JP2017166391A - Abnormality diagnostic device of wind power generation facility - Google Patents

Abnormality diagnostic device of wind power generation facility Download PDF

Info

Publication number
JP2017166391A
JP2017166391A JP2016051463A JP2016051463A JP2017166391A JP 2017166391 A JP2017166391 A JP 2017166391A JP 2016051463 A JP2016051463 A JP 2016051463A JP 2016051463 A JP2016051463 A JP 2016051463A JP 2017166391 A JP2017166391 A JP 2017166391A
Authority
JP
Japan
Prior art keywords
power generation
data
vibration
vibration waveform
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016051463A
Other languages
Japanese (ja)
Other versions
JP6577394B2 (en
Inventor
小林 伸二
Shinji Kobayashi
伸二 小林
謙次 下西
Kenji Shimonishi
謙次 下西
吉本 松男
Matsuo Yoshimoto
松男 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Plant Engineering Co Ltd
Original Assignee
JFE Plant Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Plant Engineering Co Ltd filed Critical JFE Plant Engineering Co Ltd
Priority to JP2016051463A priority Critical patent/JP6577394B2/en
Publication of JP2017166391A publication Critical patent/JP2017166391A/en
Application granted granted Critical
Publication of JP6577394B2 publication Critical patent/JP6577394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abnormality diagnostic device of a wind power generation facility capable of properly diagnosing abnormality (backlash) of a mechanical system in the wind power generation facility.SOLUTION: An abnormality diagnostic device of a wind power generation facility determines occurrence of backlash on the basis of that vibration waveform before start of power generation is larger than vibration waveform after the start of power generation as a result of comparison of the vibration waveforms before and after the start of power generation, and the difference between the vibration waveforms before and after the start of power generation is larger than a predetermined difference, and that the total sum of specified frequency components of the vibration waveform of a prescribed time before and after the start of power generation is the predetermined difference or larger.SELECTED DRAWING: Figure 1

Description

本発明は、風力発電設備の異常診断装置に関する。   The present invention relates to an abnormality diagnosis apparatus for wind power generation facilities.

風力発電設備は、50m以上あるタワーの上端部に回動可能にナセルが設置され、このナセルに設けられた主軸の一端側に風を受けるブレードが設置され、主軸の他端側には増速機や、発電機が設置されている。
風力発電設備には、上記のように主軸、増速機及び発電機といった回転機器を有しており、これらの機器の異常を診断する方法として、振動センサを用いた診断方法が提案されている。
In the wind power generation facility, a nacelle is rotatably installed at the upper end of a tower of 50 m or more, a blade for receiving wind is installed at one end of the main shaft provided in the nacelle, and a speed increase is provided at the other end of the main shaft. Machines and generators are installed.
The wind power generation equipment has rotating devices such as a main shaft, a speed increaser, and a generator as described above, and a diagnosis method using a vibration sensor has been proposed as a method for diagnosing abnormalities in these devices. .

例えば、特許文献1には「転がり軸受の異常診断装置、風力発電装置及び異常診断システム」という発明が提案されている。
特許文献1のものは、「転がり軸受の振動波形を測定するための振動センサと、前記転がり軸受の異常を診断するための処理部とを備え、前記処理部は、前記振動センサを用いて測定された前記振動波形の実効値を算出する第1の演算部と、前記振動センサを用いて測定された前記振動波形にエンベロープ処理を行なうことによって前記振動波形のエンベロープ波形を生成するエンベロープ処理部と、前記エンベロープ処理部によって生成された前記エンベロープ波形の交流成分の実効値を算出する第2の演算部と、前記第1の演算部によって算出された前記振動波形の実効値および前記第2の演算部によって算出された前記エンベロープ波形の交流成分の実効値に基づいて前記転がり軸受の異常を診断する診断部とを含む、転がり軸受の異常診断装置。」(請求項1参照)である。
For example, Patent Document 1 proposes an invention called “rolling bearing abnormality diagnosis device, wind power generation device, and abnormality diagnosis system”.
The thing of patent document 1 is equipped with the "vibration sensor for measuring the vibration waveform of a rolling bearing, and the process part for diagnosing the abnormality of the said rolling bearing, and the said process part is measured using the said vibration sensor. A first calculation unit that calculates an effective value of the vibration waveform that has been measured, and an envelope processing unit that generates an envelope waveform of the vibration waveform by performing envelope processing on the vibration waveform measured using the vibration sensor; A second calculation unit that calculates an effective value of an alternating current component of the envelope waveform generated by the envelope processing unit, an effective value of the vibration waveform calculated by the first calculation unit, and the second calculation And a diagnostic unit for diagnosing abnormality of the rolling bearing based on an effective value of the alternating current component of the envelope waveform calculated by the unit. Diagnostic device. A "(see claim 1).

また、特許文献2には、「状態監視システム」という発明が提案されており、これは「風力発電装置に設けられた機器の異常を診断する状態監視システムであって、前記機器に設けられるセンサを含むモニタ装置と、前記モニタ装置が前記機器の異常を診断するために使用するしきい値を設定し、前記しきい値に基づいて前記機器の異常を診断する監視側制御装置と、前記機器の状態を監視する監視用端末装置とを備え、前記モニタ装置は、前記診断前の第1の期間に計測したしきい値設定用データを前記監視側制御装置へ送信し、前記監視側制御装置は、前記しきい値設定用データに基づき、前記しきい値を生成し、前記モニタ装置は、前記第1の期間経過後の第2の期間に、測定したデータを前記監視側制御装置に送信し、前記監視側制御装置は、前記データと前記データに対応する前記しきい値とに基づいて前記機器が異常か否かを診断し、前記監視用端末装置に診断の結果を送信する、状態監視システム。」というものである。   Patent Document 2 proposes an invention called “state monitoring system”, which is “a state monitoring system for diagnosing an abnormality of a device provided in a wind turbine generator, and a sensor provided in the device. A monitoring device including: a monitoring device that sets a threshold used by the monitoring device to diagnose an abnormality of the device, and diagnoses the abnormality of the device based on the threshold; and the device A monitoring terminal device for monitoring the state of the monitor, wherein the monitoring device transmits threshold setting data measured in the first period before the diagnosis to the monitoring control device, and the monitoring control device Generates the threshold value based on the threshold setting data, and the monitoring device transmits the measured data to the monitoring side control device in a second period after the first period has elapsed. The monitoring side system A state monitoring system in which the device diagnoses whether or not the device is abnormal based on the data and the threshold value corresponding to the data, and transmits the result of the diagnosis to the monitoring terminal device. It is.

特開2011−154020号公報JP 2011-154020 A 特開2013−185507号公報JP 2013-185507 A

風力発電設備に生じる故障箇所や態様を列挙すると、主軸ベアリング損傷(フレーキング、摩耗、割損等)、増速機低速側ベアリング損傷、増速機高速側ギヤ歯欠損(歯面摩耗、歯欠損等)、遊星歯車軸受割損、遊星歯車スプライン軸歯面損傷、発電機軸受破損、主軸と増速機、増速機と発電機間の芯狂いによる異常振動などがあり、極めて多様である。   The failure locations and modes that occur in wind power generation facilities are listed. Spindle bearing damage (flaking, wear, breakage, etc.), speed reducer low speed side bearing damage, speed increaser high speed side gear tooth loss (tooth surface wear, tooth loss) Etc.), planetary gear bearing breakage, planetary gear spline shaft tooth surface damage, generator bearing breakage, main shaft and gearbox, abnormal vibration due to misalignment between gearbox and generator, etc.

これらの多様な故障が生ずると、機械系の異常(ガタ)となって現れることが多い。   When these various failures occur, they often appear as mechanical abnormalities (backlash).

ところで、風力発電設備は、一定風速以上になると発電を開始し(カットイン)、風速が大きくなりすぎると危険防止のために発電を中止する(カットアウト)という特殊な動作を行う。
このような風力発電設備において機械系の異常(ガタ)が生じた場合、カットイン、カットアウトとの関係で振動波形に変化が生ずるが、特許文献1、2においてはこの点を考慮しておらず、ガタの発生を正確に診断することができない。
By the way, the wind power generation facility performs a special operation of starting power generation when the wind speed exceeds a certain level (cut-in), and stopping power generation (cut-out) to prevent danger when the wind speed becomes too high.
When a mechanical abnormality (backlash) occurs in such a wind power generation facility, the vibration waveform changes in relation to cut-in and cut-out. However, Patent Documents 1 and 2 do not consider this point. Therefore, the occurrence of looseness cannot be accurately diagnosed.

本発明はかかる課題を解決するためになされたものであり、風力発電設備において機械系の異常(ガタ)を的確に診断できる風力発電設備の異常診断装置を提供することを目的としている。   The present invention has been made to solve such a problem, and an object thereof is to provide an abnormality diagnosis device for a wind power generation facility that can accurately diagnose an abnormality (backlash) in a mechanical system in the wind power generation facility.

(1)本発明に係る風力発電設備の異常診断装置は、風力によって回転するブレードと、該ブレードに連結された主軸を回転可能に支持する主軸受、前記主軸に連結されて主軸の回転を増速する増速機、該増速機の出力軸に接続される発電機、及び少なくとも該発電機の発電開始に関する制御する制御盤を備えた風力発電設備に設けられて機器の異常を診断する風力発電設備の異常診断装置であって、
診断対象となる機器の振動に関するデータと発電開始(カットイン)に関する情報を収集するデータ収集装置と、該データ収集装置で収集されたデータに基づいて機器の異常の有無を診断する診断装置とを備え、
前記データ収集装置は、前記制御盤から発電開始に関する情報を取得して発電開始状態かどうかを判断するカットイン判断回路と、前記主軸受と、前記増速機の入側と、該増速機の出側と、前記発電機の入側の4箇所において、それぞれ直交位置に設置された少なくとも8個の振動センサと、前記カットイン判断回路からの発電開始情報に基づいて前記振動センサにおける発電開始前後の所定時間の計測値をサンプリングするサンプリング処理回路を有し、
前記診断装置は、前記データ収集装置で収集された情報に基づいて、ガタ発生の有無を判断する判定手段を有し、
該判定手段は発電開始前後の振動波形を比較して発電開始前の振動波形が発電開始後の振動波形よりも大きく、かつこの差が予め設定した差以上であること、及び、発電開始前後の所定時間の振動波形の指定周波数成分の総和が予め設定した差以上であることでガタが発生していると判定することを特徴とするものである。
(1) A wind turbine generator abnormality diagnosis apparatus according to the present invention includes a blade that is rotated by wind power, a main bearing that rotatably supports a main shaft connected to the blade, and a main shaft that is connected to the main shaft to increase the rotation of the main shaft. Wind turbine for diagnosing an abnormality of equipment provided in a wind turbine generator equipped with a speed increasing gear, a generator connected to the output shaft of the speed increasing gear, and at least a control panel for controlling power generation of the power generator An abnormality diagnosis device for a power generation facility,
A data collection device that collects data related to vibration of a device to be diagnosed and information related to power generation start (cut-in), and a diagnostic device that diagnoses whether there is an abnormality in the device based on the data collected by the data collection device Prepared,
The data collection device includes a cut-in determination circuit that acquires information on the start of power generation from the control panel and determines whether or not a power generation start state, the main bearing, the input side of the speed increaser, and the speed increaser Power generation at the vibration sensor based on the power generation start information from the cut-in determination circuit and at least eight vibration sensors respectively installed at orthogonal positions at four locations on the outlet side of the generator and on the inlet side of the generator It has a sampling processing circuit that samples the measured values for a predetermined time before and after,
The diagnostic device includes a determination unit that determines whether or not there is a backlash based on information collected by the data collection device;
The determination means compares the vibration waveform before and after the start of power generation, the vibration waveform before the start of power generation is larger than the vibration waveform after the start of power generation, and this difference is greater than or equal to a preset difference, and before and after the start of power generation. It is characterized in that it is determined that play has occurred when the sum of the specified frequency components of the vibration waveform for a predetermined time is greater than or equal to a preset difference.

(2)また、上記(1)に記載のものにおいて、前記データ収集装置は、サンプリングしたデータを外部に送信するデータ送信手段を有し、
前記診断装置は、前記データ送信手段によって送信されたデータを受信するデータ受信部を備えたことを特徴とするものである。
(2) Further, in the above (1), the data collection device includes data transmission means for transmitting the sampled data to the outside,
The diagnostic apparatus includes a data receiving unit that receives data transmitted by the data transmitting unit.

本発明に係る風力発電設備の異常診断装置においては、診断対象となる機器の振動に関するデータと発電開始(カットイン)に関する情報を収集するデータ収集装置と、該データ収集装置で収集されたデータに基づいて機器の異常の有無を診断する診断装置とを備え、
前記データ収集装置は、前記制御盤から発電開始に関する情報を取得して発電開始状態かどうかを判断するカットイン判断回路と、前記主軸受と、前記増速機の入側と、該増速機の出側と、前記発電機の入側の4箇所において、それぞれ直交位置に設置された少なくとも8個の振動センサと、前記カットイン判断回路からの発電開始情報に基づいて前記振動センサにおける発電開始前後の所定時間の計測値をサンプリングするサンプリング処理回路を有し、前記診断装置は、前記データ収集装置で収集された情報に基づいて、ガタ発生の有無を判断する判定手段を有し、
該判定手段は発電開始前後の振動波形を比較して発電開始前の振動波形が発電開始後の振動波形よりも大きく、かつこの差が予め設定した差以上であること、及び、発電開始前後の所定時間の振動波形の指定周波数成分の総和が予め設定した差以上であることでガタが発生していると判定するようにしたので、カットイン、カットオフという特殊な動作をする風力発電設備において、機械系の異常(ガタ)発生を的確に診断することができる。
In the abnormality diagnosis device for wind power generation facilities according to the present invention, a data collection device that collects data related to vibration of a device to be diagnosed and information related to power generation start (cut-in), and data collected by the data collection device And a diagnostic device for diagnosing the presence or absence of equipment abnormality based on
The data collection device includes a cut-in determination circuit that acquires information on the start of power generation from the control panel and determines whether or not a power generation start state, the main bearing, the input side of the speed increaser, and the speed increaser Power generation at the vibration sensor based on the power generation start information from the cut-in determination circuit and at least eight vibration sensors respectively installed at orthogonal positions at four locations on the outlet side of the generator and on the inlet side of the generator It has a sampling processing circuit that samples measured values for a predetermined time before and after, and the diagnostic device has a judging means for judging the presence or absence of play based on information collected by the data collecting device,
The determination means compares the vibration waveform before and after the start of power generation, the vibration waveform before the start of power generation is larger than the vibration waveform after the start of power generation, and this difference is greater than or equal to a preset difference, and before and after the start of power generation. In the wind power generation equipment that performs special operations such as cut-in and cut-off because the sum of the specified frequency components of the vibration waveform for a predetermined time is greater than the difference set in advance, it is determined that play has occurred. Therefore, it is possible to accurately diagnose the occurrence of mechanical system abnormalities (backlash).

本発明の一実施の形態に係る風力発電設備の異常診断装置の構成を説明する説明図である。It is explanatory drawing explaining the structure of the abnormality diagnosis apparatus of the wind power generation equipment which concerns on one embodiment of this invention. 本発明の一実施の形態に係る風力発電設備の異常診断装置におけるガタ発生の有無の判定方法を説明する説明図であって、解析の対象とした振動計の位置を説明する図である。It is explanatory drawing explaining the determination method of the presence or absence of the play in the abnormality diagnosis apparatus of the wind power generation facility which concerns on one embodiment of this invention, Comprising: It is a figure explaining the position of the vibrometer made into the analysis object. 本発明の一実施の形態に係る風力発電設備の異常診断装置で計測した振動波形を示す図である。It is a figure which shows the vibration waveform measured with the abnormality diagnosis apparatus of the wind power generation equipment which concerns on one embodiment of this invention. 本発明の一実施の形態に係る風力発電設備の異常診断装置で解析した3次元周波数解析結果を示す図である。It is a figure which shows the three-dimensional frequency analysis result analyzed with the abnormality diagnosis apparatus of the wind power generation equipment which concerns on one embodiment of this invention.

本実施の形態に係る風力発電設備の異常診断装置1(以下、単に「異常診断装置1」という)は、図1に示すように、風力によって回転するブレード3と、ブレード3に連結された主軸5を回転可能に支持する主軸受6、主軸5に連結されて主軸5の回転を増速する増速機7、増速機7の出力軸に接続される発電機9と、少なくとも該発電機の発電開始に関する制御する制御盤10を備えた風力発電設備11に設けられて機器の異常を診断するものである。
そして、異常診断装置1は、ナセル内に設置されてデータの収集を行うデータ収集装置13と、インターネット回線を介してデータ収集装置13で収集されたデータを受信し、受信したデータに基づいて診断を行う診断装置15を備えている。
以下、各装置について詳細に説明する。
As shown in FIG. 1, a wind turbine generator abnormality diagnosis apparatus 1 according to the present embodiment (hereinafter simply referred to as “abnormality diagnosis apparatus 1”) includes a blade 3 that is rotated by wind force, and a main shaft that is coupled to the blade 3. A main bearing 6 that rotatably supports 5, a speed increaser 7 that is connected to the main shaft 5 to increase the rotation of the main shaft 5, a generator 9 that is connected to the output shaft of the speed increaser 7, and at least the generator It is provided in the wind power generation equipment 11 provided with the control panel 10 for controlling the start of power generation, and diagnoses the abnormality of the equipment.
The abnormality diagnosis device 1 receives the data collected by the data collection device 13 installed in the nacelle and collecting data and the data collection device 13 via the Internet line, and diagnoses based on the received data A diagnostic device 15 is provided.
Hereinafter, each device will be described in detail.

<データ収集装置>
データ収集装置13は、主軸受6と、増速機7の入側と、増速機7の出側と、発電機9の入側と、発電機9の出側との5箇所に設置された振動センサ17を有している。4箇所のそれぞれにおいては、水平方向(H方向)と垂直方向(V方向)の2箇所に振動センサ17が設けられているので、振動センサ17は合計10個設けられている(図1参照)。
<Data collection device>
The data collection devices 13 are installed at five locations including the main bearing 6, the input side of the speed increaser 7, the output side of the speed increaser 7, the input side of the generator 9, and the output side of the generator 9. The vibration sensor 17 is provided. In each of the four locations, the vibration sensors 17 are provided at two locations in the horizontal direction (H direction) and the vertical direction (V direction), so a total of 10 vibration sensors 17 are provided (see FIG. 1). .

また、データ収集装置13は、図1に示すように、制御盤10からの発電開始に関する情報を取得して発電開始状態かどうかを判断するカットイン判断回路18と、各振動センサ17から出力される信号を入力して各振動センサ17ごとに振動波形データを取り込むアナログ回路19、アナログ回路19で取り込まれたアナログデータをデジタルデータに変換するA/D変換回路21と、A/D変換回路21によってデジタル変換されたデータをカットイン判断回路18からの発電開始情報に基づいて発電開始前後の所定時間の計測値をサンプリングするサンプリングするサンプリング処理回路23と、サンプリング処理回路23でサンプリングされたデータを記憶する記憶手段25と、記憶手段25に蓄積されたデータ及びカットイン判断回路18の発電開始に関する情報を送信するデータ送信手段27と、通信回線(例えば、インターネット回線)を介して接続された診断装置15との通信を行うための通信制御手段29を備えている。
アナログ回路19は、積分回路、ハイパスフィルタ、ローパスフィルタなどを備えて構成される。
Further, as shown in FIG. 1, the data collection device 13 obtains information related to the power generation start from the control panel 10 and outputs from the vibration sensor 17 and the cut-in determination circuit 18 that determines whether or not the power generation start state. An analog circuit 19 for inputting vibration signal data for each vibration sensor 17, an A / D conversion circuit 21 for converting analog data acquired by the analog circuit 19 into digital data, and an A / D conversion circuit 21 The sampling processing circuit 23 that samples the data converted into digital data by the cut-in determination circuit 18 based on the power generation start information from the cut-in determination circuit 18 and samples the measurement values for a predetermined time before and after the power generation start, and the data sampled by the sampling processing circuit 23 Storage means 25 for storing, data accumulated in storage means 25 and cut-in determination And data transmitting means 27 for transmitting information about the power generation start of the road 18, the communication line (e.g., internet access) and a communication control unit 29 for communication with the diagnostic device 15 connected via a.
The analog circuit 19 includes an integration circuit, a high pass filter, a low pass filter, and the like.

<診断装置>
診断装置15は、図1に示すように、インターネット回線を介して送信されるデータを受信する通信制御手段29と、記憶されている解析プログラム(振動波形解析プログラム31、3次元周波数解析プログラム33)を読み出して、データ収集装置13から送信されたデータに基づいて振動波形解析及び3次元周波数解析を行う解析手段35と、解析手段35の解析結果及びカットイン判断回路18の発電開始に関する情報に基づいて機械系の異常(ガタ)発生の有無を判定する判定手段36とを備えている。
なお、診断装置15が振動波形解析プログラム31及び3次元周波数解析プログラム33以外の解析プログラムを有している場合を排除するものではない。
<Diagnostic device>
As shown in FIG. 1, the diagnostic device 15 includes a communication control unit 29 that receives data transmitted via the Internet line, and a stored analysis program (vibration waveform analysis program 31, three-dimensional frequency analysis program 33). And analyzing means 35 for performing vibration waveform analysis and three-dimensional frequency analysis based on the data transmitted from the data collecting device 13, based on the analysis result of the analyzing means 35 and information on the start of power generation of the cut-in determination circuit 18. Determination means 36 for determining whether or not a mechanical system abnormality (backlash) has occurred.
In addition, the case where the diagnostic apparatus 15 has an analysis program other than the vibration waveform analysis program 31 and the three-dimensional frequency analysis program 33 is not excluded.

以下、解析手段35と判定手段36について詳細に説明する。   Hereinafter, the analysis unit 35 and the determination unit 36 will be described in detail.

<解析手段>
解析手段35が行う振動波形解析と3次元周波数解析について説明する。
《振動波形解析》
前述したように、風力発電設備11は一定風速以上になると発電を開始し(カットイン)、風速が大きくなりすぎると危険防止のために発電を中止する(カットアウト)という特殊な動作を行う。
図3は、図2に示したa(発電機反負荷側)、b(発電機負荷側)、c(増速機出力側)、d(増速機入力側)の4箇所で測定した加速度(Acc.)波形と速度(Vel.)波形を示したものであり、横軸が経過時間で縦軸が振動波形の振幅を示している。なお、図3では主軸受6に設置した振動センサからの振動波形の解析結果を載せていないので、図2においては当該部位の位置を示していない。
横軸には、装置の起動、カットイン(発電開始時)、カットアウト(発電停止時)、及び装置の起動と停止の各タイミングを矢印で示してある。
また、今回解析の対象としたのはカットインの前後12秒の間であることから、当該領域を示してある。
<Analysis means>
The vibration waveform analysis and three-dimensional frequency analysis performed by the analysis unit 35 will be described.
<< Vibration waveform analysis >>
As described above, the wind power generation facility 11 performs a special operation of starting power generation when the wind speed exceeds a certain level (cut-in), and stopping power generation (cut-out) to prevent danger when the wind speed becomes too high.
FIG. 3 shows accelerations measured at the four points a (generator anti-load side), b (generator load side), c (speed increaser output side), and d (speed increaser input side) shown in FIG. (Acc.) Waveform and velocity (Vel.) Waveform are shown, with the horizontal axis indicating the elapsed time and the vertical axis indicating the amplitude of the vibration waveform. 3 does not show the analysis result of the vibration waveform from the vibration sensor installed on the main bearing 6, the position of the part is not shown in FIG. 2.
On the horizontal axis, start-up of the device, cut-in (at the start of power generation), cut-out (at the time of power generation stop), and start-up and stop timing of the device are indicated by arrows.
In addition, since the target of analysis this time is 12 seconds before and after the cut-in, this region is shown.

図3における「増速機入力側 Vel」の波形を見ると、カットイン前には速度波形に衝撃性のあるピーク振動波形が発生しており、この衝撃振動の周期は低速軸の1回転周期である。
一方、カットイン後にはこのピーク振動波形が小さくなり、振動速度レベルも減少している。
このように、カットインの前後においてピーク振動波形の振幅に大きな差が生ずる場合、当該部位の機械系に摩耗によるガタがある可能性がある。
Looking at the waveform of “speed increaser input side Vel” in FIG. 3, a peak vibration waveform with impact characteristics is generated before the cut-in, and the period of the impact vibration is one rotation period of the low-speed axis. It is.
On the other hand, after the cut-in, the peak vibration waveform becomes smaller and the vibration speed level also decreases.
As described above, when a large difference occurs in the amplitude of the peak vibration waveform before and after the cut-in, there is a possibility that the mechanical system of the part has a backlash due to wear.

ガタがある場合、カットイン前に生じていたピーク振動の振幅が小さくなる理由は、発電開始により発電機の軸芯がマグネットセンターに移動し、その動きに連動して増速機や、主軸受の軸芯も変化して負荷が増加する。その結果、各軸受の摩耗部で自由に振れ回っていた軸が、負荷が加わる方向に拘束されるため、結果としてガタによる振動が押さえられ小さくなるものと考えられる。   If there is a backlash, the reason why the amplitude of the peak vibration that occurred before the cut-in is reduced is that the generator core moves to the magnet center when power generation starts, and the gearbox and main bearing are linked to the movement. The axis of the shaft also changes and the load increases. As a result, the shaft that was freely swung around the worn part of each bearing is constrained in the direction in which the load is applied. As a result, it is considered that vibration due to backlash is suppressed and reduced.

このように振動波形解析を行うことで、カットイン前後のピーク振動波形の振幅の変化を捉えることができ、ガタ発生の有無を判断する一つの要素とすることができる。   By performing vibration waveform analysis in this way, changes in the amplitude of the peak vibration waveform before and after cut-in can be captured, and this can be used as one element for determining the presence or absence of backlash.

《3次元周波数解析》
機械系にガタがある場合、ガタがある回転軸の回転周波数とその高調波成分が発生することが知られている。風車の場合、低速軸の回転周波数は数Hz程度の低周波であり、1次の回転周波数だけに着目しようとしても、主軸受の振れ回り振動成分や増速機低速軸側の遊星歯車のギヤ噛み合い周波数など、複数の低周波数成分が複合されているため、分別することは困難である。
そこで、1次成分に着目せず、その高調波成分に着目することで、どの軸受部のガタであるかを確実に判定することができる。
<< 3D frequency analysis >>
It is known that when there is play in the mechanical system, the rotation frequency of the rotating shaft with play and its harmonic components are generated. In the case of a windmill, the rotational speed of the low speed shaft is a low frequency of about several Hz, and even if it is intended to focus only on the primary rotational frequency, the whirling vibration component of the main bearing and the gear of the planetary gear on the speed reducer low speed shaft Since a plurality of low frequency components such as the meshing frequency are combined, it is difficult to separate them.
Therefore, it is possible to reliably determine which bearing portion is loose by focusing on the harmonic component without focusing on the primary component.

図4は、カットイン前後の3次元周波数解析結果を示すものであり、縦軸が時間経過で横軸が周波数である。
カットイン前で低速回転系の回転周波数成分の逓数倍の周波数が顕著に現われており、低速回転系に異常(ガタ)があることが解る。逆に20Hz以下の低周波領域では、あらゆる周波数成分が重畳しており、何の成分が含まれているか分別が困難であることもわかる。
このように、高調波成分に着目した3次元周波数解析を行うことで、ガタ発生の有無を確実に知ることができる。
FIG. 4 shows a three-dimensional frequency analysis result before and after cut-in. The vertical axis represents time and the horizontal axis represents frequency.
A frequency that is a multiple of the rotational frequency component of the low-speed rotation system appears prominently before cut-in, indicating that there is an abnormality (backlash) in the low-speed rotation system. On the contrary, in the low frequency region of 20 Hz or less, all frequency components are superimposed, and it can be seen that it is difficult to distinguish what components are included.
As described above, by performing the three-dimensional frequency analysis focusing on the harmonic component, it is possible to surely know whether or not the play is generated.

<判定手段>
判定手段は、解析手段の解析結果を用いて以下のように判定する。
発電開始(カットイン)前後の振動波形を比較して発電開始前の振動波形が発電開始後の振動波形よりも大きく、かつこの差が予め設定した差以上であること、及び、発電開始前後の所定時間の振動波形の指定周波数成分の総和が予め設定した差以上であることの2つの条件が成立したときにガタが発生していると判定する。
指定周波数とは、主軸回転周波数、増速機遊星歯車出力軸回転周波数、増速機1段軸回転周波数、増速機2段回転周波数などを指す。
また、予め定めた差の例としては、例えば加速度ピーク値で2倍以上などの設定を行う。
<Determination means>
The determination means determines as follows using the analysis result of the analysis means.
Comparing the vibration waveforms before and after the start of power generation (cut-in), the vibration waveform before the start of power generation is larger than the vibration waveform after the start of power generation, and this difference is greater than or equal to the preset difference, and before and after the start of power generation When two conditions are satisfied that the sum of the specified frequency components of the vibration waveform for a predetermined time is greater than or equal to a preset difference, it is determined that the play has occurred.
The designated frequency refers to a main shaft rotation frequency, a gearbox planetary gear output shaft rotation frequency, a gearbox 1-stage shaft rotation frequency, a gearbox 2-stage rotation frequency, and the like.
In addition, as an example of the predetermined difference, for example, a setting such as twice or more acceleration peak value is performed.

以上のように、本実施の形態の異常診断装置1によれば、カットイン、カットオフという特殊な動作をする風力発電設備において、機械系の異常(ガタ)発生を的確に判定することができる。   As described above, according to the abnormality diagnosis device 1 of the present embodiment, in a wind power generation facility that performs special operations such as cut-in and cut-off, it is possible to accurately determine the occurrence of mechanical system abnormality (backlash). .

1 異常診断装置
3 ブレード
5 主軸
6 主軸受
7 増速機
9 発電機
10 制御盤
11 風力発電設備
13 データ収集装置
15 診断装置
17 振動センサ
18 カットイン判断回路
19 アナログ回路
21 A/D変換回路
23 サンプリング処理回路
25 記憶手段
27 データ送信手段
29 通信制御手段
31 振動波形解析プログラム
33 3次元周波数解析プログラム
35 解析手段
36 判定手段
DESCRIPTION OF SYMBOLS 1 Abnormality diagnosis apparatus 3 Blade 5 Spindle 6 Main bearing 7 Booster 9 Generator 10 Control panel 11 Wind power generation equipment 13 Data collection apparatus 15 Diagnosis apparatus 17 Vibration sensor 18 Cut-in judgment circuit 19 Analog circuit 21 A / D conversion circuit 23 Sampling processing circuit 25 Storage means 27 Data transmission means 29 Communication control means 31 Vibration waveform analysis program 33 Three-dimensional frequency analysis program 35 Analysis means 36 Determination means

Claims (2)

風力によって回転するブレードと、該ブレードに連結された主軸を回転可能に支持する主軸受、前記主軸に連結されて主軸の回転を増速する増速機、該増速機の出力軸に接続される発電機、及び少なくとも該発電機の発電開始に関する制御する制御盤を備えた風力発電設備に設けられて機器の異常を診断する風力発電設備の異常診断装置であって、
診断対象となる機器の振動に関するデータと発電開始(カットイン)に関する情報を収集するデータ収集装置と、該データ収集装置で収集されたデータに基づいて機器の異常の有無を診断する診断装置とを備え、
前記データ収集装置は、前記制御盤から発電開始に関する情報を取得して発電開始状態かどうかを判断するカットイン判断回路と、前記主軸受と、前記増速機の入側と、該増速機の出側と、前記発電機の入側の4箇所において、それぞれ直交位置に設置された少なくとも8個の振動センサと、前記カットイン判断回路からの発電開始情報に基づいて前記振動センサにおける発電開始前後の所定時間の計測値をサンプリングするサンプリング処理回路を有し、
前記診断装置は、前記データ収集装置で収集された情報に基づいて、ガタ発生の有無を判断する判定手段を有し、
該判定手段は発電開始前後の振動波形を比較して発電開始前の振動波形が発電開始後の振動波形よりも大きく、かつこの差が予め設定した差以上であること、及び、発電開始前後の所定時間の振動波形の指定周波数成分の総和が予め設定した差以上であることでガタが発生していると判定することを特徴とする風力発電設備の異常診断装置。
A blade that is rotated by wind power, a main bearing that rotatably supports a main shaft connected to the blade, a speed increasing device that is connected to the main shaft to increase the rotation speed of the main shaft, and is connected to an output shaft of the speed increasing device. An abnormality diagnosis device for a wind power generation facility that is provided in a wind power generation facility equipped with a generator and at least a control panel that controls the start of power generation of the generator and diagnoses an abnormality of the device,
A data collection device that collects data related to vibration of a device to be diagnosed and information related to power generation start (cut-in), and a diagnostic device that diagnoses whether there is an abnormality in the device based on the data collected by the data collection device Prepared,
The data collection device includes a cut-in determination circuit that acquires information on the start of power generation from the control panel and determines whether or not a power generation start state, the main bearing, the input side of the speed increaser, and the speed increaser Power generation at the vibration sensor based on the power generation start information from the cut-in determination circuit and at least eight vibration sensors respectively installed at orthogonal positions at four locations on the outlet side of the generator and on the inlet side of the generator It has a sampling processing circuit that samples the measured values for a predetermined time before and after,
The diagnostic device includes a determination unit that determines whether or not there is a backlash based on information collected by the data collection device;
The determination means compares the vibration waveform before and after the start of power generation, the vibration waveform before the start of power generation is larger than the vibration waveform after the start of power generation, and this difference is greater than or equal to a preset difference, and before and after the start of power generation. An abnormality diagnosis apparatus for wind power generation equipment, characterized in that it is determined that play has occurred when a sum of designated frequency components of a vibration waveform for a predetermined time is equal to or greater than a preset difference.
前記データ収集装置は、サンプリングしたデータを外部に送信するデータ送信手段を有し、
前記診断装置は、前記データ送信手段によって送信されたデータを受信するデータ受信部を備えたことを特徴とする請求項1記載の風力発電設備の異常診断装置。
The data collection device has data transmission means for transmitting the sampled data to the outside,
The wind turbine generator abnormality diagnosis apparatus according to claim 1, wherein the diagnosis apparatus includes a data reception unit that receives data transmitted by the data transmission unit.
JP2016051463A 2016-03-15 2016-03-15 Abnormality diagnosis equipment for wind power generation facilities Active JP6577394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016051463A JP6577394B2 (en) 2016-03-15 2016-03-15 Abnormality diagnosis equipment for wind power generation facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016051463A JP6577394B2 (en) 2016-03-15 2016-03-15 Abnormality diagnosis equipment for wind power generation facilities

Publications (2)

Publication Number Publication Date
JP2017166391A true JP2017166391A (en) 2017-09-21
JP6577394B2 JP6577394B2 (en) 2019-09-18

Family

ID=59912993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016051463A Active JP6577394B2 (en) 2016-03-15 2016-03-15 Abnormality diagnosis equipment for wind power generation facilities

Country Status (1)

Country Link
JP (1) JP6577394B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108731942A (en) * 2018-08-03 2018-11-02 中国建筑第八工程局有限公司 Rotating machinery fault monitors system and its monitoring method
WO2020230422A1 (en) * 2019-05-14 2020-11-19 株式会社日立製作所 Abnormality diagnosis device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185507A (en) * 2012-03-08 2013-09-19 Ntn Corp State monitoring system
US20130320676A1 (en) * 2011-02-21 2013-12-05 Samsung Heavy Ind. Co., Ltd. System and method for correcting nacelle wind velocity of wind power generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130320676A1 (en) * 2011-02-21 2013-12-05 Samsung Heavy Ind. Co., Ltd. System and method for correcting nacelle wind velocity of wind power generator
JP2013185507A (en) * 2012-03-08 2013-09-19 Ntn Corp State monitoring system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108731942A (en) * 2018-08-03 2018-11-02 中国建筑第八工程局有限公司 Rotating machinery fault monitors system and its monitoring method
WO2020230422A1 (en) * 2019-05-14 2020-11-19 株式会社日立製作所 Abnormality diagnosis device and method
JP2020187516A (en) * 2019-05-14 2020-11-19 株式会社日立製作所 Abnormality diagnosis device and method
JP7330754B2 (en) 2019-05-14 2023-08-22 株式会社日立製作所 Abnormality diagnosis device and method

Also Published As

Publication number Publication date
JP6577394B2 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
EP3631205B1 (en) Wind turbine fault detection using acoustic, vibration, and electrical signals
US9423290B2 (en) Abnormality diagnostic device for rolling bearing, wind turbine generation apparatus and abnormality diagnostic system
Yoon et al. On the use of a single piezoelectric strain sensor for wind turbine planetary gearbox fault diagnosis
EP2585716B1 (en) A method for performing condition monitoring in a wind farm
WO2016017396A1 (en) State monitoring system and wind power generation system provided with same
US8364424B2 (en) System and method for monitoring a wind turbine gearbox
RU2423716C2 (en) Method and device of mechanism monitoring
JP6628609B2 (en) Diagnosis device for wind power generation
WO2015012124A1 (en) Fault diagnosis device and fault diagnosis method for wind power generation device
WO2017018112A1 (en) Abnormality diagnosing device and sensor detachment detecting method
JP6958068B2 (en) Abnormality diagnosis system and abnormality diagnosis method for rotating machinery and equipment
EP3421786B1 (en) Systems and methods for detecting damage in wind turbine bearings
EP1760311A2 (en) Method and apparatus for condition-based monitoring of wind turbine components
JP6250345B2 (en) Monitoring system and monitoring method
WO2017170270A1 (en) State monitoring system of gear device and state monitoring method
US20100082276A1 (en) Process for monitoring a drive train component of a wind power plant
CA2889107A1 (en) Wind turbine diagnostic device for generator components
WO2017164034A1 (en) Status monitoring system, and wind power generation apparatus provided with same
JP6577394B2 (en) Abnormality diagnosis equipment for wind power generation facilities
JP6714844B2 (en) Abnormality diagnosis method
He et al. Enhanced wind turbine main drivetrain gearbox and bearing monitoring and diagnostics via information fusion of acoustic, electrical, and vibration signatures
JP6824076B2 (en) Condition monitoring system and wind power generator
JP2017181283A (en) Tooth number specification device of single pinion type epicyclic gear and tooth number specification method thereof
JP6320218B2 (en) Condition monitoring system and wind power generation system including the same
JP2017180278A (en) Tooth number specification device of speed-increasing gear for wind turbine and tooth number specification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190822

R150 Certificate of patent or registration of utility model

Ref document number: 6577394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250