JP2017150778A - Dehumidifying/reheating air-conditioning system utilizing ground thermal energy - Google Patents

Dehumidifying/reheating air-conditioning system utilizing ground thermal energy Download PDF

Info

Publication number
JP2017150778A
JP2017150778A JP2016035261A JP2016035261A JP2017150778A JP 2017150778 A JP2017150778 A JP 2017150778A JP 2016035261 A JP2016035261 A JP 2016035261A JP 2016035261 A JP2016035261 A JP 2016035261A JP 2017150778 A JP2017150778 A JP 2017150778A
Authority
JP
Japan
Prior art keywords
heat
hot water
reheater
cold
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016035261A
Other languages
Japanese (ja)
Inventor
啓介 高田
Keisuke Takada
啓介 高田
建太郎 中川
Kentaro Nakagawa
建太郎 中川
戴宏傑
Hongjie Su
雅一 佐野
Masakazu Sano
雅一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Sinko Industries Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd, Sinko Industries Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2016035261A priority Critical patent/JP2017150778A/en
Priority to CN201610917461.4A priority patent/CN106885320A/en
Publication of JP2017150778A publication Critical patent/JP2017150778A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0057Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground receiving heat-exchange fluid from a closed circuit in the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Central Air Conditioning (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dehumidifying/reheating air-conditioning system materializing energy saving in both of heating and cooling by utilizing ground thermal energy as a heat source for reheating.SOLUTION: An air conditioning system 1 is provided that is composed of a heat pump circuit 2 comprising an evaporator 21 and a condenser 22, a cold/hot water coil 32 supplied with cold/hot water from the heat pump circuit 2, and a reheater 33. In the air conditioning system 1, in cooling, the cooled cold water is supplied from the evaporator 21 to the cold/hot water coil 32, the cold water cooled by a ground thermal energy exchanger 4 provided in the ground is heated by the condenser 22 and supplied to the reheater 33, the water heated by the reheater 33 is circulated to the ground thermal energy exchanger 4, and in heating, the heated hot water is supplied from the condenser 22 to the cold/hot water coil 32, the hot water heated by the ground thermal energy exchanger 4 provided in the ground is cooled by the evaporator 21, and circulated to the evaporator 21 without being conducted to the reheater 33.SELECTED DRAWING: Figure 3

Description

本発明は、地中熱を再熱に利用した除湿再熱空調システムに関する。   The present invention relates to a dehumidifying and reheating air conditioning system that uses geothermal heat for reheating.

従来、夏期冷房時に1系統の水入口温度6〜7℃の低温冷水を用い冷却コイルで冷却するが、温度コントロールすると除湿しきれないケースが生じることがあり、逆に除湿を優先すると給気温度が低下し室内居住者は寒さを感じるケースがある。
そこで、冷却除湿後に適切な温度にするために、例えば、特許文献1に示すように、再熱コイルを設ける除湿再熱を行う空調装置が開発されているが、再熱のために冷却熱源以外に温水熱源動力や電気ヒータによる加熱動力を消費していた。
この従来技術の構造を図1及び図2で説明すると、図1において、冷却除湿用の冷水コイルaとその下流に適切な温度にするための再熱コイルbを設置し、外気OAを冷水コイルaの例えば7℃程度低温冷水で湿度コントロールし、その後の再熱コイルbで例えば46℃前後の温水で温度コントロールして、この空調空気を給気ファンcで室内等に給気していた。なお、通常は、冷水コイルaの上流にはエアフィルターdが、再熱コイルbの下流給気ファンcの上流には加湿器eが配置されている。
Conventionally, during cooling in summer, low temperature chilled water with a water inlet temperature of 6 to 7 ° C is used to cool with a cooling coil. However, there are cases where dehumidification cannot be achieved if the temperature is controlled. In some cases, indoor residents feel cold.
Then, in order to make it suitable temperature after cooling dehumidification, as shown, for example in patent document 1, the air-conditioning apparatus which performs the dehumidification reheating which provides a reheating coil is developed, but it is except a cooling heat source for reheating. In addition, the heating power from the hot water heat source and the electric heater was consumed.
The structure of this prior art will be described with reference to FIGS. 1 and 2. In FIG. 1, a cold water coil a for cooling and dehumidification and a reheating coil b for setting an appropriate temperature downstream thereof are installed, and the outside air OA is cooled by a cold water coil. The humidity was controlled with low-temperature cold water of about 7 ° C., for example, and the temperature was controlled with hot water of about 46 ° C., for example, with the subsequent reheating coil b, and this conditioned air was supplied indoors with a supply fan c. Normally, an air filter d is disposed upstream of the cold water coil a, and a humidifier e is disposed upstream of the downstream air supply fan c of the reheating coil b.

この構成で稼働した場合の空調状態を図2の空気線図で表すと、冷却除湿には、冷水コイルaの低温冷水で大きな外気A負荷(高い空気温度)を一度で露点温度Bまで下げる処理をしている。このため、適切な温度Cにするために冷却熱源以外に温水熱源動力や電気ヒータによる再熱コイルcの加熱動力を消費するという問題点があった。
ところで、近年の社会情勢での要請は電力消費量の削減であって、環境省が中心となって環境対策として行っているクールビズでは、服装を工夫して、室内設定温度を28℃に行うキャンペーンを行っているが、冷却方式(通常空調)の空調システムでは、湿度が高くなり室内温度28℃では不快となり、結局、設定温度を下げているのが実情であり、それを解決させるには、同じ室内温度28℃でも湿度を下げる除湿再熱空調システムを用いる必要があるが、この除湿再熱空調システムも上述した問題点があった。
When the air conditioning state when operating in this configuration is represented by the air diagram of FIG. 2, cooling dehumidification is a process of reducing the large outside air A load (high air temperature) to the dew point temperature B at a time with the low temperature cold water of the cold water coil a. I am doing. For this reason, in order to obtain an appropriate temperature C, there is a problem that, in addition to the cooling heat source, hot water heat source power and heating power of the reheating coil c by an electric heater are consumed.
By the way, the demand in the social situation in recent years is the reduction of power consumption, and Cool Biz, which is being taken as an environmental measure by the Ministry of the Environment, is a campaign to devise clothes and set the room temperature to 28 ° C. However, in the air conditioning system of the cooling system (normal air conditioning), the humidity becomes high and it becomes uncomfortable at an indoor temperature of 28 ° C, and eventually the set temperature is lowered, and in order to solve it, Although it is necessary to use a dehumidifying and reheating air conditioning system that reduces the humidity even at the same room temperature of 28 ° C., this dehumidifying and reheating air conditioning system also has the above-described problems.

そこで、本発明者らは、特許文献2に開示されているように、冷水による除湿再熱空調システムにおいて再熱のための熱源に、冷水コイルの還水を利用して省エネを実現した除湿再熱を行う空調装置を提案している。
この除湿再熱空調システムは、外気を取り入れて冷却して再熱して給気する空調システムにおいて、冷却のために上流に中温冷水コイルを配置し、その下流に低温冷水コイルを配置し、更にその下流に再熱コイルを配置し、中温冷水コイルへの供給冷水温度は外気より低く低温冷水コイルへの冷水温度より高い温度を水温として該中温冷水コイルによって外気を予め冷却し、低温冷水コイルによって所定の目標絶対湿度にまで冷却し、中温冷水コイルの冷却後の還り冷水を再熱コイルに供給する冷水による除湿再熱空調システムである。
しかし、この除湿再熱空調システムは、中温冷水コイルと低温冷水コイルとが必要となるばかりでなく、更なる省エネが望まれていた。
なお、空調システムにおいて、熱源にとして地中熱を介在させたものは、特許文献2にのように開示されている。
Therefore, as disclosed in Patent Document 2, the present inventors have implemented dehumidification re-use that realizes energy saving by using the return water of the cold water coil as a heat source for reheating in the dehumidification reheat air conditioning system using cold water. It proposes an air conditioner that heats.
This dehumidifying and reheating air conditioning system is an air conditioning system that takes in outside air, cools it, reheats and supplies air, and arranges a medium temperature cold water coil upstream for cooling, a low temperature cold water coil downstream, and further A reheating coil is arranged downstream, the supply of chilled water to the medium temperature chilled water coil is lower than the outside air, and the temperature is higher than the temperature of the chilled water to the low temperature chilled water coil. It is a dehumidification reheat air-conditioning system by the cold water which cools to the target absolute humidity and supplies the return cold water after cooling of the intermediate temperature cold water coil to the reheat coil.
However, this dehumidifying and reheating air conditioning system not only requires a medium temperature cold water coil and a low temperature cold water coil, but also requires further energy saving.
In addition, in the air conditioning system, an apparatus in which underground heat is interposed as a heat source is disclosed as in Patent Document 2.

特開2010−78312号公報JP 2010-78312 A 特開2014−62651号公報JP 2014-62651 A 特開2009−36413号公報JP 2009-36413 A

本発明は、上述した問題点に鑑みてなされたもので、湿度と温度を個別に制御できる除湿再熱空調システムにおいて、再熱のための熱源に地中熱を利用して暖房時と冷房時でも省エネを実現し、コイルの数も単純にすることができる除湿再熱空調システムを提供しようとするものである。   The present invention has been made in view of the above-described problems, and in a dehumidifying and reheating air conditioning system in which humidity and temperature can be individually controlled, heating and cooling are performed using geothermal heat as a heat source for reheating. However, it is intended to provide a dehumidifying and reheating air conditioning system that can save energy and simplify the number of coils.

上記課題を解決するために、請求項1の発明は、蒸発器と凝縮器とが設けられたヒートポンプ回路と、該ヒートポンプ回路から冷温水を供給される冷温水コイルと再熱器とからなる空調器を備えた空気調和システムにおいて、
冷房時には、前記冷温水コイルに前記蒸発器から冷やされた冷水を供給するとともに、地中に埋設した地中熱交換器によって冷やされた冷水を前記凝縮器によって暖めて再熱器に供給し、再熱器を暖めた水を前記地中熱交換器に循環させ、
暖房時には、前記冷温水コイルに前記凝縮器から暖められた温水を供給するとともに、地中に設けた地中熱交換器によって暖められ温水を前記凝縮器によって暖めて再熱器に導通すること無しに該凝縮器に循環させたことを特徴とする地中熱を利用する除湿再熱空調システムである。
請求項2の発明は、前記再熱器の入口側と出口側の間に混合制御機能とバイパス機能とを備えた三方弁を設けたことを特徴する請求項1に記載の地中熱を利用する除湿再熱空調システムである。
In order to solve the above-mentioned problems, the invention of claim 1 is an air conditioning system comprising a heat pump circuit provided with an evaporator and a condenser, a cold / hot water coil supplied with cold / hot water from the heat pump circuit, and a reheater. In an air conditioning system equipped with a vessel,
During cooling, the chilled / hot water coil is supplied with chilled water cooled from the evaporator, and the chilled water cooled by the underground heat exchanger embedded in the ground is heated by the condenser and supplied to the reheater. Circulating water that warms the reheater to the underground heat exchanger,
During heating, warm water heated from the condenser is supplied to the cold / hot water coil, and warm water is heated by the underground heat exchanger provided in the ground, and is not conducted to the reheater by the condenser. A dehumidifying and reheating air conditioning system using geothermal heat characterized by being circulated through the condenser.
According to a second aspect of the present invention, there is provided a three-way valve having a mixing control function and a bypass function between the inlet side and the outlet side of the reheater. This is a dehumidifying and reheating air conditioning system.

請求項1の地中熱を利用する除湿再熱空調システムの発明によれば、湿度と温度を個別に制御できる除湿再熱空調システムにおいて、再熱のための熱源に地中熱を利用して暖房時と冷房時でも省エネを実現し、コイルの数も単純にすることができる。特に、従来システムの再熱のための再熱加熱コイルや電気ヒータの代わりに、自然エネルギーである地中熱を利用したので、燃料を燃やして加熱する熱源や電気ヒータこれらの再熱の熱源が不要となる。すなわち、温水熱源動力(蒸気生成燃料)もしくは加熱電力が不要となり、省エネ効果を高めることができる。
また、消費電力1 kWあたりの冷却・加熱能力であるCOPを向上させることができる。例えば、夏場を例にとると、一般的なヒートポンプシステムにおいて、室外機側の放熱は外気によって行われるが、外気を利用すると30℃前後の外気で放熱しなければならない。ここで、地中熱を利用すると15℃程度の水により放熱が可能となり、外気利用時と比較して放熱効率が向上する。
請求項2の地中熱を利用する除湿再熱空調システムの発明によれば、再熱器の入口側と出口側の間に混合制御機能とバイパス機能を備えた三方弁を設けたので、再熱器について、夏場等の冷房時の再熱の制御や、冬場の暖房時の再熱の稼働停止を行うことができる。
According to the invention of the dehumidifying and reheating air conditioning system using geothermal heat according to claim 1, in the dehumidifying and reheating air conditioning system capable of individually controlling the humidity and temperature, the underground heat is used as a heat source for reheating. Energy saving is achieved even during heating and cooling, and the number of coils can be simplified. In particular, instead of using the reheat heating coil and electric heater for reheating the conventional system, ground heat, which is natural energy, was used, so the heat source that burns and heats the fuel and the electric heater these heat sources It becomes unnecessary. That is, no hot water heat source power (steam generation fuel) or heating power is required, and the energy saving effect can be enhanced.
In addition, the COP, which is the cooling / heating capacity per 1 kW of power consumption, can be improved. For example, taking summer as an example, in a general heat pump system, heat is radiated on the outdoor unit side by outside air. However, when outside air is used, heat must be radiated by outside air around 30 ° C. Here, if geothermal heat is used, it is possible to radiate heat with water at about 15 ° C., and the heat radiating efficiency is improved as compared to when using outside air.
According to the invention of the dehumidifying and reheating air conditioning system using the geothermal heat of claim 2, the three-way valve having the mixing control function and the bypass function is provided between the inlet side and the outlet side of the reheater. About a heater, the reheat control at the time of air_conditioning | cooling in summer etc. can be performed, and the reheat operation stop at the time of heating in winter can be performed.

従来の水コイル使用の除湿再熱空調装置の概略図、Schematic diagram of conventional dehumidifying and reheating air conditioner using water coil, 従来の空気の状態変化を説明する空気線図、Air line diagram explaining the state change of conventional air, 実施例1の地中熱を利用する除湿再熱空調システムの夏場等の冷房時の構成概略図、Configuration schematic diagram at the time of cooling such as summer of the dehumidification reheat air conditioning system using the geothermal heat of Example 1, 実施例1の地中熱を利用する除湿再熱空調システムの冬場等の暖房時の構成概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a dehumidifying and reheating air conditioning system that uses geothermal heat in Example 1 during heating in winter and the like.

本発明の地中熱を利用する除湿再熱空調システム及び装置を図面に沿って説明する。   A dehumidifying and reheating air conditioning system and apparatus using geothermal heat of the present invention will be described with reference to the drawings.

本発明の実施例の除湿再熱空調システム及び装置の概略を図3に基づいて説明すると、除湿再熱空調システム1は、ヒートポンプ回路2が、第1熱交換器21、第2熱交換器22、圧縮機23、(電子)膨張弁24、これらを繋ぐ配管25と四方弁26から構成され、エアフィルター31、冷温水コイル32、再熱器33、加湿器34、送風機35から構成される空調器3は、前記ヒートポンプ回路2と地中熱交換器4とに連結されている。   The outline of the dehumidifying and reheating air conditioning system and apparatus according to the embodiment of the present invention will be described with reference to FIG. 3. In the dehumidifying and reheating air conditioning system 1, the heat pump circuit 2 includes the first heat exchanger 21 and the second heat exchanger 22. , Compressor 23, (electronic) expansion valve 24, piping 25 connecting them, and four-way valve 26, air conditioning comprising air filter 31, cold / hot water coil 32, reheater 33, humidifier 34, and blower 35. The vessel 3 is connected to the heat pump circuit 2 and the underground heat exchanger 4.

[冷房時の構成及び作動]
ここで、主に夏場の冷房時の構成及び作動を説明するが、図3に示すように、ヒートポンプ回路2の圧縮機23によって圧縮された冷媒を圧縮機23の出力口23bから、四方弁26を介して冷却される凝縮器を構成する第2熱交換器22の熱源コイル221の入出力口(夏場は入力口)221aに導入し、熱源側コイル221の入出力口(夏場は出力口)221bから電子膨張弁24を介し、加熱に関する蒸発器を構成する第1熱交換器21の熱源コイル211の入出力口(夏場は入力口)211aに導入し、熱源側コイル211の入出力口(夏場は出力口)211bから四方弁26を介して、前記圧縮機23の入力口23aに導入するようして循環する。
一方、除湿再熱空調システム1の空調器3は、外気OA側から、エアフィルター31、冷温水コイル32、再熱器33、加湿器34、室内への送風機35の順で配置されている。
また、本発明は地中熱を利用する除湿再熱空調システム1であるが、地表から深度が150mまでの地中Gである通常10℃から20℃である地中熱を利用する。このため、地中熱交換器4は、垂直設型のU字型配管や水平埋設型のジグザク形状配管によって構成される地中に埋設する地中熱交換配管41が設けられている。なお、地中熱は地中でなくても、安定した温度であれば井水を利用してもよい。
[Configuration and operation during cooling]
Here, the configuration and operation during cooling mainly in summer will be described. As shown in FIG. 3, the refrigerant compressed by the compressor 23 of the heat pump circuit 2 is supplied from the output port 23 b of the compressor 23 to the four-way valve 26. Is introduced into the input / output port 221a of the heat source coil 221 of the second heat exchanger 22 constituting the condenser cooled via the heat source (input port in summer), and the input / output port of the heat source side coil 221 (output port in summer) 221b is introduced into the input / output port 211a (input port in summer) of the heat source coil 211 of the first heat exchanger 21 constituting the evaporator for heating via the electronic expansion valve 24, and the input / output port of the heat source side coil 211 ( In summer, the refrigerant circulates from the output port 211b through the four-way valve 26 so as to be introduced into the input port 23a of the compressor 23.
On the other hand, the air conditioner 3 of the dehumidifying / reheating air conditioning system 1 is arranged in the order of the air filter 31, the cold / hot water coil 32, the reheater 33, the humidifier 34, and the blower 35 to the room from the outside air OA side.
Moreover, although this invention is the dehumidification reheat air-conditioning system 1 using geothermal heat, it utilizes the geothermal heat which is normally 10 to 20 degreeC which is the underground G to the depth of 150 m from the ground surface. For this reason, the underground heat exchanger 4 is provided with an underground heat exchange pipe 41 embedded in the ground constituted by a vertical U-shaped pipe and a horizontal embedded zigzag pipe. In addition, even if geothermal heat is not underground, well water may be used as long as the temperature is stable.

このようなヒートポンプ回路2と空調器3と地中熱交換器4とを配管と各種の制御弁で繋ぐが、これを夏場の冷房時である図3で説明するが、冷温水コイル(夏場は冷水コイル)32と連結すると第1熱交換器21との関係を説明する。
図3に示すように、冷温水コイル32と第1熱交換器21とは冷暖房配管5と各種弁とによって繋げられる。
これを詳しく説明すれば、冷温水コイル32の入力口32aには開閉弁51によって第1熱交換器(蒸発器)21の受熱コイル212の入出力口(夏場は出力口)212b及びポンプ56(ポンプは流路中のどこに配置もよい。)を介して連結され(白色の弁は開、黒色の弁は閉、実線配管は開、点線配管は閉)、冷温水コイル32の冷却された水で空気を冷房し、冷温水コイル32の暖まった水は出力口32bから途中で流量を制御する流量制御二方弁55により、開閉弁52を介して、第1熱交換器(蒸発器)21の受熱コイル212の入出力口(夏場は入力口)212aに連結されされ循環する。なお、開閉弁53、54は冷房時には閉められており稼働していない。
したがって、夏場の冷房時の作動は、ヒートポンプ回路2の蒸発器を構成する第1熱交換器21よって、冷媒である水を12℃程度から7℃程度に冷却し、冷温水コイル32に供給し、冷温水コイル32で7℃程度の水で空気を冷房し、12℃程度に暖まるが、再び、ヒートポンプ回路2の蒸発器を構成する第1熱交換器21よって冷媒である水を12℃程度から7℃程度に冷却するように循環する。
Such a heat pump circuit 2, the air conditioner 3, and the underground heat exchanger 4 are connected by piping and various control valves. This will be described with reference to FIG. When connected to the cold water coil 32, the relationship with the first heat exchanger 21 will be described.
As shown in FIG. 3, the cold / hot water coil 32 and the 1st heat exchanger 21 are connected by the air conditioning piping 5 and various valves.
More specifically, the input / output port 32a of the cold / hot water coil 32 is connected to an input / output port (output port in summer) 212b and a pump 56 (in summer) by an on-off valve 51. The pump may be placed anywhere in the flow path.) (White valve is open, black valve is closed, solid line pipe is open, dotted line pipe is closed) In the first heat exchanger (evaporator) 21 via the on-off valve 52 by a flow rate control two-way valve 55 that controls the flow rate of the air from the output port 32b. The heat receiving coil 212 is connected to an input / output port (input port in summer) 212a to circulate. The on-off valves 53 and 54 are closed during cooling and are not operating.
Therefore, in the summertime cooling operation, the first heat exchanger 21 constituting the evaporator of the heat pump circuit 2 cools the coolant water from about 12 ° C. to about 7 ° C. and supplies it to the cold / hot water coil 32. The air is cooled with water of about 7 ° C. in the cold / hot water coil 32 and warmed to about 12 ° C., but again the water as the refrigerant is about 12 ° C. by the first heat exchanger 21 constituting the evaporator of the heat pump circuit 2. Circulate to cool to about 7 ° C.

本発明の特徴の一つは、再熱器33に地中熱を利用することであるが、図3に示すように、再熱器33と第2熱交換器22と地中熱交換器4とが、再熱配管6及び各種弁によって繋げられる。
これを詳しく説明すれば、再熱器33の入力口33aには開閉弁61及び途中で流量を制御する流量制御三方弁65によって第2熱交換器(凝縮器)22の受熱コイル222の入出力口(夏場は出力口)222bに連結される(配管5と同様に白色の弁は開、黒色の弁は閉、実線配管は開、点線配管は閉)。
そして、再熱器33で空気を加熱し、逆に再生器33で冷却された水は出力口33bから排出されるともに、入出力口(夏場は出力口)222bからの温まった水の一部を流量制御三方弁65によって混入し多少温度を上げてから、地中熱交換器4の地中熱交換配管41に供給して冷却し、ポンプ66及び開閉弁62を介して、第2熱交換器(凝縮器)22の受熱コイル222の入出力口(夏場は入力口)222aに供給して循環する。なお、開閉弁63、64は冷房時には閉められており稼働していない。
One of the features of the present invention is that geothermal heat is used in the reheater 33. As shown in FIG. 3, the reheater 33, the second heat exchanger 22, and the underground heat exchanger 4 are used. Are connected by the reheat pipe 6 and various valves.
More specifically, the input / output of the heat receiving coil 222 of the second heat exchanger (condenser) 22 is connected to the input port 33a of the reheater 33 by an on-off valve 61 and a flow rate control three-way valve 65 for controlling the flow rate on the way. It is connected to the port (output port in summer) 222b (the white valve is open, the black valve is closed, the solid line pipe is open, and the dotted line pipe is closed as in the case of the pipe 5).
The water heated by the reheater 33 and cooled by the regenerator 33 is discharged from the output port 33b and a part of the warm water from the input / output port (output port in summer) 222b. Is mixed with the flow control three-way valve 65 and the temperature is raised slightly, and then supplied to the underground heat exchange pipe 41 of the underground heat exchanger 4 to be cooled, and the second heat exchange is performed via the pump 66 and the opening / closing valve 62. The heat is supplied to the input / output port (input port in summer) 222a of the heat receiving coil 222 of the condenser (condenser) 22 and circulates. The on-off valves 63 and 64 are closed during cooling and are not operating.

したがって、夏場の冷房時の作動は、ヒートポンプ回路2の凝縮器を構成する第2熱交換器22よって、冷媒である水を15℃程度から20℃程度に加熱し、再熱器33に供給し、再熱器33で20℃程度の水で空気を加熱し、空気で冷やされたして15℃程度に冷やされるが、凝縮器の温まった水の一部を流量制御三方弁65によって混入し19℃程度に多少温度を上げて、地中熱交換器4に供給して、15℃程度の地中熱で冷却し、この15℃程度の水を、ヒートポンプ回路2の凝縮器を構成する第2熱交換器22よって冷媒である水を15℃程度から20℃程度に暖めてるように循環する。
このように、地中熱を再熱器33の加熱に利用することで、結果として、地中熱を使用し水冷ヒートポンプ技術を用いて供給される冷水(暖房時には温水)を使用することで主に再熱に必要な消費電力を削減し、ヒートポンプ回路2の負荷を軽減し省エネに寄与することになる。
Accordingly, during the cooling operation in summer, the second heat exchanger 22 constituting the condenser of the heat pump circuit 2 heats the coolant water from about 15 ° C. to about 20 ° C. and supplies it to the reheater 33. The reheater 33 heats the air with water of about 20 ° C., and is cooled with air and then cooled to about 15 ° C. However, a part of the warm water of the condenser is mixed by the flow control three-way valve 65. The temperature is raised to about 19 ° C., supplied to the underground heat exchanger 4, cooled by underground heat of about 15 ° C., and the water of about 15 ° C. is used as a condenser of the heat pump circuit 2. The water, which is the refrigerant, is circulated by the two heat exchangers 22 so as to be heated from about 15 ° C. to about 20 ° C.
In this way, the use of geothermal heat for heating the reheater 33 results in the use of chilled water (hot water during heating) that uses geothermal heat and is supplied using water-cooled heat pump technology. In addition, the power consumption required for reheating is reduced, the load on the heat pump circuit 2 is reduced, and this contributes to energy saving.

また、本実施例の各配管での表示した温度は、冷房時の平均的で典型的なものを例示したが、勿論、表示した温度はその年によって上下するが、室内等の要求される温度湿度に対応して、流量制御二方弁55や、流量制御三方弁65の流量を制御すればよく、地中熱も通常15℃程度で安定であるが10℃から20℃の範囲で変化する場合もあるので、この場合には地中に供給する水温を流量制御三方弁65で調節して地中熱温度よりも高くして、水温を地中熱で冷やして第2熱交換器(凝縮器)22に供給すれば、第2熱交換器(凝縮器)22を更に冷やすことが可能となるので、圧縮機23での温度低下の負荷も軽減でき、結果として、省エネに寄与することになる。   Moreover, although the displayed temperature in each pipe of the present embodiment is an average and typical one at the time of cooling, of course, the displayed temperature varies depending on the year, but the required temperature in the room or the like. Corresponding to the humidity, the flow rate of the flow control two-way valve 55 and the flow control three-way valve 65 may be controlled, and the underground heat is usually stable at about 15 ° C., but varies from 10 ° C. to 20 ° C. In this case, the water temperature supplied to the ground is adjusted by the flow control three-way valve 65 to be higher than the ground heat temperature, and the water temperature is cooled by the ground heat to cool the second heat exchanger (condensation). 2), the second heat exchanger (condenser) 22 can be further cooled, so that the load of temperature drop in the compressor 23 can be reduced, resulting in energy saving. Become.

[暖房時の構成及び作動]
次に、主に冬場の暖房時の構成及び作動を説明するが、図4に示すようになるが、図3の冷房時と異なるのは、再熱器33の稼働が必要なく、地中熱は専らヒートポンプ回路2での暖房時に蒸発器を構成する第2熱交換器22の冷却に使用することであり、このため、ヒートポンプ回路2において、四方弁26を切り替えて第1熱交換器が冷房時の蒸発器を暖房時には凝縮器に、冷房時の凝縮器を暖房時には蒸発器として稼働することである。
主に冬場の暖房時の構成及び作動を説明するが、図4に示すように、まず、冷房時とは蒸発器と凝縮器が入れ替わので、ヒートポンプ回路2の圧縮機23によって圧縮された冷媒を圧縮機23の出力口23bから、四方弁26を介して冷却される凝縮器を構成する第1熱交換器21の熱源コイル211の入出力口(冬場は入力口)221bに導入し、熱源側コイル211の入出力側(冬場は出力口)211aから電子膨張弁24を介して、冷却される蒸発器を構成する第1熱交換器22の熱源コイル221の入出力口(冬場は入力口)221bに導入し、熱源側コイル211の入出力口(冬場は出力口)211aから四方弁26を介して、前記圧縮機23の入力口23aに導入するように循環する。
[Configuration and operation during heating]
Next, the configuration and operation during heating mainly in winter will be described. As shown in FIG. 4, the difference from the cooling in FIG. 3 is that the reheater 33 is not required to operate and the underground heat Is exclusively used for cooling the second heat exchanger 22 constituting the evaporator during heating in the heat pump circuit 2. For this reason, in the heat pump circuit 2, the four-way valve 26 is switched to cool the first heat exchanger. The evaporator during operation is operated as a condenser during heating, and the condenser during cooling is operated as an evaporator during heating.
The configuration and operation during heating mainly in winter will be described. First, as shown in FIG. 4, since the evaporator and the condenser are interchanged during cooling, the refrigerant compressed by the compressor 23 of the heat pump circuit 2 Is introduced from the output port 23b of the compressor 23 to the input / output port 221b (the input port in winter) of the heat source coil 211 of the first heat exchanger 21 that constitutes the condenser cooled through the four-way valve 26. The input / output port of the heat source coil 221 of the first heat exchanger 22 constituting the evaporator to be cooled from the input / output side (output port in winter) 211a through the electronic expansion valve 24 from the side coil 211 (in winter, the input port) ) 221b and circulates so as to be introduced from the input / output port 211a of the heat source side coil 211 (output port in winter) via the four-way valve 26 to the input port 23a of the compressor 23.

このようなヒートポンプ回路2と空調器3と地中熱交換器4とを配管と各種の制御弁で繋でいるが、暖房となるので、図3の冷房時とは暖冷房配管5の開閉弁51,52,53,54と冷暖房配管6の開閉弁61,62,63,64の開閉が逆になる。
まず、冬場の暖房時である冷温水コイル(冬場は温水コイル)32と第1熱交換器21との関係を説明する。
図4に示すように、冷温水コイル32と第1熱交換器21とは冷暖房配管5と各種弁とによって繋げられるが、冷温水コイル32の入力口32aには開閉弁53によって第1熱交換器(蒸発器)21の受熱コイル212の入出力口(冬場は出力口)212aに連結され(白色の弁は開、黒色の弁は閉、実線配管は開、点線配管は閉)、冷温水コイル32の加熱された水で空気を暖房し、冷温水コイル32の多少冷えた水は出力口32bから途中で流量を制御する流量制御二方弁55及び開閉弁54を介して、第1熱交換器(蒸発器)21の受熱コイル212の入出力口(冬場は入力口)212bに連結されされ循環する。なお、開閉弁51、52は暖房時には閉められており稼働していない。
したがって、冬場の暖房時の作動は、ヒートポンプ回路2の凝縮器を構成する第1熱交換器21よって、冷媒である水を40℃程度から45℃程度に加熱し、冷温水コイル32に供給し、冷温水コイル32で45℃程度の水で空気を暖房し、暖房して40℃程度に冷えるが、再び、ヒートポンプ回路2の凝縮器を構成する第1熱交換器21よって冷媒である水を40℃程度から45℃程度に加熱して循環する。
Such a heat pump circuit 2, the air conditioner 3, and the underground heat exchanger 4 are connected to each other by piping and various control valves. However, since heating is performed, the on / off valve of the heating / cooling piping 5 is the time of cooling in FIG. 51, 52, 53, 54 and the opening / closing valves 61, 62, 63, 64 of the air conditioning pipe 6 are reversed.
First, the relationship between the cold / hot water coil (hot water coil in winter) 32 and the first heat exchanger 21 during heating in winter will be described.
As shown in FIG. 4, the cold / hot water coil 32 and the first heat exchanger 21 are connected to each other by a cooling / heating pipe 5 and various valves. Connected to the input / output port 212a of the heat receiving coil 212 of the evaporator (evaporator) (output port in winter) (white valve is open, black valve is closed, solid line pipe is open, dotted line pipe is closed), cold / hot water The air is heated by the heated water of the coil 32, and the slightly cooled water of the cold / hot water coil 32 is supplied with a first heat via a flow control two-way valve 55 and an on-off valve 54 for controlling the flow rate on the way from the output port 32b. The heat exchanger coil (evaporator) 21 is connected to an input / output port (input port in winter) 212b and circulates. The on-off valves 51 and 52 are closed during heating and are not operating.
Therefore, the operation at the time of heating in winter is performed by heating the water that is the refrigerant from about 40 ° C. to about 45 ° C. by the first heat exchanger 21 that constitutes the condenser of the heat pump circuit 2 and supplying it to the cold / hot water coil 32. The air is heated with about 45 ° C. water in the cold / hot water coil 32 and heated to cool to about 40 ° C., but again the water as the refrigerant is cooled by the first heat exchanger 21 that constitutes the condenser of the heat pump circuit 2. Circulate by heating from about 40 ° C to about 45 ° C.

次に、主に冬場の暖房時の蒸発器(第2熱交換器22)と再熱器と地中熱交換器との構成・作動について説明するが、図4に示すように、再熱器33は稼働しないので、第2熱交換器22と地中熱交換器4とは地中熱交換配管41と各種弁によって繋げられる。
前述したように、ヒートポンプ回路2の第2熱交換器22は蒸発器として稼働するが、まず、第2熱交換器(蒸発器)22の受熱コイル222の入出力口(冬場は出力口)222aから冷やされた10℃程度の水が供給され、全ての水が開閉弁63から流量制御三方弁65を介して地中熱交換器4の地中熱交換配管41に供給して10℃から15℃に暖め、ポンプ66及び開閉弁64を介して、第2熱交換器(蒸発器)22の受熱コイル222の入出力口(冬場は入力口)222bに供給して循環する。なお、開閉弁61、62は暖房時には閉められており稼働していない。
したがって、冬場の暖房時の作動は、ヒートポンプ回路2の蒸発器を構成する第2熱交換器22よって、冷媒である水を15℃程度から10℃程度に冷やし、蒸発器で冷やした水を流量制御三方弁65によって、再熱器33をバイパスして地中熱交換器4に供給して、15℃程度の地中熱で暖め、この15℃程度の水を、ヒートポンプ回路2の蒸発器を構成する第2熱交換器22よって冷媒である水を15℃程度から10℃程度に冷やすように循環する。
Next, the configuration and operation of the evaporator (second heat exchanger 22), the reheater, and the underground heat exchanger during heating mainly in winter will be described. As shown in FIG. 4, the reheater Since 33 does not operate, the second heat exchanger 22 and the underground heat exchanger 4 are connected by the underground heat exchange pipe 41 and various valves.
As described above, the second heat exchanger 22 of the heat pump circuit 2 operates as an evaporator. First, the input / output port (output port in winter) 222a of the heat receiving coil 222 of the second heat exchanger (evaporator) 22 is used. Cooled water at about 10 ° C. is supplied from the on-off valve 63 to the underground heat exchange pipe 41 of the underground heat exchanger 4 through the flow control three-way valve 65 and from 10 ° C. to 15 ° C. The temperature is warmed to 0 ° C., and is supplied to the input / output port (input port in winter) 222 b of the heat receiving coil 222 of the second heat exchanger (evaporator) 22 through the pump 66 and the on-off valve 64 and circulates. The on-off valves 61 and 62 are closed during heating and are not operating.
Therefore, the operation at the time of heating in winter is performed by cooling the water, which is the refrigerant, from about 15 ° C. to about 10 ° C. by the second heat exchanger 22 constituting the evaporator of the heat pump circuit 2 and supplying the water cooled by the evaporator at a flow rate. By the control three-way valve 65, the reheater 33 is bypassed and supplied to the underground heat exchanger 4 and warmed by underground heat of about 15 ° C. The water of about 15 ° C is supplied to the evaporator of the heat pump circuit 2. The water which is a refrigerant | coolant is circulated so that it may cool from about 15 degreeC to about 10 degreeC with the 2nd heat exchanger 22 to comprise.

このように、地中熱を使用し水冷ヒートポンプ技術を用いて供給される温水を使用することで暖房に必要な消費電力を削減し、ヒートポンプ回路2の負荷を軽減し省エネに寄与することになる。なお、地中熱は地下でなくても、安定した温度であれば井水を利用してもよい。
また、本実施例の各配管での表示した温度は、前述した冷房時同様に、平均的で典型的なものを例示したが、室内等の要求される温度湿度に対応して、流量制御二方弁55や、流量制御三方弁65の流量を制御すればよく、圧縮機23での温度上昇の負荷も軽減でき、結果として、省エネに寄与することになる
Thus, by using the hot water supplied using the ground heat and using the water-cooled heat pump technology, the power consumption required for heating is reduced, the load on the heat pump circuit 2 is reduced, and the energy is saved. . The geothermal heat may not be underground, but well water may be used as long as the temperature is stable.
In addition, the displayed temperature in each pipe of the present embodiment is an average and typical temperature as in the above-described cooling, but the flow rate control is performed according to the required temperature and humidity in the room. The flow rate of the direction valve 55 and the flow rate control three-way valve 65 may be controlled, and the load of temperature rise in the compressor 23 can be reduced, resulting in energy saving.

以上説明したように、本発明の地中熱を利用する除湿再熱空調システムの実施例によれば、湿度と温度を個別に制御できる除湿再熱空調システムにおいて、再熱のための熱源に地中熱を利用して暖房時と冷房時でも省エネを実現し、コイルの数も単純にすることができる。特に、従来システムの再熱のための再熱加熱コイルや電気ヒータの代わりに、自然エネルギーである地中熱を利用したので、燃料を燃やして加熱する熱源や電気ヒータこれらの再熱の熱源が不要となる。すなわち、温水熱源動力(蒸気生成燃料)もしくは加熱電力が不要となり、省エネ効果を高めることができる。
また、消費電力1 kWあたりの冷却・加熱能力であるCOPを向上させることができる。例えば、夏場を例にとると、一般的なヒートポンプシステムにおいて、室外機側の放熱は外気によって行われるが、外気を利用すると30℃前後の外気で放熱しなければならない。ここで、地中熱を利用すると15℃程度の水により放熱が可能となり、外気利用時と比較して放熱効率が向上する。
また、再熱器の入口側と出口側の間に混合制御機能とバイパス機能を備えた三方弁を設けたので、再熱器について、夏場等の冷房時の再熱の制御や、冬場の暖房時の再熱の稼働停止を行うことができる。
なお、本発明の特徴を損なうものでなければ、上記の各実施例に限定されるものでないことは勿論である。
As described above, according to the embodiment of the dehumidifying and reheating air conditioning system using the geothermal heat of the present invention, in the dehumidifying and reheating air conditioning system in which the humidity and temperature can be individually controlled, the heat source for reheating Using medium heat, energy can be saved even during heating and cooling, and the number of coils can be simplified. In particular, instead of using the reheat heating coil and electric heater for reheating the conventional system, ground heat, which is natural energy, was used, so the heat source that burns and heats the fuel and the electric heater these heat sources It becomes unnecessary. That is, no hot water heat source power (steam generation fuel) or heating power is required, and the energy saving effect can be enhanced.
In addition, the COP, which is the cooling / heating capacity per 1 kW of power consumption, can be improved. For example, taking summer as an example, in a general heat pump system, heat is radiated on the outdoor unit side by outside air. However, when outside air is used, heat must be radiated by outside air around 30 ° C. Here, if geothermal heat is used, it is possible to radiate heat with water at about 15 ° C., and the heat radiating efficiency is improved as compared to when using outside air.
In addition, since a three-way valve with a mixing control function and a bypass function is provided between the inlet side and outlet side of the reheater, the reheater can be controlled for reheating during cooling such as in summer, and heating in winter The operation of reheating at the time can be stopped.
Of course, the present invention is not limited to the above-described embodiments as long as the features of the present invention are not impaired.

G・・地中、
1・・除湿再熱空調システム、
2・・ヒートポンプ回路、
21・・ 第1熱交換器、211・・熱源コイル、211a,211b・・入出力口、
212・・受熱コイル、212a,212b・・入出力口、
22・・第2熱交換器、221・・熱源コイル、221a,221b・・入出力口、
222・・受熱コイル、222a,222b・・入出力口、
23・・圧縮機、23a・・入力口、23b・・出力口、
24・・ 電子膨張弁,25・・配管、26・・四方弁
3・・空調器、31・・エアフィルター、
32・・冷温水コイル、32a・・入力口、32b・・出力口、
33・・再熱器、33a・・入力口、33b・・出力口、
34・・加湿器、35・・送風機、
4・・地中熱交換器、41・・地中熱交換配管
5・・冷暖房配管、
51,52,53,54・・開閉弁、55・・流量制御二方弁、56・・ポンプ
6・・再熱配管、61,62,63,64・・開閉弁、65・・流量制御三方弁、
66・・ポンプ
G ...
1. Dehumidification reheat air conditioning system,
2. Heat pump circuit,
21 .. First heat exchanger, 211 ... Heat source coil, 211a, 211b, I / O port,
212 ... Heat receiving coil, 212a, 212b ... Input / output port,
22 .... second heat exchanger, 221 ... heat source coil, 221a, 221b ... input / output port,
222 .. Heat receiving coil, 222a, 222b ..I / O port,
23 .... Compressor, 23a ... Input port, 23b ... Output port,
24. ・ Electronic expansion valve, 25 ・ ・ Piping, 26 ・ ・ Four-way valve 3 ・ ・ Air conditioner, 31 ・ Air filter,
32 .... Cooled and hot water coil, 32a ... Input port, 32b ... Output port,
33..Reheater, 33a..Input port, 33b..Output port,
34 ... Humidifier, 35 ... Blower,
4 .... Ground heat exchanger, 41 ... Ground heat exchange piping 5, ... Air conditioning piping,
51, 52, 53, 54 ... Open / close valve, 55 ... Flow control two-way valve, 56 ... Pump 6 ... Reheat piping, 61, 62, 63, 64 ... Open / close valve, 65 ... Flow control three-way valve,
66 .. Pump

上記課題を解決するために、請求項1の発明は、蒸発器と凝縮器とが設けられたヒートポンプ回路と、該ヒートポンプ回路から冷温水を供給される冷温水コイルと再熱器とからなる空調器を備えた空気調和システムにおいて、
冷房時には、前記冷温水コイルに前記蒸発器から冷やされた冷水を供給するとともに、地中に埋設した地中熱交換器によって冷やされた冷水を前記凝縮器によって暖めて再熱器に供給し、再熱器を暖めた水を前記地中熱交換器に循環させ、
暖房時には、前記冷温水コイルに前記凝縮器から暖められた温水を供給するとともに、地中に設けた地中熱交換器によって暖められ温水を前記蒸発器によって冷やして再熱器に導通すること無しに該蒸発器に循環させたことを特徴とする地中熱を利用する除湿再熱空調システムである。
請求項2の発明は、前記再熱器の入口側と出口側の間に混合制御機能とバイパス機能とを備えた三方弁を設けたことを特徴する請求項1に記載の地中熱を利用する除湿再熱空調システムである。
In order to solve the above-mentioned problems, the invention of claim 1 is an air conditioning system comprising a heat pump circuit provided with an evaporator and a condenser, a cold / hot water coil supplied with cold / hot water from the heat pump circuit, and a reheater. In an air conditioning system equipped with a vessel,
During cooling, the chilled / hot water coil is supplied with chilled water cooled from the evaporator, and the chilled water cooled by the underground heat exchanger embedded in the ground is heated by the condenser and supplied to the reheater. Circulating water that warms the reheater to the underground heat exchanger,
During heating, the supplies warmed hot water from the condenser, to conduct hot water warmed by underground heat exchanger provided in the ground in the reheater cooled by the evaporator to the cold and hot water coil a dehumidifying reheat air-conditioning system utilizing geothermal heat, characterized in that was circulated to the evaporator without.
According to a second aspect of the present invention, there is provided a three-way valve having a mixing control function and a bypass function between the inlet side and the outlet side of the reheater. This is a dehumidifying and reheating air conditioning system.

このようなヒートポンプ回路2と空調器3と地中熱交換器4とを配管と各種の制御弁で繋ぐが、これを夏場の冷房時である図3で説明するが、冷温水コイル(夏場は冷水コイル)32と連結すると第1熱交換器21との関係を説明する。
図3に示すように、冷温水コイル32と第1熱交換器21とは冷暖房配管5と各種弁とによって繋げられる。
これを詳しく説明すれば、冷温水コイル32の入力口32aには開閉弁51によって第1熱交換器(蒸発器)21の受熱コイル212の入出力口(夏場は出力口)212b及びポンプ56(ポンプは流路中のどこに配置もよい。)を介して連結され(白色の弁は開、黒色の弁は閉、実線配管は開、点線配管は閉)、冷温水コイル32の冷却された水で空気を冷房し、冷温水コイル32の暖まった水は出力口32bから途中で流量を制御する流量制御二方弁55により、開閉弁52を介して、第1熱交換器(蒸発器)21の受熱コイル212の入出力口(夏場は入力口)212aに連結され循環する。なお、開閉弁53、54は冷房時には閉められており稼働していない。
したがって、夏場の冷房時の作動は、ヒートポンプ回路2の蒸発器を構成する第1熱交換器21よって、冷媒である水を12℃程度から7℃程度に冷却し、冷温水コイル32に供給し、冷温水コイル32で7℃程度の水で空気を冷房し、12℃程度に暖まるが、再び、ヒートポンプ回路2の蒸発器を構成する第1熱交換器21よって冷媒である水を12℃程度から7℃程度に冷却するように循環する。
Such a heat pump circuit 2, the air conditioner 3, and the underground heat exchanger 4 are connected by piping and various control valves. This will be described with reference to FIG. When connected to the cold water coil 32, the relationship with the first heat exchanger 21 will be described.
As shown in FIG. 3, the cold / hot water coil 32 and the 1st heat exchanger 21 are connected by the air conditioning piping 5 and various valves.
More specifically, the input / output port 32a of the cold / hot water coil 32 is connected to an input / output port (output port in summer) 212b and a pump 56 (in summer) by an on-off valve 51. The pump may be placed anywhere in the flow path.) (White valve is open, black valve is closed, solid line pipe is open, dotted line pipe is closed) In the first heat exchanger (evaporator) 21 via the on-off valve 52 by a flow rate control two-way valve 55 that controls the flow rate of the air from the output port 32b. (the summer input port) of the input and output ports of the heat receiving coil 212 are consolidated into 212a circulates. The on-off valves 53 and 54 are closed during cooling and are not operating.
Therefore, in the summertime cooling operation, the first heat exchanger 21 constituting the evaporator of the heat pump circuit 2 cools the coolant water from about 12 ° C. to about 7 ° C. and supplies it to the cold / hot water coil 32. The air is cooled with water of about 7 ° C. in the cold / hot water coil 32 and warmed to about 12 ° C., but again the water as the refrigerant is about 12 ° C. by the first heat exchanger 21 constituting the evaporator of the heat pump circuit 2. Circulate to cool to about 7 ° C.

本発明の特徴の一つは、再熱器33に地中熱を利用することであるが、図3に示すように、再熱器33と第2熱交換器22と地中熱交換器4とが、再熱配管6及び各種弁によって繋げられる。
これを詳しく説明すれば、再熱器33の入力口33aには開閉弁61及び途中で流量を制御する流量制御三方弁65によって第2熱交換器(凝縮器)22の受熱コイル222の入出力口(夏場は出力口)222bに連結される(配管5と同様に白色の弁は開、黒色の弁は閉、実線配管は開、点線配管は閉)。
そして、再熱器33で空気を加熱し、逆に再器33で冷却された水は出力口33bから排出されるともに、入出力口(夏場は出力口)222bからの温まった水の一部を流量制御三方弁65によって混入し多少温度を上げてから、地中熱交換器4の地中熱交換配管41に供給して冷却し、ポンプ66及び開閉弁62を介して、第2熱交換器(凝縮器)22の受熱コイル222の入出力口(夏場は入力口)222aに供給して循環する。なお、開閉弁63、64は冷房時には閉められており稼働していない。
One of the features of the present invention is that geothermal heat is used in the reheater 33. As shown in FIG. 3, the reheater 33, the second heat exchanger 22, and the underground heat exchanger 4 are used. Are connected by the reheat pipe 6 and various valves.
More specifically, the input / output of the heat receiving coil 222 of the second heat exchanger (condenser) 22 is connected to the input port 33a of the reheater 33 by an on-off valve 61 and a flow rate control three-way valve 65 for controlling the flow rate on the way. It is connected to the port (output port in summer) 222b (the white valve is open, the black valve is closed, the solid line pipe is open, and the dotted line pipe is closed as in the case of the pipe 5).
Then, the air is heated by the reheater 33, both the cooling water in the reheater 33 in the reverse is discharged from the output port 33b, output port (summer output port) of the warm water from 222b one Is mixed with the flow control three-way valve 65 and the temperature is raised slightly, and then supplied to the underground heat exchange pipe 41 of the underground heat exchanger 4 to be cooled, and the second heat is supplied via the pump 66 and the opening / closing valve 62. The heat is supplied to the input / output port 222a (input port in summer) 222c of the heat receiving coil 222 of the exchanger (condenser) 22 and circulates. The on-off valves 63 and 64 are closed during cooling and are not operating.

Claims (2)

蒸発器と凝縮器とが設けられたヒートポンプ回路と、該ヒートポンプ回路から冷温水を供給される冷温水コイルと再熱器とからなる空調器を備えた空気調和システムにおいて、
冷房時には、前記冷温水コイルに前記蒸発器から冷やされた冷水を供給するとともに、地中に設けた地中熱交換器によって冷やされた冷水を前記凝縮器によって暖めて再熱器に供給し、再熱器を暖めた水を前記地中熱交換器に循環させ、
暖房時には、前記冷温水コイルに前記凝縮器から暖められた温水を供給するとともに、地中に設けた地中熱交換器によって暖められた温水を前記蒸発器によって冷やして再熱器に導通すること無しに該蒸発器に循環させたことを特徴とする地中熱を利用する除湿再熱空調システム。
In an air conditioning system comprising a heat pump circuit provided with an evaporator and a condenser, and an air conditioner comprising a cold / hot water coil and a reheater supplied with cold / hot water from the heat pump circuit,
During cooling, the chilled / hot water coil is supplied with chilled water cooled from the evaporator, and chilled water cooled by a ground heat exchanger provided in the ground is heated by the condenser and supplied to the reheater, Circulating water that warms the reheater to the underground heat exchanger,
During heating, the hot water heated from the condenser is supplied to the cold / hot water coil, and the warm water heated by the underground heat exchanger provided in the ground is cooled by the evaporator and conducted to the reheater. A dehumidifying and reheating air conditioning system using geothermal heat, characterized in that it is circulated through the evaporator without any problems.
前記再熱器の入口側と出口側の間に混合制御機能とバイパス機能とを備えた三方弁を設けたことを特徴する請求項1に記載の地中熱を利用する除湿再熱空調システム。   The dehumidification reheat air conditioning system using geothermal heat according to claim 1, wherein a three-way valve having a mixing control function and a bypass function is provided between an inlet side and an outlet side of the reheater.
JP2016035261A 2016-02-26 2016-02-26 Dehumidifying/reheating air-conditioning system utilizing ground thermal energy Pending JP2017150778A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016035261A JP2017150778A (en) 2016-02-26 2016-02-26 Dehumidifying/reheating air-conditioning system utilizing ground thermal energy
CN201610917461.4A CN106885320A (en) 2016-02-26 2016-10-21 Using the dehumidifying reheating air-conditioning system of underground heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016035261A JP2017150778A (en) 2016-02-26 2016-02-26 Dehumidifying/reheating air-conditioning system utilizing ground thermal energy

Publications (1)

Publication Number Publication Date
JP2017150778A true JP2017150778A (en) 2017-08-31

Family

ID=59176859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016035261A Pending JP2017150778A (en) 2016-02-26 2016-02-26 Dehumidifying/reheating air-conditioning system utilizing ground thermal energy

Country Status (2)

Country Link
JP (1) JP2017150778A (en)
CN (1) CN106885320A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108592269A (en) * 2018-05-22 2018-09-28 福建工程学院 A kind of natural cooling and heating source comprehensive utilization air-conditioning system and control method
JP2019105385A (en) * 2017-12-11 2019-06-27 三菱電機ビルテクノサービス株式会社 Heat source system
CN110749004A (en) * 2019-09-19 2020-02-04 湖南工程学院 Fresh air multi-stage processing system for coupling energy storage of soil and phase-change material and operation method
CN111947304A (en) * 2020-08-26 2020-11-17 广州中环万代环境工程有限公司 Double-parameter control heat pump type hot air device and hot air generating method thereof
CN113007825A (en) * 2021-03-18 2021-06-22 上海交通大学 Solar-assisted steam compression heat pump dehumidification air-conditioning system
CN113776220A (en) * 2021-08-24 2021-12-10 清华大学 Room air conditioner and control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243068B (en) * 2019-05-10 2020-11-10 湖南达道新能源开发有限公司 Outer machine shell for energy-saving geothermal air conditioner
CN112097382B (en) * 2020-09-22 2023-12-22 奇瑞汽车股份有限公司 Workshop constant temperature and humidity control method and system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154933A (en) * 1988-12-07 1990-06-14 Gutsudoman:Kk Device for heat recovery and room air ventilation through underfloor space
CN101270909B (en) * 2008-05-16 2011-06-15 广州恒雅空调工程有限公司 Application method of condensation heat
CN101358761B (en) * 2008-09-11 2010-06-02 上海交通大学 Thermal recovery type geothermal heat pump air conditioning system for file storeroom
CN102087038A (en) * 2009-12-08 2011-06-08 河南省电力勘测设计院 Independent dehumidification air conditioning method and device for adjusting humidity by using external ice-melting cold storage and adjusting temperature by using underground water
CN101995062A (en) * 2010-11-09 2011-03-30 帝思迈环境设备(上海)有限公司 Total heat recovery humidifying fresh-air heat pump
KR101265477B1 (en) * 2012-10-24 2013-05-29 유필재 Thermohygrostat with improved reheating type using geothermal heat
CN203869263U (en) * 2014-04-02 2014-10-08 中节能(嘉兴)环保科技园发展有限公司 Air-conditioner control system with ground source thermal pump

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105385A (en) * 2017-12-11 2019-06-27 三菱電機ビルテクノサービス株式会社 Heat source system
JP7023694B2 (en) 2017-12-11 2022-02-22 三菱電機ビルテクノサービス株式会社 Heat source system
CN108592269A (en) * 2018-05-22 2018-09-28 福建工程学院 A kind of natural cooling and heating source comprehensive utilization air-conditioning system and control method
CN110749004A (en) * 2019-09-19 2020-02-04 湖南工程学院 Fresh air multi-stage processing system for coupling energy storage of soil and phase-change material and operation method
CN110749004B (en) * 2019-09-19 2021-07-20 湖南工程学院 Fresh air multi-stage processing system for coupling energy storage of soil and phase-change material and operation method
CN111947304A (en) * 2020-08-26 2020-11-17 广州中环万代环境工程有限公司 Double-parameter control heat pump type hot air device and hot air generating method thereof
CN113007825A (en) * 2021-03-18 2021-06-22 上海交通大学 Solar-assisted steam compression heat pump dehumidification air-conditioning system
CN113776220A (en) * 2021-08-24 2021-12-10 清华大学 Room air conditioner and control method thereof

Also Published As

Publication number Publication date
CN106885320A (en) 2017-06-23

Similar Documents

Publication Publication Date Title
JP2017150778A (en) Dehumidifying/reheating air-conditioning system utilizing ground thermal energy
JP4207166B2 (en) Dehumidifying air conditioner
CN108800375B (en) Air heat source heat pump type air conditioner
JP2005195313A (en) Composite air-conditioning system
CN101694315A (en) Air handling device with natural cooling and humidify control
CN101749812A (en) Multifunctional air-conditioning system
JP2009036413A (en) Geothermal heat pump-type dry air conditioning system
JP5869648B1 (en) Air conditioning system
JP2010025503A (en) Heat pump air conditioning system
CN105890225A (en) Partial heat recovery type air conditioner cold hot water and life hot water joint supply system
KR20200083294A (en) Constant temperature and humidity units
CN210014517U (en) Air conditioning apparatus
JP2005114254A (en) Air conditioning facility
CN110553325A (en) Room temperature adjusting device and control method
KR101562744B1 (en) Air handling system interworking with ventilation unit
CN207945732U (en) Fan coil and air-conditioner water system
KR102257544B1 (en) Energy enhanced air-conditioning system and control method thereof
JP7058250B2 (en) Air conditioner with dehumidifying function and its control method
JP5827717B2 (en) Fan coil type radiant air conditioning panel air conditioner with heat pump
KR100860047B1 (en) Apparatus and method for cooling and heating water using heat pump
CN202126035U (en) Heat recovery type heat pump air conditioning system
JP2014062651A (en) Dehumidifying/reheating air-conditioning system by means of cool water
EP2077424A2 (en) Low power consumption dehumidifier unit
JP2018109468A (en) Air Conditioning System
JP2009109061A (en) Heat pump type air conditioning device comprising heating panel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303