JP2017155613A - Trash power generating system - Google Patents

Trash power generating system Download PDF

Info

Publication number
JP2017155613A
JP2017155613A JP2016037457A JP2016037457A JP2017155613A JP 2017155613 A JP2017155613 A JP 2017155613A JP 2016037457 A JP2016037457 A JP 2016037457A JP 2016037457 A JP2016037457 A JP 2016037457A JP 2017155613 A JP2017155613 A JP 2017155613A
Authority
JP
Japan
Prior art keywords
steam
pressure turbine
boiler
supplied
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016037457A
Other languages
Japanese (ja)
Other versions
JP6810378B2 (en
Inventor
秀雄 菅原
Hideo Sugawara
秀雄 菅原
加藤 政一
Masaichi Kato
政一 加藤
瑛佑 近藤
Eisuke Kondo
瑛佑 近藤
小山 俊彦
Toshihiko Koyama
俊彦 小山
州央 片山
Kunio Katayama
州央 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Tokyo Denki University
Original Assignee
Tokyo Gas Co Ltd
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Tokyo Denki University filed Critical Tokyo Gas Co Ltd
Priority to JP2016037457A priority Critical patent/JP6810378B2/en
Publication of JP2017155613A publication Critical patent/JP2017155613A/en
Application granted granted Critical
Publication of JP6810378B2 publication Critical patent/JP6810378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce high temperature corrosion risk when a trash power generating system achieves its high performance operation.SOLUTION: A trash power generating system 1 comprises a boiler 10 heated by waste heat generated by combustion of trash and a steam turbine power generator 2 driven by steam generated by the boiler 10. The steam turbine power generator 2 comprises a high pressure turbine 11 to which steam of temperature not producing any high temperature corrosion is supplied from the boiler 10; a middle and low pressure turbine 12 to which exhaust of the high pressure turbine 11 is supplied; and a water supply path W1 where the exhaust of the middle and low pressure turbine 12 is condensed and supplied to the boiler 10. The exhaust from the high pressure turbine 11 is supplied to the middle and low pressure turbine 12 through a dehumidifier 13 and the water supply path W1 is provided with a water supply heater 15 to which steam extracted from the middle and low pressure turbine 12 is supplied.SELECTED DRAWING: Figure 1

Description

本発明は、ごみ発電システムに関し、詳しくは、ごみ焼却の燃焼エネルギーを利用した蒸気タービン発電システムに関するものである。   The present invention relates to a waste power generation system, and more particularly, to a steam turbine power generation system using combustion energy of waste incineration.

清掃工場などに併設されるごみ発電システムとしては、ごみ焼却炉の廃熱ボイラに対して、蒸気タービン発電装置を連結したシステムが一般に知られている。このようなごみ発電システムの高効率化は、主に蒸気条件の高温高圧化によってなされており、ボイラからの蒸気を高温に過熱する過熱器を設置したシステムが知られている(下記特許文献1参照)。過熱器としては、廃熱ボイラ内に設ける方式や、ガスタービンを併設して、ガスタービンの廃熱を利用する方式などがある。   2. Description of the Related Art Generally, a waste power generation system that is installed in a cleaning factory or the like is a system in which a steam turbine power generator is connected to a waste heat boiler of a waste incinerator. High efficiency of such a waste power generation system is mainly achieved by high-temperature and high-pressure steam conditions, and a system in which a superheater that superheats steam from a boiler to a high temperature is known (see Patent Document 1 below). ). As the superheater, there are a method of installing in a waste heat boiler, a method of using a waste heat of a gas turbine by providing a gas turbine, and the like.

特開平9−4420号公報Japanese Patent Laid-Open No. 9-4420

過熱器を用いたごみ発電システムの高効率化は、蒸気条件を3〜4MPa・g,300〜400℃の高温高圧にすることで、発電端効率を向上させるものであるが、蒸気の高温化は、発電端効率を向上させる利点はあるものの、ボイラ(過熱管など)の高温腐食リスクを高める問題がある。ごみ発電の燃料であるごみは、塩素(Cl)分を含む特質を有している。この塩素分が燃焼過程で塩化水素(HCl)になるが、蒸気温度が300℃以上の領域では、塩化水素がボイラ管や過熱管に対して激しい高温腐食を起こすことが知られている。この高温腐食は、塩素分が少ない場合にも生起する。   The efficiency improvement of the waste power generation system using a superheater is to improve the power generation end efficiency by setting the steam conditions to a high temperature and high pressure of 3 to 4 MPa · g, 300 to 400 ° C. Although there is an advantage of improving the power generation end efficiency, there is a problem of increasing the risk of hot corrosion of a boiler (such as a superheated tube). Garbage, which is a fuel for waste power generation, has characteristics including chlorine (Cl). Although this chlorine content becomes hydrogen chloride (HCl) during the combustion process, it is known that hydrogen chloride causes severe high temperature corrosion on the boiler tube and the superheated tube in the region where the steam temperature is 300 ° C. or higher. This high temperature corrosion occurs even when the chlorine content is low.

このため、ごみ焼却ボイラにおいては、一般に蒸気温度の制限が設けられている。しかしながら、近年、過熱管に高価な耐食性材料を使用するなどして、蒸気条件を4MPa・g,400℃程度にすることで、高効率発電を目指す事例が増加している。このような場合、高価な耐食性材料を使用したとしても、高温腐食そのものをなくすることはできないので、長期の安定した継続運転を実現するには、過熱管の定期的な交換が避けられず、多大な補修費が必要になる問題がある。   For this reason, in a waste incineration boiler, the restriction | limiting of steam temperature is generally provided. However, in recent years, there are an increasing number of cases aiming at high-efficiency power generation by setting the steam condition to about 4 MPa · g and 400 ° C. by using an expensive corrosion-resistant material for the superheated tube. In such a case, even if an expensive corrosion-resistant material is used, high-temperature corrosion itself cannot be eliminated, so in order to achieve long-term stable continuous operation, periodic replacement of the superheated tube is inevitable, There is a problem that requires a large amount of repair costs.

本発明は、このような問題に対処することを課題とするものである。すなわち、ごみ発電システムの高効率化を実現するに際して、ボイラの高温腐食リスクをなくすこと、多大な補修費を要すること無く、高効率で安定したごみ発電システムの継続運転を可能にすること、などが本発明の課題である。   An object of the present invention is to deal with such a problem. In other words, when realizing high efficiency of the waste power generation system, it eliminates the risk of high temperature corrosion of the boiler, enables continuous operation of a highly efficient and stable waste power generation system without requiring a large repair cost, etc. Is the subject of the present invention.

このような課題を解決するために、本発明によるごみ発電システムは、以下の構成を具備するものである。   In order to solve such a problem, a refuse power generation system according to the present invention has the following configuration.

ごみ焼却の廃熱によって加熱されるボイラと、前記ボイラからの蒸気で駆動される蒸気タービン発電装置とを備え、前記蒸気タービン発電装置は、前記ボイラから高温腐食を生じない温度の蒸気が供給される高圧タービンと、前記高圧タービンの排気が供給される中低圧タービンと、前記中低圧タービンの排気を復水して前記ボイラに供給する給水経路を備え、前記高圧タービンの排気は除湿器を介して前記中低圧タービンに供給され、前記給水経路には、前記中低圧タービンから抽気した蒸気が供給される給水加熱器が設けられることを特徴とするごみ発電システム。   A boiler that is heated by waste heat from incineration, and a steam turbine generator that is driven by steam from the boiler, the steam turbine generator being supplied with steam at a temperature that does not cause high temperature corrosion from the boiler. A high-pressure turbine, an intermediate-low pressure turbine to which exhaust from the high-pressure turbine is supplied, and a water supply path for condensing the exhaust from the intermediate-low pressure turbine and supplying the exhaust to the boiler, the exhaust from the high-pressure turbine via a dehumidifier The wastewater power generation system is characterized in that a feedwater heater is provided to be supplied to the intermediate / low pressure turbine, and the water supply path is supplied with steam extracted from the intermediate / low pressure turbine.

このような特徴を有するごみ発電システムは、ボイラから高温腐食を生じない温度の蒸気が高圧タービンに供給されるので、ボイラの高温腐食リスクをなくすことができ、また、高圧タービンの排気が除湿器を介して中低圧タービンに供給され、且つ、中低圧タービンから抽気した蒸気によって給水加熱が行われるので、蒸気温度を高温にすることなく高効率の発電を行うことができる。   In the garbage power generation system having such characteristics, steam at a temperature at which high temperature corrosion does not occur is supplied from the boiler to the high pressure turbine, so that the risk of high temperature corrosion of the boiler can be eliminated, and the exhaust of the high pressure turbine is dehumidified. Since the feed water is heated by the steam supplied to the intermediate / low pressure turbine and extracted from the intermediate / low pressure turbine, high-efficiency power generation can be performed without increasing the steam temperature.

本発明の実施形態に係るごみ発電システムの要部を示した説明図である。It is explanatory drawing which showed the principal part of the refuse power generation system which concerns on embodiment of this invention. 本発明の実施形態に係るごみ発電システムが併設される清掃工場フローシートを示した説明図である。It is explanatory drawing which showed the cleaning factory flow sheet in which the refuse power generation system which concerns on embodiment of this invention is attached. 本発明の実施形態に係るごみ発電システムにおける蒸気スチーム発電装置のシステム構成例を示した説明図である。It is explanatory drawing which showed the system structural example of the steam steam power generator in the refuse power generation system which concerns on embodiment of this invention.

以下、図面を参照して本発明の実施形態を説明する。図1は、本発明の実施形態に係るごみ発電システムの要部を示している。ごみ発電システム1は、ボイラ10と、ボイラ10からの蒸気で駆動される蒸気タービン発電装置2とを備えている。ボイラ10は、図示省略したごみ焼却炉の廃熱によって加熱され、高温腐食を起こさない程度の温度(300℃未満)の蒸気を発生させるものである。蒸気タービン発電装置2は、ボイラ10からの蒸気で駆動する蒸気タービン2Aと、蒸気タービン2Aにより駆動される発電機2Bを備えている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a main part of a refuse power generation system according to an embodiment of the present invention. The garbage power generation system 1 includes a boiler 10 and a steam turbine power generation device 2 driven by steam from the boiler 10. The boiler 10 is heated by waste heat from a waste incinerator (not shown) and generates steam at a temperature (less than 300 ° C.) that does not cause high temperature corrosion. The steam turbine power generator 2 includes a steam turbine 2A that is driven by steam from the boiler 10 and a generator 2B that is driven by the steam turbine 2A.

蒸気タービン2Aは、高圧タービン11と中低圧タービン12とを備え、これらと発電機2Bが同軸に接続されている。ボイラ10と高圧タービン11の入口とは、過熱器を有さない蒸気経路S1で接続されており、高圧タービン11の出口と中低圧タービン12の入口とは、除湿器13を介した蒸気経路S2で接続されている。また、中低圧タービン12の出口は復水器14に接続され、復水器14からの給水経路W1がボイラ10に接続されている。そして、中低圧タービン12から抽気された蒸気経路S3が給水経路に設けられる給水加熱器15に接続されている。   The steam turbine 2A includes a high-pressure turbine 11 and a medium-low pressure turbine 12, and the generator 2B is coaxially connected thereto. The boiler 10 and the inlet of the high-pressure turbine 11 are connected by a steam path S1 that does not have a superheater, and the outlet of the high-pressure turbine 11 and the inlet of the intermediate- and low-pressure turbine 12 are connected to the steam path S2 via the dehumidifier 13. Connected with. Further, the outlet of the intermediate / low pressure turbine 12 is connected to the condenser 14, and the water supply path W <b> 1 from the condenser 14 is connected to the boiler 10. The steam path S3 extracted from the intermediate / low pressure turbine 12 is connected to a feed water heater 15 provided in the feed water path.

このようなごみ発電システム1の蒸気タービン発電装置2では、ボイラ10から高温腐食を生じない温度の蒸気が高圧タービン11に供給され、高圧タービン11の排気が中低圧タービン12に供給され、中低圧タービン12の排気が復水器14にて復水されて、給水経路W1を経由してボイラ10に供給される。ここで、高圧タービン11の排気は除湿器13を介して除湿されることで、乾き度が高く比エンタルピーが上昇した飽和蒸気となって中低圧タービン12に供給される。また、給水経路W1を経由してボイラ10に戻る水は、中低圧タービン12から抽気した蒸気が供給される給水加熱器15によって加熱される。   In such a steam turbine power generation device 2 of the garbage power generation system 1, steam at a temperature that does not cause high temperature corrosion is supplied from the boiler 10 to the high pressure turbine 11, and exhaust gas from the high pressure turbine 11 is supplied to the medium to low pressure turbine 12. The 12 exhaust gases are condensed by the condenser 14 and supplied to the boiler 10 via the water supply path W1. Here, the exhaust gas from the high-pressure turbine 11 is dehumidified via the dehumidifier 13, and is supplied to the medium- and low-pressure turbine 12 as saturated steam having a high dryness and a high specific enthalpy. Further, the water returning to the boiler 10 via the water supply path W <b> 1 is heated by the feed water heater 15 to which the steam extracted from the intermediate / low pressure turbine 12 is supplied.

このようなごみ発電システム1によると、ボイラ10からの蒸気を過熱することなく高圧タービン11に供給するので、従来問題となっていたごみ中の塩素分に起因するボイラ10の高温腐食を避けることができる。これにより、長期間に亘りボイラ水管などの交換が不要になり、メンテナンスコストを抑えながら安心安全な運転を長期間行うことができる。また、高温腐食リスクをなくすことで、ボイラ各部には、高価な耐食性材料を用いる必要が無く、初期の設備費用を抑えることもできる。   According to such a waste power generation system 1, since steam from the boiler 10 is supplied to the high-pressure turbine 11 without overheating, it is possible to avoid high temperature corrosion of the boiler 10 due to chlorine in the waste, which has been a problem in the past. it can. As a result, it is not necessary to replace the boiler water pipe or the like for a long period of time, and a safe and safe operation can be performed for a long period of time while reducing maintenance costs. Further, by eliminating the risk of high-temperature corrosion, it is not necessary to use expensive corrosion-resistant materials for each part of the boiler, and initial equipment costs can be reduced.

更に、ボイラ10には過熱器を設けないので、ボイラ10の構造が単純になり、ボイラ10の製造・組み立てが容易になる。また、熱貫流率は、一般に過熱器に比べてボイラ本体部の方が高くとれるため、過熱器を無くすことで、同一交換熱量であれば、ボイラ10の伝熱面積を小さくできる。よって、ボイラ10全体の構造が簡単になりコンパクト化が可能になる。   Furthermore, since the boiler 10 is not provided with a superheater, the structure of the boiler 10 is simplified, and manufacture and assembly of the boiler 10 are facilitated. In addition, since the heat transfer rate is generally higher in the boiler body than in the superheater, the heat transfer area of the boiler 10 can be reduced by eliminating the superheater and the same amount of heat exchange. Therefore, the structure of the boiler 10 as a whole is simplified and can be made compact.

そして、高圧タービン11の排気を除湿器13で除湿することで比エンタルピーを上昇させて中低圧タービン12に供給し、中低圧タービン12の排気を復水してボイラ10に戻す給水経路W1に、中低圧タービン12の抽気よって過熱される給水加熱器15を設けたので、熱効率の高い蒸気タービンサイクルを実現することができ、ごみ発電システム1の高効率化が可能になる。   The dehumidifier 13 dehumidifies the exhaust from the high pressure turbine 11 to increase the specific enthalpy and supply it to the intermediate / low pressure turbine 12, and condenses the exhaust from the intermediate / low pressure turbine 12 to return to the boiler 10. Since the feed water heater 15 that is superheated by the bleed air of the intermediate / low pressure turbine 12 is provided, a steam turbine cycle with high thermal efficiency can be realized, and the waste power generation system 1 can be highly efficient.

図2は、本発明の実施形態に係るごみ発電システムが設けられる清掃工場の一例を示している。ごみReが投入されるごみ焼却炉20は、1次空気が供給されるストーカ炉21と燃焼ガスが供給される1次燃焼炉と2次空気が供給される2次燃焼炉23などを備えており、ごみ焼却炉20に併設してボイラ10が設置されている。ボイラ10は、ボイラ本体10Pと、ごみ焼却炉20の排ガスの余熱を利用して給水の予熱を行うエコノマイザ(ECO)10Aと、ドラム10Bを備えており、エコノマイザ10Aで予熱された給水がごみ焼却炉20の廃熱で加熱されるドラム10Bに送られ、ドラム10Bで高圧タービン11に供給される蒸気を発生させる。ここで発生する蒸気は、300℃未満の温度に抑えられた高温腐食リスクのない蒸気である。   FIG. 2 shows an example of a cleaning factory provided with a waste power generation system according to an embodiment of the present invention. The waste incinerator 20 into which the waste Re is charged includes a stalker furnace 21 to which primary air is supplied, a primary combustion furnace to which combustion gas is supplied, a secondary combustion furnace 23 to which secondary air is supplied, and the like. In addition, the boiler 10 is installed adjacent to the waste incinerator 20. The boiler 10 includes a boiler body 10P, an economizer (ECO) 10A for preheating water supply using the residual heat of the exhaust gas from the waste incinerator 20, and a drum 10B. Steam that is sent to the drum 10B heated by the waste heat of the furnace 20 and supplied to the high-pressure turbine 11 is generated by the drum 10B. The steam generated here is steam that is suppressed to a temperature of less than 300 ° C. and has no risk of high-temperature corrosion.

ボイラ10(エコノマイザ10A)を通過したごみ焼却炉20の排ガスは、誘引通風機26で誘引されて排気筒27から放散されるが、誘引通風機26に至る前に、Na系薬剤が投入されるバッグフィルタ24を通過することでフライアッシュが除かれ、NOx還元触媒25を通過することでNOxが除去される。   Exhaust gas from the waste incinerator 20 that has passed through the boiler 10 (economizer 10A) is attracted by the induction fan 26 and diffused from the exhaust pipe 27, but before reaching the induction fan 26, Na-based chemicals are introduced. Fly ash is removed by passing through the bag filter 24, and NOx is removed by passing through the NOx reduction catalyst 25.

図3は、本発明の実施形態における蒸気タービン発電装置のシステム構成例を示している。前述した説明と重複する部位には同一符号を付して重複説明を省略する。図3において、実線が蒸気流通ラインであり、一点破線が水流通ラインである。蒸気流通ラインには、圧力制御弁V1又は常時閉弁V2が適宜設けられ、水流通ラインには、レベル制御弁V3が適宜設けられる。   FIG. 3 shows a system configuration example of the steam turbine power generator in the embodiment of the present invention. Portions that overlap with the above description are given the same reference numerals and redundant description is omitted. In FIG. 3, a solid line is a steam distribution line, and a one-dot broken line is a water distribution line. A pressure control valve V1 or a normally closed valve V2 is appropriately provided in the steam circulation line, and a level control valve V3 is appropriately provided in the water circulation line.

図示の例において、ボイラ10で発生した蒸気は、圧力制御弁V1と調速弁Vsを介して、高圧タービン11の入口に供給される。また、ボイラ10からの蒸気の一部は、蒸気再熱用の熱源として用いられ、後述する再熱器16に供給される。   In the illustrated example, the steam generated in the boiler 10 is supplied to the inlet of the high-pressure turbine 11 via the pressure control valve V1 and the governing valve Vs. A part of the steam from the boiler 10 is used as a heat source for steam reheating and supplied to a reheater 16 described later.

高圧タービン11の出口から排気された蒸気は、その一部がプロセスPの脱気器17用加熱蒸気及び施設の場内の熱として利用され、その余の蒸気は、除湿器13に導かれる。除湿器13で発生するドレンは脱気器17に導かれる。   A part of the steam exhausted from the outlet of the high-pressure turbine 11 is used as heating steam for the deaerator 17 of the process P and heat in the facility, and the remaining steam is guided to the dehumidifier 13. The drain generated in the dehumidifier 13 is guided to the deaerator 17.

ここで、ボイラ(エコノマイザ付き自然循環式廃熱ボイラ)10の運転圧力は、例えば、5.4MPa・gの飽和蒸気であり、その温度は、高温腐食のリスクがない270℃程度とする。このボイラ10には過熱器は設けない。そして、高圧タービン11の排気は、例えば、圧力0.9MPa・g、温度180℃、乾き度88%程度の飽和蒸気になるが、一部の蒸気の熱利用と除湿器13による除湿によって、乾き度99%以上の飽和蒸気となる。   Here, the operating pressure of the boiler (natural circulation waste heat boiler with economizer) 10 is, for example, 5.4 MPa · g of saturated steam, and its temperature is about 270 ° C. without risk of high-temperature corrosion. This boiler 10 is not provided with a superheater. The exhaust from the high-pressure turbine 11 becomes saturated steam having a pressure of 0.9 MPa · g, a temperature of 180 ° C., and a dryness of about 88%, for example, but is dried by heat utilization of some steam and dehumidification by the dehumidifier 13. It becomes saturated steam of degree 99% or more.

そして、除湿器13出口の乾き飽和蒸気は、さらに再熱器16に導かれ、圧力0.8MPa・g、温度220℃程度の過熱蒸気となって、調速弁Vsを介して中低圧タービン12の入口に供給される。再熱器16の熱源は、前述したように、ボイラ10の発生蒸気を利用している。再熱器16の加熱後のドレン水は、再熱器用フラッシュタンク18に送ることでフラッシュさせ、フラッシュ蒸気を再熱器16の入口部で回収し、残余のドレン水はレベル制御弁V3を介して脱気器17に送られる。   Then, the dry saturated steam at the outlet of the dehumidifier 13 is further guided to the reheater 16 to become superheated steam having a pressure of 0.8 MPa · g and a temperature of about 220 ° C., and the medium / low pressure turbine 12 is connected via the governing valve Vs. Supplied to the entrance. As described above, the heat source of the reheater 16 uses the steam generated by the boiler 10. The drain water after heating by the reheater 16 is sent to the reheater flash tank 18 to be flushed, and the flash steam is recovered at the inlet of the reheater 16, and the remaining drain water is passed through the level control valve V3. And sent to the deaerator 17.

中低圧タービン12に供給された蒸気は、中低圧タービン12の途中段で抽気され、圧力制御弁V1を介して給水加熱器15に送られてボイラ給水の加熱を行う。中低圧タービン12に供給された蒸気の残余は、中低圧タービン12の出口から排気され、全て空冷式の復水器14に導かれ、凝縮して復水としてタンク14Aに溜められる。中低圧タービン12の排気は、例えば、排気圧力が外気温度20℃で10.1kPa・a,温度46℃程度の飽和蒸気、外気温度32℃で18.8kPa・a,温度58℃程度の飽和蒸気となる。   The steam supplied to the intermediate / low pressure turbine 12 is extracted at an intermediate stage of the intermediate / low pressure turbine 12, and sent to the feed water heater 15 via the pressure control valve V1 to heat the boiler feed water. The remainder of the steam supplied to the intermediate / low pressure turbine 12 is exhausted from the outlet of the intermediate / low pressure turbine 12, all led to the air-cooled condenser 14, condensed and stored in the tank 14 </ b> A as condensed water. The exhaust of the medium-low pressure turbine 12 is, for example, saturated steam having an exhaust pressure of 10.1 kPa · a and a temperature of about 46 ° C. at an outside air temperature of 20 ° C., saturated steam having a temperature of about 18.8 kPa · a and a temperature of about 58 ° C. It becomes.

中低圧タービン12で抽気した蒸気は、給水加熱器15を経由した後、フラッシュタンク19に送られ、フラッシュ蒸気は復水されてタンク14Aに送られ、フラッシュタンク19における残余のドレン水は、レベル制御弁V3を介してタンク14Aに送られる。   The steam extracted by the intermediate / low pressure turbine 12 passes through the feed water heater 15 and then is sent to the flash tank 19, the flash steam is condensed and sent to the tank 14 </ b> A, and the remaining drain water in the flash tank 19 is leveled. It is sent to the tank 14A through the control valve V3.

タンク14に溜められた復水は、復水ポンプ28によって給水経路W1を通って一端脱気器17に送られ、脱気器17から給水ポンプ29によって給水経路W2を通ってボイラ10に供給される(給水経路W1,W2には必要に応じてレベル制御弁V3が設けられる。)。   The condensate stored in the tank 14 is sent to the deaerator 17 through the water supply path W1 by the condensate pump 28 and supplied to the boiler 10 from the deaerator 17 through the water supply path W2 by the water supply pump 29. (The water supply paths W1 and W2 are provided with a level control valve V3 as required.)

このような蒸気タービン発電装置2は、蒸気タービン2Aを駆動する蒸気サイクルにおいて、高圧タービン11の入口と中低圧タービン12の出口との間の熱落差は、過熱器を採用した高温高圧方式のものと比べて減少することになるが、ボイラ10の出口エンタルピーが高温高圧方式のものよりも低いのでボイラ10の発生蒸気量が増加する。また、除湿器13と再熱器16の採用によって増加するエンタルピーによって前述した熱落差をカバーすることになり、中低圧タービン12の出口エンタルピーが高温高圧方式のものより低くなる。これにより、発電端効率を実質的に高温高圧方式のものよりも向上させることが可能になる。なお、図3に示した構成例では、高圧タービン11の入口蒸気の比容積(m3/kg)を高温高圧方式のものに比べて小さくすることができるので、高効率化を実現しながらタービンの小型化が可能になる。 In such a steam turbine power generation device 2, in the steam cycle that drives the steam turbine 2 </ b> A, the heat drop between the inlet of the high-pressure turbine 11 and the outlet of the intermediate- and low-pressure turbine 12 is a high-temperature and high-pressure type that employs a superheater. However, since the exit enthalpy of the boiler 10 is lower than that of the high temperature and high pressure system, the amount of steam generated in the boiler 10 increases. Moreover, the heat drop mentioned above is covered by the enthalpy which increases by adoption of the dehumidifier 13 and the reheater 16, and the exit enthalpy of the intermediate / low pressure turbine 12 becomes lower than that of the high temperature / high pressure type. Thereby, it becomes possible to improve the power generation end efficiency substantially higher than that of the high temperature and high pressure type. In the configuration example shown in FIG. 3, the specific volume (m 3 / kg) of the inlet steam of the high-pressure turbine 11 can be made smaller than that of the high-temperature and high-pressure type, so that the turbine can be realized while realizing high efficiency. Can be miniaturized.

以上説明したように、本発明の実施形態に係るごみ発電システム1は、ボイラ10の発生蒸気を高温高圧にすることなく、高効率化が可能になる。これによって、ボイラ10の高温腐食リスクをなくしながら、ごみ発電システム1の高効率化を行うことができる。このため、ボイラ部品に高価な耐食性材料を用いる必要が無く、初期コストとメンテナンスコストを抑えながら、高効率で安定したごみ発電システムの継続運転を行うことができる。   As described above, the waste power generation system 1 according to the embodiment of the present invention can achieve high efficiency without causing the steam generated in the boiler 10 to be high temperature and pressure. Thereby, the efficiency of the refuse power generation system 1 can be increased while eliminating the risk of high temperature corrosion of the boiler 10. For this reason, it is not necessary to use an expensive corrosion-resistant material for the boiler parts, and the highly efficient and stable waste power generation system can be continuously operated while suppressing the initial cost and the maintenance cost.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention. In addition, the above-described embodiments can be combined by utilizing each other's technology as long as there is no particular contradiction or problem in the purpose and configuration.

1:ごみ発電システム,2:蒸気タービン発電装置,
2A:蒸気タービン,2B:発電機,
10:ボイラ, 10A:エコノマイザ,10B:ドラム,
11:高圧タービン,12:中低圧タービン,13:除湿器,
14:復水器,15:給水加熱器,16:再熱器,17:脱気器,
18:再熱器用フラッシュタンク,19:フラッシュタンク,
20:ごみ焼却炉,21:ストーカ炉,22:一次燃焼炉,23:2次燃焼炉,
24:バッグフィルタ,25:NOx還元触媒,26:誘引通風機,
27:排気筒,28:復水ポンプ,29:給水ポンプ,
S1,S2,S3:蒸気経路,W1,W2:給水経路,
V1:圧力制御弁,V2:常時閉弁,V3:レベル制御弁,Vs:調速弁
1: Waste power generation system, 2: Steam turbine power generator,
2A: Steam turbine, 2B: Generator,
10: Boiler, 10A: Economizer, 10B: Drum,
11: High-pressure turbine, 12: Medium-low pressure turbine, 13: Dehumidifier
14: Condenser, 15: Feed water heater, 16: Reheater, 17: Deaerator
18: Flash tank for reheater, 19: Flash tank,
20: Waste incinerator, 21: Stoker furnace, 22: Primary combustion furnace, 23: Secondary combustion furnace,
24: bag filter, 25: NOx reduction catalyst, 26: induction fan,
27: exhaust pipe, 28: condensate pump, 29: feed pump,
S1, S2, S3: Steam path, W1, W2: Water supply path,
V1: pressure control valve, V2: normally closed, V3: level control valve, Vs: governing valve

Claims (4)

ごみ焼却の廃熱によって加熱されるボイラと、前記ボイラからの蒸気で駆動される蒸気タービン発電装置とを備え、
前記蒸気タービン発電装置は、
前記ボイラから高温腐食を生じない温度の蒸気が供給される高圧タービンと、前記高圧タービンの排気が供給される中低圧タービンと、前記中低圧タービンの排気を復水して前記ボイラに供給する給水経路を備え、
前記高圧タービンの排気は除湿器を介して前記中低圧タービンに供給され、
前記給水経路には、前記中低圧タービンから抽気した蒸気が供給される給水加熱器が設けられることを特徴とするごみ発電システム。
A boiler that is heated by waste heat of incineration, and a steam turbine power generator that is driven by steam from the boiler,
The steam turbine power generator
A high-pressure turbine to which steam at a temperature that does not cause high-temperature corrosion is supplied from the boiler; a medium-to-low-pressure turbine to which exhaust from the high-pressure turbine is supplied; and water supply that condenses the exhaust from the medium-to-low pressure turbine and supplies it to the boiler With a route,
The exhaust from the high pressure turbine is supplied to the medium to low pressure turbine via a dehumidifier,
A wastewater power generation system, wherein a feedwater heater to which steam extracted from the medium-low pressure turbine is supplied is provided in the feedwater path.
前記除湿器を介した蒸気は、前記ボイラからの蒸気が供給される再熱器によって再熱されて前記中低圧タービンに供給されることを特徴とする請求項1記載のごみ発電システム。   The waste power generation system according to claim 1, wherein the steam passing through the dehumidifier is reheated by a reheater to which steam from the boiler is supplied and supplied to the medium-low pressure turbine. 前記蒸気タービン発電装置の発電器は、前記高圧タービン及び前記中低圧タービンと同時に設置されることを特徴とする請求項1又は2記載のごみ発電システム。   The waste power generation system according to claim 1 or 2, wherein the power generator of the steam turbine power generator is installed simultaneously with the high-pressure turbine and the medium-low pressure turbine. 前記高圧タービンの排気は、一部が前記給水経路に設けられる脱気器の加熱に用いられることを特徴とする請求項1〜3のいずれか1項記載のごみ発電システム。   4. The waste power generation system according to claim 1, wherein a part of the exhaust from the high-pressure turbine is used for heating a deaerator provided in the water supply path.
JP2016037457A 2016-02-29 2016-02-29 Garbage power generation system Active JP6810378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037457A JP6810378B2 (en) 2016-02-29 2016-02-29 Garbage power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037457A JP6810378B2 (en) 2016-02-29 2016-02-29 Garbage power generation system

Publications (2)

Publication Number Publication Date
JP2017155613A true JP2017155613A (en) 2017-09-07
JP6810378B2 JP6810378B2 (en) 2021-01-06

Family

ID=59809474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037457A Active JP6810378B2 (en) 2016-02-29 2016-02-29 Garbage power generation system

Country Status (1)

Country Link
JP (1) JP6810378B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204318A (en) * 2019-06-17 2020-12-24 株式会社タクマ Trash power generation system and operation method thereof
CN112228172A (en) * 2020-10-27 2021-01-15 国电环境保护研究院有限公司 Regenerative heat source system of coal-fired power plant carbon-based catalytic flue gas desulfurization and denitrification device
CN112228172B (en) * 2020-10-27 2024-05-31 国电环境保护研究院有限公司 Regeneration heat source system of flue gas desulfurization and denitrification device by coal-based catalysis method of coal-fired power plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204318A (en) * 2019-06-17 2020-12-24 株式会社タクマ Trash power generation system and operation method thereof
JP7373801B2 (en) 2019-06-17 2023-11-06 株式会社タクマ Waste power generation system and its operation method
CN112228172A (en) * 2020-10-27 2021-01-15 国电环境保护研究院有限公司 Regenerative heat source system of coal-fired power plant carbon-based catalytic flue gas desulfurization and denitrification device
CN112228172B (en) * 2020-10-27 2024-05-31 国电环境保护研究院有限公司 Regeneration heat source system of flue gas desulfurization and denitrification device by coal-based catalysis method of coal-fired power plant

Also Published As

Publication number Publication date
JP6810378B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP3783195B2 (en) Current generation in a combined power plant with gas and steam turbines.
RU2595192C2 (en) Power plant with built-in pre-heating of fuel gas
CN102016411B (en) High efficiency feedwater heater
RU2688078C2 (en) Coaling welded electric installation with oxy-ignition with heat integrating
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
JP2014228218A (en) Fire power-generating plant and operation method of the same
JPH09203305A (en) Power generating system utilizing waste incinerating heat
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
JP6810378B2 (en) Garbage power generation system
KR101690384B1 (en) Waste heat recovery apparatus for combustion furnace and method thereof
JP2017133500A (en) Method for operating steam power generation plant and steam power generation plant for conducting the method
CN210134979U (en) Garbage power generation system with external independent reheater
JP7373801B2 (en) Waste power generation system and its operation method
CN102563611A (en) Self-deoxygenation-type waste heat power generating system and power generating method thereof
JP4823998B2 (en) Waste power generation method
WO2020133501A1 (en) High parameter steam drum intermediate reheating system for waste incineration power generation
WO2010057279A1 (en) High efficiency waste to energy power plants combining municipal solid waste and natural gas
WO2015187064A2 (en) Multi-mode combined cycle power plant
JPS6365807B2 (en)
CN218409878U (en) Subcritical gas power generation system
JPH07243305A (en) Waste heat recovery combined plant for garbage burning incinerator
JP7036622B2 (en) Utilization of existing boiler High steam condition boiler plant
JPH0559905A (en) Refuse incinerating gas turbine composite plate
WO2015112054A1 (en) Transportable nuclear power plant
JP5292347B2 (en) Power plant and power plant operation method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201124

R150 Certificate of patent or registration of utility model

Ref document number: 6810378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250