが考えられる。このように、基準物質Sとしては、測定対象物Oの溶媒となる成分を選択することが考えられる。また、基準物質Sは、光学測定装置1の光源10と同一の出力強度を有する光を照射した際の透過率(又は拡散反射率)が既知であるものが選択されることが好ましい。ただし、同一の出力強度を有する光を照射した際の透過率(又は拡散反射率)が不明であっても、測定の対象となる波長の光に対する特性(光源10に対する透過率又は拡散反射率)が測定対象物Oと類似している物質であることが予め把握できている場合には、これを基準物質Sとして選択することができる。測定の対象となる波長の光に対する特性が測定対象物Oと類似しているという観点からも、基準物質Sとして測定対象物Oの溶媒を選択することは1つの好ましい選択であると考えられる。   On the other hand, in the optical measuring device 1 according to the present embodiment, the reference material S corresponding to the measurement object O is prepared, the measurement related to the reference material S is performed, and the result is used for sensitivity correction of the light receiving sensor. It is characterized by that. The reference material S is set according to the measurement object O. For example, when the measurement object O is an aqueous solution such as a culture solution for culturing cells, it is conceivable to select water as the main component of the measurement object O as the reference substance S. Thus, as the reference substance S, it is conceivable to select a component that becomes a solvent of the measurement object O. Moreover, it is preferable that the reference substance S is selected so that the transmittance (or diffuse reflectance) when the light having the same output intensity as that of the light source 10 of the optical measuring device 1 is irradiated is known. However, even if the transmittance (or diffuse reflectance) when irradiating light having the same output intensity is unknown, the characteristics with respect to light of the wavelength to be measured (transmittance or diffuse reflectance with respect to the light source 10) Can be selected as the reference material S when it is known in advance that the material is similar to the measurement object O. From the viewpoint that characteristics with respect to light of a wavelength to be measured are similar to that of the measurement object O, it is considered to be one preferable choice to select the solvent of the measurement object O as the reference substance S.

図4は、測定対象物Oに係る測定を行う前の受光センサの感度補正の手順を説明する図である。基準物質Sを利用する補正を行う場合、図4(A)に示すように、まず、遮光状態での受光センサの出力値を計測する。次に、図4(B)に示すように、光源10と受光部20との間に基準物質Sを配置して、基準物質Sに係る測定を行う。その後、図4(C)に示すように、光源10と受光部20との間に測定対象物Oを配置して、測定対象物Oに係る測定を行う。つまり、従来の測定光L1を直接受光センサで検出して出力値を計測し、これを利用して補正を行う手法とは異なり、基準物質Sを透過した透過光L3を受光センサで検出して出力値を計測し、これを補正に利用する。   FIG. 4 is a diagram for explaining the procedure of correcting the sensitivity of the light receiving sensor before the measurement related to the measurement object O is performed. When the correction using the reference substance S is performed, as shown in FIG. 4A, first, the output value of the light receiving sensor in the light shielding state is measured. Next, as illustrated in FIG. 4B, the reference material S is disposed between the light source 10 and the light receiving unit 20, and the measurement related to the reference material S is performed. Thereafter, as illustrated in FIG. 4C, the measurement object O is disposed between the light source 10 and the light receiving unit 20, and measurement related to the measurement object O is performed. That is, unlike the conventional method in which the measurement value L1 is directly detected by the light receiving sensor, the output value is measured, and correction is performed using this, the transmitted light L3 transmitted through the reference substance S is detected by the light receiving sensor. The output value is measured and used for correction.

補正の方法の1つは、基準物質Sを透過した透過光L3を基準光として取り扱う方法である。すなわち、遮光状態の受光センサからの信号の出力値を0%とし、基準物質Sを透過した透過光L3を受光した状態での受光センサからの信号の出力値を100%として、受光センサにおける光の受光量と受光センサからの信号の出力値とが線形関係にあると仮定した上で、受光センサからの信号の出力値に基づいて受光量を0%〜100%の比率で算出する方法が挙げられる。線形補正を行うという点については、従来の補正の方法と同じであるが、補正式の基準となる受光センサの受光量が測定対象物Oと類似するため、測定対象物Oの透過率近傍での補正式の精度が向上すると考えられる。   One of the correction methods is a method of handling the transmitted light L3 transmitted through the reference material S as the reference light. That is, the output value of the signal from the light receiving sensor in the light shielding state is set to 0%, and the output value of the signal from the light receiving sensor in the state of receiving the transmitted light L3 transmitted through the reference material S is set to 100%. Assuming that the amount of received light and the output value of the signal from the light receiving sensor have a linear relationship, a method of calculating the received light amount at a ratio of 0% to 100% based on the output value of the signal from the light receiving sensor Can be mentioned. The point of performing linear correction is the same as the conventional correction method, but the amount of light received by the light receiving sensor serving as a reference for the correction formula is similar to that of the measurement object O, and therefore near the transmittance of the measurement object O. This is considered to improve the accuracy of the correction formula.

また、基準物質Sを利用した補正の他の方法として、受光センサにおける検出対象の波長の光に対する基準物質Sの透過率(又は拡散反射率)が既知である場合には、基準物質Sからの透過光L3が照射された状態での受光センサからの信号の出力値と透過率との関係を特定し、これを補正式に適用する構成としてもよい。すなわち、遮光状態の受光センサからの信号の出力値を0%として、透過率x%の基準物質Sからの透過光L3が照射された状態での受光センサからの信号の出力値をx%とし、これらの関係から補正式を算出して補正をする方法である。この場合でも、基準光を照射した状態での受光センサからの信号の出力値を100%として補正式を算出する場合と比較して、測定対象物Oの透過率近傍での補正式の精度が向上すると考えられる。   As another method of correction using the reference substance S, when the transmittance (or diffuse reflectance) of the reference substance S with respect to light of the wavelength to be detected in the light receiving sensor is known, The relationship between the output value of the signal from the light receiving sensor and the transmittance when the transmitted light L3 is irradiated may be specified, and this may be applied to the correction equation. That is, the output value of the signal from the light receiving sensor in the light shielding state is set to 0%, and the output value of the signal from the light receiving sensor in the state where the transmitted light L3 from the reference substance S having the transmittance x% is irradiated is set to x%. This is a method of correcting by calculating a correction formula from these relationships. Even in this case, the accuracy of the correction formula in the vicinity of the transmittance of the measurement object O is higher than that in the case where the correction formula is calculated by setting the output value of the signal from the light receiving sensor in the state where the reference light is irradiated to 100%. It is thought to improve.

上記の2つの補正の方法は、基準物質Sからの透過光L3を受光した状態での受光センサからの信号の出力値を100%とするか、基準物質Sの透過率に対応した値とするかという点が相違するが、いずれの場合でも、基準光を照射した状態での受光センサからの信号の出力値を100%として補正式を算出する場合と比較して、測定対象物Oの透過率近傍での補正式の精度が向上すると考えられる。   In the above two correction methods, the output value of the signal from the light receiving sensor in a state where the transmitted light L3 from the reference material S is received is set to 100%, or a value corresponding to the transmittance of the reference material S. However, in any case, the transmission of the measuring object O is compared with the case where the correction expression is calculated with the output value of the signal from the light receiving sensor in the state of irradiation of the reference light as 100%. It is considered that the accuracy of the correction formula near the rate is improved.

基準物質Sは、複数設定されていてもよい。受光センサにおける検出対象の波長の光に対する基準物質Sの透過率(又は拡散反射率)が測定対象物Oと類似している複数の物質を基準物質Sとして用いて補正式を作成した場合、測定対象物Oの透過率近傍での補正式の精度がさらに向上することが考えられる。   A plurality of reference substances S may be set. When a correction equation is created using a plurality of substances whose reference substance S has similar transmittance (or diffuse reflectance) to the light of the wavelength to be detected in the light receiving sensor as the measurement object O, the measurement is performed. It is conceivable that the accuracy of the correction formula near the transmittance of the object O is further improved.

なお、受光部20が複数の受光センサを含む場合には、補正式は受光センサ毎に作成される。受光センサは、感度特性が個体毎に異なるが、基準物質Sからの透過光L3を利用して、受光センサ毎に補正式を作成することで、受光センサ毎の感度特性を考慮した補正が可能となる。   When the light receiving unit 20 includes a plurality of light receiving sensors, a correction formula is created for each light receiving sensor. The light receiving sensor has different sensitivity characteristics for each individual, but by making use of the transmitted light L3 from the reference substance S and creating a correction formula for each light receiving sensor, correction can be made in consideration of the sensitivity characteristics for each light receiving sensor. It becomes.

また、受光部20が分光測定器である場合には、アレイ状に配置された受光センサに対して、分光された互いに異なる波長の光が複数の受光センサそれぞれに入射する。したがって、複数の受光センサのそれぞれにおいて、入射する光の波長毎に互いに異なる補正式が作成される。このような構成とすることで、複数の受光センサそれぞれにおいて、より精度の高い補正が可能となる。なお、感度補正に用いられる基準物質Sのスペクトル形状が測定対象物Oのスペクトル形状と類似していると、各受光センサでの補正の精度がさらに高められる。   In addition, when the light receiving unit 20 is a spectroscopic measuring device, light having different wavelengths separated from each other is incident on the plurality of light receiving sensors with respect to the light receiving sensors arranged in an array. Accordingly, different correction formulas are created for each wavelength of incident light in each of the plurality of light receiving sensors. By adopting such a configuration, it is possible to perform correction with higher accuracy in each of the plurality of light receiving sensors. If the spectrum shape of the reference substance S used for sensitivity correction is similar to the spectrum shape of the measurement object O, the accuracy of correction in each light receiving sensor is further increased.

ここで、光学測定装置1において、基準物質Sを用いて受光センサからの信号の出力値に係る補正を行うことで、より高い精度での補正が可能となる点について、以下実施例を参照しながら説明する。   Here, in the optical measuring device 1, the correction with higher accuracy can be performed by performing the correction related to the output value of the signal from the light receiving sensor using the reference substance S, referring to the following examples. While explaining.

ここでは、図1に示す光学測定装置1と同様の透過光を検出する近赤外分光装置を用いて、厚み1mmのガラスセルに封入された濃度が互いに異なる2種類の砂糖水を計測する例について説明する。   Here, an example of measuring two types of sugar water having different concentrations enclosed in a glass cell having a thickness of 1 mm using a near-infrared spectroscopic device that detects transmitted light similar to the optical measurement device 1 shown in FIG. Will be described.

上記の近赤外分光装置の受光センサに対して基準光を入力したときの受光センサからの信号の出力値を100%とし、遮光状態での受光センサからの信号の出力値を0%とし、受光量と出力値の関係が線形関係にあると仮定した線形補正を行った上で、砂糖の特徴吸収波長(1570nm)における光吸収量(入力光量に対する砂糖水透過後の透過光量の比)を計測した。基準光として、基準光A、基準光Bの2通りの光を想定した。基準光Aは、従来の補正の手法に相当するものであり、基準光Bは、本実施形態に係る感度補正方法に相当するものである。砂糖水の溶媒である水は、砂糖水と光透過特性がほぼ等しいため、基準物質Sとして利用した。
基準光A:光源10から出射された光を基準光Aとして直接受光部20に入力させる。
基準光B:光源10と受光部20との間に、純水が封入されたガラスセルを置きガラスセル内の純水(基準物質Sに相当)を透過した透過光を基準光Bとして受光部20に入力させる。
The output value of the signal from the light receiving sensor when the reference light is input to the light receiving sensor of the near-infrared spectrometer is set to 100%, the output value of the signal from the light receiving sensor in the light shielding state is set to 0%, After performing linear correction assuming that the relationship between the amount of received light and the output value is a linear relationship, the amount of light absorption at the characteristic absorption wavelength (1570 nm) of sugar (the ratio of the amount of transmitted light after passing through sugar water to the amount of input light) Measured. Two types of light, reference light A and reference light B, were assumed as the reference light. The reference light A corresponds to a conventional correction method, and the reference light B corresponds to a sensitivity correction method according to the present embodiment. Water, which is a solvent for sugar water, was used as the reference material S because it has almost the same light transmission characteristics as sugar water.
Reference light A: The light emitted from the light source 10 is directly input to the light receiving unit 20 as the reference light A.
Reference light B: A glass cell in which pure water is sealed is placed between the light source 10 and the light receiving unit 20, and the light that has passed through the pure water (corresponding to the reference substance S) in the glass cell is used as the reference light B. 20 to input.

図5に、以下の測定対象物のうちの最も濃度が濃い砂糖水の透過率と基準物質である水の透過率との差を示す。1200nm〜2350nmにおいて、透過率差は2%以内であった。   FIG. 5 shows the difference between the transmittance of sugar water having the highest concentration among the following measurement objects and the transmittance of water as a reference substance. From 1200 nm to 2350 nm, the transmittance difference was within 2%.

上記の2種類の基準光を用いてそれぞれ補正を行った上で、以下の測定を行った。   The following measurements were performed after correcting each of the above two types of reference light.

まず、濃度が互いに異なる4種類の砂糖水を準備し、それぞれについて、光源10からの出力光量を同一(I)とした状態で、10回ずつ測定した。受光センサからの信号の出力値から線形補正を行った上での光吸収量を算出した。 First, four types of sugar waters having different concentrations were prepared, and each was measured 10 times with the same amount of light output from the light source 10 (I 0 ). The amount of light absorption after linear correction was calculated from the output value of the signal from the light receiving sensor.

次に、光源10からの出力光量を5%減衰した状態で、上記と同様に、4種類の砂糖それぞれについて、光源10からの出力光量を同一(I×95%)とした状態で、10回ずつ測定した。受光センサからの信号の出力値から線形補正を行った上での光吸収量を算出した。なお、受光センサの感度補正は、1回の測定毎に行い、5%減衰した光を用いた測定を行う前には、5%減衰した光を利用して感度補正を行った。 Next, in the state where the output light amount from the light source 10 is attenuated by 5%, in the same manner as above, the output light amount from the light source 10 is the same (I 0 × 95%) for each of the four types of sugar. It was measured once. The amount of light absorption after linear correction was calculated from the output value of the signal from the light receiving sensor. The sensitivity correction of the light receiving sensor was performed for each measurement, and the sensitivity correction was performed using the light attenuated by 5% before the measurement using the light attenuated by 5%.

結果を、図6及び図7に示す。図6は、基準光Aを用いて受光センサの感度補正を行った場合の結果であり、図7は、基準光Bを用いて受光センサの感度補正を行った場合の結果である。図6及び図7のいずれにおいても、横軸を砂糖水の濃度とし、縦軸を受光センサの出力値から算出された光吸収量をプロットしている。図6と図7とを比較すると、図6では、光源10からの出力光量を5%減衰させると、減衰前(I)とは砂糖水の濃度と光吸収量との関係が変化する(近似直線の傾きが変化する)ことが確認された。これに対して、図7では、光源10からの出力光量を5%減衰させても、減衰前(I)とは砂糖水の濃度と光吸収量との関係がほぼ変化しない(近似直線の傾きがほぼ変化しない)ことが確認された。このように、受光センサの補正に利用する光として、基準物質Sを透過した透過光L3を利用する構成とすることで、より高い精度での補正が可能な感度補正が可能となる。 The results are shown in FIGS. FIG. 6 shows the result when the sensitivity correction of the light receiving sensor is performed using the reference light A, and FIG. 7 shows the result when the sensitivity correction of the light receiving sensor is performed using the reference light B. 6 and 7, the horizontal axis represents the sugar water concentration, and the vertical axis represents the light absorption amount calculated from the output value of the light receiving sensor. 6 is compared with FIG. 7, in FIG. 6, when the output light amount from the light source 10 is attenuated by 5%, the relationship between the concentration of sugar water and the light absorption amount changes from that before the attenuation (I 0 ) ( It was confirmed that the slope of the approximate line changes). On the other hand, in FIG. 7, even if the output light amount from the light source 10 is attenuated by 5%, the relationship between the concentration of sugar water and the amount of light absorption does not substantially change from that before attenuation (I 0 ). It was confirmed that the inclination was almost unchanged. As described above, by using the transmitted light L3 transmitted through the reference substance S as the light used for correction of the light receiving sensor, it is possible to perform sensitivity correction capable of correction with higher accuracy.

また、上記の感度補正を行った光学測定装置1を利用して測定対象物Oに係る定量測定を行うと、より高い精度での定量測定が可能となる。   In addition, when quantitative measurement related to the measurement object O is performed using the optical measurement apparatus 1 that has performed the above sensitivity correction, quantitative measurement with higher accuracy becomes possible.

定量測定として、測定対象物Oに含まれる特定の物質の濃度を測定する定量測定方法には、以下の工程が含まれる。すなわち、定量測定を行う対象の測定対象物Oに対して選択された基準物質Sに対して光源10からの光を照射することで、基準物質Sから出射された光を受光部20の受光センサで計測し、当該計測結果に基づいて、受光センサにおいて受光する光の光量と受光センサから出力する信号の出力値との対応関係を示す補正式を算出し、当該補正式に基づいて感度補正を行う工程と、定量測定を行う物質の濃度が既知の複数の試料のそれぞれに対してそれぞれ光源10からの光を照射し、試料から出射する光を受光部20の前記受光センサで計測し、計測結果に基づいて検量線を作成する工程と、測定対象物Oに対して光源10からの光を照射することで、測定対象物から出射された光を受光部20の受光センサで計測し、計測結果と検量線とを比較することで、前記測定対象物の濃度を算出する工程と、を有する。   As a quantitative measurement, a quantitative measurement method for measuring the concentration of a specific substance contained in the measurement object O includes the following steps. That is, the light emitted from the reference material S is irradiated to the reference material S selected for the measurement object O to be quantitatively measured, and the light received from the reference material S is received by the light receiving sensor of the light receiving unit 20. Based on the measurement result, calculate a correction formula indicating the correspondence between the amount of light received by the light receiving sensor and the output value of the signal output from the light receiving sensor, and perform sensitivity correction based on the correction formula. Irradiating light from the light source 10 to each of a plurality of samples whose concentrations of substances to be quantitatively measured are known, and measuring the light emitted from the sample by the light receiving sensor of the light receiving unit 20 A step of creating a calibration curve based on the result, and the light emitted from the light source 10 is applied to the measurement object O, whereby the light emitted from the measurement object is measured by the light receiving sensor of the light receiving unit 20 and measured. Results and calibration curve By comparison, and a step of calculating a concentration of the measurement object.

上記の定量測定を、基準物質Sを用いて受光部20の受光センサの感度補正を行った光学測定装置1により実施することで、感度特性に対応した補正がなされた受光センサを用いた測定ができることから、より高い精度での定量測定が可能となる。   By performing the above quantitative measurement with the optical measurement apparatus 1 that performs sensitivity correction of the light receiving sensor of the light receiving unit 20 using the reference substance S, measurement using the light receiving sensor that has been corrected in accordance with the sensitivity characteristic can be performed. Therefore, quantitative measurement with higher accuracy is possible.

以上のように、本実施形態に係る感度補正方法によれば、測定対象物Oに対して選択された基準物質Sに対して光源10からの光を照射することで受光部20の受光センサで計測される光の計測結果に基づいて、受光センサの感度補正に係る補正式が算出される。このように、基準物質Sを利用した感度補正を行うことで、従来のように、光源からの光を受光センサで受光した場合の計測結果を補正に利用する場合と比較して、補正の精度が向上し、より高い精度での補正が可能となる。   As described above, according to the sensitivity correction method according to the present embodiment, the light receiving sensor of the light receiving unit 20 irradiates the light from the light source 10 to the reference material S selected for the measurement object O. Based on the measurement result of the light to be measured, a correction formula for correcting the sensitivity of the light receiving sensor is calculated. In this way, by performing sensitivity correction using the reference substance S, the accuracy of correction can be improved as compared with the case where the measurement result when the light from the light source is received by the light receiving sensor is used for correction as in the past. Thus, correction with higher accuracy becomes possible.

また、受光部20の受光センサが1200nm〜2350nm内のある波長域の光に対する感度を有していることで、近赤外光を利用した測定に好適に利用される。   Further, since the light receiving sensor of the light receiving unit 20 has sensitivity to light in a certain wavelength range within 1200 nm to 2350 nm, it is suitably used for measurement using near infrared light.

また、複数の受光センサのそれぞれに互いに異なる波長の光が入射する場合、受光センサのそれぞれにおいて入射する光の波長に対応した補正式を作成することで、複数の受光センサそれぞれにおける感度補正を精度よく行うことができるため、より高い精度での補正が可能となる。   In addition, when light of different wavelengths is incident on each of the plurality of light receiving sensors, a correction formula corresponding to the wavelength of the light incident on each of the light receiving sensors is created to accurately perform sensitivity correction in each of the plurality of light receiving sensors. Since it can be performed well, correction with higher accuracy becomes possible.

また、測定対象物Oが溶液である場合には、測定対象物Oの溶媒を基準物質Sとして選択することで、より高い精度での補正が可能となる。   When the measurement object O is a solution, correction with higher accuracy is possible by selecting the solvent of the measurement object O as the reference material S.

また、本実施形態に係る定量測定方法によれば、測定対象物Oに対して選択された基準物質Sに対して光源10からの光を照射することで受光部20の受光センサで計測される光の計測結果に基づいて、受光センサの感度補正に係る補正式を算出し、これに基づいて感度補正が行われた後に、測定対象物Oに含まれる物質の濃度の定量測定に係る工程が行われる。このように、基準物質Sを利用した感度補正を行った受光センサを利用して定量測定を行うことで、定量測定に関してもより高い精度で行うことができる。   Further, according to the quantitative measurement method according to the present embodiment, measurement is performed by the light receiving sensor of the light receiving unit 20 by irradiating light from the light source 10 to the reference material S selected for the measurement object O. Based on the measurement result of light, a correction formula related to the sensitivity correction of the light receiving sensor is calculated, and after the sensitivity correction is performed based on this, a process related to quantitative measurement of the concentration of the substance contained in the measurement object O is performed. Done. Thus, quantitative measurement can be performed with higher accuracy by performing quantitative measurement using a light receiving sensor that has been subjected to sensitivity correction using the reference substance S.

以上、本発明の実施形態について説明してきたが、本発明は上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to embodiment mentioned above, A various change is possible in the range which does not deviate from the summary.

例えば、上記実施形態では、光源10が1つのみ設けられる場合にについて説明したが、光源10の数は複数であってもよい。特に、光学測定装置が拡散反射光を計測する装置である場合には、光源10の数を増やすことにより、受光部20で受光する光量を増やすことができる。また、光源10自体が光量を可変であってもよい。さらに、光源10は、点光源である必要はなく、例えば、受光部20が所謂ラインセンサである場合には、光源10もライン状の光源を採用する構成としてもよい。   For example, in the above-described embodiment, the case where only one light source 10 is provided has been described, but a plurality of light sources 10 may be provided. In particular, when the optical measuring device is a device that measures diffuse reflected light, the amount of light received by the light receiving unit 20 can be increased by increasing the number of light sources 10. Further, the light source 10 itself may be capable of changing the amount of light. Furthermore, the light source 10 does not have to be a point light source. For example, when the light receiving unit 20 is a so-called line sensor, the light source 10 may be configured to employ a linear light source.

1…光学測定装置、10…光源、20…受光部、30…分析部、O…測定対象物、S…基準物質。   DESCRIPTION OF SYMBOLS 1 ... Optical measuring device, 10 ... Light source, 20 ... Light-receiving part, 30 ... Analysis part, O ... Measuring object, S ... Reference material.

Claims (5)

測定対象物に対して選択された基準物質に対して光源からの光を照射することで前記基準物質から出射された光を受光部の受光センサで計測し、当該計測結果に基づいて、前記受光センサにおいて受光する光の光量と前記受光センサから出力する信号の出力値との対応関係との対応関係を示す補正式を算出する感度補正方法。   The light emitted from the reference material is measured by the light receiving sensor of the light receiving unit by irradiating light from the light source to the reference material selected for the measurement object, and the light reception is performed based on the measurement result. A sensitivity correction method for calculating a correction formula indicating a correspondence relationship between a light amount of light received by the sensor and a correspondence relationship between an output value of a signal output from the light receiving sensor. 前記受光センサは、1200nm〜2350nm内のある波長域の光に対する感度を有している請求項1に記載の感度補正方法。   The sensitivity correction method according to claim 1, wherein the light receiving sensor has sensitivity to light in a certain wavelength range within 1200 nm to 2350 nm. 前記受光部には、受光センサが複数設けられ、
複数の前記受光センサのそれぞれに対して、互いに異なる波長の光が入射し、
複数の前記受光センサのそれぞれについて、入射する光の波長に対応した補正式を作成する請求項1又は2に記載の感度補正方法。
The light receiving unit is provided with a plurality of light receiving sensors,
Light of different wavelengths is incident on each of the plurality of light receiving sensors,
The sensitivity correction method according to claim 1, wherein a correction expression corresponding to a wavelength of incident light is created for each of the plurality of light receiving sensors.
前記測定対象物は溶液であって、
前記基準物質として前記測定対象物の溶媒が選択される請求項1〜3のいずれか一項に記載の感度補正方法。
The measurement object is a solution,
The sensitivity correction method according to any one of claims 1 to 3, wherein a solvent of the measurement object is selected as the reference substance.
測定対象物に含まれる物質の濃度を算出する定量測定方法であって、
前記測定対象物に対して選択された基準物質に対して光源からの光を照射することで前記基準物質から出射された光を受光部の受光センサで計測し、当該計測結果に基づいて、前記受光センサにおいて受光する光の光量と前記受光センサから出力する信号の出力値との対応関係を示す補正式を算出し、当該補正式に基づいて感度補正を行う工程と、
定量測定を行う物質の濃度が既知の複数の試料のそれぞれに対してそれぞれ前記光源からの光を照射し、前記試料から出射する光を前記受光部の前記受光センサで計測し、計測結果に基づいて検量線を作成する工程と、
前記測定対象物に対して光源からの光を照射することで、前記測定対象物から出射された光を受光部の受光センサで計測し、計測結果と前記検量線とを比較することで、前記測定対象物の濃度を算出する工程と、
を有する定量測定方法。
A quantitative measurement method for calculating the concentration of a substance contained in a measurement object,
The light emitted from the reference material is measured by a light receiving sensor of a light receiving unit by irradiating light from a light source to the reference material selected for the measurement object, and based on the measurement result, Calculating a correction equation indicating a correspondence relationship between the amount of light received by the light receiving sensor and an output value of a signal output from the light receiving sensor, and performing sensitivity correction based on the correction equation;
Each of a plurality of samples with known concentrations of substances to be quantitatively measured is irradiated with light from the light source, the light emitted from the sample is measured by the light receiving sensor of the light receiving unit, and based on the measurement result Creating a calibration curve,
By irradiating the measurement object with light from a light source, measuring the light emitted from the measurement object with a light receiving sensor of a light receiving unit, and comparing the measurement result with the calibration curve, Calculating the concentration of the measurement object;
A quantitative measurement method comprising:
JP2016096966A 2016-05-13 2016-05-13 Sensitivity correction method and quantitative measuring method Pending JP2017203741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016096966A JP2017203741A (en) 2016-05-13 2016-05-13 Sensitivity correction method and quantitative measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016096966A JP2017203741A (en) 2016-05-13 2016-05-13 Sensitivity correction method and quantitative measuring method

Publications (1)

Publication Number Publication Date
JP2017203741A true JP2017203741A (en) 2017-11-16

Family

ID=60322754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016096966A Pending JP2017203741A (en) 2016-05-13 2016-05-13 Sensitivity correction method and quantitative measuring method

Country Status (1)

Country Link
JP (1) JP2017203741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113841040A (en) * 2019-06-20 2021-12-24 松下知识产权经营株式会社 Sensitivity adjustment plate and method for manufacturing sensor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219376A (en) * 2003-01-17 2004-08-05 Kubota Corp Quality evaluation system for fruits and vegetables
JP2007225389A (en) * 2006-02-22 2007-09-06 Moritex Corp Surface plasmon resonance measuring device and measuring method
US8455827B1 (en) * 2010-12-21 2013-06-04 Edc Biosystems, Inc. Method and apparatus for determining the water content of organic solvent solutions
JP2014126529A (en) * 2012-12-27 2014-07-07 Horiba Ltd Spectroscopic analysis method and spectroscopic analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219376A (en) * 2003-01-17 2004-08-05 Kubota Corp Quality evaluation system for fruits and vegetables
JP2007225389A (en) * 2006-02-22 2007-09-06 Moritex Corp Surface plasmon resonance measuring device and measuring method
US8455827B1 (en) * 2010-12-21 2013-06-04 Edc Biosystems, Inc. Method and apparatus for determining the water content of organic solvent solutions
JP2014126529A (en) * 2012-12-27 2014-07-07 Horiba Ltd Spectroscopic analysis method and spectroscopic analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113841040A (en) * 2019-06-20 2021-12-24 松下知识产权经营株式会社 Sensitivity adjustment plate and method for manufacturing sensor device
CN113841040B (en) * 2019-06-20 2024-03-22 松下知识产权经营株式会社 Sensitivity adjustment plate and method for manufacturing sensor device

Similar Documents

Publication Publication Date Title
US5258825A (en) Optical compositional analyzer apparatus and method for detection of ash in wheat and milled wheat products
AU2007305640B2 (en) Ultraviolet radiation detector and apparatus for evaluating ultraviolet radiation protection effect
US10151633B2 (en) High accuracy absorbance spectrophotometers
WO2009093453A1 (en) Analysis device and analysis method
CN101324468B (en) Low stray light rapid spectrometer and measurement method thereof
JP2016080429A (en) Spectral measurement device
RU2664786C2 (en) Method and device for determining concentration
TWI683092B (en) Spectrometry device and method
WO2016129033A1 (en) Multi-channel spectrophotometer and data processing method for multi-channel spectrophotometer
JP7056612B2 (en) Turbidity measurement method and turbidity meter
JP2015102542A (en) Biological inspection device
JP7448090B2 (en) water quality analyzer
US20100253942A1 (en) Method and device for characterizing silicon layer on translucent substrate
Shaw et al. Array-based goniospectroradiometer for measurement of spectral radiant intensity and spectral total flux of light sources
Inagaki et al. The effect of path length, light intensity and co-added time on the detection limit associated with NIR spectroscopy of potassium hydrogen phthalate in aqueous solution
CN108732146A (en) Quantum yield computational methods, sepectrophotofluorometer and storage medium
JP2017203741A (en) Sensitivity correction method and quantitative measuring method
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
JP2019113568A (en) Spectrometric measurement device and spectrometric measurement method
US9976950B2 (en) Optical detector module, measurement system and method of detecting presence of a substance in a test material
WO2015174073A1 (en) Food analysis device
Holopainen et al. Comparison measurements of 0∶ 45 radiance factor and goniometrically determined diffuse reflectance
Rani et al. Multiple nonlinear regression-based adaptive colour model for smartphone colorimeter
CN105738298B (en) A kind of aqueous solution turbidimetry method and device based on chromaticity coordinates value
Shitomi et al. A new absolute diffuse reflectance measurement in the near-IR region based on the modified double-sphere method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200804