JP2017169870A - Cardiopulmonary function measuring apparatus - Google Patents

Cardiopulmonary function measuring apparatus Download PDF

Info

Publication number
JP2017169870A
JP2017169870A JP2016059783A JP2016059783A JP2017169870A JP 2017169870 A JP2017169870 A JP 2017169870A JP 2016059783 A JP2016059783 A JP 2016059783A JP 2016059783 A JP2016059783 A JP 2016059783A JP 2017169870 A JP2017169870 A JP 2017169870A
Authority
JP
Japan
Prior art keywords
signals
heart rate
respiration
filter
cardiopulmonary function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016059783A
Other languages
Japanese (ja)
Inventor
雅明 後藤
Masaaki Goto
雅明 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2016059783A priority Critical patent/JP2017169870A/en
Publication of JP2017169870A publication Critical patent/JP2017169870A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a product cost, eliminate complexity in using algorithm or the like for selecting any one signal of I/Q signals, and stably measure a heart rate and a respiration rate.SOLUTION: A cardiopulmonary function measuring apparatus: converts A/D of I/Q signals output from a Doppler sensor 1; in a case of heartbeat measurement, causes the signals after the A/D conversion to pass through first filters 5a and 5b composed of BPFs for passing a frequency range of the heartbeat (in a case of respiration measurement, causing the signals to pass LPF or BPF with the frequency range of respiration defined as a pass band); inputs the I/Q signals in a heartbeat measuring part 6; performs FFT operation, for example, with the I signal defined as real part data and the Q signal defined as imaginary part data to calculate vibration amplitude; and calculates a heart rate (a respiration rate in a respiration measuring part) from the frequency of a peak value of the vibration amplitude.SELECTED DRAWING: Figure 1

Description

本発明は心肺機能測定装置、特にマイクロ波を利用したドップラーセンサを用いて、心拍数、呼吸数を測定する心肺機能測定装置に関する。   The present invention relates to a cardiopulmonary function measuring device, and more particularly to a cardiopulmonary function measuring device that measures a heart rate and a respiratory rate using a Doppler sensor using a microwave.

図5乃至図7に、従来のマイクロ波ドップラーセンサを使って心肺機能を測定する装置の各例が示されており、図5において、符号の1はドップラーセンサ、3はLPF(ローパスフィルタ)、4はAD(アナログ/デジタル)コンバータ、5は心拍の周波数範囲を通過帯域とするBPF(バンドパスフィルタ)、21はFFT(Fast Fourier Transform:高速フーリエ変換)演算部を有し心拍数を測定する心拍測定部、22は虚部データとして0を設定するゼロ設定部である。   5 to 7 show examples of devices for measuring cardiopulmonary function using a conventional microwave Doppler sensor. In FIG. 5, reference numeral 1 denotes a Doppler sensor, 3 denotes an LPF (low-pass filter), 4 is an AD (analog / digital) converter, 5 is a BPF (band pass filter) having a frequency range of heartbeats as a pass band, and 21 has an FFT (Fast Fourier Transform) operation unit to measure a heart rate. The heartbeat measuring unit 22 is a zero setting unit that sets 0 as imaginary part data.

図5の装置では、ドップラーセンサ1の出力をAD変換し、このAD変換後の信号を、図3のような心拍の周波数範囲Hrだけを通過させる周波数特性31を持つBPF5に通し、その後、心拍測定部21にてFFT演算(周波数変換)をすることにより、心拍数が測定される。即ち、心拍測定部21では、BPF5の出力を実部データとする一方、ゼロ設定部22からの0出力を虚部データとしてFFT演算が実施され、この結果からパワー計算が行われ、そのピーク値から心拍数が求められる。   In the apparatus of FIG. 5, the output of the Doppler sensor 1 is AD-converted, and the signal after AD conversion is passed through the BPF 5 having a frequency characteristic 31 that passes only the heartbeat frequency range Hr as shown in FIG. The heart rate is measured by performing FFT calculation (frequency conversion) in the measurement unit 21. That is, in the heartbeat measuring unit 21, while the output of the BPF 5 is used as real part data, the FFT calculation is performed using the 0 output from the zero setting unit 22 as imaginary part data. The heart rate is calculated from

図6,図7は、I,Q2つの出力信号を持つドップラーセンサを利用した心肺機能測定装置の例であり、図6において、ドップラーセンサ1から出力されたI,Q信号のいずれかを選択するセレクタ2が設けられる。この例では、セレクタ2でI,Qのいずれかの信号が選択され、選択された信号に基づいて心拍数が測定される。   6 and 7 are examples of a cardiopulmonary function measuring apparatus using a Doppler sensor having two output signals I and Q. In FIG. 6, one of the I and Q signals output from the Doppler sensor 1 is selected. A selector 2 is provided. In this example, the selector 2 selects either I or Q signal, and the heart rate is measured based on the selected signal.

図7の例では、I信号とQ信号のそれぞれを処理する2系統の構成が配置されており、LPF3a,3b、ADコンバータ4a,4b、BPF5a,5b、心拍測定部21a,21b、ゼロ設定部22a,22bが設けられ、最後に心拍測定部21a,21bのいずれかの出力を選択するセレクタ2が配置される。この例によれば、I,Qの両方の信号がFFT演算され、その2つの結果のいずれか一方の信号が心拍数として出力される。
なお、心肺機能測定装置では、呼吸数の測定も行われている。
In the example of FIG. 7, two systems for processing each of the I signal and the Q signal are arranged, and LPFs 3a and 3b, AD converters 4a and 4b, BPFs 5a and 5b, heart rate measuring units 21a and 21b, and a zero setting unit. 22a and 22b are provided, and finally a selector 2 for selecting one of the outputs of the heart rate measuring units 21a and 21b is arranged. According to this example, both I and Q signals are subjected to an FFT operation, and one of the two results is output as a heart rate.
In the cardiopulmonary function measuring apparatus, the respiratory rate is also measured.

特許5776817号公報Japanese Patent No. 5776817 特許5432254号公報Japanese Patent No. 5432254 特許5333427号公報Japanese Patent No. 5333427

しかしながら、図5のように、1(単一)出力のドップラーセンサ1を使った測定では、このセンサの出力信号が不安定になることがあり、I,Qの2つの信号を出力するドップラーセンサを使った図6のような構成の測定では、FFT演算の前にI,Qのいずれかの安定した信号を選ぶためのアルゴリズムが必要となり、煩雑となっていた。図7のような構成では、I,Qのそれぞれの信号に対応して2つの測定部(FFT演算部)21a,21bが必要となり、製品コストが2倍になると共に、2つのFFT演算の結果から、正しい値を導くアルゴリズムが必要となり、煩雑であるという問題があった。   However, as shown in FIG. 5, in the measurement using the 1 (single) output Doppler sensor 1, the output signal of this sensor may become unstable, and the Doppler sensor outputs two signals of I and Q. In the measurement with the configuration as shown in FIG. 6 using the algorithm, an algorithm for selecting a stable signal of either I or Q is required before the FFT calculation, which is complicated. In the configuration as shown in FIG. 7, two measurement units (FFT calculation units) 21a and 21b are required corresponding to each of the I and Q signals, the product cost is doubled, and the results of the two FFT calculations. Therefore, there is a problem that an algorithm for deriving a correct value is required, which is complicated.

本発明は上記問題点に鑑みてなされたものであり、その目的は、I,Q2つの出力信号を持つドップラーセンサを用いる場合でも、1回のFFT演算の処理とすることにより製品コストを抑えることができると共に、I,Qのいずれか一方の信号を選択するアルゴリズムや2つのFFT演算結果から正しい値を導くアルゴリズムを使用する煩雑さをなくし、安定的に心拍数や呼吸数を測定することが可能となる心肺機能測定装置を提供することにある。   The present invention has been made in view of the above problems, and its object is to reduce the product cost by performing one FFT operation even when a Doppler sensor having two output signals I and Q is used. It is possible to stably measure the heart rate and the respiratory rate without using the algorithm for selecting one of the signals I and Q and the algorithm for deriving the correct value from the two FFT calculation results. An object of the present invention is to provide a cardiopulmonary function measuring apparatus that can be used.

上記目的を達成するために、請求項1に係る発明は、位相差のある2つのI,Q信号を出力するドップラーセンサにより心肺機能を測定する心肺機能測定装置において、上記I,Q信号をアナログデジタル変換するA/D変換器と、このA/D変換器の出力信号を入力し、心拍測定においては心拍の周波数範囲を通すバンドパスフィルタ、呼吸測定においては呼吸の周波数範囲を通すローパスフィルタ又はバンドパスフィルタからなる第1のフィルタと、この第1のフィルタを通したI,Q信号のいずれか一方を実部、他方を虚部とし、この実部及び虚部を用いたフーリエ変換演算を行うことにより振幅を求めるフーリエ変換演算部を含み、このフーリエ変換演算部からの出力振幅のピーク値の周波数から心拍数又は呼吸数を測定する測定部と、を設けたことを特徴とする。   In order to achieve the above object, the invention according to claim 1 is a cardiopulmonary function measuring apparatus that measures cardiopulmonary function by a Doppler sensor that outputs two I and Q signals having a phase difference. An A / D converter for digital conversion and an output signal of the A / D converter are input, and a band pass filter that passes a heart rate frequency range in heart rate measurement, or a low pass filter that passes a breath frequency range in breath measurement A first filter composed of a bandpass filter and one of the I and Q signals passed through the first filter is a real part, the other is an imaginary part, and a Fourier transform operation using the real part and the imaginary part is performed. A measurement unit that includes a Fourier transform calculation unit that obtains amplitude by performing measurement, and that measures the heart rate or respiration rate from the frequency of the peak value of the output amplitude from the Fourier transform calculation unit , Characterized in that the provided.

上記の構成によれば、ドップラーセンサから位相の異なる(90度位相差のある)I,Q信号が出力されており、これらI,Q信号がAD変換され、心拍を測定する場合は、心拍の周波数範囲を通過帯域とするBPF(バンドパスフィルタ)、呼吸を測定する場合は、呼吸の周波数範囲を通過帯域とするLPF(ローパスフィルタ)又はBPFからなる第1のフィルタに通された後、I,Q信号のいずれか一方を実部データ、他方を虚部データとして測定部に入力される。
この測定部では、実部、虚部を用いた複素関数に基づく高速フーリエ変換を行うことで、信号の振幅(パワー)が求められ、この振幅のピーク値の周波数から心拍数又は呼吸数が測定される。
According to the above configuration, I and Q signals having different phases (with a phase difference of 90 degrees) are output from the Doppler sensor, and when these I and Q signals are AD converted and a heart rate is measured, When measuring a BPF (band pass filter) having a frequency range as a pass band and respiration, the filter is passed through a first filter made of LPF (low pass filter) having a frequency band of respiration as a pass band or a BPF, and then I , Q signals are input to the measurement unit as real part data and the other as imaginary part data.
In this measurement unit, the signal amplitude (power) is obtained by performing fast Fourier transform based on a complex function using the real part and imaginary part, and the heart rate or respiration rate is measured from the frequency of the peak value of this amplitude. Is done.

本発明の構成によれば、I,Q2つの出力信号を持つドップラーセンサを用いる場合でも、I,Q信号の一方を実部、他方を虚部とする1回のFFT演算の処理で測定が行われるので、製品コストを抑えることができる。また、従来のように、I,Qのいずれか一方の信号を選択するアルゴリズムや2つのFFT演算結果から正しい値を導くアルゴリズムを使用する煩雑さもなく、安定的に心拍数や呼吸数を測定することが可能になるという効果がある。
更に、本発明は、非接触で心拍数、呼吸数を測定する装置として利用することができる。
According to the configuration of the present invention, even when a Doppler sensor having two output signals, I and Q, is used, measurement is performed by one FFT calculation process in which one of the I and Q signals is a real part and the other is an imaginary part. Product costs can be reduced. Further, unlike the conventional method, the heart rate and the respiratory rate are stably measured without the complexity of using an algorithm for selecting one of the signals I and Q and an algorithm for deriving a correct value from two FFT calculation results. There is an effect that it becomes possible.
Furthermore, the present invention can be used as a device for measuring heart rate and respiration rate without contact.

本発明に係る実施例の心肺機能測定装置において心拍数測定の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the heart rate measurement in the cardiopulmonary function measuring device of the Example which concerns on this invention. 実施例の心肺機能測定装置において呼吸数測定の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the respiration rate measurement in the cardiopulmonary function measuring apparatus of an Example. 実施例の心拍測定で用いられるBPFのフィルタ特性を示すグラフ図である。It is a graph which shows the filter characteristic of BPF used by the heart rate measurement of an Example. 実施例の呼吸測定で用いられるLPFとBPFのフィルタ特性を示すグラフ図である。It is a graph which shows the filter characteristic of LPF and BPF used by the respiration measurement of an Example. 従来の1出力ドップラーセンサを用いた心肺機能測定装置の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the cardiopulmonary function measuring apparatus using the conventional 1 output Doppler sensor. 従来のI,Q出力のドップラーセンサを用いた心肺機能測定装置の1例を示す回路ブロック図である。It is a circuit block diagram which shows one example of the cardiopulmonary function measuring apparatus using the conventional Doppler sensor of I and Q output. 従来のI,Q出力のドップラーセンサを用いた心肺機能測定装置の他の例を示す回路ブロック図である。It is a circuit block diagram which shows the other example of the cardiopulmonary-function measuring apparatus using the conventional Doppler sensor of I and Q output.

図1に、実施例の心肺機能測定装置で、心拍数を測定する場合の構成が示されており、この実施例において、符号の1はI,Qの2つの信号を出力するドップラーセンサ、3a,3bはアンチエイシングフィルタであるLPF(ローパスフィルタ)、4a,4bはAD(アナログ/デジタル)コンバータ、5a,5bは心拍測定では心拍の周波数範囲を通すBPF(バンドパスフィルタ)からなる第1のフィルタ、6は第1のフィルタ5aのI信号出力を実部(実数部)データとし、第1のフィルタ5bのQ信号出力を虚部(虚数部)データとして入力し、FFT(高速フーリエ変換)演算を行うことにより心拍数を計数する測定部である。
図3には、上記第1のフィルタ5a,5bのBPFの特性が示されており、このBPFは、心拍の周波数範囲Hrを通過帯域とするフィルタ特性31を持つ。
FIG. 1 shows a configuration for measuring a heart rate in the cardiopulmonary function measuring apparatus according to the embodiment. In this embodiment, reference numeral 1 denotes a Doppler sensor that outputs two signals I and Q, 3a. , 3b are LPFs (low-pass filters) that are anti-aliasing filters, 4a and 4b are AD (analog / digital) converters, and 5a and 5b are first BPFs (band-pass filters) that pass the frequency range of heartbeats in heart rate measurement. The filter 6 inputs the I signal output of the first filter 5a as real part (real part) data, inputs the Q signal output of the first filter 5b as imaginary part (imaginary part) data, and performs FFT (Fast Fourier Transform). It is a measurement unit that counts the heart rate by performing calculations.
FIG. 3 shows the characteristics of the BPF of the first filters 5a and 5b. The BPF has a filter characteristic 31 having a heartbeat frequency range Hr as a pass band.

以上の構成からなる心肺機能測定装置によれば、ドップラーセンサ1から出力されたI,Q2つの信号は、それぞれのLPF(アンチエイリアシングフィルタ)3a,3bを通った後、ADコンバータ4a,4bでAD変換され、このAD変換された信号は、心拍の周波数範囲Hrを通過帯域とする第1のフィルタ(BPF)5a,5bを通される。
そして、この第1のフィルタ5aから出力されるI信号は、複素関数の実部データとして、第1のフィルタ5bから出力されるQ信号は、複素関数の虚部データとして心拍測定部6へ入力される。この心拍測定部6では、FFT演算を行うことで、信号の振幅(パワー)が計算され、そのピーク値の周波数から心拍数が求められる。
According to the cardiopulmonary function measuring apparatus having the above configuration, the two I and Q signals output from the Doppler sensor 1 pass through respective LPFs (anti-aliasing filters) 3a and 3b, and then are AD converted by the AD converters 4a and 4b. The converted and AD-converted signals are passed through first filters (BPF) 5a and 5b whose passband is the heartbeat frequency range Hr.
The I signal output from the first filter 5a is input to the heart rate measurement unit 6 as real part data of a complex function, and the Q signal output from the first filter 5b is input as imaginary part data of a complex function. Is done. In the heartbeat measuring unit 6, by performing FFT calculation, the amplitude (power) of the signal is calculated, and the heart rate is obtained from the frequency of the peak value.

図2に、実施例の心肺機能測定装置で、呼吸数を測定する場合の構成が示されており、この例では、図1と同様に、ドップラーセンサ1、アンチエイシングフィルタであるLPF3a,3b、ADコンバータ4a,4bが設けられると共に、呼吸の周波数範囲を通すLPF又はBPFからなる第1のフィルタ7a,7bと、この第1のフィルタ7aのI信号出力を実部データとし、第1のフィルタ7bのQ信号出力を虚部データとして入力し、FFT演算を行うことにより呼吸数を計数する呼吸測定部8が設けられる。
図4には、上記第1のフィルタ7a,7bのLPF又はBPFの特性が示されており、このLPFは呼吸の周波数範囲Brまでを通過帯域とするフィルタ特性32を持ち、上記BPFは呼吸の周波数範囲Brを通過帯域とするフィルタ特性33を持つ。
FIG. 2 shows a configuration for measuring the respiratory rate in the cardiopulmonary function measuring apparatus of the embodiment. In this example, as in FIG. 1, the Doppler sensor 1, LPFs 3a and 3b as anti-aging filters, AD converters 4a and 4b are provided, and the first filters 7a and 7b made of LPF or BPF that pass the breathing frequency range, and the I signal output of the first filter 7a is used as real part data, and the first filter A respiration measurement unit 8 is provided that counts the respiration rate by inputting the Q signal output of 7b as imaginary part data and performing an FFT operation.
FIG. 4 shows the LPF or BPF characteristics of the first filters 7a and 7b. The LPF has a filter characteristic 32 having a pass band up to the respiration frequency range Br. It has a filter characteristic 33 having a pass band in the frequency range Br.

以上の構成からなる心肺機能測定装置によれば、ADコンバータ4a,4bから出力されたI,Q信号は、呼吸の周波数範囲Brを通過帯域とする第1のフィルタ(LPF/BPF)7a,7bを通され、この第1のフィルタ7aからのI信号が実部データとして、第1のフィルタ5bからのQ信号が虚部データとして呼吸測定部8へ入力される。この呼吸測定部8では、FFT演算(周波数変換)を行うことで、信号の振幅(パワー)が計算され、そのピーク値の周波数から呼吸数が求められる。   According to the cardiopulmonary function measuring apparatus having the above configuration, the I and Q signals output from the AD converters 4a and 4b are the first filters (LPF / BPF) 7a and 7b whose pass band is the respiratory frequency range Br. The I signal from the first filter 7a is input to the respiration measuring unit 8 as real part data and the Q signal from the first filter 5b is input as imaginary part data. In the respiration measuring unit 8, the amplitude (power) of the signal is calculated by performing FFT calculation (frequency conversion), and the respiration rate is obtained from the frequency of the peak value.

上記実施例では、I信号を実部データ、Q信号を虚部データとしたが、その逆とし、Q信号を実部データI、信号を虚部データとしてもよい。
また、心拍と呼吸を別々に測定する構成として説明したが、実際には、ドップラーセンサ1からLPF3a,3b、ADコンバータ4a,4b等の共通の構成は、1系統でよいことになる。
In the above embodiment, the I signal is real part data and the Q signal is imaginary part data, but the reverse is also possible, and the Q signal may be real part data I and the signal may be imaginary part data.
Moreover, although it demonstrated as a structure which measures a heart rate and respiration separately, in fact, the common structure, such as LPF 3a, 3b, AD converter 4a, 4b from Doppler sensor 1, may be one system.

1…ドップラーセンサ、 2…セレクタ、
3,3a,3b…LPF(アンチエイリアシングフィルタ)、
4,4a,4b…ADコンバータ、
5,5a,5b…心拍用第1のフィルタ(BPF)、
6,21,21a,21b…心拍測定部、
7a,7b…呼吸用第1のフィルタ(LPF/BPF)、
8…呼吸測定部。
1 ... Doppler sensor, 2 ... selector,
3, 3a, 3b ... LPF (anti-aliasing filter),
4, 4a, 4b ... AD converter,
5, 5a, 5b ... heartbeat first filter (BPF),
6, 21, 21a, 21b ... heart rate measuring unit,
7a, 7b ... 1st filter for breathing (LPF / BPF),
8: Respiratory measurement unit.

Claims (1)

位相差のある2つのI,Q信号を出力するドップラーセンサにより心肺機能を測定する心肺機能測定装置において、
上記I,Q信号をアナログデジタル変換するA/D変換器と、
このA/D変換器の出力信号を入力し、心拍測定においては心拍の周波数範囲を通すバンドパスフィルタ、呼吸測定においては呼吸の周波数範囲を通すローパスフィルタ又はバンドパスフィルタからなる第1のフィルタと、
この第1のフィルタを通したI,Q信号のいずれか一方を実部、他方を虚部とし、この実部及び虚部を用いたフーリエ変換演算を行うことにより振幅を求めるフーリエ変換演算部を含み、このフーリエ変換演算部からの出力振幅のピーク値の周波数から心拍数又は呼吸数を測定する測定部と、を設けたことを特徴とする心肺機能測定装置。


In a cardiopulmonary function measuring apparatus that measures cardiopulmonary function by a Doppler sensor that outputs two I and Q signals having a phase difference,
An A / D converter for analog-digital conversion of the I and Q signals;
A first filter comprising a band-pass filter that inputs an output signal of the A / D converter and passes a heart rate frequency range in heart rate measurement; a low-pass filter or a band-pass filter that passes a breath frequency range in breath measurement; ,
One of the I and Q signals passed through the first filter is a real part, the other is an imaginary part, and a Fourier transform operation part for obtaining an amplitude by performing a Fourier transform operation using the real part and the imaginary part is provided. A cardiopulmonary function measuring apparatus comprising: a measuring unit that measures a heart rate or a respiratory rate from a frequency of a peak value of an output amplitude from the Fourier transform calculating unit.


JP2016059783A 2016-03-24 2016-03-24 Cardiopulmonary function measuring apparatus Pending JP2017169870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016059783A JP2017169870A (en) 2016-03-24 2016-03-24 Cardiopulmonary function measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016059783A JP2017169870A (en) 2016-03-24 2016-03-24 Cardiopulmonary function measuring apparatus

Publications (1)

Publication Number Publication Date
JP2017169870A true JP2017169870A (en) 2017-09-28

Family

ID=59969663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016059783A Pending JP2017169870A (en) 2016-03-24 2016-03-24 Cardiopulmonary function measuring apparatus

Country Status (1)

Country Link
JP (1) JP2017169870A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113368351A (en) * 2021-06-07 2021-09-10 中国人民解放军总医院第一医学中心 Method for monitoring nasal high-flow respiratory rate and respiratory support equipment thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099849A (en) * 2006-10-19 2008-05-01 Tau Giken:Kk Noncontact diagnostic system
US20130245437A1 (en) * 2012-03-19 2013-09-19 Advanced Telesensors, Inc. System and method for facilitating reflectometric detection of physiologic activity
JP2014085763A (en) * 2012-10-22 2014-05-12 Oki Electric Ind Co Ltd Number of object detection device and program
JP2014174965A (en) * 2013-03-13 2014-09-22 Oki Electric Ind Co Ltd State recognition device, state recognition method, and computer program
CN104605831A (en) * 2015-02-03 2015-05-13 南京理工大学 Respiration and heartbeat signal separation algorithm of non-contact vital sign monitoring system
US20150241555A1 (en) * 2014-02-25 2015-08-27 University Of Florida Research Foundation, Inc. Method and apparatus for doppler radar signal recovery of target displacement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099849A (en) * 2006-10-19 2008-05-01 Tau Giken:Kk Noncontact diagnostic system
US20130245437A1 (en) * 2012-03-19 2013-09-19 Advanced Telesensors, Inc. System and method for facilitating reflectometric detection of physiologic activity
JP2014085763A (en) * 2012-10-22 2014-05-12 Oki Electric Ind Co Ltd Number of object detection device and program
JP2014174965A (en) * 2013-03-13 2014-09-22 Oki Electric Ind Co Ltd State recognition device, state recognition method, and computer program
US20150241555A1 (en) * 2014-02-25 2015-08-27 University Of Florida Research Foundation, Inc. Method and apparatus for doppler radar signal recovery of target displacement
CN104605831A (en) * 2015-02-03 2015-05-13 南京理工大学 Respiration and heartbeat signal separation algorithm of non-contact vital sign monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113368351A (en) * 2021-06-07 2021-09-10 中国人民解放军总医院第一医学中心 Method for monitoring nasal high-flow respiratory rate and respiratory support equipment thereof

Similar Documents

Publication Publication Date Title
US7894885B2 (en) Coherent signal rejection in ECG
JP6506681B2 (en) Air flow measuring device
JP6663265B2 (en) Cardiopulmonary function measurement device
JP6334132B2 (en) Integrated calibration apparatus and runtime calibration method
CN106687047B (en) Sensor interface device providing digital processing of intravascular flow and pressure data
US10376243B2 (en) Method and apparatus for low complexity ultrasound based heart rate detection
JP2011115459A (en) Device and method for detecting biological information
CN105962914A (en) Respiration and heartbeat signal separation method and device based on blind source separation
JP6970526B2 (en) Measuring equipment, measuring methods, and measuring programs
CN104605831A (en) Respiration and heartbeat signal separation algorithm of non-contact vital sign monitoring system
JP2020028478A5 (en)
JP2016517712A5 (en)
CN107796977B (en) Three-phase power grid voltage parameter detection method and device
JP2017169870A (en) Cardiopulmonary function measuring apparatus
JPH02172443A (en) Photoelectric pulse wave type oxymeter
JP2013106837A (en) Heart rate detection method, heart rate detector, and mental stress measuring apparatus
JP2019013479A (en) Heart beat and respiration measuring system, and heart beat and respiration measuring method
WO2020070808A1 (en) Pulse wave calculation device, pulse wave calculation method, and pulse wave calculation program
WO2016147777A1 (en) Measurement device, measurement method, and program
JP6787679B2 (en) Cardiopulmonary function measuring device
Fierro et al. Low group delay signal conditioning for wearable central blood pressure monitoring device
JP6234931B2 (en) Method and apparatus for measuring blood pressure
WO2016203862A1 (en) Signal processing method, biosignal processing method, signal processing device, and biosignal processing device
US20200390348A1 (en) System and Method for Calculating Cardiac Pulse Transit or Arrival Time Information
JP2020127704A (en) Biological information detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200630