JP2017169648A - Biological sensor - Google Patents

Biological sensor Download PDF

Info

Publication number
JP2017169648A
JP2017169648A JP2016056513A JP2016056513A JP2017169648A JP 2017169648 A JP2017169648 A JP 2017169648A JP 2016056513 A JP2016056513 A JP 2016056513A JP 2016056513 A JP2016056513 A JP 2016056513A JP 2017169648 A JP2017169648 A JP 2017169648A
Authority
JP
Japan
Prior art keywords
pair
vibration
piezoelectric element
transmission plate
vibration transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016056513A
Other languages
Japanese (ja)
Other versions
JP6732188B2 (en
Inventor
健 安達
Takeshi Adachi
健 安達
恭一 尾野
Kyoichi Ono
恭一 尾野
伊藤 昭彦
Akihiko Ito
昭彦 伊藤
哲也 預幡
Tetsuya Yohan
哲也 預幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
API KK
Akita University NUC
Original Assignee
API KK
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by API KK, Akita University NUC filed Critical API KK
Priority to JP2016056513A priority Critical patent/JP6732188B2/en
Publication of JP2017169648A publication Critical patent/JP2017169648A/en
Application granted granted Critical
Publication of JP6732188B2 publication Critical patent/JP6732188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a biological sensor capable of measuring a respiratory movement waveform, a respiratory sound waveform, a cardiac sound waveform, and an electrocardiographic waveform by a compact and simple configuration.SOLUTION: A biological sensor 100 includes a piezoelectric element 21 for converting vibration to voltage, a pair of electrocardiographic electrodes 31 and 32 for detecting an electric signal generated by a living body, and a vibration transmission plate 11 for transmitting the vibration generated by the living body to the piezoelectric element 21. The piezoelectric element 21, and the pair of electrocardiographic electrodes 31 and 32 are provided to the vibration transmission plate 11, and conductive adhesive gels 315 and 325 are applied to one of the surfaces of the pair of electrocardiographic electrodes 31 and 32.SELECTED DRAWING: Figure 1

Description

本発明は、生体胸部に装着する心電電極と圧電素子とを備えた生体センサに関するものであり、より詳細には、被検者の心電信号及び呼吸運動の信号を長時間モニタリングするための生体センサに関するものである。   The present invention relates to a biosensor including an electrocardiogram electrode and a piezoelectric element to be worn on a living body chest, and more specifically, for monitoring a subject's electrocardiogram signal and respiratory motion signal for a long time. The present invention relates to a biosensor.

鎮静状態下に生じる呼吸抑制は重篤な転帰をたどることがあるため呼吸監視が強く推奨されているが,従来の呼吸数モニタリングには、インピーダンス法やカブノメータ、気流音響信号測定法等の手法が用いられている。しかしながら、インピーダンス法は電極間のインピーダンス変化により呼吸運動を検出するため、呼吸数のモニタリングが比較的容易である一方、信頼性は低い。カプノメータは呼気中及び吸気中の二酸化炭素濃度を直接検出するため信頼性は高い反面、鼻カニュラやマスクなどの生体を拘束する装着が必要であり、且つ二酸化炭素の検出器が必要になる。気流音響信号により呼吸数を測定する装置は,快適性や信頼性が高いとされるものの高価である。   Respiration monitoring under sedation can have serious consequences, and respiratory monitoring is strongly recommended, but conventional methods for monitoring respiratory rate include methods such as impedance methods, cabometers, and airflow acoustic signal measurement methods. It is used. However, since the impedance method detects respiratory motion by impedance change between electrodes, monitoring of the respiratory rate is relatively easy, but reliability is low. The capnometer directly detects the carbon dioxide concentration in exhaled air and inhaled air, so it has high reliability. However, the capnometer needs to be worn to restrain a living body such as a nasal cannula or a mask, and requires a carbon dioxide detector. An apparatus for measuring the respiratory rate based on an airflow acoustic signal is expensive although it is considered to be comfortable and reliable.

また、小型のパルスオキシメータで心拍数と血中飽和酸素濃度を監視し、前記血中飽和酸素濃度の低下により呼吸機能の不全を察知することも可能であるが、呼吸停止時から前記血中酸素飽和濃度が低下するまで数十秒の遅延があるため、迅速な処置が遅れてしまう危険性がある。これら従来の手法による呼吸監視には、信頼性、患者の忍容性、経済性のいずれかの点で限界があり、これらを克服した新しい呼吸監視モニタリングが望まれている。   It is also possible to monitor heart rate and blood saturated oxygen concentration with a small pulse oximeter and detect respiratory failure due to a decrease in the blood saturated oxygen concentration. Since there is a delay of several tens of seconds until the oxygen saturation concentration is lowered, there is a risk that a rapid treatment is delayed. Respiration monitoring by these conventional methods has limitations in terms of reliability, patient tolerance, and economy, and a new respiratory monitoring monitoring that overcomes these demands is desired.

また、鎮静状態下で心電図も監視するが、これらの装置を装着しながら上記呼吸監視を行うために監視装置をさらに追加しなければならず、手術中に使用した場合は十分な術野を確保するのが困難になってしまうことがあり、装置管理もより煩雑になってしまう問題もある。これらのことから、より小型で拘束感の複数の生体情報を高精度に測定可能な装置が望まれている。   In addition, ECG is also monitored under sedation, but a monitoring device must be added to monitor the breathing while wearing these devices, ensuring a sufficient surgical field when used during surgery. It may be difficult to do this, and there is a problem that device management becomes more complicated. For these reasons, a device that is capable of measuring a plurality of pieces of biological information with a small size and a sense of restraint with high accuracy is desired.

従来から、測定対象の心拍数や呼吸数などの生体データを無拘束な状態で測定する装置としては特許文献1及び2に開示された装置が知られている。   Conventionally, devices disclosed in Patent Documents 1 and 2 are known as devices that measure biological data such as a heart rate and a respiration rate to be measured in an unconstrained state.

特許文献1によると、振動伝達板を用いて生体表面の振動を前記振動伝達板に装備された圧電素子によって振動波形を検出し、前記振動波形をフィルタ回路によって呼吸運動、心拍及び心音に分離抽出することを可能としている。   According to Patent Document 1, the vibration waveform is detected by a piezoelectric element mounted on the vibration transmission plate using a vibration transmission plate, and the vibration waveform is separated and extracted into a respiratory motion, a heartbeat and a heart sound by a filter circuit. It is possible to do.

また、特許文献2によると、一対の心電電極間と電磁コイルとを用い、心電波形と呼吸運動及び心拍数を計測可能としている。前記呼吸運動と前記心拍数は、前記電磁コイルに高周波信号を与え、前記電磁コイルと生体表面の距離の変化を強振周波数の変化としてとらえるものである。   According to Patent Literature 2, an electrocardiogram waveform, respiratory motion, and heart rate can be measured using a pair of electrocardiographic electrodes and an electromagnetic coil. The respiratory motion and the heart rate give a high-frequency signal to the electromagnetic coil, and a change in the distance between the electromagnetic coil and the living body surface is regarded as a change in strong vibration frequency.

特許4899117号Japanese Patent No. 4899117 特開2001−299712号公報JP 2001-299712 A

しかしながら、特許文献1に記載の手法では、前記心音波形より心拍数を監視することは可能であるが、前記心音波形よりどのような心不全が発生したのか心疾患に関わる心音波の見方の知見がほとんどないため、心電図のように心音波から心疾患の種類を特定することは困難である。また、呼吸機能監視においては、呼吸運動以外の体動も測定してしまうため、呼吸運動を正確に測定できなくなる場合がある。   However, according to the technique described in Patent Document 1, it is possible to monitor the heart rate from the heart sound waveform, but what kind of heart failure has occurred from the heart sound waveform has a knowledge of how to see the heart sound related to heart disease. Because there are few, it is difficult to specify the type of heart disease from the electrocardiogram as in the electrocardiogram. In respiratory function monitoring, body movements other than respiratory movements are also measured, so that respiratory movements may not be measured accurately.

また、特許文献2に記載の手法では、腹部のような生体表面の変動の大きな部位にのみ呼吸運動の測定が制限され、胸部のように生体表面の変動が小さい部位には適用できない。また、生体表面−前記電磁コイル間の静電容量を計測しているため、電気メスの使用により生体の電位が大きく変動する場合には、ノイズの影響で呼吸運動と心拍数が正しく測定できなくなる場合がある。   In the method described in Patent Document 2, the measurement of respiratory motion is limited only to a part with a large variation in the surface of the living body such as the abdomen, and cannot be applied to a part with a small variation in the surface of the living body such as the chest. In addition, since the capacitance between the surface of the living body and the electromagnetic coil is measured, if the potential of the living body greatly fluctuates due to the use of an electric knife, the respiratory motion and heart rate cannot be measured correctly due to the influence of noise. There is a case.

本発明は、呼吸運動波形、呼吸音波形、心音波形及び心電波形を小型で簡素な構成で測定可能とする生体センサを提供することを課題とする。   An object of the present invention is to provide a biosensor capable of measuring a respiratory motion waveform, a respiratory sound waveform, a cardiac sound waveform, and an electrocardiographic waveform with a small and simple configuration.

前述した目的を達成するための本発明は、振動を電圧に変換する圧電素子と、生体が発する電気信号を検出する一対の心電電極と、前記生体が発する振動を前記圧電素子に伝達する振動伝達板と、を備え、前記圧電素子及び前記一対の心電電極は前記振動伝達板に設けられ、前記一対の心電電極の一方の面には導電性の粘着剤を備えることを特徴とする生体センサである。   In order to achieve the above-described object, the present invention provides a piezoelectric element that converts vibration into a voltage, a pair of electrocardiographic electrodes that detect an electrical signal emitted by a living body, and a vibration that transmits vibration generated by the living body to the piezoelectric element. A transmission plate, wherein the piezoelectric element and the pair of electrocardiographic electrodes are provided on the vibration transmission plate, and a conductive adhesive is provided on one surface of the pair of electrocardiographic electrodes. It is a biological sensor.

前記振動伝達板は、長手方向を有し、前記長手方向の両端部に前記一対の心電電極を係止する一対の係合機構を備え、前記圧電素子は、前記振動伝達板の前記長手方向の中央部に設けられるようにしても良い。   The vibration transmission plate has a longitudinal direction, and includes a pair of engagement mechanisms for engaging the pair of electrocardiographic electrodes at both ends of the longitudinal direction, and the piezoelectric element is the longitudinal direction of the vibration transmission plate You may make it provide in the center part.

また、前記振動伝達板は、可撓性及び絶縁性を有するようにしても良い。   The vibration transmission plate may be flexible and insulating.

また、前記一対の係合機構は、中央に孔が形成され、前記孔から放射状に複数のスリットが形成されている金属板であるようにしても良い。   The pair of engagement mechanisms may be metal plates in which a hole is formed in the center and a plurality of slits are formed radially from the hole.

本発明の生体センサは、振動伝達板の両端に備えた一対の心電電極により心電波形を検出すると同時に、振動伝達板の略中央に備えた圧電素子により、一対の心電電極間の生体表面の振動を検出することが可能となる。検出された振動波形は、周波数帯により呼吸運動波形、心音波形、呼吸音波形に分離抽出することが可能となる。これにより、呼吸機能の監視においては、呼吸運動だけでなく呼吸音波形も監視できるため、二重の監視により信頼性の高い呼吸機能の監視が行われるようになる。心機能の監視においても、心電波形と心音波形の二重の監視を行えるようになるため、より信頼性の高い心機能の監視が行うことが可能である。また、心電電極がそれぞれ係合機構により容易に着脱することが可能であり、市販の心電パッドを流用することで、使用済みの心電電極を清掃・滅菌する手間無しに安価で衛生的に使用することが可能となる。   The biosensor of the present invention detects an electrocardiogram waveform with a pair of electrocardiographic electrodes provided at both ends of a vibration transmission plate, and at the same time uses a piezoelectric element provided substantially at the center of the vibration transmission plate to It becomes possible to detect surface vibration. The detected vibration waveform can be separated and extracted into a respiratory motion waveform, a heart sound waveform, and a respiratory sound waveform depending on the frequency band. Thereby, in the monitoring of the respiratory function, not only the respiratory motion but also the respiratory sound waveform can be monitored, so that the respiratory function can be monitored with high reliability by the double monitoring. Also in monitoring of cardiac function, it becomes possible to perform dual monitoring of an electrocardiogram waveform and a cardiac sound waveform, so that it is possible to monitor cardiac function with higher reliability. In addition, each ECG electrode can be easily attached and detached by the engagement mechanism, and by using a commercially available ECG pad, it is cheap and hygienic without having to clean and sterilize the used ECG electrode. Can be used.

生体に貼り付けられる生体センサ100を示す図The figure which shows the biosensor 100 affixed on a biological body 生体センサ100の斜視図Perspective view of biosensor 100 生体センサ100の分解斜視図Exploded perspective view of biosensor 100 振動伝達板11の幅方向中心を通り、振動伝達板11の幅方向に直交する切断面によって切断された生体センサ100の断面図Sectional drawing of the biosensor 100 cut | disconnected by the cut surface which passes the center of the width direction of the vibration transmission board 11 and orthogonal to the width direction of the vibration transmission board 11 生体信号監視ユニット51のハードウェア構成を示す図The figure which shows the hardware constitutions of the biosignal monitoring unit 51 生体信号監視ユニット51による処理の流れを示すフローチャートThe flowchart which shows the flow of the process by the biological signal monitoring unit 51.

以下図面に基づいて、本発明の実施形態を詳細に説明する。最初に、図1〜図4を参照しながら、本発明の実施形態に係る生体センサ100を説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, the biosensor 100 according to the embodiment of the present invention will be described with reference to FIGS.

図1及び図2に示すように、生体センサ100は、振動を電圧に変換する円盤型の圧電素子21と、長手方向(=図1における紙面の上下方向)及び長手方向と直交する幅方向(=図1における紙面の左右方向)を有し、生体が発する振動を圧電素子21に伝達する可撓性及び絶縁性の振動伝達板11と、振動伝達板11の長手方向の両端部に設けられる一対の係合機構311、321と、一対の係合機構311、321によって係合され、生体が発する電気信号を検出する一対の心電電極31、32と、圧電素子21の両面及び一対の心電電極31、32に電気的に接続される複数の導体パターンを束ねるフィルム電線41と、を備える。圧電素子21は、振動伝達板11の長手方向の中央部に設けられる。   As shown in FIGS. 1 and 2, the biosensor 100 includes a disc-shaped piezoelectric element 21 that converts vibration into voltage, a longitudinal direction (= up and down direction on the paper surface in FIG. 1), and a width direction orthogonal to the longitudinal direction ( = A flexible and insulating vibration transmission plate 11 that transmits vibration generated by a living body to the piezoelectric element 21 and both ends of the vibration transmission plate 11 in the longitudinal direction. A pair of engagement mechanisms 311 and 321, a pair of electrocardiogram electrodes 31 and 32 that are engaged by the pair of engagement mechanisms 311 and 321 and detect an electrical signal generated by a living body, both surfaces of the piezoelectric element 21, and a pair of hearts And a film electric wire 41 that bundles a plurality of conductor patterns electrically connected to the electric electrodes 31 and 32. The piezoelectric element 21 is provided at the center in the longitudinal direction of the vibration transmission plate 11.

図1に示すように、生体センサ100は、生体の胸部の体表に貼り付けられる。望ましくは、生体センサ100は、生体の胸骨上の体表に貼り付けられる。呼吸運動では変形しないように思われる胸骨も、実際には呼吸運動によって僅かに変形している。振動伝達板11は、胸骨の変形によって生じる振動を圧電素子21に伝達する。言い換えると、圧電素子21は、生体が発する振動に起因する振動伝達板11の歪みを電圧に変換する。   As shown in FIG. 1, the biosensor 100 is affixed to the body surface of the chest of a living body. Desirably, the biosensor 100 is affixed to the body surface on the sternum of a living body. The sternum, which does not seem to be deformed by the respiratory motion, is actually slightly deformed by the respiratory motion. The vibration transmission plate 11 transmits vibration generated by deformation of the sternum to the piezoelectric element 21. In other words, the piezoelectric element 21 converts the distortion of the vibration transmitting plate 11 caused by the vibration generated by the living body into a voltage.

胸骨上の体表は男女を問わず略平坦な形状であるため、板状の振動伝達板11であっても確実に貼り付けることが可能である。また、生体の胸骨上の体表は、心臓及び気管に近い部位であるため、心音や呼吸音等に起因する生体の振動の信号を精度良く検出することができる。また、生体の胸部の体表に貼り付けられる生体センサ100は、腹部を切開して行う手術であっても邪魔にならない。また、生体の胸部の体表に貼り付けられる生体センサ100は、呼吸以外の腹部の運動(例えば、手術による腹部の変形や体位の変更などの物理的な皮膚の変形)を誤って検出しにくいため、呼吸機能の監視を阻害しない。   Since the body surface on the sternum has a substantially flat shape regardless of gender, even the plate-like vibration transmission plate 11 can be securely attached. Further, since the body surface on the sternum of the living body is a part close to the heart and trachea, it is possible to accurately detect a vibration signal of the living body caused by heart sounds, breathing sounds, and the like. In addition, the biosensor 100 attached to the body surface of the chest of a living body does not get in the way even in an operation performed by incising the abdomen. In addition, the biological sensor 100 attached to the body surface of the chest of a living body is unlikely to erroneously detect abdominal movements other than breathing (for example, physical skin deformation such as abdominal deformation or body position change due to surgery). Therefore, monitoring of respiratory function is not hindered.

振動伝達板11の大きさは、生体の胸骨の大きさ以内が望ましい。本発明の実施形態では、振動伝達板11の長手方向の寸法は110mm、振動伝達板11の幅方向の寸法は30mmである。これらの寸法は、一般成人向けであり、小児や新生児には、胸骨の大きさに合わせて、振動伝達板11の長手方向の寸法を短くすることが望ましい。振動伝達板11の長手方向の寸法が80mm以上であれば、生体の信号の検出性能は良好である。   The size of the vibration transmitting plate 11 is preferably within the size of the sternum of a living body. In the embodiment of the present invention, the longitudinal dimension of the vibration transmission plate 11 is 110 mm, and the width dimension of the vibration transmission plate 11 is 30 mm. These dimensions are for general adults, and it is desirable for children and newborns to shorten the longitudinal dimension of the vibration transmitting plate 11 in accordance with the size of the sternum. When the longitudinal dimension of the vibration transmitting plate 11 is 80 mm or more, the detection performance of the biological signal is good.

また、振動伝達板11の材料としては、適度な復元性を有する弾性のプラスチックを用いる。振動伝達板11の厚さは、胸郭呼吸運動に特徴的な0.5Hz以下の低周波帯、心音に特徴的な20〜100Hz近傍の周波数帯、及び呼吸音に特徴的である100〜400Hz近傍の周波数帯の全てを検出できる適度な厚さにする必要があり、0.3mm〜2.0mmが望ましい。本発明の実施形態では、振動伝達板11の材料はガラスエポキシ板と塩化ビニル樹脂(PVC)の複合材料を用い、振動伝達板11の厚さは1.0mmである。   Moreover, as a material of the vibration transmission plate 11, an elastic plastic having an appropriate restoring property is used. The thickness of the vibration transmitting plate 11 is a low frequency band of 0.5 Hz or less, which is characteristic of thorax respiratory motion, a frequency band of 20-100 Hz, which is characteristic of heart sounds, and a frequency of 100-400 Hz, which is characteristic of respiratory sounds. It is necessary to set the thickness to an appropriate thickness that can detect all of the frequency bands, and 0.3 mm to 2.0 mm is desirable. In the embodiment of the present invention, the material of the vibration transmission plate 11 is a composite material of a glass epoxy plate and vinyl chloride resin (PVC), and the thickness of the vibration transmission plate 11 is 1.0 mm.

図3及び図4に示すように、振動伝達板11は、圧電素子21が載置される基板111と、基板111と接着される被覆板112と、を有する。基板111には、一対の係合機構311、321と銅箔の導体パターン15(151、152、153、154、211)が形成されている。圧電素子21の両面は、導体パターン151、152、211を介してフィルム電線41に電気的に接続されている。一対の心電電極31、32は、導体パターン153及び154を介してフィルム電線41に電気的に接続されている。フィルム電線41は、後述する生体信号測定装置1に電気的に接続されている。   As shown in FIGS. 3 and 4, the vibration transmission plate 11 includes a substrate 111 on which the piezoelectric element 21 is placed and a cover plate 112 bonded to the substrate 111. A pair of engagement mechanisms 311 and 321 and a copper foil conductor pattern 15 (151, 152, 153, 154, 211) are formed on the substrate 111. Both surfaces of the piezoelectric element 21 are electrically connected to the film electric wire 41 through conductor patterns 151, 152, and 211. The pair of electrocardiographic electrodes 31 and 32 are electrically connected to the film electric wire 41 via the conductor patterns 153 and 154. The film wire 41 is electrically connected to the biological signal measuring device 1 described later.

被覆板112は、圧電素子21、一対の係合機構311、321及び導体パターン151、152、153、154、211を挟んで基板111と圧着される。被覆板112には、振動伝達板11に形成されている一対の係合機構311、321と対向する位置に円形状の孔が形成されている。   The cover plate 112 is pressure-bonded to the substrate 111 with the piezoelectric element 21, the pair of engagement mechanisms 311 and 321, and the conductor patterns 151, 152, 153, 154, and 211 interposed therebetween. A circular hole is formed in the cover plate 112 at a position facing the pair of engagement mechanisms 311 and 321 formed in the vibration transmission plate 11.

圧電素子21が生体の振動を効率良く電気信号に変換するため、基板111及び被覆板112は隙間なく密着させることが望ましい。本発明の実施形態では、被覆板112を加熱して柔らかくし、圧電素子21の形状に変形密着させて圧着する。このため、被覆板112の材料には、熱可塑性を有するプラスチックが望ましく、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、塩化ビニル樹脂(PVC)、ポリスチレン(PS)、ABS樹脂(ABS)、ポリエチレンテフタレート(PET)、アクリル樹脂(PMMA)、ポリカーボネート(PC)または、ポリアミド(PA)が望ましい。本発明の実施形態では、被覆板112の材料として、安価で加工性に優れる厚さ0.5mmの塩化ビニル樹脂(PVC)を用いる。熱可塑性を有するプラスチックは、加熱(ポリマー分子のガラス転移点以上)の際に製造時の圧延方向に収縮する性質があるため、被覆板112を加熱して圧着する前にアニール処理しておくことが望ましい。   In order for the piezoelectric element 21 to efficiently convert the vibration of the living body into an electric signal, it is desirable that the substrate 111 and the cover plate 112 are closely attached without any gap. In the embodiment of the present invention, the covering plate 112 is heated to be softened, and is deformed and brought into close contact with the shape of the piezoelectric element 21 for pressure bonding. Therefore, the material of the covering plate 112 is preferably a plastic having thermoplasticity, for example, polyethylene (PE), polypropylene (PP), vinyl chloride resin (PVC), polystyrene (PS), ABS resin (ABS), polyethylene. Tephthalate (PET), acrylic resin (PMMA), polycarbonate (PC), or polyamide (PA) is desirable. In the embodiment of the present invention, a vinyl chloride resin (PVC) having a thickness of 0.5 mm, which is inexpensive and excellent in workability, is used as the material of the covering plate 112. Thermoplastic plastics have the property of shrinking in the rolling direction at the time of manufacture when heated (above the glass transition point of the polymer molecule), and therefore annealed before heating and pressure-bonding the cover plate 112. Is desirable.

本発明の実施形態では、基板111の材料は、0.3mmのガラスエポキシプリント回路基板(PCB)である。基板111には、厚さ18μmの銅箔を張り付けてエッチング処理を行うことによって、部品間を接続する導体パターン151、152、153、154、211を予め形成しておく。これによって、振動伝達板11を熱圧着によって成形する際、基板111上に載置される圧電素子21及び一対の係合機構311、321と、導体パターン151、152、153、154、211との接続部が、各々の部品の熱膨張率の差異により、加熱―冷却過程において局所的な応力の集中による断裂等の不具合の発生を最小限に抑えることが可能となる。   In an embodiment of the present invention, the material of the substrate 111 is a 0.3 mm glass epoxy printed circuit board (PCB). Conductive patterns 151, 152, 153, 154, and 211 for connecting the components are formed in advance on the substrate 111 by attaching a copper foil having a thickness of 18 μm and performing an etching process. Thus, when the vibration transmission plate 11 is formed by thermocompression bonding, the piezoelectric element 21 and the pair of engagement mechanisms 311 and 321 placed on the substrate 111 and the conductor patterns 151, 152, 153, 154, and 211 are arranged. Due to the difference in the coefficient of thermal expansion of each component, it is possible to minimize the occurrence of defects such as tearing due to local stress concentration in the heating-cooling process.

本発明の実施形態では、基板111及び被覆板112の熱圧着における接着剤として厚さ50μmのホットメルトシート103を用いる。ホットメルトシート103の材料は、概ね80℃以上で溶融状態となり、高い接着性と可撓性を有するポリエステル系が望ましい。熱圧着時の温度は90〜120℃で1〜3分間の加熱により、通常の使用範囲で剥離することなく確実に圧着することが可能となる。基板111と被覆板112との熱膨張率の差異により、冷却過程において反りを生じるが、僅かに反る方向と逆の形状にした状態で冷却し、成型することで、冷却後に振動伝達板11を平坦な形状にすることができる。   In the embodiment of the present invention, a hot melt sheet 103 having a thickness of 50 μm is used as an adhesive in thermocompression bonding of the substrate 111 and the cover plate 112. The material of the hot melt sheet 103 is desirably a polyester system that is in a molten state at about 80 ° C. or higher and has high adhesiveness and flexibility. By heating for 1 to 3 minutes at a temperature of 90 to 120 ° C. at the time of thermocompression bonding, it is possible to reliably perform pressure bonding without peeling in a normal use range. Due to the difference in thermal expansion coefficient between the substrate 111 and the cover plate 112, warpage occurs in the cooling process, but the vibration transmission plate 11 is cooled after cooling and molded in a state opposite to the slightly warped direction. Can be made flat.

心電電極31、32の体表と対向する面には、生体センサ100を体表に貼り付けるために、粘着剤として、分極電圧が低く安定した銀−塩化銀電極と密着性の高い導電性粘着ゲル315、325が塗布されており、体表から微弱な心筋の起電圧を伝達する。導電性粘着ゲル315、325が塗布される心電電極31、32の面を生体の胸部の胸骨直上の表皮に直接貼り付けることで、心電波形と生体表面の振動波形を単一の生体センサ100によって同時に検出可能となる。粘着剤は、導電性粘着ゲル315、325に限らず、導電性粘着シールでも良い。   In order to attach the biosensor 100 to the body surface of the electrocardiographic electrodes 31 and 32, the adhesive is a low-polarization voltage and stable silver-silver chloride electrode and a highly conductive material as an adhesive. Adhesive gels 315 and 325 are applied to transmit weak electromotive force of the myocardium from the body surface. By directly attaching the surfaces of the electrocardiographic electrodes 31 and 32 to which the conductive adhesive gels 315 and 325 are applied to the epidermis immediately above the sternum of the living body's chest, the electrocardiographic waveform and the vibration waveform on the living body surface are combined into a single biosensor. 100 enables simultaneous detection. The adhesive is not limited to the conductive adhesive gels 315 and 325 but may be a conductive adhesive seal.

一対の係合機構311、321は、それぞれ、ドーナツ状の金属板の中央に円形状の孔が形成され、この孔に対し放射状に複数のスリットが形成される挿入口を有する。心電電極31、32の基板111と対向する面には、円筒形状の突起部313、323が形成されている。突起部313、323には、側面を一周する溝が形成されている。それぞれの係合機構311、321の挿入口に心電電極31、32の突起部313、323を挿入することによって、係合機構311、321に心電電極31、32を係止する。係合機構311、321の挿入口はスリットによって板バネとなり、突起部313、323の溝に嵌まる。従って、心電電極31、32の突起部313、323は、通常の使用において係合部位がずれることなく確実に係止されるため、心電電極31、32の心電図信号が接触不良なく伝導するとともに、体表の振動が振動伝達板11を介して圧電素子21に伝達される。   Each of the pair of engagement mechanisms 311 and 321 has an insertion opening in which a circular hole is formed in the center of a donut-shaped metal plate, and a plurality of slits are formed radially with respect to the hole. Cylindrical protrusions 313 and 323 are formed on the surfaces of the electrocardiographic electrodes 31 and 32 facing the substrate 111. The protrusions 313 and 323 are formed with grooves that go around the side surfaces. The electrocardiographic electrodes 31 and 32 are locked to the engaging mechanisms 311 and 321 by inserting the projections 313 and 323 of the electrocardiographic electrodes 31 and 32 into the insertion ports of the respective engaging mechanisms 311 and 321. The insertion openings of the engagement mechanisms 311 and 321 become leaf springs by slits and fit into the grooves of the protrusions 313 and 323. Therefore, since the projections 313 and 323 of the electrocardiographic electrodes 31 and 32 are securely locked without shifting the engaging portion in normal use, the electrocardiographic signals of the electrocardiographic electrodes 31 and 32 are conducted without contact failure. At the same time, the vibration of the body surface is transmitted to the piezoelectric element 21 via the vibration transmitting plate 11.

心電電極31、32の心電パッド314、324は、粘着性の導電性粘着ゲル315、325によって体表Sと接触しているものの、体表Sの振動は導電性粘着ゲル315、325を介して多少減衰する。しかしながら、本発明の実施形態では、後述する様々な生体信号を検出するために必要な周波数範囲「0.1〜1kHz」においては、高いシグナル/ノイズ比(=S/N比)を有するため、生体信号を高精度に検出することが可能である。   Although the electrocardiographic pads 314 and 324 of the electrocardiographic electrodes 31 and 32 are in contact with the body surface S by the adhesive conductive adhesive gels 315 and 325, the vibration of the body surface S causes the conductive adhesive gels 315 and 325 to Attenuate somewhat. However, in the embodiment of the present invention, in the frequency range “0.1 to 1 kHz” necessary for detecting various biological signals described later, since it has a high signal / noise ratio (= S / N ratio), It is possible to detect a biological signal with high accuracy.

図5及び図6は、生体センサ100を用いた生体信号監視ユニット51のハードウェア構成と処理の流れを示している。圧電素子21及び一対の心電電極31、32によって電気信号に変換された生体信号は、それぞれ生体信号検知部521において増幅し、AD変換部522でデジタル変換される。デジタル化した心電データは、演算部53でフィルタリング処理され、表示部55で心電波形551を表示する。体表の振動信号も同様にAD変換部522でデジタル変換され、演算部53で周波数帯によるバンドパスフィルタリングを行い、呼吸運動波形553、心音波形552及び呼吸音波形554に分離・抽出し、それぞれ表示部55で表示する。また、演算部53では、心電波形551、呼吸運動波形553、心音波形552及び呼吸音波形554の正常/異常判定も行い、異常が発生した場合には、表示部55に警告を表示する。制御部54では、生体信号監視ユニット51の表示部55の各種生体信号波形の表示設定、又は、正常/異常判定の設定変更を行う。   5 and 6 show the hardware configuration of the biological signal monitoring unit 51 using the biological sensor 100 and the processing flow. The biological signals converted into electrical signals by the piezoelectric element 21 and the pair of electrocardiographic electrodes 31 and 32 are amplified by the biological signal detection unit 521 and digitally converted by the AD conversion unit 522. The digitized electrocardiogram data is subjected to filtering processing by the calculation unit 53, and the electrocardiogram waveform 551 is displayed on the display unit 55. Similarly, the vibration signal of the body surface is digitally converted by the AD conversion unit 522, bandpass filtering by the frequency band is performed by the calculation unit 53, and separated and extracted into a respiratory motion waveform 553, a heart sound waveform 552, and a respiratory sound waveform 554, respectively. Displayed on the display unit 55. The computing unit 53 also performs normal / abnormal judgment of the electrocardiogram waveform 551, the respiratory motion waveform 553, the heart sound waveform 552, and the respiratory sound waveform 554, and displays a warning on the display unit 55 when an abnormality occurs. The control unit 54 changes display settings for various biological signal waveforms on the display unit 55 of the biological signal monitoring unit 51 or changes settings for normal / abnormal determination.

心電波形551、呼吸運動波形553、心音波形552、及び呼吸音波形554は、正常/異常判定の履歴と共に時系列データとして記録される。時系列データは、送信部56により有線LAN、又は、無線LAN、又は無線通信であるBluetooth(登録商標)通信にてパソコンやタブレット端末に直接送信可能であり、パソコンやタブレット端末を経由してクラウドサーバーに送信し、遠隔地で監視することも可能である。   The electrocardiogram waveform 551, the respiratory motion waveform 553, the cardiac sound waveform 552, and the respiratory sound waveform 554 are recorded as time series data together with the normal / abnormal determination history. The time-series data can be transmitted directly to a personal computer or tablet terminal via a wired LAN, wireless LAN, or Bluetooth (registered trademark) communication that is wireless communication by the transmission unit 56, and clouded via the personal computer or tablet terminal. It can also be sent to a server and monitored remotely.

100 生体センサ
103 ホットメルトシール
11 振動伝達板
111 基板
112 被覆板
15 導体パターン
151 圧電素子カソード用導体パターン
152 圧電素子アノード用導体パターン
153 心電電極導体パターン(頭部側)
154 心電電極導体パターン(腹部側)
211 導体パターン(ジャンパー)
21 圧電素子
31 心電電極(頭部側)
311 係合電極板(頭部側)
313 心電電極係合部(頭部側)
314 電極パッド(頭部側)
315 導電性粘着ゲル(頭部側)
32 心電電極(腹部側)
321 係合電極板(腹部側)
323 心電電極係合部(腹部側)
324 電極パッド(腹部側)
325 導電性粘着ゲル(腹部側)
41 フィルム電線
51 生体信号監視ユニット
52 生体信号処理部
521 生体信号検出部
522 AD変換部
53 演算部
54 制御部
55 表示部
551 心電波形
552 心音波形
553 呼吸運動波形
554 呼吸音波形
56 送信部
57 記憶部
S 体表(皮膚)
DESCRIPTION OF SYMBOLS 100 Biosensor 103 Hot melt seal 11 Vibration transmission plate 111 Substrate 112 Cover plate 15 Conductor pattern 151 Conductor pattern for piezoelectric element cathode 152 Conductor pattern for anode of piezoelectric element 153 Electrocardiogram electrode conductor pattern (head side)
154 ECG electrode conductor pattern (abdominal side)
211 Conductor pattern (jumper)
21 Piezoelectric element 31 ECG electrode (head side)
311 Engagement electrode plate (head side)
313 ECG electrode engaging part (head side)
314 Electrode pad (head side)
315 Conductive adhesive gel (head side)
32 ECG electrodes (abdominal side)
321 Engaging electrode plate (abdomen side)
323 ECG electrode engaging part (abdominal side)
324 electrode pad (abdominal side)
325 conductive adhesive gel (abdomen side)
41 Film Electric Wire 51 Biological Signal Monitoring Unit 52 Biological Signal Processing Unit 521 Biological Signal Detection Unit 522 AD Conversion Unit 53 Calculation Unit 54 Control Unit 55 Display Unit 551 Electrocardiogram Waveform 552 Cardiac Sound Waveform 553 Respiration Motion Waveform 554 Respiration Sound Waveform 56 Transmitting Unit 57 Storage unit S Body surface (skin)

Claims (4)

振動を電圧に変換する圧電素子と、
生体が発する電気信号を検出する一対の心電電極と、
前記生体が発する振動を前記圧電素子に伝達する振動伝達板と、
を備え、
前記圧電素子及び前記一対の心電電極は前記振動伝達板に設けられ、
前記一対の心電電極の一方の面には導電性の粘着剤を備える
ことを特徴とする生体センサ。
A piezoelectric element that converts vibration into voltage;
A pair of electrocardiographic electrodes for detecting an electrical signal emitted by the living body;
A vibration transmission plate for transmitting vibration generated by the living body to the piezoelectric element;
With
The piezoelectric element and the pair of electrocardiographic electrodes are provided on the vibration transmission plate,
A biosensor comprising a conductive adhesive on one surface of the pair of electrocardiographic electrodes.
前記振動伝達板は、長手方向を有し、前記長手方向の両端部に前記一対の心電電極を係止する一対の係合機構を備え、
前記圧電素子は、前記振動伝達板の前記長手方向の中央部に設けられる
ことを特徴とする請求項1に記載の生体センサ。
The vibration transmission plate has a longitudinal direction, and includes a pair of engagement mechanisms that engage the pair of electrocardiographic electrodes at both ends of the longitudinal direction,
The biosensor according to claim 1, wherein the piezoelectric element is provided at a central portion in the longitudinal direction of the vibration transmission plate.
前記振動伝達板は、可撓性及び絶縁性を有する
ことを特徴とする請求項1又は請求項2に記載の生体センサ。
The biosensor according to claim 1, wherein the vibration transmission plate has flexibility and insulation.
前記一対の係合機構は、中央に孔が形成され、前記孔から放射状に複数のスリットが形成されている金属板である
ことを特徴とする請求項2に記載の生体センサ。
The biosensor according to claim 2, wherein the pair of engagement mechanisms are metal plates in which a hole is formed in the center and a plurality of slits are formed radially from the hole.
JP2016056513A 2016-03-22 2016-03-22 Biometric sensor Active JP6732188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016056513A JP6732188B2 (en) 2016-03-22 2016-03-22 Biometric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056513A JP6732188B2 (en) 2016-03-22 2016-03-22 Biometric sensor

Publications (2)

Publication Number Publication Date
JP2017169648A true JP2017169648A (en) 2017-09-28
JP6732188B2 JP6732188B2 (en) 2020-07-29

Family

ID=59970729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056513A Active JP6732188B2 (en) 2016-03-22 2016-03-22 Biometric sensor

Country Status (1)

Country Link
JP (1) JP6732188B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047842A1 (en) * 2016-09-07 2018-03-15 バンドー化学株式会社 Probe for use in measurement of biological information, and biological information measurement device
JP2020110096A (en) * 2019-01-15 2020-07-27 信越ポリマー株式会社 Livestock sensor module mounting tool
WO2023053592A1 (en) * 2021-09-29 2023-04-06 株式会社村田製作所 Biological information acquisition device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002301A2 (en) * 2001-07-17 2004-01-08 Gmp Wireless Medicine, Inc. Wireless ecg system
WO2005070289A1 (en) * 2004-01-15 2005-08-04 Koninklijke Philips Electronics, N.V. Adaptive physiological monitoring system and methods of using the same
WO2014055994A1 (en) * 2012-10-07 2014-04-10 Rhythm Diagnostics Systems, Inc. Wearable cardiac monitor
WO2015170772A2 (en) * 2014-05-08 2015-11-12 株式会社Ainy Circular breathing function measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002301A2 (en) * 2001-07-17 2004-01-08 Gmp Wireless Medicine, Inc. Wireless ecg system
WO2005070289A1 (en) * 2004-01-15 2005-08-04 Koninklijke Philips Electronics, N.V. Adaptive physiological monitoring system and methods of using the same
WO2014055994A1 (en) * 2012-10-07 2014-04-10 Rhythm Diagnostics Systems, Inc. Wearable cardiac monitor
WO2015170772A2 (en) * 2014-05-08 2015-11-12 株式会社Ainy Circular breathing function measurement device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047842A1 (en) * 2016-09-07 2018-03-15 バンドー化学株式会社 Probe for use in measurement of biological information, and biological information measurement device
JP2020110096A (en) * 2019-01-15 2020-07-27 信越ポリマー株式会社 Livestock sensor module mounting tool
JP7150623B2 (en) 2019-01-15 2022-10-11 信越ポリマー株式会社 livestock sensor module fixture
WO2023053592A1 (en) * 2021-09-29 2023-04-06 株式会社村田製作所 Biological information acquisition device

Also Published As

Publication number Publication date
JP6732188B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
US11039788B2 (en) Wearable force sensor for monitoring respiration
US9192351B1 (en) Acoustic respiratory monitoring sensor with probe-off detection
CN107529991B (en) Device, system and method for detecting a cardiac and/or respiratory disease of a subject
US20180249957A1 (en) Monitoring device
US9795358B2 (en) Acoustic sensor assembly
US20080312524A1 (en) Medical Sensor Having Electrodes and a Motion Sensor
JP2013508029A (en) Acoustic respiration monitoring sensor having a plurality of detection elements
JP2016517324A (en) Health monitoring, investigation, and anomaly detection
JP2013009980A (en) Respiratory rate or heart rate measurement device and measurement system
JP2005532849A5 (en)
JP6732188B2 (en) Biometric sensor
AU2018353160A1 (en) Wearable health-monitoring devices and methods of making and using the same
WO2015170772A2 (en) Circular breathing function measurement device
US20150088021A1 (en) Vital signs sensing apparatus and associated method
JP6793287B2 (en) Biological signal measuring device and biological signal measuring method
WO2017198787A1 (en) An apparatus and method for detection of dysfunctional breathing
CN104095628A (en) Flexible medical electrode, medical electrode sheet, detecting instrument, treatment instrument and application
KR102220150B1 (en) Respiratory sensing device and respiratory monitoring system
US20120203127A1 (en) Nasal cannula with integrated thermal flow sensing
TW200927065A (en) Monitoring and control system for cardiopulmonary function and device thereof
US20220133213A1 (en) Multi-Sensor Patch
KR101726503B1 (en) Glove-type bio-signal measuring apparatus
US11559222B2 (en) Respiratory sensing device and respiratory monitoring system including the same
KR20190052556A (en) Respiratory sensing device and respiratory monitoring system
US20220175339A1 (en) Acoustic Sensor System for Sensing Acoustic Information from Human and Animal Subjects

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170919

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200612

R150 Certificate of patent or registration of utility model

Ref document number: 6732188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250