JP2017144534A - Work holder and processing system of using this work holder holding tool - Google Patents

Work holder and processing system of using this work holder holding tool Download PDF

Info

Publication number
JP2017144534A
JP2017144534A JP2016029954A JP2016029954A JP2017144534A JP 2017144534 A JP2017144534 A JP 2017144534A JP 2016029954 A JP2016029954 A JP 2016029954A JP 2016029954 A JP2016029954 A JP 2016029954A JP 2017144534 A JP2017144534 A JP 2017144534A
Authority
JP
Japan
Prior art keywords
workpiece
shape
marker
work
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016029954A
Other languages
Japanese (ja)
Other versions
JP6694643B2 (en
Inventor
恒雄 栗田
Tsuneo Kurita
恒雄 栗田
古川 慈之
Shigeyuki Furukawa
慈之 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2016029954A priority Critical patent/JP6694643B2/en
Publication of JP2017144534A publication Critical patent/JP2017144534A/en
Application granted granted Critical
Publication of JP6694643B2 publication Critical patent/JP6694643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Jigs For Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • General Factory Administration (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize cost reduction, reduction in an operator burden and an increase in an operation rate of a processing machine, by automatically replacing only an exclusive shape part, even when executing large item small scale production.SOLUTION: A work holder 1 for positioning a work to a processing machine is constituted of a frame part 2 and an exclusive shape part 3 fitted to this. The frame part 2 is movable to a work fixing position and a removal position by a driving device, and the exclusive shape part 3 comprises a common engaging structure engaged with the frame part 2 and a special shape part adjusted to a three-dimensional shape of a work holding position, and the frame part 2 is attached with an attitude marker for specifying its three-dimensional position and an ID marker for individually discriminating the frame part 2.SELECTED DRAWING: Figure 1

Description

本発明は、コンピュータ制御の工作機械(一軸工作機械、多軸工作機械、マシニングセンタ、放電加工機、レーザ加工機等)、組立機械(ロボットアーム含む)等(以下、これらを総称して「加工装置」という。)でワークを加工する際に用いるワークホルダ、及び、このワークホルダを用いた加工システムに関する。   The present invention relates to computer-controlled machine tools (single-axis machine tools, multi-axis machine tools, machining centers, electric discharge machines, laser machines, etc.), assembly machines (including robot arms), etc. It is related with the workpiece | work holder used when processing a workpiece | work, and the processing system using this workpiece holder.

本技術分野の背景技術として、特許文献1が知られており、固定治具を、基準面を有する受け部材と、この基準面で姿勢を矯正される専用の保持ブロックとで構成し、保持ブロックの交換のみでサイズの異なるコアピンを固定することが記載されている。
また、特許文献2には、多種類の受けゴマを選択して、形状が異なるワークを位置決めすることが記載されている。
Patent Document 1 is known as background art in this technical field, and the fixing jig is constituted by a receiving member having a reference surface and a dedicated holding block whose posture is corrected by the reference surface, and the holding block It is described that core pins of different sizes are fixed only by exchanging.
Japanese Patent Application Laid-Open No. H10-228561 describes that a workpiece having a different shape is positioned by selecting various types of sesame seeds.

特許第4470514号公報Japanese Patent No. 4470514 特開2000−190157号公報JP 2000-190157 A

近年、消費者ニーズの多様化、インターネットショッピングの広がりにより、多品種少量生産を行う製品分野が大きな広がりを見せている。
例えば、コンピュータにより、各種工具の経路が制御される多軸工作機械などの工作機械、さらには、複数の工程毎に個別の工作機械を使用する生産システムにおいては、CAD等の設計データを入力すれば、ワークを切断加工、切削加工、研磨工程に到るまで自動的に加工を行うことができる(CAD/CAM)。
In recent years, with the diversification of consumer needs and the spread of Internet shopping, the product field that performs high-mix low-volume production has expanded greatly.
For example, in a machine tool such as a multi-axis machine tool whose path of various tools is controlled by a computer, or in a production system that uses individual machine tools for each of a plurality of processes, design data such as CAD is input. For example, the workpiece can be automatically processed until it reaches a cutting process, a cutting process, and a polishing process (CAD / CAM).

しかし、こうした工作機械においては、選択したワークの基準位置に基づいて各工具の経路が定められることから、設計データどおりの精度で加工を行うためには、様々な形態のワークを確実に保持し、あるいは、持ち換えを行い、その都度、加工工程に応じた工作機械に対し、正確な基準位置情報を特定させる必要がある。   However, in such a machine tool, the path of each tool is determined based on the selected reference position of the workpiece. Therefore, in order to perform machining with the accuracy of the design data, various forms of workpieces are securely held. Alternatively, it is necessary to change the holding position and specify accurate reference position information for the machine tool corresponding to the machining process each time.

そのため、こうした工作機械により様々な製品を加工する場合に、その都度ワークに合わせた、高精度の保持具を用意し、保持後に加工物保持誤差を計測し、その誤差に基づいて工作機械補正プログラムを作成し、加工を行う必要があった。
このため、専用保持具を製作するために多額なコストを要するばかりでなく、加工する製品が変更になるたびに、専用工具の交換作業が必要となることから、熟練作業者の専従が必要となり、さらに、専用保持具交換作業に伴って、工作機械の稼働率の低下を招いていた。これが加工工程における自動化のボトルネックの一つの大きな要因ともなっている。
For this reason, when machining various products with such machine tools, a high-precision holding tool is prepared for each workpiece, the workpiece holding error is measured after holding, and the machine tool correction program is based on the error. It was necessary to create and process.
For this reason, not only does it require a large amount of cost to manufacture the dedicated holder, but also the replacement of the dedicated tool is required every time the product to be processed is changed, so that a dedicated worker is required. Furthermore, the operation rate of the machine tool has been lowered due to the replacement work of the dedicated holder. This is one major factor in automation bottlenecks in the machining process.

そこで、本発明の目的は、多品種少量生産を行う場合でも、専用形状部のみを自動的に交換できるようにするとともに、保持した際に発生する位置や姿勢の誤差を、ワークホルダに保持されている期間中、加工機械の工具経路に反映できるようにすることで、生産ラインの自動化、コスト低減、作業者負担の低減、工作機械の稼働率上昇を実現することにある。   Accordingly, an object of the present invention is to allow only a dedicated shape portion to be automatically replaced even in the case of multi-product / small-volume production, and to hold position and orientation errors that occur when held in the work holder. It is intended to realize automation of the production line, cost reduction, reduction of operator burden, and increase in the operating rate of the machine tool by enabling reflection in the tool path of the processing machine during the period.

上記の課題を解決するため、本発明の加工機械に対しワークの位置決めを行うワークホルダは、フレーム部とこのフレーム部に嵌着される専用形状部とからなり、フレーム部は駆動装置により、ワーク固定位置と取り外し位置に移動可能となっており、専用形状部は、フレーム部に係合される共通の係合構造と、ワーク保持位置の形状に合わせた特殊形状部を備え、フレーム部には、その3次元位置を特定するための姿勢マーカと、フレーム部を個別に識別するためのIDマーカを装着するようにした。   In order to solve the above problems, a work holder for positioning a work with respect to the processing machine of the present invention includes a frame part and a dedicated shape part fitted to the frame part. It can be moved to a fixed position and a removal position, and the dedicated shape part has a common engagement structure that is engaged with the frame part and a special shape part that matches the shape of the work holding position. The posture marker for specifying the three-dimensional position and the ID marker for individually identifying the frame portion are attached.

また、このワークホルダを用いた加工システムは、前記専用形状部に保持されたワークの、前記フレーム部に対する位置、姿勢を計測する計測装置と、その計測結果を、前記IDマーカにより識別されたワークのID毎に記録する加工物状態格納媒体とを備えるようにした。   Further, the machining system using the work holder includes a measuring device that measures the position and orientation of the work held by the dedicated shape part with respect to the frame part, and the measurement result of the work identified by the ID marker. And a workpiece state storage medium for recording for each ID.

本発明によれば、専用形状部を3Dプリンタなどで作成することで、種々の形態のワークに対し、任意の保持位置で確実に保持することができ、しかも、姿勢マーカとIDマーカを読み取り、保持した際に発生する位置や姿勢の誤差を加工機械の工具経路に反映することにより、保持されたワーク毎に位置決め誤差を解消することができる。
また、専用形状部を種々変更して、工具に対する保持位置を変更することにより、例えば、少数軸工作機械を用いても、多軸工作機械の動作に近い加工を実現することができる。
さらに、加工装置変更に伴う加工装置設置の段取りを、搬送ロボットやロボットアームと組み合わせて使用することにより、生産工程の自動化を最大限に高めることが可能となる。
According to the present invention, by creating a dedicated shape portion with a 3D printer or the like, it is possible to reliably hold a workpiece in various forms at an arbitrary holding position, and to read a posture marker and an ID marker, By reflecting the error in the position and orientation generated when held in the tool path of the processing machine, it is possible to eliminate the positioning error for each held workpiece.
Further, by changing the dedicated shape portion in various ways and changing the holding position with respect to the tool, for example, machining close to the operation of the multi-axis machine tool can be realized even if a small-axis machine tool is used.
Furthermore, by using the setup of the processing device installation accompanying the change of the processing device in combination with the transfer robot and the robot arm, it becomes possible to maximize the automation of the production process.

図1は、本実施例のワーク保持部の全体構成を示す図である。FIG. 1 is a diagram illustrating an overall configuration of a work holding unit according to the present embodiment.

図1は、本発明によるワークホルダ1の全体図を示す。
ワークホルダ1は、フレーム部2と専用形状部3とからなり、フレーム部2は、例えばステンレスのように、高剛性、高精度の材料で製作される。
そして、例えば、1対のフレーム部2の左右を2本のボールねじ4に螺合させ、これを回転駆動することで、対向面が互いに接近したり、離隔するように組み合わせる。また、両フレーム部2の対向面には凹凸部が形成されている。
FIG. 1 shows an overall view of a work holder 1 according to the present invention.
The work holder 1 includes a frame portion 2 and a dedicated shape portion 3, and the frame portion 2 is made of a material having high rigidity and high accuracy, such as stainless steel.
Then, for example, the left and right sides of the pair of frame parts 2 are screwed into the two ball screws 4 and are rotated so that the opposing surfaces approach each other or are separated from each other. Further, an uneven portion is formed on the opposing surfaces of both frame portions 2.

専用形状部3の反対向面には、フレーム部2の凹凸部に係合するよう、ピッチが反対となった凹凸部が形成されている。なお、すべての専用形状部3に関し、反対向面の形状は、フレーム部2の対向面に形成した凹凸に係合するよう共通している。
一方、専用形状部3の対向面は、加工時にワークWの保持位置が変動しないよう、ワークWとの接触面の形状に合わせた専用設計とする。
専用形状部3の両側面には、それぞれガイド5が水平方向に延出するように形成され、各裏面に形成された凹部が両ボールねじ4の上面にそれぞれ摺動可能に支持されるようになっている。
なお、専用形状部3は、後述するように、3Dプリンタによりワーク保持位置の立体形状に合わせて製造するもので、必ずしも高い精度は要求されないが、3Dプリンタに使用可能な造形素材のうち、強度、剛性の高いものが好ましい。
On the opposite surface of the dedicated shape portion 3, a concavo-convex portion having a pitch opposite to that of the concavo-convex portion of the frame portion 2 is formed. In addition, regarding all the exclusive shape parts 3, the shape of a counter-facing surface is common so that it may engage with the unevenness | corrugation formed in the opposing surface of the frame part 2. FIG.
On the other hand, the facing surface of the dedicated shape portion 3 is designed exclusively for the shape of the contact surface with the workpiece W so that the holding position of the workpiece W does not fluctuate during processing.
Guides 5 are formed on both side surfaces of the exclusive shape portion 3 so as to extend in the horizontal direction, and concave portions formed on the back surfaces are slidably supported on the upper surfaces of both ball screws 4. It has become.
As will be described later, the dedicated shape portion 3 is manufactured by a 3D printer according to the three-dimensional shape of the workpiece holding position, and does not necessarily require high accuracy, but among the modeling materials that can be used for the 3D printer, Those having high rigidity are preferred.

ワークWを保持する際は、フレーム部2の対向面間が拡がるよう、ボールねじ4を駆動し、加工するワークWの形態に合わせて選定した専用形状部3の両ガイド5をそれぞれボールねじ4の上面に載置し、フレーム部2の対向面に形成した凹凸部と、専用形状部3の反対向面側に形成した凹凸部とを係合させる。
そして、ワークWを、一方の専用形状部3から他方の専用形状部3の対向面に向けて延びる支持部6に載置し、対向面間に支持させる。
When holding the workpiece W, the ball screw 4 is driven so that the space between the opposing surfaces of the frame portion 2 is widened. The concavo-convex part formed on the opposing surface of the frame part 2 and the concavo-convex part formed on the opposite side of the dedicated shape part 3 are engaged with each other.
Then, the workpiece W is placed on the support portion 6 that extends from one dedicated shape portion 3 toward the facing surface of the other dedicated shape portion 3, and is supported between the facing surfaces.

この状態で、ボールねじ4を駆動し、専用形状部3の対向面を互いに接近させることで、ワークWは、専用形状部3の対向面間で位置決めされる。なお、ワークWを持ち替えて保持位置を変更する際は、その都度、ロボットアームなどにより、変更された接触面に合わせた専用形状部3に自動交換することで、少数軸工作機械を用いても、加工軸に対するワークWの姿勢を種々変更することで多軸工作機械の動作に近い加工が可能となる。   In this state, the ball screw 4 is driven to bring the opposed surfaces of the dedicated shape portion 3 closer to each other, whereby the workpiece W is positioned between the opposed surfaces of the dedicated shape portion 3. When holding the workpiece W and changing the holding position, it is possible to use a small-axis machine tool by automatically replacing the dedicated shape portion 3 according to the changed contact surface with a robot arm or the like each time. By changing the posture of the workpiece W with respect to the machining axis, machining close to the operation of the multi-axis machine tool can be performed.

両フレーム部2には、その3次元位置を特定するためのARマーカ等の姿勢マーカ7と、QRコード(登録商標)など、ワーク毎に設定されたIDマーカ8が装着されている。
なお、姿勢マーカ7、IDマーカ8は、専用の読み取り機、あるいは、後述するワークWの姿勢、位置を計測するカメラによって、読み取られる。
このID毎に、ワークWの向き、表裏、加工の進行度等の加工物状態データを記録媒体に記録する。なお、IDマーカ8は、一対のフレーム部毎にユニークなものであり、その保持位置での加工がすべて終了した際にリセットされる。
なお、記録媒体は、工作機械を制御する制御装置に接続されたものでもよいし、制御装置にネットワーク上で接続された別個の記録媒体でもよい。
さらに、IDマーカ8自体をデータの書き換えが可能なRFID素子としてもよい。
加工物状態データを格納する記録媒体には、ワークWのフレーム部2に対する位置、姿勢に加え、材質、形状、加工工程、工具経路、最終加工形状など加工に必要な情報が格納され、各工程が終了した段階で、データ更新が行われる。
Both frame portions 2 are equipped with an orientation marker 7 such as an AR marker for specifying the three-dimensional position, and an ID marker 8 set for each work such as a QR code (registered trademark).
The posture marker 7 and the ID marker 8 are read by a dedicated reader or a camera that measures the posture and position of the workpiece W described later.
For each ID, workpiece state data such as the orientation of the workpiece W, the front and back sides, and the progress of the machining are recorded on the recording medium. The ID marker 8 is unique for each pair of frame portions, and is reset when processing at the holding position is completed.
The recording medium may be connected to a control device that controls the machine tool, or may be a separate recording medium connected to the control device over a network.
Further, the ID marker 8 itself may be an RFID element capable of rewriting data.
In the recording medium for storing the workpiece state data, in addition to the position and orientation of the workpiece W with respect to the frame portion 2, information necessary for machining such as material, shape, machining process, tool path, and final machining shape is stored. The data update is performed at the stage when the process is completed.

フレーム部2と専用形状部3により、ワークホルダ1にワークWを固定し、一体とした後には、位置、姿勢などの保持誤差を計測する。すなわち、カメラ、接触式あるいは非接触式のプローブ等の3次元測定用センサを搭載した位置、姿勢計測装置により、姿勢マーカ7などで定義されたフレーム部2の基準面に対する、保持後のワークの相対姿勢、位置を計測する。その計測結果のデータを、IDマーカ8から読み取ったフレーム部2のIDと関連づけて、加工物状態データ格納媒体に格納する。
このデータと各工作機械による加工データ(工具経路)を用いて、新たに補正された工具経路を算出し加工することで、専用形状部3によるワーク保持誤差を補正する。これにより、専用形状部3の精度、剛性に起因する保持誤差が解消される。
After the work W is fixed to the work holder 1 by the frame part 2 and the exclusive shape part 3 and integrated, the holding error such as the position and the posture is measured. That is, the position of the workpiece after being held with respect to the reference surface of the frame unit 2 defined by the posture marker 7 or the like by the position and posture measuring device equipped with a three-dimensional measuring sensor such as a camera or a contact or non-contact type probe. Measure relative posture and position. The measurement result data is stored in the workpiece state data storage medium in association with the ID of the frame unit 2 read from the ID marker 8.
Using this data and machining data (tool path) by each machine tool, a newly corrected tool path is calculated and processed to correct the workpiece holding error due to the dedicated shape portion 3. Thereby, the holding | maintenance error resulting from the precision and rigidity of the exclusive shape part 3 is eliminated.

位置、姿勢の計測に関しては、例えば、ワークホルダ1と一体となったワークWに対し、必要に応じて複数に設置され、あるいは、移動機構を持つカメラにより撮影を行う。
フレーム部2に設置されているARマーカ等の姿勢マーカ7やエッジなどの特徴点を画像処理することにより、位置や姿勢を測定する。
一方、ワークWはカメラによる計測結果、及び、必要に応じて加工物状態格納媒体から読み出したワークWの形状等の設計データと比較することで、ワークWの位置姿勢を算出する。両位置姿勢の差を導出し、位置、姿勢の位置決め誤差を加工物状態格納媒体に格納する。
Regarding the measurement of the position and orientation, for example, a plurality of works W integrated with the work holder 1 are installed as necessary, or photographing is performed with a camera having a moving mechanism.
The position and orientation are measured by performing image processing on orientation markers 7 such as AR markers installed in the frame unit 2 and feature points such as edges.
On the other hand, the position and orientation of the workpiece W are calculated by comparing the measurement result by the camera and design data such as the shape of the workpiece W read from the workpiece state storage medium as necessary. A difference between both positions and orientations is derived, and positioning errors between the positions and orientations are stored in the workpiece state storage medium.

こうして位置、姿勢が計測された、ワークホルダ1と一体となったワークWは、任意の工作機械に搬送される。工作機械上で、ワークホルダ1を精度良く保持できる保持具またはカメラなどの計測機器などによって、ワークホルダ1の位置姿勢を把握する。
そして、加工物状態格納媒体から得た位置決め誤差から、工作機械で想定されている座標系に対する加工物の位置姿勢を導出し、導出した位置姿勢と加工物状態格納媒体から得た工具経路を用いて、保持誤差を解消した工具経路を導出し、加工を実行する。
The workpiece W integrated with the workpiece holder 1 whose position and orientation are thus measured is conveyed to an arbitrary machine tool. On the machine tool, the position and orientation of the work holder 1 are grasped by a holder that can hold the work holder 1 with high accuracy or a measuring device such as a camera.
Then, the position and orientation of the workpiece with respect to the coordinate system assumed by the machine tool is derived from the positioning error obtained from the workpiece state storage medium, and the derived position and orientation and the tool path obtained from the workpiece state storage medium are used. Then, a tool path that eliminates the holding error is derived, and machining is performed.

以下、本実施例に基づくワークホルダ1を用いて、特定の形状に加工を行う際のフローを説明する。
(ステップ1)
発注された加工製品の種類、数量、生産タイミングなどの加工発注データベースに基づいて、加工データベースから、今回加工を行うワークWの種類、加工形状・寸法(CADデータ)、加工工程などの加工データを決定する。
Hereinafter, the flow at the time of processing to a specific shape using the work holder 1 based on a present Example is demonstrated.
(Step 1)
Based on the processing order database such as the type, quantity, and production timing of the ordered processed products, the processing data such as the type of workpiece W to be processed this time, processing shape / dimension (CAD data), processing process, etc. are obtained from the processing database. decide.

(ステップ2)
ロボットアームなどにより、ワークストッカから加工対象のワークを選択し、ワーク形状と加工データに基づいて、工具の経路に対し、ワークを最適位置に保持するためのワーク保持位置の立体形状、保持断面を決定する。
(Step 2)
Select the workpiece to be machined from the workpiece stocker with a robot arm, etc., and based on the workpiece shape and machining data, the solid shape and holding section of the workpiece holding position for holding the workpiece at the optimum position with respect to the tool path decide.

(ステップ3)
ステップ2で決定した、ワーク保持位置の立体形状、保持断面に合わせて、例えば、CADデータから3次元プリンタで専用形状部3を製作する。
ただし、既に作成済みの専用形状部3については、専用形状部3に付与されたID等により、ロボットアームなどにより、専用形状部ストッカから対応する専用形状部3を抽出する。
(Step 3)
In accordance with the three-dimensional shape and holding section of the workpiece holding position determined in step 2, for example, the dedicated shape portion 3 is manufactured from CAD data by a three-dimensional printer.
However, for the dedicated shape portion 3 that has already been created, the corresponding dedicated shape portion 3 is extracted from the dedicated shape portion stocker by the robot arm or the like based on the ID assigned to the dedicated shape portion 3 or the like.

(ステップ4)
フレーム部2と専用形状部3の形状データを関連付け、ワークホルダ1としての統合データを作成した上で、フレーム部2を駆動してワークを固定し、ワークホルダ1と一体化する。
なお、ステップ2で決定した保持部での加工がすべて終了し、ワークWの持ち替えを行うまで、ワークWは、ワークホルダ1と一体化した状態のまま、同一保持部での加工がすべて終了するまで、順次、次の工作機械に搬送される。
(Step 4)
After the shape data of the frame portion 2 and the dedicated shape portion 3 are associated to create integrated data as the work holder 1, the work is fixed by driving the frame portion 2 and integrated with the work holder 1.
In addition, all the processes in the same holding | maintenance part complete | finish the work W with the state integrated with the work holder 1 until all the processes in the holding | maintenance part determined in step 2 are complete | finished and the work W is changed. Until the next machine tool.

(ステップ5)
専用形状部3に対する位置決め誤差を姿勢計測装置により測定し、フレーム部基準面(姿勢マーカ)に対するワークWの相対位置を測定し、記録する。
(Step 5)
The positioning error with respect to the dedicated shape portion 3 is measured by the posture measuring device, and the relative position of the workpiece W with respect to the frame portion reference surface (posture marker) is measured and recorded.

(ステップ7)
今回の工作機械による加工データ(工具経路)を、記録したワークWの相対位置により補正した上で、加工を行う。
ステップ5で計測したワークWの相対位置は、ワークWの持ち替えを行うまで、各加工機で共通して使用することができる。
なお、ひとつの工作機械での加工が終了したら、加工物状態データ格納媒体8のデータを更新し、次の工作機械に引き渡される。
(Step 7)
Machining data (tool path) by the current machine tool is corrected by correcting the recorded relative position of the workpiece W, and then machining is performed.
The relative position of the workpiece W measured in step 5 can be used in common by each processing machine until the workpiece W is changed.
When the machining with one machine tool is completed, the data in the workpiece state data storage medium 8 is updated and delivered to the next machine tool.

ワークホルダ1を持ち替えて、次工程の加工を行う場合には、ステップ(2)からの工程を繰り返すが、ワークを最適位置に保持するためワークの保持部を決定する際には、前工程までの加工による形状変化を反映させる。
ただし、持ち替え前後のワーク保持部、保持位置の関係が予め分かっている場合には、(2)の工程を省略できる。
When the workpiece holder 1 is changed and the next process is performed, the process from step (2) is repeated. However, when the work holding part is determined in order to hold the work in the optimum position, the previous process is performed. Reflects the shape change caused by machining.
However, when the relationship between the workpiece holding part and the holding position before and after the change is known in advance, the step (2) can be omitted.

以上、本発明のワーク保持具を、切削、切断、研磨等を行う工作機械に適用した実施例について説明したが、本発明のワーク保持具は、放電加工機、レーザ加工機、組立機械等、加工機に対しワークを正確な位置決めを必要とする加工装置全般に適用することができる。   As mentioned above, although the example which applied the work holder of the present invention to the machine tool which performs cutting, cutting, grinding, etc. was explained, the work holder of the present invention is an electric discharge machine, a laser processing machine, an assembly machine, etc. The present invention can be applied to all processing apparatuses that require accurate positioning of a workpiece with respect to a processing machine.

以上説明したように、本発明によれば、低コストで、しかも、稼働率を低下させることなく、種々の形態のワークに対し、任意の保持位置で確実に保持することができ、しかも、姿勢マーカとIDマーカを読み取ることで、保持されたワーク毎に位置決め誤差を解消することができるので、自動化された多品種少量生産システムに広く採用されることが期待できる。   As described above, according to the present invention, it is possible to reliably hold a workpiece in various forms at an arbitrary holding position at a low cost and without reducing the operation rate, and the posture. By reading the marker and the ID marker, the positioning error can be eliminated for each held work, so that it can be expected to be widely adopted in an automated multi-product low-volume production system.

1:ワークホルダ
2:フレーム部
3:専用形状部
4:ボールねじ
5:ガイド
6:支持部
7:姿勢マーカ
8:IDマーカ
1: Work holder 2: Frame part 3: Dedicated shape part 4: Ball screw 5: Guide 6: Support part 7: Posture marker 8: ID marker

Claims (4)

加工機械に対しワークの位置決めを行うワークホルダであって、
フレーム部と、このフレーム部に嵌着される専用形状部からなり、
前記フレーム部は駆動装置により、ワーク固定位置と取り外し位置に移動可能となっており、
前記専用形状部は、前記フレーム部に係合される共通の係合構造と、ワーク保持位置の立体形状に合わせた特殊形状部を備え、
前記フレーム部には、その3次元位置を特定するための姿勢マーカと、前記フレーム部を個別に識別するためのIDマーカが装着されていることを特徴とするワーク保持具。
A workpiece holder for positioning a workpiece with respect to a processing machine,
Consists of a frame part and a specially shaped part fitted to this frame part,
The frame part can be moved to a workpiece fixing position and a removal position by a driving device,
The dedicated shape portion includes a common engagement structure that is engaged with the frame portion, and a special shape portion that matches the three-dimensional shape of the work holding position,
A workpiece holder, wherein a posture marker for specifying a three-dimensional position of the frame portion and an ID marker for individually identifying the frame portion are attached to the frame portion.
前記専用形状部に保持されたワークの、前記フレーム部に対する位置、姿勢を計測する計測装置と、その計測結果を、前記IDマーカにより識別された前記フレーム部のID毎に記録する加工物状態格納媒体とを備えた、請求項1に記載されたワーク保持具を用いた加工システム。   A measuring device for measuring the position and orientation of the work held in the dedicated shape portion with respect to the frame portion, and a workpiece state storage for recording the measurement result for each ID of the frame portion identified by the ID marker A processing system using the workpiece holder according to claim 1, comprising a medium. 前記加工物状態格納媒体には、ワークの材質、形状、加工工程、工具経路、最終加工形状が合わせて記録されていることを特徴とする請求項2に記載された加工システム。   The machining system according to claim 2, wherein the workpiece state storage medium is recorded with a workpiece material, shape, machining process, tool path, and final machining shape. 前記IDマーカをRFID素子とし、前記加工物状態格納媒体を兼用させたことを特徴とする請求項2または3に記載された加工システム。
The processing system according to claim 2, wherein the ID marker is an RFID element, and the workpiece state storage medium is also used.
JP2016029954A 2016-02-19 2016-02-19 Workpiece processing method Active JP6694643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016029954A JP6694643B2 (en) 2016-02-19 2016-02-19 Workpiece processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016029954A JP6694643B2 (en) 2016-02-19 2016-02-19 Workpiece processing method

Publications (2)

Publication Number Publication Date
JP2017144534A true JP2017144534A (en) 2017-08-24
JP6694643B2 JP6694643B2 (en) 2020-05-20

Family

ID=59681031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016029954A Active JP6694643B2 (en) 2016-02-19 2016-02-19 Workpiece processing method

Country Status (1)

Country Link
JP (1) JP6694643B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108788816A (en) * 2018-06-13 2018-11-13 柳州市钜诚科技有限公司 A kind of jig with means for correcting
WO2019159823A1 (en) * 2018-02-16 2019-08-22 株式会社北川鉄工所 Chuck mechanism and top jaw
BE1025998B1 (en) * 2017-09-27 2019-09-11 Zahoransky Ag Workpiece clamping device and brush making machine
JP2020093348A (en) * 2018-12-13 2020-06-18 川崎重工業株式会社 Robot and robot system comprising the same
JP2020179488A (en) * 2019-04-26 2020-11-05 ファナック株式会社 Processing system and processing method
JP2022554302A (en) * 2019-11-06 2022-12-28 ナノトロニクス イメージング インコーポレイテッド Systems, methods and media for manufacturing processes
JP2023517260A (en) * 2019-09-10 2023-04-25 ナノトロニクス イメージング インコーポレイテッド Systems, methods and media for manufacturing processes
DE112021003059T5 (en) 2020-05-29 2023-06-22 National Institute of Advanced Industrial Science and Technology Marker, device, system and method for measuring and calculating the position and orientation of an object
WO2023128117A1 (en) * 2021-12-28 2023-07-06 박영자 Brassware plate processing method using 3d modeling and cnc
US11731368B2 (en) 2018-04-02 2023-08-22 Nanotronics Imaging, Inc. Systems, methods, and media for artificial intelligence process control in additive manufacturing
JP7341025B2 (en) 2019-10-11 2023-09-08 株式会社北川鉄工所 Rotating device and pallet jig exchange system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188040A (en) * 1985-02-13 1986-08-21 Honda Motor Co Ltd Jig apparatus
JPH05220651A (en) * 1992-02-07 1993-08-31 Hitachi Seiko Ltd Workpiece identifying device
JPH06143151A (en) * 1992-11-04 1994-05-24 Mitsubishi Materials Corp Vice and manufacture of claw thereof
JPH07328863A (en) * 1994-06-02 1995-12-19 Kawasaki Heavy Ind Ltd Cylinder head assembling pallet
JP2008250714A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Production management method for seamless steel pipe
JP2012133723A (en) * 2010-12-24 2012-07-12 Mitsubishi Motors Corp Process control system and method for processed articles
US20130103182A1 (en) * 2011-10-24 2013-04-25 Sikorsky Aircraft Corporation Cutting tool data verification system and method
JP2014035635A (en) * 2012-08-08 2014-02-24 Utsunomiya Univ Object management system
JP2015182212A (en) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 Robot system, robot, control device, and control method
JP2016013608A (en) * 2014-07-03 2016-01-28 川崎重工業株式会社 Teaching point conversion method of robot, device and robot cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188040A (en) * 1985-02-13 1986-08-21 Honda Motor Co Ltd Jig apparatus
JPH05220651A (en) * 1992-02-07 1993-08-31 Hitachi Seiko Ltd Workpiece identifying device
JPH06143151A (en) * 1992-11-04 1994-05-24 Mitsubishi Materials Corp Vice and manufacture of claw thereof
JPH07328863A (en) * 1994-06-02 1995-12-19 Kawasaki Heavy Ind Ltd Cylinder head assembling pallet
JP2008250714A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Production management method for seamless steel pipe
JP2012133723A (en) * 2010-12-24 2012-07-12 Mitsubishi Motors Corp Process control system and method for processed articles
US20130103182A1 (en) * 2011-10-24 2013-04-25 Sikorsky Aircraft Corporation Cutting tool data verification system and method
JP2014035635A (en) * 2012-08-08 2014-02-24 Utsunomiya Univ Object management system
JP2015182212A (en) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 Robot system, robot, control device, and control method
JP2016013608A (en) * 2014-07-03 2016-01-28 川崎重工業株式会社 Teaching point conversion method of robot, device and robot cell

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1025998B1 (en) * 2017-09-27 2019-09-11 Zahoransky Ag Workpiece clamping device and brush making machine
US11389880B2 (en) 2018-02-16 2022-07-19 Kitagawa Iron Works Co., Ltd Chuck mechanism and top jaw
WO2019159823A1 (en) * 2018-02-16 2019-08-22 株式会社北川鉄工所 Chuck mechanism and top jaw
CN111565887A (en) * 2018-02-16 2020-08-21 株式会社北川铁工所 Chuck mechanism and top claw
US11731368B2 (en) 2018-04-02 2023-08-22 Nanotronics Imaging, Inc. Systems, methods, and media for artificial intelligence process control in additive manufacturing
CN108788816A (en) * 2018-06-13 2018-11-13 柳州市钜诚科技有限公司 A kind of jig with means for correcting
WO2020122223A1 (en) * 2018-12-13 2020-06-18 川崎重工業株式会社 Robot and robot system equipped with same
JP7223571B2 (en) 2018-12-13 2023-02-16 川崎重工業株式会社 ROBOT AND ROBOT SYSTEM INCLUDING THE SAME
JP2020093348A (en) * 2018-12-13 2020-06-18 川崎重工業株式会社 Robot and robot system comprising the same
JP7092707B2 (en) 2019-04-26 2022-06-28 ファナック株式会社 Processing system and processing method
JP2020179488A (en) * 2019-04-26 2020-11-05 ファナック株式会社 Processing system and processing method
US11602817B2 (en) 2019-04-26 2023-03-14 Fanuc Corporation Machining system and machining method
JP2023517260A (en) * 2019-09-10 2023-04-25 ナノトロニクス イメージング インコーポレイテッド Systems, methods and media for manufacturing processes
JP7320884B2 (en) 2019-09-10 2023-08-04 ナノトロニクス イメージング インコーポレイテッド Systems, methods and media for manufacturing processes
JP7341025B2 (en) 2019-10-11 2023-09-08 株式会社北川鉄工所 Rotating device and pallet jig exchange system
JP2022554302A (en) * 2019-11-06 2022-12-28 ナノトロニクス イメージング インコーポレイテッド Systems, methods and media for manufacturing processes
JP7320885B2 (en) 2019-11-06 2023-08-04 ナノトロニクス イメージング インコーポレイテッド Systems, methods and media for manufacturing processes
DE112021003059T5 (en) 2020-05-29 2023-06-22 National Institute of Advanced Industrial Science and Technology Marker, device, system and method for measuring and calculating the position and orientation of an object
WO2023128117A1 (en) * 2021-12-28 2023-07-06 박영자 Brassware plate processing method using 3d modeling and cnc

Also Published As

Publication number Publication date
JP6694643B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6694643B2 (en) Workpiece processing method
US11599088B2 (en) System and method for automated object measurement
US10105808B2 (en) Processing system having function for maintaining processing accuracy
US9895810B2 (en) Cooperation system having machine tool and robot
US7869899B2 (en) Machine tool method
TWI500474B (en) Offset-measuring system of machine tool and offset-measuring method thereof
JP2008119784A (en) Attitude assurance system of 5-axis machine for inclined machining
US11745305B2 (en) System and method for correcting machining error during a precision jig grinding process
TWI738305B (en) Workpiece processing method and its NC program generation method
JP2001269841A (en) Method and device for automatically correcting measurement error
KR20200090363A (en) A method for simple setting of the coordinates of CNC milling workpieces
JPWO2020250779A1 (en) Adjustment amount estimation device, adjustment amount estimation method, adjustment amount estimation program and machine tool assembly method
JP6168396B2 (en) Machine Tools
JP2013255982A (en) Machine tool, and correction method of thermal deformation thereof
TWI645274B (en) Work piece processing method and processing system thereof
JP2005202844A (en) Numerical controller
JP7103136B2 (en) Machine tools and processing methods
JP5383258B2 (en) Machine tool posture control device
JP7404591B2 (en) Structure manufacturing method, structure manufacturing identifier, structure manufacturing system, and machining program
Gessner et al. Accuracy of the new method of alignment of workpiece using structural-light 3D scanner
EP4163743A1 (en) Batch production system and batch production method
JPS61249222A (en) Automatic working system
JPH03281146A (en) Impact test specimen automatic processing system
JP6231826B2 (en) Grinding machine and method thereof
Kurtz A Systematic Approach to Developing Automation for Low Volume, High Mix Machining

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200414

R150 Certificate of patent or registration of utility model

Ref document number: 6694643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250