JP2017198583A - Visual inspection method of specific area in cylindrical inner peripheral surface - Google Patents

Visual inspection method of specific area in cylindrical inner peripheral surface Download PDF

Info

Publication number
JP2017198583A
JP2017198583A JP2016090634A JP2016090634A JP2017198583A JP 2017198583 A JP2017198583 A JP 2017198583A JP 2016090634 A JP2016090634 A JP 2016090634A JP 2016090634 A JP2016090634 A JP 2016090634A JP 2017198583 A JP2017198583 A JP 2017198583A
Authority
JP
Japan
Prior art keywords
inner peripheral
peripheral surface
specific area
laser
cylindrical inner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016090634A
Other languages
Japanese (ja)
Other versions
JP6903401B2 (en
Inventor
仁優 長屋
Kimimasa Nagaya
仁優 長屋
松谷 渉
Wataru Matsutani
渉 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2016090634A priority Critical patent/JP6903401B2/en
Publication of JP2017198583A publication Critical patent/JP2017198583A/en
Application granted granted Critical
Publication of JP6903401B2 publication Critical patent/JP6903401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent, in a visual inspection of a specific area in a cylindrical inner peripheral surface of a cylindrical member or the like, an erroneous defect determination from occurring, by easily and efficiently removing an erroneous determination factor, before processing a photographed image by a computer and determining an exterior quality of a surface of the specific area according to a criteria set for a defect present on the surface of the specific area.SOLUTION: A visual inspection method includes, as a pretreatment, a laser processing step of irradiating a surface of a specific area 14 in a cylindrical inner peripheral surface with a laser beam La before performing a visual inspection, so as to remove unevenness of a plated layer or a deposit on the surface, which might cause an erroneous defect determination.SELECTED DRAWING: Figure 1

Description

本発明は、検査対象物である円筒状部材等の筒状部材の内面や、円形等の穴を有する検査対象物のその穴の内面のような筒状内周面における特定領域の外観(表面)を検査する外観検査方法に関する。   The present invention relates to the appearance (surface of a specific area) of a cylindrical inner peripheral surface such as an inner surface of a cylindrical member such as a cylindrical member that is an inspection object or an inner surface of the hole of an inspection object having a circular hole or the like. ).

円筒状部材等の内面(以下、筒状内周面、又は内周面ともいう)における特定領域の外観の外観検査方法としては、その筒状内周面をカメラ(CCD)で撮像し、撮像した画像をコンピュータによって画像処理し、該特定領域(検査領域)の表面に存在する欠陥について設定されている良否判定基準に基づき、該表面の外観の良否を判定する手法が知られている。一例としては、ビームスプリッタ、反射鏡、対物凸レンズ等の光学系を介して、筒状内周面に光を照射し、その照射面における反射光に基づいて、その内周面をカメラで撮像し、コンピュータにより指定した閾値に基づき、画像処理(例えば、2値化処理)して、そのような画像情報に基づいて、予め設定されている良否判定基準と対比してその外観(内周面)の良否を判定させるようにした方法である(特許文献1等参照)。   As a method for inspecting the appearance of a specific area on the inner surface (hereinafter also referred to as a cylindrical inner peripheral surface or inner peripheral surface) of a cylindrical member or the like, the cylindrical inner peripheral surface is imaged with a camera (CCD), and imaging is performed. A method is known in which a processed image is processed by a computer, and the quality of the appearance of the surface is determined based on a quality determination criterion set for defects present on the surface of the specific area (inspection area). As an example, light is applied to the cylindrical inner peripheral surface via an optical system such as a beam splitter, a reflecting mirror, or an objective convex lens, and the inner peripheral surface is imaged by a camera based on the reflected light on the irradiated surface. Based on the threshold value designated by the computer, image processing (for example, binarization processing), and based on such image information, the appearance (inner peripheral surface) in contrast to a predetermined pass / fail judgment criterion This is a method in which the quality is determined (see Patent Document 1).

上記検査方法では、例えば、円筒内周面に、欠陥としての凹部等の傷があると、その傷の箇所では反射光が乱反射、散乱等することにより、反射鏡に入射する光量が減少するため、そのような光量減少部位は撮像装置により暗部となって撮像される。コンピューターは、その画像から明暗による欠陥候補を切り出し、画像処理し、設定してある良否の判定基準に基づき、不良と判定されるべき場合にそれを欠陥として判定する、というようなものである。   In the inspection method described above, for example, if there is a defect such as a recess on the inner circumferential surface of the cylinder, the amount of light incident on the reflecting mirror is reduced due to irregular reflection or scattering of reflected light at the damaged part. Such a light quantity reduction part is imaged as a dark part by the imaging device. The computer cuts out a defect candidate based on brightness and darkness from the image, performs image processing, and determines it as a defect when it should be determined as defective based on a set determination criterion.

特開2013−142596号公報JP 2013-142596 A

ところで、検査対象物である例えば円筒状部材が、その円筒内周面も含め、冷間鍛造加工や、切削等による機械加工等されて製造されたものにおいては、それらの加工過程で用いられる油分(切削油も潤滑剤)や、発生する加工屑、酸化物等の微小な異物等の汚れ(以下、これらを総称して「付着物」という)が、加工面における検査対象の領域に付着していることがある。このような場合において、上述したような検査を行うと、その円筒内周面である加工面自体には、本来、不良(欠陥)と判定(判断)されるべき深さや大きさの傷があるわけではないのに、それらの付着物に起因して、画像処理ないし良否判定において欠陥として認識され、誤って不良(外観不良)と判定されてしまうことがある。また、切削等の加工後の部材の表面に、メッキ層或いは塗膜等の皮膜(金属皮膜又は非金属皮膜。以下、皮膜ともいう)が形成されている場合にも、その円筒内周面である加工面自体には、不良と判定されるべき深さや大きさの傷があるわけではないのに、それらの皮膜の処理不良(メッキ不良、塗装不良等)に基づく、その表面の一部の変色や明度のムラ(以下、「ムラ」という)の存在に起因して、その表面部分が、画像処理ないし良否判定において欠陥として認識され、誤って不良(外観不良)と判定されてしまうことがある。   By the way, in the case where, for example, a cylindrical member, which is an inspection object, is manufactured by cold forging or machining by cutting or the like including the inner peripheral surface of the cylinder, the oil content used in those processing steps. (Cutting oil is also a lubricant) and generated foreign matter such as scraps and oxides (hereinafter collectively referred to as “adhesives”) adhere to the area to be inspected on the machined surface. May have. In such a case, when the inspection as described above is performed, the processed surface itself, which is the inner circumferential surface of the cylinder, has a scratch of depth or size that should be determined (determined) as a defect (defect). However, due to these deposits, the image may be recognized as a defect in image processing or pass / fail judgment, and may be erroneously determined as defective (appearance defect). In addition, even when a coating such as a plating layer or a coating film (metal coating or non-metal coating; hereinafter also referred to as coating) is formed on the surface of a member after machining such as cutting, Although some processed surfaces do not have scratches of the depth or size that should be judged as defective, a part of the surface based on processing defects (plating defects, coating defects, etc.) of those coatings Due to the presence of discoloration or lightness unevenness (hereinafter referred to as “unevenness”), the surface portion may be recognized as a defect in image processing or pass / fail judgment, and may be erroneously determined as defective (appearance defect). is there.

このように撮像した画像をコンピュータによって、画像処理(例えば2値化処理)し、該特定領域の表面に存在する欠陥について設定されている良否判定基準に基づき、該表面の外観の良否を判定する外観検査をする場合には、その2値化処理における閾値にもよるが、本来は外観不良と判定すべき欠陥(例えば、傷)ではないのに、付着物や、皮膜における「ムラ」の存在といった誤判定要因に起因して、誤って外観不良の判定(以下、不良誤判定)をしてしまうことがあった。このような不良誤判定は、円筒内周面についての仕上面粗さを高度(表面粗さを小さく)に設定し、判定基準(検査水準)を上げ、厳しくすればするほど発生しがちとなる。例えば、次のような場合である。円筒部材の内周面が上下において同心異径であり、その異径境界の円環状棚面に、金属ワッシャを介在させ、別途、内挿する異径軸部材における異径境界の円環状棚面を圧接させ、その両部材間において金属接触で高度の気密を保持したいような組立構造体で、例えば、皮膜(メッキ層)が形成されているような場合においては、その円環状棚面についての外観検査の水準を厳しくする必要があり、したがって、このような場合には、誤判定が発生しがちとなる。また、このような筒状部材の内周面の検査においては、皮膜形成前の切削等の加工済み段階のものにおいても、上述したような付着物の存在に起因して、これと同様に不良誤判定を招いてしまうことがある。結果、このような検査対象物においては、上記したような画像処理を用いた検査方法を、そのまま適用することはできないことがあった。   The image thus captured is subjected to image processing (for example, binarization processing) by a computer, and the quality of the appearance of the surface is judged based on the quality judgment criteria set for the defects present on the surface of the specific region. In the case of visual inspection, although it depends on the threshold value in the binarization process, it is not a defect (for example, a scratch) that should originally be determined as a defective appearance, but there are deposits and “unevenness” in the film. Due to such erroneous determination factors, there are cases where the appearance defect is erroneously determined (hereinafter, defective determination). Such defect misjudgment tends to occur as the finished surface roughness on the inner peripheral surface of the cylinder is set to a high level (the surface roughness is small), the judgment standard (inspection level) is increased, and the severity becomes severer. . For example, this is the case. The inner circumferential surface of the cylindrical member has concentric and different diameters in the upper and lower sides, and an annular shelf surface of a different diameter boundary in a different diameter shaft member inserted separately by inserting a metal washer in the annular shelf surface of the boundary of the different diameter. In an assembly structure in which a high degree of airtightness is desired to be maintained by metal contact between the two members, for example, in the case where a film (plating layer) is formed, the annular shelf surface It is necessary to tighten the level of appearance inspection, and in such a case, erroneous determination tends to occur. Also, in the inspection of the inner peripheral surface of such a cylindrical member, even in the processed stage such as cutting before film formation, due to the presence of the deposits as described above, it is similarly defective. An erroneous determination may be invited. As a result, the inspection method using the image processing as described above cannot be applied to such an inspection object as it is.

一方、このような不良誤判定の発生防止策としては次のようなものが考えられる。例えば、内周面にメッキ層(皮膜)が形成されている場合には、検査工程の前に、筒状部材内に適当な酸性液(メッキ除去用酸性液)を注ぎ込み、そのようなメッキにおける「ムラ」がなくなるように、特定領域におけるその皮膜表面を均一化したり、その部分のメッキ層を除去するなどの処理を行い、誤判定要因を除去することである。また、塗膜が形成されている場合には、それに応じた適当な溶剤の塗布等により、同様の処理を行うことが考えられる。   On the other hand, the following measures are conceivable as measures for preventing such erroneous erroneous determination. For example, when a plating layer (film) is formed on the inner peripheral surface, an appropriate acidic solution (acid solution for plating removal) is poured into the cylindrical member before the inspection process, and in such plating In order to eliminate the “unevenness”, the surface of the film in a specific region is made uniform, or the plating layer in that portion is removed to remove an erroneous determination factor. Moreover, when the coating film is formed, it is possible to perform the same process by application | coating of the appropriate solvent according to it.

ところが、このような方法による誤判定要因の除去では、表面粗さの検査水準が、検査対象部位である筒状部材の内周面のうちの一部である特定領域(上記例における円環状棚面)にのみ、厳しく設定されており、その他の部位には所定厚さの皮膜が要求される場合には、その特定領域以外の部分(検査対象部位以外の部位)には、マスキング等の処理をしなければならず、その処理、及び処理後のそのマスクの除去作業も含め作業手間が大きい。それだけではなく、検査対象の筒状部材が、内径が例えば、10mm程度と小さく、或いは、筒状部材の内周面における検査対象の特定領域が、筒状部材の開口端よりも遠方であり、マスキングすべき位置がその奥に及ぶ場合などは、マスキング自体が困難である。それ故、このような場合には、前記したような処理法は適用できない。結果、このように内径が小さい筒状部材におけるように、筒状内周面の特定領域のみに高度の表面精度(粗度)が要求されるような場合等の要請に対しては、その特定領域のみの検査水準を厳しくしてその外観検査をすることは容易でないといった課題があった。また、そのような一部の特定領域の洗浄のためにのみ、溶剤等の注ぎ込みにより内周面の全体を洗浄して付着物を除去する、というのも非効率的である。   However, in the removal of the misjudgment factor by such a method, the inspection level of the surface roughness is a specific region (a circular shelf in the above example) that is a part of the inner peripheral surface of the cylindrical member that is the inspection target part. If only a specific thickness is required for other parts, a masking process is applied to parts other than the specific area (parts other than the part to be inspected). This requires a lot of work, including the process and the removal of the mask after the process. Not only that, the cylindrical member to be inspected has an inner diameter as small as about 10 mm, for example, or the specific area of the inspection target on the inner peripheral surface of the cylindrical member is farther from the opening end of the cylindrical member, Masking itself is difficult when the position to be masked extends deeply. Therefore, in such a case, the processing method as described above cannot be applied. As a result, in the case where a high degree of surface accuracy (roughness) is required only in a specific region of the cylindrical inner peripheral surface as in the case of a cylindrical member having such a small inner diameter, such specification is required. There has been a problem that it is not easy to inspect the appearance by tightening the inspection level of only the area. It is also inefficient to clean the entire inner peripheral surface by pouring a solvent or the like and remove the deposits only for cleaning such a specific area.

本発明は、如上の課題に鑑みてなされたもので、筒状部材等の筒状内周面における特定領域の外観検査を、撮像した画像をコンピュータによって画像処理し、該特定領域の表面に存在する欠陥について設定されている良否判定基準に基づき、該表面の外観の良否を判定する外観検査方法において、その検査に先立ち、特定領域に存する上述したような誤判定要因を簡易、効率的に除去できるようにし、誤った「不良判定」の発生防止を図って正確な良否の判定ができるようにし、信頼性の高い検査を簡易、効率的に実現できるようにすることをその目的とする。   The present invention has been made in view of the above problems, and an appearance inspection of a specific area on a cylindrical inner peripheral surface of a cylindrical member or the like is performed on a surface of the specific area by processing the captured image with a computer. In the appearance inspection method for judging the quality of the appearance of the surface based on the quality judgment criteria set for the defect to be performed, the aforementioned erroneous judgment factors existing in the specific area are simply and efficiently removed prior to the inspection. It is an object of the present invention to make it possible to perform an accurate “defect determination” in order to prevent an erroneous “defect determination” so that an accurate determination can be made, and a highly reliable inspection can be realized easily and efficiently.

請求項1に記載の発明である、筒状内周面における特定領域の外観検査方法は、筒状内周面における特定領域をカメラで撮像し、撮像した画像をコンピュータによって画像処理し、該特定領域の表面に存在する欠陥について設定されている良否判定基準に基づき、該表面の外観の良否を判定する外観検査方法であって、
その外観検査を行う前に、前記筒状内周面における前記特定領域の表面にレーザ光を照射し、その表面に形成されている皮膜のムラ又は該皮膜を除去するレーザ加工工程を前処理工程として含めたことを特徴とする。
According to the first aspect of the present invention, the method for inspecting the appearance of the specific area on the cylindrical inner peripheral surface captures the specific area on the cylindrical inner peripheral surface with a camera, performs image processing on the captured image with a computer, and An appearance inspection method for determining the quality of the appearance of the surface based on the quality determination criteria set for defects existing on the surface of the region,
Before performing the appearance inspection, the surface of the specific region on the cylindrical inner peripheral surface is irradiated with laser light, and the film unevenness formed on the surface or the laser processing step for removing the film is a pretreatment step. It is characterized by including.

請求項2に記載の発明である、筒状内周面における特定領域の外観検査方法は、筒状内周面における特定領域をカメラで撮像し、撮像した画像をコンピュータによって画像処理し、該特定領域の表面に存在する欠陥について設定されている良否判定基準に基づき、該表面の外観の良否を判定する外観検査方法であって、
その外観検査を行う前に、前記筒状内周面における前記特定領域の表面にレーザ光を照射し、その表面に付着している付着物を除去するレーザ加工工程を前処理工程として含めたことを特徴とする。
The method for inspecting the appearance of the specific area on the cylindrical inner peripheral surface according to the second aspect of the present invention is to capture the specific area on the cylindrical inner peripheral surface with a camera, subject the captured image to image processing by a computer, and An appearance inspection method for determining the quality of the appearance of the surface based on the quality determination criteria set for defects existing on the surface of the region,
Before performing the appearance inspection, a laser processing step of irradiating the surface of the specific region on the cylindrical inner peripheral surface with a laser beam and removing deposits adhering to the surface was included as a pretreatment step. It is characterized by.

請求項3に記載の本発明は、レーザ光が非熱レーザであることを特徴とする、請求項1又は2のいずれか1項に記載の筒状内周面における特定領域の外観検査方法である。
請求項4に記載の本発明は、前記特定領域の表面にレーザ光を照射するのに、ビームスプリッタ、プリズム又は反射鏡を用い、反射光として照射することを特徴とする、請求項1〜3のいずれか1項に記載の筒状内周面における特定領域の外観検査方法である。
The present invention described in claim 3 is a method for inspecting a specific region on a cylindrical inner peripheral surface according to any one of claims 1 and 2, wherein the laser beam is a non-thermal laser. is there.
The present invention according to claim 4 is characterized in that a beam splitter, a prism, or a reflecting mirror is used to irradiate the surface of the specific region with laser light, and is irradiated as reflected light. It is an external appearance inspection method of the specific area | region in the cylindrical internal peripheral surface of any one of these.

請求項1に記載の発明によれば、外観検査を行う前に、前処理工程として、前記筒状内周面における前記特定領域の表面にレーザ光を照射し、その表面に形成されている皮膜の「ムラ」又は該皮膜を除去するレーザ加工工程を前処理工程として含めている。ここに皮膜は、メッキ層、又は塗膜等の金属皮膜又は非金属皮膜等である。そして、前記特定領域における皮膜の「ムラ」又は該皮膜の除去は、レーザ加工によるため、簡易、効率的に行うことができる。すなわち、皮膜がメッキ層である場合において、内周面の選択的な特定領域について、酸性液の流し込みにより、その除去をする場合には、その除去の不要箇所へはマスキング等の作業手間がかかるなど困難であるのに対し、レーザ加工ではかかる問題もなく、それができるため、その簡易、効率的な除去ができる。また、皮膜が塗膜である場合の溶剤の塗布、流し込みによる場合でも、同様である。このように本発明によれば、当該特定領域のみを対象とする外観検査において、その表面に存在し、誤判定要因となっていた皮膜の「ムラ」やその被膜の存在による誤判定要因を簡易、効率的に除去できるから、その後の検査において正確な良否判定が得られる。なお、「ムラ」の除去とは、ムラをなくして、当該部分の表面を均一化し、誤判定要因を取り除くことを意味する。   According to the first aspect of the present invention, before the appearance inspection, as a pretreatment step, the surface of the specific region on the cylindrical inner peripheral surface is irradiated with laser light, and the film formed on the surface The laser processing step for removing the “unevenness” or the film is included as a pretreatment step. Here, the film is a plating film, a metal film such as a coating film, or a non-metal film. Then, the “unevenness” of the film in the specific region or the removal of the film is performed by laser processing, and can be easily and efficiently performed. That is, when the film is a plating layer, when removing a specific specific area on the inner peripheral surface by pouring an acidic solution, it takes time and labor to mask the unnecessary portion of the removal. However, laser processing does not have such a problem, and it can be easily and efficiently removed. The same applies to the case of solvent application and pouring when the film is a film. As described above, according to the present invention, in the appearance inspection for only the specific region, the “unevenness” of the film existing on the surface and causing the erroneous determination, and the erroneous determination factor due to the presence of the film can be simplified. Since it can be efficiently removed, an accurate pass / fail judgment can be obtained in the subsequent inspection. Note that “removal of“ unevenness ”means that unevenness is eliminated, the surface of the portion is made uniform, and an erroneous determination factor is removed.

このように、本発明ではレーザ加工工程の後に、上記外観検査を行うこととしているため、そのような皮膜に起因する、誤った「不良判定」の発生を有効に防止できる。これにより、コストの増大を招くことなく、特定領域についての正確な良否の判定ができる。なお、このようなレーザ加工による皮膜のムラ又は該皮膜の除去においては、検査対象物自体の素地(表面)や、その素地に存し、検出されるべき傷に影響が及ばない範囲で、それらの皮膜を蒸発等により除去し、或いは「ムラ」を除去して皮膜の表面を均一化できるように、皮膜の材質等に応じ、出力、走査速度等、照射するレーザ光の照射条件を設定すればよい。   Thus, in the present invention, since the appearance inspection is performed after the laser processing step, it is possible to effectively prevent the occurrence of erroneous “defect determination” due to such a film. Thereby, it is possible to accurately determine whether the specific area is good or not without causing an increase in cost. It should be noted that in the unevenness of the film by such laser processing or the removal of the film, the surface of the object to be inspected itself (surface) and the scratches to be detected are not affected as long as they are present on the base. Depending on the film material, etc., the irradiation conditions of the laser beam to be irradiated should be set according to the film material so that the film surface can be removed by evaporation, etc., or the surface of the film can be made uniform by removing “unevenness”. That's fine.

請求項2に記載の本発明によれば、外観検査を行う前に、前処理工程として、前記筒状内周面における前記特定領域の表面にレーザ光を照射し、その表面に付着している付着物を除去するレーザ加工工程を含めている。本発明では、このような付着物の除去も、レーザ加工によるため、当該特定領域の表面のみを対象として、そこに存在する付着物を洗浄剤の流し込み等の手法による除去に比べ、容易に実現できる。そして、その除去後に上記外観検査を行うこととしているため、そのような付着物に起因する、誤った「不良判定」の発生を有効に防止できるから、特定領域についての正確な良否の判定ができる。なお、このようなレーザ加工による付着物の除去においても、検査対象の素地(表面)やそこに存し、検出されるべき傷に影響が及ばない範囲で、付着物の種類(油、酸化物、金属粉等)に応じ、それらを融解等させて蒸発させることのできるよう、出力、走査速度等、照射するレーザ光の照射条件を設定すればよい。   According to this invention of Claim 2, before performing an external appearance inspection, as a pre-processing process, the surface of the said specific area | region in the said cylindrical internal peripheral surface is irradiated with a laser beam, and it adheres to the surface Includes a laser processing step to remove deposits. In the present invention, since the removal of such deposits is also performed by laser processing, only the surface of the specific region is targeted, and the deposits existing there are easily realized compared to removal by a method such as pouring of a cleaning agent. it can. Since the appearance inspection is performed after the removal, it is possible to effectively prevent the occurrence of an erroneous “defect determination” due to such deposits, and therefore it is possible to accurately determine whether the specific area is good or bad. . In addition, even in the removal of deposits by such laser processing, the type of deposit (oil, oxide) as long as it does not affect the substrate (surface) to be inspected and the scratches to be detected. Depending on the metal powder, etc., the irradiation conditions of the laser beam to be irradiated, such as the output and the scanning speed, may be set so that they can be melted and evaporated.

上述したことから明らかなように、請求項1,2に記載の本発明によれば、特定領域について、微小な欠陥(凹凸や表面傷)も不良と判定したいような高い(厳しい)検査水準とする場合であっても、低コストで信頼性の高い外観検査を実現できる。なお、照射するレーザ光は、公知の各種のものを用いることができるが、請求項3に記載のように、非熱レーザを用いるのが好ましい。検査対象である筒状内周面への熱的影響の回避に有効だからである。また、検査対象である筒状内周面が、例えば、同心異径の円筒面であり、特定領域の表面が、その異径境界における円環状棚面(円環状の急テーパ面)であるような場合には、その棚面が向く方に位置する、大径の筒状内周面の開口端側からレーザ光を照射することで、直接、特定領域の表面であるその円環状棚面をレーザ加工できるが、筒状内周面における前記特定領域が、筒状内周面の軸線(中央)側を向きその軸線に平行な内周面(以下、平行内周面)のように、直接照射するのが困難、又はできないようなときは、請求項4に記載のように、ビームスプリッタ、プリズム又は反射鏡を用い、反射光として照射するのがよい。   As is apparent from the above description, according to the present invention described in claims 1 and 2, for a specific region, a high (severe) inspection level for which a minute defect (unevenness or surface flaw) is desired to be determined as bad. Even in this case, it is possible to realize a low-cost and highly reliable appearance inspection. In addition, although various well-known things can be used for the laser beam to irradiate, it is preferable to use a non-thermal laser as described in Claim 3. This is because it is effective in avoiding thermal influence on the cylindrical inner peripheral surface to be inspected. Further, the cylindrical inner peripheral surface to be inspected is, for example, a concentric and different diameter cylindrical surface, and the surface of the specific region is an annular shelf surface (annular steeply tapered surface) at the different diameter boundary. In that case, the annular shelf surface, which is the surface of the specific region, is directly irradiated by irradiating laser light from the opening end side of the large-diameter cylindrical inner peripheral surface located in the direction in which the shelf surface faces. Laser processing is possible, but the specific area on the cylindrical inner peripheral surface is directed directly toward the axis (center) side of the cylindrical inner peripheral surface and parallel to the axis (hereinafter referred to as a parallel inner peripheral surface). When it is difficult or impossible to irradiate, it is preferable to use a beam splitter, a prism or a reflecting mirror as described in claim 4 to irradiate as reflected light.

本発明を具体化した実施の形態例の説明図であって、左図(A)は、半断面で示した円筒部材の筒状内周面における特定領域(上方向き円環状棚面)をレーザ加工する状態の説明用概念図、右図(B)はレーザ加工後に特定領域をカメラで撮像する状態の説明用概念図。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the embodiment which actualized this invention, Comprising: The left figure (A) is a laser of the specific area | region (upward-facing annular shelf surface) in the cylindrical internal peripheral surface of the cylindrical member shown with the half cross section. A conceptual diagram for explaining a state to be processed, and a right diagram (B) is a conceptual diagram for explaining a state in which a specific area is imaged by a camera after laser processing. 図1のレーザ加工において、DOEを用いて複数の分岐レーザ光として特定領域をレーザ加工をする状態の説明用概念図(断面図)。In the laser processing of FIG. 1, the conceptual diagram (sectional drawing) for description of the state which laser-processes a specific area | region as a some branching laser beam using DOE. 図1の円筒部材の筒状内周面における特定領域(平行円筒面)をレーザ加工する状態の説明用概念図(断面図)。The conceptual diagram (sectional drawing) for description of the state which laser-processes the specific area | region (parallel cylindrical surface) in the cylindrical internal peripheral surface of the cylindrical member of FIG.

本発明を具体化した実施の形態例について、図1に基づいて詳細に説明する。ただし、本例では、外観検査の検査対象物が、図1に示したような貫通状の円筒部材(鉄鋼製の異径円筒部材)10であり、外径が一定で、その筒状内周面(円筒状内周面)11が、上下における下端寄り部位が、相対的に小径の小内径部(小内周面)13をなし、この小内径部13とその上方の大内径部(大内周面)15との境界に、図示したような、急先すぼまりテーパの上方向き円環状棚面(段部)14を備えている異径円筒部材とする(図1のS1−S1断面参照)。このような円筒部材10は、冷間鍛造及び切削加工等を経て形成されたものであり、本例では、その加工後、内外の全面(全表面)に皮膜として電気メッキにより、図示はしないがメッキ層(例えば、ニッケルメッキ層)が形成されている。そして、このメッキ層の形成されている内周面のうち、上方向き円環状棚面(以下、円環状棚面ともいう)14を外観検査の対象である特定領域とし、この特定領域の表面であるメッキ層(表面)に「ムラ」が存在し、その「ムラ」が画像処理において不良の誤判定を招く要因となる可能性が高いため、その「ムラ」をレーザ光の照射によって除去し、そのメッキ層の表面を均一化し、その後において、円環状棚面(表面)14に、不良と判定すべき傷(微小なクラック、凹み、皺等)が存在するか否かの外観検査をするものとする。ただし、本例で使用するレーザは非熱レーザとする。   An embodiment of the present invention will be described in detail with reference to FIG. However, in this example, the inspection object of the appearance inspection is a penetrating cylindrical member 10 (different diameter cylindrical member made of steel) as shown in FIG. 1, the outer diameter is constant, and its cylindrical inner periphery The surface (cylindrical inner peripheral surface) 11 has a small inner diameter portion (small inner peripheral surface) 13 having a relatively small diameter at the upper and lower ends, and the small inner diameter portion 13 and a large inner diameter portion (large A cylindrical member having a different diameter is provided with an upward circular shelf surface (step portion) 14 having a sharp taper taper at the boundary with the inner peripheral surface 15 as shown in the figure (S1-S1 in FIG. 1). See section). Such a cylindrical member 10 is formed through cold forging, cutting, and the like. In this example, after the processing, the entire inner and outer surfaces (all surfaces) are electroplated as a film, although not shown. A plating layer (for example, a nickel plating layer) is formed. Of the inner peripheral surface on which the plating layer is formed, an upwardly facing annular shelf surface (hereinafter also referred to as an annular shelf surface) 14 is set as a specific region to be subjected to appearance inspection, and the surface of the specific region is Since there is “unevenness” in a certain plating layer (surface), and the “unevenness” is likely to cause a misjudgment of defect in image processing, the “unevenness” is removed by laser light irradiation, The surface of the plating layer is made uniform, and then an appearance inspection is performed to determine whether or not there are any scratches (small cracks, dents, wrinkles, etc.) to be judged as defective on the annular shelf surface (surface) 14. And However, the laser used in this example is a non-thermal laser.

このような本例では、この外観検査に先立ち、次のようにして、円環状棚面14のメッキ層(表面)の「ムラ」を除去する。円筒部材10を検査テーブル20上に垂直に起立させて位置決め、固定する。一方、図1の左図(A)に示したように、レーザ光Laを発振するレーザ発振器(ヘッド)100を、円筒部材10の上方に配置しておき、図中、太い破線で示したようにレーザ光Laを、円筒部材10の上方から、その内部の上方向き円環状棚面14に向けて所定の照射スポット(集光点)径で照射できるように設定しておく。この照射スポット径はレーザの出力や、円環状棚面14への熱的影響等を考慮し、メッキ層(表面)の「ムラ」の除去に適するように適度に設定する。他方、円筒部材10は、検査テーブル20の回転により、円筒部材10の軸線G回りに適度の速度で回転でき、レーザ光Laが、円環状棚面14を周回状に走査(移動)されるように設定されている。なお、レーザ光の照射における光軸は、円筒部材10の軸線(中心軸)Gに平行又は略平行となるようにしてもよいが、本例では、円環状棚面14が、上記したようなテーパ(軸線Gに垂直な平面に対し約30度)をなしていること等から、そのテーパにおける母線に垂直となるように、或いは、それに近くなるように、軸線Gに対し傾斜させる設定とされている。   In this example, prior to this appearance inspection, “unevenness” of the plating layer (surface) of the annular shelf surface 14 is removed as follows. The cylindrical member 10 is vertically positioned on the inspection table 20 to be positioned and fixed. On the other hand, as shown in the left figure (A) of FIG. 1, a laser oscillator (head) 100 that oscillates a laser beam La is arranged above the cylindrical member 10 and is shown by a thick broken line in the figure. The laser beam La is set so that it can be irradiated from above the cylindrical member 10 toward the upward circular shelf surface 14 inside the cylindrical member 10 with a predetermined irradiation spot (condensing point) diameter. This irradiation spot diameter is appropriately set so as to be suitable for removing “unevenness” of the plating layer (surface) in consideration of laser output, thermal influence on the annular shelf surface 14 and the like. On the other hand, the cylindrical member 10 can be rotated at an appropriate speed around the axis G of the cylindrical member 10 by the rotation of the inspection table 20 so that the laser beam La scans (moves) the annular shelf surface 14 in a circular manner. Is set to The optical axis in laser light irradiation may be parallel or substantially parallel to the axis (center axis) G of the cylindrical member 10, but in this example, the annular shelf surface 14 is as described above. Since it is tapered (about 30 degrees with respect to a plane perpendicular to the axis G), it is set to be inclined with respect to the axis G so that it is perpendicular to or close to the generatrix of the taper. ing.

このような本例では、上記の設定、段取りの後に、レーザ発振器100を駆動してレーザ光Laを円環状棚面14に、所定の照射スポット径で照射する。この照射開始から、検査テーブル20の回転により、円筒部材10をその軸線G回りに回転させ、レーザ光Laを相対的に円環状棚面14において周方向に周回、走査させる。ただし、この照射過程では、円環状棚面14の全面(全体)が均一にレーザ光Laにて走査されるように、そのスポット径との関係で、例えば、円環状棚面14における外周縁寄り部位から順次、内周縁寄り部位に向かうよう、その半径方向において照射位置を変え、集光点が異なる円周上において移動するように、レーザ光Laの照射角度、又はレーザ発振器100の位置を変更する。かくして、所定の照射によるレーザ加工を実施することにより、上方向き円環状棚面14におけるメッキ層の「ムラ」がレーザ加工によって除去され、その表面の均一化が図られる。   In this example, after the above setting and setting, the laser oscillator 100 is driven to irradiate the annular shelf surface 14 with the laser beam La with a predetermined irradiation spot diameter. From the start of the irradiation, the cylindrical member 10 is rotated around its axis G by the rotation of the inspection table 20, and the laser light La is rotated around the annular shelf surface 14 in the circumferential direction and scanned. However, in this irradiation process, for example, near the outer peripheral edge of the annular shelf surface 14 in relation to the spot diameter so that the entire surface (entire) of the annular shelf surface 14 is uniformly scanned with the laser beam La. The irradiation position of the laser beam La or the position of the laser oscillator 100 is changed so that the irradiation position is changed in the radial direction so as to go from the part sequentially toward the inner peripheral part, and the condensing point moves on a different circumference. To do. Thus, by performing laser processing by predetermined irradiation, the “unevenness” of the plating layer on the upwardly facing annular shelf surface 14 is removed by laser processing, and the surface is made uniform.

なお、このようなレーザ加工に用いられるレーザ光Laは、検出されるべきの本来の傷に影響ないし変化を与えず、メッキ層の「ムラ」を除去させ得るように、メッキ層(本例ではNiメッキ)の種類(材質、融点)や厚み等に応じ、その表面層を微量な厚み範囲で融解ないし蒸発させ得る出力等にその条件を設定すればよい。これは、試験照射(試験レーザ加工)を繰り返す等に基づき、所望とする均一化(「ムラ」の除去)が得られる条件範囲を割り出すことで設定できる。因みに、本例では、Niメッキ層の厚み(設計値)が1〜10μmであり、レーザ発振器(本例ではYAGレーザ(基本波長:1064nm))等の条件は、波長:355nm,出力:1.4w(100%出力約4w)、周波数:100kHz,走査速度:400mm/s、4μmピッチのパルスレーザである。   It should be noted that the laser beam La used for such laser processing does not affect or change the original scratch to be detected, and can remove the “unevenness” of the plating layer (in this example, Depending on the type (material, melting point), thickness, etc. of the Ni plating, the condition may be set to an output that can melt or evaporate the surface layer in a very small thickness range. This can be set by determining a condition range in which desired uniformity (removal of “unevenness”) can be obtained based on repeated test irradiation (test laser processing) or the like. Incidentally, in this example, the thickness (design value) of the Ni plating layer is 1 to 10 μm, and the conditions of the laser oscillator (YAG laser (basic wavelength: 1064 nm) in this example) are: wavelength: 355 nm, output: 1. This is a pulse laser of 4 w (100% output about 4 w), frequency: 100 kHz, scanning speed: 400 mm / s, 4 μm pitch.

このような本例では、内周面における特定領域である上方向き円環状棚面14において、不良の誤判定要因となっていたメッキ層の「ムラ」を、上記したレーザ加工で簡易、効率的に除去できる。すなわち、レーザ加工で、そのメッキ層の表面を融解又は燃焼させて蒸発させることで、その表面のムラを除去し、表面の均一化を図るものであるから、従来におけるような酸性液の流し込み等により、内周面の一部分(上方向き円環状棚面14)の「ムラ」の除去を図る手法に比べ、簡易、効率的にその「ムラ」の除去、すなわち、表面の均一化が図られる。これにより、このレーザ加工工程の後で、筒状内周面11における特定領域である上方向き円環状棚面14を外観検査すればよい。   In this example, in the upward annular shelf surface 14 that is a specific region on the inner peripheral surface, the “unevenness” of the plating layer, which has been a cause of erroneous determination of defects, can be easily and efficiently performed by the laser processing described above. Can be removed. That is, the surface of the plating layer is melted or burned and evaporated by laser processing to remove the unevenness of the surface and to make the surface uniform. As a result, the “unevenness” can be easily and efficiently removed, that is, the surface can be made uniform, in comparison with the technique for removing the “unevenness” from a part of the inner peripheral surface (the upward-facing annular shelf surface 14). Thereby, after this laser processing step, the upward-circular annular shelf surface 14 which is a specific region on the cylindrical inner peripheral surface 11 may be visually inspected.

すなわち、図1の右図(B)に示したように、円筒部材10の上方に配置したカメラ200にて、軸線Gに沿って上方向き円環状棚面14を撮像し、撮像した画像をコンピュータによって画像処理し、該上方向き円環状棚面14に存在する欠陥について予め設定されている良否判定基準に基づき、該表面の外観の良否を判定する外観検査を行えばよい。そして、この検査では、その前処理工程である上記したレーザ加工により、メッキ層の「ムラ」が除去されているのであるから、従来においてそのムラに起因して発生していた、誤った「不良判定」の発生が防止される。すなわち、誤った「不良判定」要因である「ムラ」がなくなっているため、本来の傷が特定領域(上方向き円環状棚面14)に存在する場合にはその傷が顕在化する。したがって、そのような傷のみを基準として、画像処理における「不良判定」基準(例えば、2値化処理における閾値)を設定すればよいから、誤った「不良判定」の発生防止が図られ、正確な良否の判定を行うことができる。   That is, as shown in the right figure (B) of FIG. 1, the camera 200 disposed above the cylindrical member 10 images the upward circular shelf surface 14 along the axis G, and the captured image is a computer. Then, the image processing is performed, and the appearance inspection for determining the quality of the appearance of the surface is performed based on the quality determination criteria set in advance for the defects existing on the upward circular shelf surface 14. In this inspection, the “unevenness” of the plating layer has been removed by the laser processing described above, which is the pre-processing step. Therefore, an erroneous “defect” that has occurred in the past due to the unevenness. The occurrence of “determination” is prevented. That is, since the “unevenness” that is an erroneous “defect determination” factor has disappeared, if the original flaw exists in the specific region (the upward-circular annular shelf surface 14), the flaw becomes obvious. Therefore, since it is only necessary to set a “defect determination” criterion in image processing (for example, a threshold value in binarization processing) using only such a scratch as a reference, it is possible to prevent erroneous “defect determination” from occurring. It is possible to make a pass / fail judgment.

上記例のレーザ加工においては、図2に示したように、DOE(回析光学素子)120を用いることで、1つのレーザ光Laを複数に分岐して行うこともできる。すなわち、円筒部材10の例えば軸線(中心軸)Gに沿って、レーザ光Laを照射し、DOE(回析光学素子)120に入射させ、そのレーザ光(入射光)Laを、例えば、中心軸Gと同軸の円周上において等角度間隔で複数に分岐した複数の分岐レーザ光Labとし、これを集光レンズ140を介し、上方向き円環状棚面14における周方向の多数箇所を一度に照射するようにしてもよい。このようにすれば、円筒部材10等との相対的な軸線G回りの回転と組み合わせることにしても、短時間で、円環状棚面14の全体のレーザ加工ができる。   In the laser processing of the above example, as shown in FIG. 2, by using a DOE (diffraction optical element) 120, one laser beam La can be branched into a plurality of parts. That is, for example, the laser beam La is irradiated along the axis (center axis) G of the cylindrical member 10 to enter the DOE (diffraction optical element) 120, and the laser light (incident light) La is, for example, center axis A plurality of branched laser beams Lab branched into a plurality at equal angular intervals on a circumference coaxial with G, and this is irradiated at once to a plurality of circumferential locations on the upward circular shelf surface 14 via the condenser lens 140. You may make it do. In this way, even when combined with the rotation around the axis G relative to the cylindrical member 10 or the like, the entire laser processing of the annular shelf surface 14 can be performed in a short time.

上記例では、皮膜であるメッキ層の「ムラ」を除去し、その表面の均一化を図ることとした場合で説明したが、皮膜が塗膜であり、それに「ムラ」がある場合においても、上記したのと同様にレーザ加工をすることで、その「ムラ」の除去(表面の均一化)を図ることができる。なお、このような場合にも、レーザの照射条件は、その皮膜(塗膜)の材質、厚み等に応じて、その除去が効率的にできるように設定すればよい。また、上記例では、皮膜の表面の「ムラ」を除去する場合で説明したが、検査対象物における特定領域に形成されているメッキ層又は塗膜(皮膜)自体を素地から除去してもよいような場合には、その皮膜全体(層の厚み全体)をレーザ加工により除去してもよい。そして、このような場合にも、皮膜の下の素地自体に影響ないし変化が出ず、皮膜のみが除去されるように、レーザ加工の条件設定をすればよい。なお、周方向における一部の部分のみの「ムラ」や被膜を除去したい場合には、その部分のみを特定領域としてレーザ光を照射すればよい。   In the above example, the case where the “unevenness” of the plating layer, which is a film, is removed and the surface is made uniform has been described, but even when the film is a coating film and there is “unevenness”, By performing laser processing in the same manner as described above, the “unevenness” can be removed (the surface can be made uniform). Even in such a case, the laser irradiation conditions may be set so that the removal can be efficiently performed according to the material, thickness, and the like of the film (coating film). In the above example, the case where the “unevenness” on the surface of the film is removed has been described. However, the plating layer or the coating film (film) itself formed in a specific region of the inspection object may be removed from the substrate. In such a case, the entire coating (entire layer thickness) may be removed by laser processing. In such a case, laser processing conditions may be set so that only the coating is removed without affecting or changing the substrate itself under the coating. If it is desired to remove “unevenness” or a coating only on a part of the circumferential direction, the laser light may be irradiated with only that part as a specific region.

上記例では、切削等による加工後の円筒部材10に、メッキ等の皮膜の形成(皮膜処理)がなされている場合で説明したが、上記したような円筒部材10でも、このような皮膜の形成をしない段階のものにおいて、その上方向き円環状棚面(素地)14における傷の有無を検査することがある。この検査においても、その面に付着物(異物)が付着しているために、不良と誤判定されるのを防止したい場合には、その上方向き円環状棚面14に、上記したのと同様にしてレーザ光を照射して、その付着物を除去するレーザ加工をすればよい。   In the above example, the cylindrical member 10 that has been processed by cutting or the like has been described as being formed with a film such as plating (film treatment). However, even with the cylindrical member 10 described above, such a film is formed. In the stage where the process is not performed, the upward circular shelf surface (base) 14 may be inspected for damage. Also in this inspection, if an object (foreign matter) is attached to the surface and it is desired to prevent it from being erroneously determined to be defective, the upward-circular annular shelf surface 14 is similar to that described above. Then, laser processing may be performed to remove the deposits by irradiating the laser beam.

このようなレーザ加工による付着物の除去は、その付着物をレーザで融解又は燃焼させて蒸発させるのであるから、従来における洗浄剤の流し込み等により、洗浄して除去する手法に比べて、簡易、効率的にその除去ができる。なお、このような付着物の除去においても、外観検査の対象となるべき素地、及び、素地に存する微小クラックや凹み等の傷に影響ないし変化を与えず、目的の付着物のみが除去されるように、その付着物に応じ適する必要な出力のレーザ光を、適度の走査速度で照射するなど、その加工条件を設定すればよい。そして、このようなレーザ加工により付着物を除去した後は、上記したのと同様に、上方向き円環状棚面をカメラにより撮像し、画像処理等することによる外観検査をすることにより、付着物の存在(付着)に起因する、誤った「不良判定」の発生防止が図られるから、正確な検査をすることができる。   The removal of the deposits by such laser processing is simpler than the conventional method of cleaning and removing the deposits by melting or burning them with a laser and evaporating them. It can be removed efficiently. Even in the removal of such deposits, only the target deposits are removed without affecting or changing the substrate to be subjected to visual inspection and scratches such as microcracks and dents existing on the substrate. In this way, the processing conditions may be set, for example, by irradiating a laser beam with a necessary output suitable for the attached matter at an appropriate scanning speed. Then, after removing the deposits by such laser processing, the deposits are taken by performing an appearance inspection by taking an image of the upward circular shelf surface with a camera and performing image processing in the same manner as described above. Since the occurrence of erroneous “defect determination” due to the presence (attachment) is prevented, an accurate inspection can be performed.

さて次に、検査対象物は上記例における円筒部材10と同じであるが、その検査対象である特定領域が、上記例における上方向き円環状棚面14ではない場合のレーザ加工について、図3を参照しながら説明する。図3では、検査対象である特定領域が、筒状内周面11のうち、軸線Gを向くその軸線Gに平行な平行内周面(筒内壁面)の一部(図3中の1点鎖線で挟まれる領域)17の場合である。この場合でも、直接、レーザ光Laを照射することができないことはないが、筒状内周面11が細長く、特定領域17も上端の開口から遠方となる等により、直接の照射が好ましくないか、困難な場合には、図3に示したように、円筒部材10内に反射鏡160を内挿、配置するようにし、レーザ発振器100からのレーザ光Laによる照射における光軸を例えば円筒部材10の中心軸Gに一致させ、その反射鏡160に入射させて反射させ、レーザ光Laを、例えば、90度方向転換させて、特定領域17である筒内壁面に直角に照射させるようにすればよい。   Next, although the inspection object is the same as the cylindrical member 10 in the above example, FIG. 3 shows the laser processing when the specific region to be inspected is not the upward annular shelf surface 14 in the above example. The description will be given with reference. In FIG. 3, the specific region to be inspected is a part of the cylindrical inner peripheral surface 11 that is parallel to the axis G facing the axis G (inner cylindrical wall surface) (one point in FIG. 3). This is the case of the region 17 between the chain lines. Even in this case, it is not impossible to directly irradiate the laser beam La, but is direct irradiation unfavorable because the cylindrical inner peripheral surface 11 is elongated and the specific region 17 is far from the opening at the upper end? If difficult, as shown in FIG. 3, the reflecting mirror 160 is inserted and arranged in the cylindrical member 10, and the optical axis in the irradiation with the laser light La from the laser oscillator 100 is, for example, the cylindrical member 10. If the laser beam La is rotated by 90 degrees, for example, to irradiate the inner wall surface of the specific region 17 at a right angle. Good.

すなわち、特定領域17がこのような部位のように直接照射するのが困難か、できないような場合には、このように反射鏡160を用いて照射すればよい。そして、このような場合においても、円筒部材10をその軸線G回りに適度の回転速度で回転させることで、レーザ光Laを筒状内周面11において周方向に走査させることができる。なお、このような場合には特定領域17の軸線G方向の大きさ(範囲)に応じて、その1回転の走査の終了ごと、円筒部材10を、軸線G方向(図中、上下の矢印で示した方向)に、照射スポット径に応じ、適量ずつ移動する(ずらす)ことで、必要な範囲(特定領域17)の照射を行うことができる。なお、この移動は、検査テーブル20の上下動によればよい。   In other words, when it is difficult or impossible to directly irradiate the specific region 17 like such a portion, the reflecting mirror 160 may be used for irradiation. Even in such a case, the laser beam La can be scanned in the circumferential direction on the cylindrical inner peripheral surface 11 by rotating the cylindrical member 10 around the axis G at an appropriate rotational speed. In such a case, depending on the size (range) of the specific region 17 in the direction of the axis G, the cylindrical member 10 is moved in the direction of the axis G (up and down arrows in the figure) at the end of one scanning. By moving (shifting) an appropriate amount in the indicated direction in accordance with the irradiation spot diameter, irradiation in a necessary range (specific region 17) can be performed. This movement may be performed by moving the inspection table 20 up and down.

前記したレーザ加工において用いる反射鏡は、プリズムでもビームスプリッタでもよい。また、前記したレーザ加工におけるように反射鏡を用いる場合にも、レーザ発振器100から発振される1つのレーザ光Laを、DOEを用いて複数のレーザ光に分岐し、それぞれ集光し、反射鏡(複数の反射鏡、又は上向き円錐状の反射鏡)にて反射させて、円筒内周面における周方向において、角度間隔をおいて複数個所同時に照射することとしてもよい。また、ビームスプリッタを用いる場合には、例えば、1つのビームスプリッタ(ハーフミラー)を介して、1/2の光量として平行内周面(筒内壁面)に向けて照射し、透過する1/2の光量を別途、反射鏡で、筒状内周面11における半径方向の例えば、逆方向に照射するようにしてもよい。こうすることで、上下方向のズレは生じるが、対向する管内壁面に同時に照射できるため、特定領域が上下方向において広い範囲ととなる場合に好適である。なお、このようなレーザ加工後においては、その検査対象である特定領域17を、円筒部材10の上方からカメラで撮像することで、上記したのと同様に外観検査ができる。なお、この場合には、円筒部材10内に反射鏡を配置して、平行内周面(筒内壁面の特定領域17)を撮像し、その画像データに基づいて外観検査をすればよい。   The reflecting mirror used in the laser processing described above may be a prism or a beam splitter. Also, when using a reflecting mirror as in the laser processing described above, one laser beam La oscillated from the laser oscillator 100 is branched into a plurality of laser beams using a DOE, and is condensed and reflected. The light may be reflected by (a plurality of reflecting mirrors or an upward conical reflecting mirror) and irradiated at a plurality of locations at an angular interval in the circumferential direction on the inner circumferential surface of the cylinder. When a beam splitter is used, for example, the light is irradiated and transmitted through one beam splitter (half mirror) toward the parallel inner peripheral surface (inner cylinder wall surface) as a half light amount. Alternatively, the light amount may be irradiated with a reflecting mirror in the radial direction of the cylindrical inner peripheral surface 11, for example, in the opposite direction. By doing so, although a vertical shift occurs, the opposing inner wall surfaces of the pipe can be irradiated at the same time, which is suitable when the specific region is a wide range in the vertical direction. In addition, after such laser processing, appearance inspection can be performed in the same manner as described above by imaging the specific region 17 to be inspected with a camera from above the cylindrical member 10. In this case, a reflecting mirror may be disposed in the cylindrical member 10 to image the parallel inner peripheral surface (the specific region 17 on the cylinder inner wall surface), and the appearance inspection may be performed based on the image data.

上記各例では、検査対象物を円筒部材とし、その筒状内周面における特定領域の外観検査をする場合で説明したが、本発明は、筒状内周面(又は部材の穴の内周面)の異径、同径、或いはテーパの有無等にかかわらず、そして、その横断面の形状に限定されることなく、またその深さ(筒状内周面の長さ)の長短等にかかわらず、各種形状の横断面を有する筒状内周面における特定領域の外観検査に広く適用できる。すなわち、本発明では、コンピュータによる画像処理を用いた外観検査において、その外観検査に先立ち、検査対象の特定領域において存在するメッキのムラのような、誤った不良判定を招くような誤判定要因を、事前に各種のレーザ(YAGレーザ、半導体レーザ、CO2レーザ等)によるレーザ加工で除去する工程を含めることのできる筒状内周面における特定領域の外観検査に広く適用できる。なお、このようなレーザの発振モードは、除去対象に応じて連続発振又はパルス発振(パルス幅)を選択すればよい。   In each of the above examples, the inspection object is a cylindrical member, and the case where the appearance inspection of the specific area on the cylindrical inner peripheral surface is performed has been described. However, the present invention is not limited to the cylindrical inner peripheral surface (or the inner periphery of the hole of the member). Regardless of whether the surface has different diameters, the same diameter, the presence or absence of taper, etc., and not limited to the shape of the cross section, the length (the length of the cylindrical inner peripheral surface), etc. Regardless, the present invention can be widely applied to the appearance inspection of a specific region on the cylindrical inner peripheral surface having various cross sections. In other words, in the present invention, in the appearance inspection using image processing by a computer, an erroneous determination factor that causes an erroneous defect determination such as plating unevenness existing in a specific region to be inspected prior to the appearance inspection. The method can be widely applied to the appearance inspection of a specific region on the cylindrical inner peripheral surface, which can include a step of removing by laser processing with various lasers (YAG laser, semiconductor laser, CO2 laser, etc.) in advance. Note that such a laser oscillation mode may be selected from continuous oscillation or pulse oscillation (pulse width) according to the removal target.

10 円筒部材(検査対象物)
11 筒状内周面(内面)
14 上方向き円環状棚面(筒状内周面における特定領域)
17 筒状内周面における特定領域
100 カメラ
160 反射鏡
La,Lab レーザ光
10 Cylindrical member (inspection object)
11 Cylindrical inner peripheral surface (inner surface)
14 upward circular shelf surface (specific region on the cylindrical inner peripheral surface)
17 Specific area 100 in cylindrical inner peripheral surface Camera 160 Reflector La, Lab Laser light

Claims (4)

筒状内周面における特定領域をカメラで撮像し、撮像した画像をコンピュータによって画像処理し、該特定領域の表面に存在する欠陥について設定されている良否判定基準に基づき、該表面の外観の良否を判定する外観検査方法であって、
その外観検査を行う前に、前記筒状内周面における前記特定領域の表面にレーザ光を照射し、その表面に形成されている皮膜のムラ又は該皮膜を除去するレーザ加工工程を前処理工程として含めたことを特徴とする、筒状内周面における特定領域の外観検査方法。
The specific area on the cylindrical inner peripheral surface is imaged by a camera, the captured image is processed by a computer, and the quality of the appearance of the surface is determined based on the quality criteria set for defects present on the surface of the specific area An appearance inspection method for determining
Before performing the appearance inspection, the surface of the specific region on the cylindrical inner peripheral surface is irradiated with laser light, and the film unevenness formed on the surface or the laser processing step for removing the film is a pretreatment step. An appearance inspection method for a specific region on a cylindrical inner peripheral surface, characterized in that
筒状内周面における特定領域をカメラで撮像し、撮像した画像をコンピュータによって画像処理し、該特定領域の表面に存在する欠陥について設定されている良否判定基準に基づき、該表面の外観の良否を判定する外観検査方法であって、
その外観検査を行う前に、前記筒状内周面における前記特定領域の表面にレーザ光を照射し、その表面に付着している付着物を除去するレーザ加工工程を前処理工程として含めたことを特徴とする、筒状内周面における特定領域の外観検査方法。
The specific area on the cylindrical inner peripheral surface is imaged by a camera, the captured image is processed by a computer, and the quality of the appearance of the surface is determined based on the quality criteria set for defects present on the surface of the specific area An appearance inspection method for determining
Before performing the appearance inspection, a laser processing step of irradiating the surface of the specific region on the cylindrical inner peripheral surface with a laser beam and removing deposits adhering to the surface was included as a pretreatment step. A method for inspecting the appearance of a specific area on a cylindrical inner peripheral surface.
レーザ光が非熱レーザであることを特徴とする、請求項1又は2のいずれか1項に記載の筒状内周面における特定領域の外観検査方法。   3. The appearance inspection method for a specific region on a cylindrical inner peripheral surface according to claim 1, wherein the laser beam is a non-thermal laser. 前記特定領域の表面にレーザ光を照射するのに、ビームスプリッタ、プリズム又は反射鏡を用い、反射光として照射することを特徴とする、請求項1〜3のいずれか1項に記載の筒状内周面における特定領域の外観検査方法。   The cylindrical shape according to any one of claims 1 to 3, wherein a beam splitter, a prism, or a reflecting mirror is used to irradiate the surface of the specific region with a laser beam, and is reflected as reflected light. An appearance inspection method for a specific area on the inner peripheral surface.
JP2016090634A 2016-04-28 2016-04-28 Appearance inspection method for a specific area on the inner peripheral surface of a tubular member Active JP6903401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016090634A JP6903401B2 (en) 2016-04-28 2016-04-28 Appearance inspection method for a specific area on the inner peripheral surface of a tubular member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016090634A JP6903401B2 (en) 2016-04-28 2016-04-28 Appearance inspection method for a specific area on the inner peripheral surface of a tubular member

Publications (2)

Publication Number Publication Date
JP2017198583A true JP2017198583A (en) 2017-11-02
JP6903401B2 JP6903401B2 (en) 2021-07-14

Family

ID=60237800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016090634A Active JP6903401B2 (en) 2016-04-28 2016-04-28 Appearance inspection method for a specific area on the inner peripheral surface of a tubular member

Country Status (1)

Country Link
JP (1) JP6903401B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128443A (en) * 1989-10-13 1991-05-31 Kyushu Electric Power Co Inc Pipe interior inspecting device
JPH03128441A (en) * 1989-10-13 1991-05-31 Kyushu Electric Power Co Inc Optical inspecting device for pipeline
JPH1194763A (en) * 1997-09-22 1999-04-09 Sumitomo Electric Ind Ltd Method and apparatus for detecting defect by image processing
JP2002224875A (en) * 2001-01-31 2002-08-13 Tokyo Electric Power Co Inc:The Method for treating inner surface of piping
JP2005040809A (en) * 2003-07-24 2005-02-17 Toshiba Corp Laser beam irradiation device
JP2007039745A (en) * 2005-08-03 2007-02-15 Babcock Hitachi Kk Method for improving water vapor oxidation resistance of ferritic heat resistant steel, ferritic heat resistant steel having excellent water vapor oxidation resistance, and heat resistant steel for boiler
JP2009186193A (en) * 2008-02-01 2009-08-20 Daio Paper Corp Inspection device and inspection method for sheet roll
JP2013142596A (en) * 2012-01-10 2013-07-22 Toyota Central R&D Labs Inc Cylindrical inner surface detection optical system and cylindrical inner surface detector
JP2014210290A (en) * 2012-03-09 2014-11-13 株式会社トヨコー Laser irradiation device, laser irradiation system, and method for removing coating film or deposit
US20150190884A1 (en) * 2014-01-06 2015-07-09 Teledyne Instruments, Inc. Laser-ablation-based material analysis system with a power/energy detector

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128443A (en) * 1989-10-13 1991-05-31 Kyushu Electric Power Co Inc Pipe interior inspecting device
JPH03128441A (en) * 1989-10-13 1991-05-31 Kyushu Electric Power Co Inc Optical inspecting device for pipeline
JPH1194763A (en) * 1997-09-22 1999-04-09 Sumitomo Electric Ind Ltd Method and apparatus for detecting defect by image processing
JP2002224875A (en) * 2001-01-31 2002-08-13 Tokyo Electric Power Co Inc:The Method for treating inner surface of piping
JP2005040809A (en) * 2003-07-24 2005-02-17 Toshiba Corp Laser beam irradiation device
JP2007039745A (en) * 2005-08-03 2007-02-15 Babcock Hitachi Kk Method for improving water vapor oxidation resistance of ferritic heat resistant steel, ferritic heat resistant steel having excellent water vapor oxidation resistance, and heat resistant steel for boiler
JP2009186193A (en) * 2008-02-01 2009-08-20 Daio Paper Corp Inspection device and inspection method for sheet roll
JP2013142596A (en) * 2012-01-10 2013-07-22 Toyota Central R&D Labs Inc Cylindrical inner surface detection optical system and cylindrical inner surface detector
JP2014210290A (en) * 2012-03-09 2014-11-13 株式会社トヨコー Laser irradiation device, laser irradiation system, and method for removing coating film or deposit
US20150190884A1 (en) * 2014-01-06 2015-07-09 Teledyne Instruments, Inc. Laser-ablation-based material analysis system with a power/energy detector

Also Published As

Publication number Publication date
JP6903401B2 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
JP2009506813A (en) Stent automatic inspection device and automatic inspection method
JP5460149B2 (en) Steel pipe butt weld inner surface inspection apparatus and method
US9200978B2 (en) Establishing a wear state of a cutting nozzle
JP2002139447A (en) Surface inspection apparatus and manufacturing method for steel plate without very small irregularity
JP3592990B2 (en) Defect inspection device for rod-shaped cutting tools
JP2006138830A (en) Surface defect inspection device
JP2018179812A (en) Hole inside inspection device, and hole inside inspection method
JP2017198583A (en) Visual inspection method of specific area in cylindrical inner peripheral surface
JP2011220810A (en) Method for detecting metal defect and defect detection device
JPS59141008A (en) Threaded portion inspecting device
Abulhanov et al. Device for control of apertures surface of pipes of oil assortment
JP7219400B2 (en) WORK INSPECTION METHOD AND APPARATUS AND WORK MACHINING METHOD
JPH11326225A (en) Method and apparatus for inspecting tubular member
WO2004107268A1 (en) Method and system for detecting top surface non-uniformity of fasteners
JP5415162B2 (en) Cylindrical surface inspection equipment
JP3366682B2 (en) Hard disk defect detection method
JP2010145253A (en) Method for imaging cylindrical surface and obtaining rectangular plane image
JP4369276B2 (en) Chip shape inspection apparatus and chip inspection method for disk-shaped parts
JP2022014226A (en) Workpiece inspection method and device, and workpiece processing method
JP5803788B2 (en) Metal defect detection method
JP6402082B2 (en) Surface imaging apparatus, surface inspection apparatus, and surface imaging method
JP2000065749A (en) Apparatus for inspecting part surface having u-shaped groove
JPS61133843A (en) Surface inspector
Ono et al. Twin-illumination and subtraction technique for detection of concave and convex defects on steel pipes in hot condition
EP0459920B1 (en) Method of detecting defaults on metal tubes with internal helical ribs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210623

R150 Certificate of patent or registration of utility model

Ref document number: 6903401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350