JP2017131862A - Gas supply apparatus and method for stopping operation of gas supply apparatus - Google Patents

Gas supply apparatus and method for stopping operation of gas supply apparatus Download PDF

Info

Publication number
JP2017131862A
JP2017131862A JP2016015399A JP2016015399A JP2017131862A JP 2017131862 A JP2017131862 A JP 2017131862A JP 2016015399 A JP2016015399 A JP 2016015399A JP 2016015399 A JP2016015399 A JP 2016015399A JP 2017131862 A JP2017131862 A JP 2017131862A
Authority
JP
Japan
Prior art keywords
compressor
valve
inflow
gas supply
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016015399A
Other languages
Japanese (ja)
Inventor
宏一郎 橋本
Koichiro Hashimoto
宏一郎 橋本
彰利 藤澤
Akitoshi Fujisawa
彰利 藤澤
貴之 福田
Takayuki Fukuda
貴之 福田
大祐 和田
Daisuke Wada
大祐 和田
拓郎 姥
Takuo Uba
拓郎 姥
見治 名倉
Kenji Nagura
見治 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016015399A priority Critical patent/JP2017131862A/en
Priority to EP17744366.0A priority patent/EP3388669A4/en
Priority to CN201780007949.6A priority patent/CN108474373A/en
Priority to US16/070,403 priority patent/US20190041003A1/en
Priority to CA3010999A priority patent/CA3010999C/en
Priority to PCT/JP2017/002870 priority patent/WO2017131136A1/en
Publication of JP2017131862A publication Critical patent/JP2017131862A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/002Automated filling apparatus
    • F17C5/007Automated filling apparatus for individual gas tanks or containers, e.g. in vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0146Two or more vessels characterised by the presence of fluid connection between vessels with details of the manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0335Check-valves or non-return valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • F17C2227/0164Compressors with specified compressor type, e.g. piston or impulsive type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0355Heat exchange with the fluid by cooling using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/01Intermediate tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/032Control means using computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0673Time or time periods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/065Fluid distribution for refueling vehicle fuel tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0178Cars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas supply apparatus capable of being miniaturized, and a method for stopping the operation of the same.SOLUTION: A gas supply apparatus 2 includes: a compressor 22 for compressing a gas; an inflow-side channel 211 that has a buffer tank 212c capable of storing the gas and that is connected to the compressor 22; an inflow-side opening/closing valve 212 capable of opening and closing the inflow-side channel 211 on a side of the inflow-side channel 211 upstream of the buffer tank 212c; an outflow-side channel 231 connected to the discharge side of the compressor 22; and a control unit 28 for performing control to close the inflow-side opening/closing valve 212 in response to a stop signal for the compressor 22.SELECTED DRAWING: Figure 2

Description

本発明は、ガス供給装置およびガス供給装置の運転停止方法に関するものである。   The present invention relates to a gas supply device and a method for stopping operation of the gas supply device.

近年、燃料電池自動車や水素自動車等の水素ガスを利用する車両の開発が行われており、これに伴って当該車両のタンクに水素ガスを充填するための水素ガス供給装置の開発も進められている。このような水素ガス供給装置の一例として、特許文献1には、水電解装置から供給される水素ガスを圧縮する圧縮機と、水電解装置と圧縮機との間において水素ガスを貯留可能なバッファタンクと、当該圧縮機において圧縮された水素ガスを貯留する水素貯蔵容器と、バッファタンクと水素貯蔵容器との間の流路に対して圧縮機を迂回するように繋がるバイパスラインと、バイパスラインに取り付けられた圧力調整弁と、を備えた水素ガス供給装置が記載されている。   In recent years, vehicles using hydrogen gas, such as fuel cell vehicles and hydrogen vehicles, have been developed, and along with this, development of hydrogen gas supply devices for filling the tank of the vehicle with hydrogen gas has also been promoted. Yes. As an example of such a hydrogen gas supply device, Patent Document 1 discloses a compressor that compresses hydrogen gas supplied from a water electrolysis device, and a buffer that can store hydrogen gas between the water electrolysis device and the compressor. A tank, a hydrogen storage container storing hydrogen gas compressed in the compressor, a bypass line connected to bypass the compressor with respect to a flow path between the buffer tank and the hydrogen storage container, and a bypass line A hydrogen gas supply device with an attached pressure regulating valve is described.

特許文献1の水素ガス供給装置では、水素電解装置において生成した水素ガスをバッファタンクに受け入れ、当該バッファタンク内の水素ガスを圧縮機によって圧縮して水素貯蔵容器に貯留する。この際、バイパスラインを通じて圧縮機の吸込側の流路と吐出側の流路とを繋ぐことにより、圧縮機の吸込側の圧力の乱れを制御する。そして、水素貯蔵容器に貯留された水素ガスは、当該水素蓄圧器から車両のタンク等へ供給されることになる。   In the hydrogen gas supply device of Patent Document 1, the hydrogen gas generated in the hydrogen electrolysis device is received in a buffer tank, and the hydrogen gas in the buffer tank is compressed by a compressor and stored in a hydrogen storage container. At this time, the pressure disturbance on the suction side of the compressor is controlled by connecting the suction-side flow path and the discharge-side flow path of the compressor through the bypass line. Then, the hydrogen gas stored in the hydrogen storage container is supplied from the hydrogen accumulator to a vehicle tank or the like.

特開2004−121418号公報JP 2004-121418 A

特許文献1の水素ガス供給装置において、圧縮機の駆動中は、当該圧縮機の内部に水素ガスが残留している。この水素ガスは、圧縮機の停止時において当該圧縮機の吐出側に吐出される。そして、例えば圧縮機の停止と同時に圧力調整弁を全開とすることによって、当該圧縮機から吐出された水素ガスがバッファタンクに一旦貯留されることになる。これにより、当該水素ガスは、次回の圧縮機の起動時に無駄なく利用されることになる。   In the hydrogen gas supply device of Patent Document 1, hydrogen gas remains inside the compressor while the compressor is being driven. This hydrogen gas is discharged to the discharge side of the compressor when the compressor is stopped. For example, by fully opening the pressure regulating valve simultaneously with the stop of the compressor, the hydrogen gas discharged from the compressor is temporarily stored in the buffer tank. As a result, the hydrogen gas is used without waste at the next start-up of the compressor.

ところで、圧縮機の吸込側の圧力は、圧縮機の停止時においても所定の圧力以下に維持されることが望ましい。このため、バッファタンクの容積は、圧縮機の停止時において、当該圧縮機内の水素ガスを貯留可能であるとともに、当該圧縮機の吸込側の圧力を所定の圧力以下に維持できる程度の大きさに設定する必要がある。このため、バッファタンクを含む水素ガス供給装置全体が大型化してしまう虞がある。   By the way, it is desirable that the pressure on the suction side of the compressor be maintained below a predetermined pressure even when the compressor is stopped. For this reason, the volume of the buffer tank is large enough to store the hydrogen gas in the compressor and maintain the pressure on the suction side of the compressor below a predetermined pressure when the compressor is stopped. Must be set. For this reason, there exists a possibility that the whole hydrogen gas supply apparatus containing a buffer tank may enlarge.

本発明は、上記の点を鑑みてなされたものであり、その目的は、小型化を実現することができる水素ガス供給装置および水素ガス供給装置の運転停止方法を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a hydrogen gas supply device and a method for stopping the operation of the hydrogen gas supply device, which can be miniaturized.

本発明に係るガス供給装置は、ガスを圧縮する圧縮機と、ガスを貯留可能なバッファタンクを有するとともに前記圧縮機に繋がる流入側流路と、前記流入側流路のうち前記バッファタンクよりも上流側において当該流入側流路を開閉可能な流入側開閉弁と、前記圧縮機の吐出側に繋がる流出側流路と、前記圧縮機の停止信号を受けて、前記流入側開閉弁を閉じる制御を行う制御部と、を備える。   The gas supply device according to the present invention includes a compressor that compresses gas, a buffer tank that can store gas, and an inflow channel that is connected to the compressor, and the buffer tank out of the inflow channels. An inflow side on-off valve capable of opening and closing the inflow side flow channel on the upstream side, an outflow side flow channel connected to the discharge side of the compressor, and a control for closing the inflow side on-off valve in response to a stop signal of the compressor And a control unit for performing.

上記のガス供給装置では、制御部が圧縮機の停止信号を受けて流入側開閉弁を閉じる制御を行う。ここで、圧縮機は、停止制御を受けてから完全に停止するまでに所定時間を要するため、流入側開閉弁は圧縮機が完全に停止する前に閉じられることになる。すなわち、上記のガス供給装置では、流入側開閉弁が閉じられることによって流入側流路へのガスの供給が停止された状態で、所定時間の間は圧縮機が駆動し続けることになり、当該圧縮機内に残留した水素ガスの少なくとも一部が流出側流路側へ吐出される。このため、圧縮機が完全に停止した後に、流入側開閉弁の下流側に設けられたバッファタンクに対して圧縮機から流れ込むガスの流量を低減することができる。そのため、極端に大きな容積を有するバッファタンクを用いなくとも、圧縮機の吸込側の圧力を所定の圧力以下に維持しつつ残留したガスを当該バッファタンクに貯留することができ、ガス供給装置の小型化を実現することができる。   In the gas supply device, the control unit receives the compressor stop signal and performs control to close the inflow side on-off valve. Here, since the compressor requires a predetermined time until it completely stops after receiving the stop control, the inflow side on-off valve is closed before the compressor is completely stopped. That is, in the gas supply device described above, the compressor continues to be driven for a predetermined time in a state where the supply of gas to the inflow side flow path is stopped by closing the inflow side on-off valve. At least a part of the hydrogen gas remaining in the compressor is discharged to the outflow side channel side. For this reason, after the compressor is completely stopped, the flow rate of the gas flowing from the compressor into the buffer tank provided on the downstream side of the inflow side on-off valve can be reduced. Therefore, the remaining gas can be stored in the buffer tank while maintaining the pressure on the suction side of the compressor below a predetermined pressure without using a buffer tank having an extremely large volume. Can be realized.

上記のガス供給装置は、前記流入側開閉弁と前記流出側弁部材との間において前記圧縮機を迂回するように前記流入側流路と前記流出側流路とを繋ぐスピルバック流路と、前記スピルバック流路を開閉可能なスピルバック開閉弁と、をさらに備え、前記制御部は、前記流入側開閉弁を閉じた後に前記スピルバック開閉弁を開く制御を行うことが好ましい。   The gas supply device includes a spillback flow path that connects the inflow side flow path and the outflow side flow path so as to bypass the compressor between the inflow side on-off valve and the outflow side valve member; And a spillback opening / closing valve capable of opening and closing the spillback flow path. The control unit preferably performs control to open the spillback opening / closing valve after closing the inflow side opening / closing valve.

上記のガス供給装置では、制御部が流入側開閉弁を閉じた後にスピルバック開閉弁を開く制御を行うことによって、圧縮機の吸込側と吐出側とを均圧化し、これにより圧縮機が完全に停止した後すぐに当該圧縮機の吸込側の圧力が一定の圧力値に保たれることになる。このため、圧縮機が完全に停止した後に当該圧縮機の吸込側の圧力がゆっくりと上昇しつつ長時間経過後に一定の圧力値に保たれることを抑止できる。これにより、圧縮機の吸込側の圧力が所定の圧力を超えているか否かの判断を圧縮機の停止後すぐに行うことができる。   In the gas supply device described above, the control unit controls the opening of the spillback on / off valve after closing the inflow side on / off valve, thereby equalizing the pressure on the suction side and the discharge side of the compressor. Immediately after stopping, the pressure on the suction side of the compressor is maintained at a constant pressure value. For this reason, it is possible to prevent the pressure on the suction side of the compressor from rising slowly after the compressor is completely stopped and being kept at a constant pressure value after a long time. Thereby, it can be determined immediately after the compressor is stopped whether or not the pressure on the suction side of the compressor exceeds a predetermined pressure.

前記流出側流路を開閉可能な流出側開閉弁をさらに備え、前記制御部は、前記スピルバック開閉弁を開くと同時または前記スピルバック開閉弁を開く前に前記流出側開閉弁を閉じる制御を行うことが好ましい。   The control device further includes an outflow side on / off valve capable of opening and closing the outflow side flow path, and the control unit performs control to close the outflow side on / off valve simultaneously with opening the spillback on / off valve or before opening the spillback on / off valve. Preferably it is done.

上記のガス供給装置では、制御部がスピルバック開閉弁を開くと同時または開く前に流出側開閉弁を閉じる制御を行う。このため、スピルバック開閉弁を開いたときに水素ガスが逆流することを確実に防止することができる。   In the above gas supply device, when the control unit opens the spillback opening / closing valve, it controls to close the outflow side opening / closing valve at the same time or before opening. For this reason, it is possible to reliably prevent hydrogen gas from flowing backward when the spillback opening / closing valve is opened.

本発明に係るガス供給装置の運転停止方法は、ガスを圧縮する圧縮機と、ガスを貯留可能なバッファタンクを有するとともに前記圧縮機に繋がる流入側流路と、前記流入側流路のうち前記バッファタンクよりも前記圧縮機から遠い側において当該流入側流路を開閉可能な流入側開閉弁と、前記圧縮機の吐出側に繋がる流出側流路と、を備えるガス供給装置の運転停止方法であって、前記流入側開閉弁を閉じると同時または前記流入側開閉弁を閉じた後に前記圧縮機を停止する制御を開始する。   The operation stop method of the gas supply device according to the present invention includes a compressor that compresses gas, a buffer tank that can store gas, and an inflow channel that is connected to the compressor, and the inflow channel of the inflow channel. A gas supply device operation stopping method comprising: an inflow side on-off valve capable of opening and closing the inflow side flow path on a side farther from the compressor than the buffer tank; and an outflow side flow path connected to the discharge side of the compressor. Then, the control for stopping the compressor is started simultaneously with the closing of the inflow side on-off valve or after the inflow side on-off valve is closed.

上記のガス供給装置の運転停止方法では、流入側開閉弁を閉じると同時または閉じた後に圧縮機を停止する制御を開始する。これにより、流入側流路へのガスの供給を停止した後に所定時間の間圧縮機を駆動し続けることができ、当該圧縮機内に残留した水素ガスの少なくとも一部を流出側流路側へ吐出させることができる。このため、圧縮機が完全に停止した後に、流入側開閉弁の下流側に設けられたバッファタンクに対して圧縮機から流れ込むガスの流量を低減することができる。そのため、極端に大きな容積を有するバッファタンクを用いる必要がなく、ガス供給装置の小型化を実現することができる。   In the gas supply apparatus operation stop method, the control for stopping the compressor is started simultaneously with or after the inflow side on-off valve is closed. Accordingly, the compressor can be continuously driven for a predetermined time after the supply of the gas to the inflow side passage is stopped, and at least a part of the hydrogen gas remaining in the compressor is discharged to the outflow side passage. be able to. For this reason, after the compressor is completely stopped, the flow rate of the gas flowing from the compressor into the buffer tank provided on the downstream side of the inflow side on-off valve can be reduced. Therefore, it is not necessary to use a buffer tank having an extremely large volume, and the gas supply device can be downsized.

上記のガス供給装置の運転停止方法は、前記流入側開閉弁を閉じた後に、前記圧縮機を迂回するように前記流入側流路と前記流出側流路とを繋ぐスピルバック流路に設けられたスピルバック開閉弁を開くことが好ましい。   The gas supply device operation stopping method is provided in a spillback flow path that connects the inflow side flow path and the outflow side flow path so as to bypass the compressor after closing the inflow side on-off valve. It is preferable to open the spillback opening / closing valve.

上記のガス供給装置の運転停止方法では、流入側開閉弁を閉じた後にスピルバック開閉弁を開くことによって、圧縮機の吸込側と吐出側とを均圧化する。これにより、圧縮機が完全に停止した後すぐに当該圧縮機の吸込側の圧力が一定の圧力値に保たれることになる。このため、圧縮機の停止後に当該圧縮機の吸込側の圧力がゆっくりと上昇しつつ長時間経過後に一定の圧力値に保たれることを抑止できる。これにより、圧縮機の吸込側の圧力が所定の圧力を超えているか否かの判断を圧縮機が完全に停止した後すぐに行うことができる。   In the above gas supply device operation stop method, the suction side and the discharge side of the compressor are equalized by opening the spillback on / off valve after closing the inflow side on / off valve. As a result, the pressure on the suction side of the compressor is kept at a constant pressure value immediately after the compressor is completely stopped. For this reason, it is possible to prevent the pressure on the suction side of the compressor from rising slowly after the compressor is stopped and being kept at a constant pressure value after a long time. Thereby, it can be determined immediately after the compressor is completely stopped whether or not the pressure on the suction side of the compressor exceeds a predetermined pressure.

上記のガス供給装置の運転停止方法は、前記スピルバック開閉弁を開くと同時または前記スピルバック開閉弁を開く前に、前記流出側流路に設けられた流出側開閉弁を閉じることが好ましい。   In the above gas supply device operation stop method, it is preferable that the outflow side on / off valve provided in the outflow side flow path is closed at the same time when the spillback on / off valve is opened or before the spillback on / off valve is opened.

上記のガス供給装置の運転停止方法では、スピルバック開閉弁を開くと同時または開く前に流出側開閉弁を閉じることにより、スピルバック開閉弁を開いたときに流出側流路の下流に繋がる蓄圧器に貯留された水素ガスが逆流することを確実に防止することができる。   In the gas supply device shutdown method described above, the accumulated pressure that is connected to the downstream of the outflow side flow path when the spillback on / off valve is opened by closing the outflow side on / off valve at the same time or before opening the spillback on / off valve. It is possible to reliably prevent the hydrogen gas stored in the vessel from flowing backward.

以上説明したように、本発明によれば、小型化を実現することができる水素ガス供給装置および水素ガス供給装置の運転停止方法を提供することができる。   As described above, according to the present invention, it is possible to provide a hydrogen gas supply device and a method for stopping the operation of the hydrogen gas supply device that can be miniaturized.

第1の実施形態に係るガス供給装置の構成を示す概略図である。It is the schematic which shows the structure of the gas supply apparatus which concerns on 1st Embodiment. 第1の実施形態に係るガス供給装置の運転停止手順を示すフロー図である。It is a flowchart which shows the operation stop procedure of the gas supply apparatus which concerns on 1st Embodiment. 流入側開閉弁を閉じてから経過した時間と圧縮機の吸込側の圧力との関係を示すグラフである。It is a graph which shows the relationship between the time which passed after closing an inflow side on-off valve, and the pressure of the suction side of a compressor. 第2の実施形態に係るガス供給装置の運転停止手順を示すフロー図である。It is a flowchart which shows the operation stop procedure of the gas supply apparatus which concerns on 2nd Embodiment. 第3の実施形態に係るガス供給装置の構成を示す概略図である。It is the schematic which shows the structure of the gas supply apparatus which concerns on 3rd Embodiment.

以下、本発明の一実施形態について、図面を参照しながら説明する。但し、以下で参照する各図は、説明の便宜上、本実施形態に係る水素ステーション10の構成要素のうち主要な構成要素のみを簡略化して示したものである。したがって、本実施形態に係る水素ステーション10は、本明細書が参照する各図に示されていない任意の構成要素を備え得る。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. However, for convenience of explanation, each drawing referred to below is a simplified illustration of only major components among the components of the hydrogen station 10 according to the present embodiment. Therefore, the hydrogen station 10 according to the present embodiment may include arbitrary components that are not shown in the drawings referred to in this specification.

(第1の実施形態)
図1は本発明の第1の実施形態に係る水素ステーション10の構成の概略を示す図である。水素ステーション10は、ガス供給装置2と、充填設備であるディスペンサ11と、を備える。
(First embodiment)
FIG. 1 is a diagram showing a schematic configuration of a hydrogen station 10 according to the first embodiment of the present invention. The hydrogen station 10 includes a gas supply device 2 and a dispenser 11 that is a filling facility.

ガス供給装置2は、水素ガスを圧縮して圧縮ガスを生成し、当該圧縮ガスをディスペンサ11へ供給する。本実施形態では、図1に示すように、ガス供給装置2にはガス製造装置12において製造された水素ガスが供給され、当該水素ガスを圧縮して圧縮ガスを生成することになる。   The gas supply device 2 compresses hydrogen gas to generate compressed gas, and supplies the compressed gas to the dispenser 11. In the present embodiment, as shown in FIG. 1, the gas supply device 2 is supplied with the hydrogen gas produced in the gas production device 12, and compresses the hydrogen gas to generate a compressed gas.

なお、ガス供給装置2に水素ガスを供給する供給源は、ガス製造装置12でなくともよく、例えば水素ガスを貯留したタンク部材からガス供給装置2に水素ガスを供給してもよい。   The supply source for supplying the hydrogen gas to the gas supply device 2 may not be the gas production device 12, and for example, the hydrogen gas may be supplied to the gas supply device 2 from a tank member that stores the hydrogen gas.

また、本実施形態では、ガス供給装置2が水素ステーション10の構成要素である例を示すため、ガス製造装置12は水素ガスを製造しガス供給装置2へ供給するものであるが、これに限らない。ガス製造装置12は、水素ガス以外の液化ガスを製造する装置であってもよいし、液化ガス以外のガスを製造する装置であってもよい。   Moreover, in this embodiment, since the gas supply apparatus 2 shows the example which is a component of the hydrogen station 10, the gas manufacturing apparatus 12 manufactures hydrogen gas and supplies it to the gas supply apparatus 2, but it is not restricted to this. Absent. The gas production device 12 may be a device that produces liquefied gas other than hydrogen gas, or may be a device that produces gas other than liquefied gas.

また、本実施形態では、ガス製造装置12は、水素ステーション10とは独立した装置であるが、これに限らない。水素ステーション10がガス製造装置12を備えていてもよい。   Moreover, in this embodiment, although the gas manufacturing apparatus 12 is an apparatus independent of the hydrogen station 10, it is not restricted to this. The hydrogen station 10 may include a gas production device 12.

ディスペンサ11は、ガス供給装置2からに供給される水素ガスを受け入れる設備である。水素ステーション10に搬入された車両13のタンクには、ディスペンサ11を通じて水素ガスが充填される。車両13は、例えば燃料電池車である。   The dispenser 11 is a facility that receives hydrogen gas supplied from the gas supply device 2. The tank of the vehicle 13 carried into the hydrogen station 10 is filled with hydrogen gas through the dispenser 11. The vehicle 13 is a fuel cell vehicle, for example.

ガス供給装置2は、流入側流路211と、流入側開閉弁212と、安全弁213と、圧縮機22と、流出側流路231と、逆止弁232a〜232cと、流出側開閉弁233a〜233cと、蓄圧器241〜243と、スピルバック流路251と、スピルバック開閉弁252と、供給路261と、開閉弁262a〜262cと、逆止弁263a〜263cと、クーラーユニット27と、制御部28と、を備えている。以下では、各構成部材について順に説明する。   The gas supply device 2 includes an inflow side flow path 211, an inflow side on-off valve 212, a safety valve 213, a compressor 22, an outflow side flow path 231, check valves 232a to 232c, and outflow side on / off valves 233a to 233a. 233c, pressure accumulators 241 to 243, spillback flow path 251, spillback on / off valve 252, supply path 261, on / off valves 262a to 262c, check valves 263a to 263c, cooler unit 27, and control Part 28. Below, each component is demonstrated in order.

流入側流路211は、ガス製造装置12において製造された水素ガスが流入する流路である。流入側流路211は、第1流路211aと、第2流路211bと、バッファタンク211cと、を有している。第1流路211aは、ガス製造装置12とバッファタンク211cとを繋いでいる。また、第2流路211bは、バッファタンク211cと圧縮機22の吸込側とを繋いでいる。バッファタンク211cは、第1流路211aおよび第2流路211bよりも容積が大きく、流入側流路211に流入する水素ガスを一時的に貯留可能である。   The inflow side channel 211 is a channel into which the hydrogen gas manufactured in the gas manufacturing apparatus 12 flows. The inflow side channel 211 has a first channel 211a, a second channel 211b, and a buffer tank 211c. The first flow path 211a connects the gas production device 12 and the buffer tank 211c. In addition, the second flow path 211b connects the buffer tank 211c and the suction side of the compressor 22. The buffer tank 211c has a larger volume than the first flow path 211a and the second flow path 211b, and can temporarily store hydrogen gas flowing into the inflow side flow path 211.

流入側開閉弁212は、ガス製造装置12から圧縮機22への水素ガスの供給を開始および停止するための弁である。流入側開閉弁212は、バッファタンク211cよりもガス製造装置12側に位置する第1流路211aに取り付けられている。流入側開閉弁212は、第1流路211aを開閉可能である。   The inflow side on-off valve 212 is a valve for starting and stopping the supply of hydrogen gas from the gas production apparatus 12 to the compressor 22. The inflow side on-off valve 212 is attached to the first flow path 211a located closer to the gas production device 12 than the buffer tank 211c. The inflow side on-off valve 212 can open and close the first flow path 211a.

安全弁213は、圧縮機22の吸込側の圧力を所定の圧力以下に保つための減圧弁である。本実施形態では、安全弁213は、第2流路211bに繋がっており、第2流路211bの圧力が所定の圧力を超える場合に当該第2流路211bを流れる水素ガスを外部へ放出させる。   The safety valve 213 is a pressure reducing valve for keeping the pressure on the suction side of the compressor 22 below a predetermined pressure. In the present embodiment, the safety valve 213 is connected to the second flow path 211b, and releases the hydrogen gas flowing through the second flow path 211b to the outside when the pressure of the second flow path 211b exceeds a predetermined pressure.

圧縮機22は、吸込側から流入した水素ガスを圧縮して圧縮ガスを生成する。圧縮機22は、例えばモータと圧縮部とを有しており、モータの回転に応じて駆動される圧縮部が流入側流路211の水素ガスを吸い込む。なお、圧縮機22は、スクリュー圧縮機であってもよく、あるいは他のタイプの圧縮機であってもよい。   The compressor 22 compresses the hydrogen gas flowing in from the suction side to generate a compressed gas. The compressor 22 has, for example, a motor and a compression unit, and the compression unit that is driven according to the rotation of the motor sucks the hydrogen gas in the inflow channel 211. Note that the compressor 22 may be a screw compressor or may be another type of compressor.

流出側流路231は、圧縮機22において生成された水素ガスの圧縮ガスを蓄圧器241〜243へ送る流路である。流出側流路231は、共通路231aと、個別路231b〜231dと、を有している。共通路231aは、圧縮機22の吐出側に繋がっている。個別路231b〜231dは、共通路231aと後述する蓄圧器241〜243とをそれぞれ繋いでいる。圧縮機22から共通路231aおよび個別路231b〜231dを通じて蓄圧器241〜243に吐出された水素ガスは、蓄圧器241〜243のそれぞれに一時的に貯留されることになる。   The outflow side channel 231 is a channel for sending the compressed gas of the hydrogen gas generated in the compressor 22 to the accumulators 241 to 243. The outflow side channel 231 has a common path 231a and individual paths 231b to 231d. The common path 231 a is connected to the discharge side of the compressor 22. The individual paths 231b to 231d connect the common path 231a and pressure accumulators 241 to 243 described later, respectively. The hydrogen gas discharged from the compressor 22 to the pressure accumulators 241 to 243 through the common path 231a and the individual paths 231b to 231d is temporarily stored in each of the pressure accumulators 241 to 243.

逆止弁232a〜232cは、蓄圧器241〜243に貯留された水素ガスが圧縮機22へと逆流することを阻止する弁である。逆止弁232a〜232cは、個別路231b〜231dのそれぞれに取り付けられている。   The check valves 232 a to 232 c are valves that prevent the hydrogen gas stored in the pressure accumulators 241 to 243 from flowing back to the compressor 22. The check valves 232a to 232c are attached to the individual paths 231b to 231d, respectively.

流出側開閉弁233a〜233cは、圧縮機22から吐出される水素ガスを蓄圧器241〜243のうちいずれの蓄圧器に供給するかを切り替えるための弁である。流出側開閉弁233a〜233cは、個別路231b〜231dのそれぞれに取り付けられており、逆止弁232a〜232cよりも蓄圧器241〜243側に位置している。流出側開閉弁233a〜233cは、個別路231b〜231dを開閉可能である。   Outflow side on-off valves 233a to 233c are valves for switching to which of the pressure accumulators 241 to 243 the hydrogen gas discharged from the compressor 22 is supplied. The outflow side opening / closing valves 233a to 233c are attached to the individual paths 231b to 231d, respectively, and are located closer to the pressure accumulators 241 to 243 than the check valves 232a to 232c. Outflow side on-off valves 233a to 233c can open and close individual paths 231b to 231d.

蓄圧器241〜243は、水素ガスを内部に貯留可能な容器である。蓄圧器241〜243は、それぞれ同じ設計圧力(例えば82MPa)に設計されている。なお、本実施形態では、ガス供給装置2は蓄圧器241〜243の3つの蓄圧器を有しているが、これに限らず、蓄圧器の数は任意である。   The pressure accumulators 241 to 243 are containers that can store hydrogen gas therein. The accumulators 241 to 243 are each designed to have the same design pressure (for example, 82 MPa). In addition, in this embodiment, although the gas supply apparatus 2 has the three pressure accumulators 241-243, it is not restricted to this, The number of pressure accumulators is arbitrary.

スピルバック流路251は、圧縮機22の吸込側における流入側流路211と圧縮機22の吐出側における流出側流路231との圧力差を調整するための流路である。スピルバック流路251は、圧縮機22を迂回するように第2流路211bと共通路231aとを繋いでいる。   The spillback channel 251 is a channel for adjusting the pressure difference between the inflow side channel 211 on the suction side of the compressor 22 and the outflow side channel 231 on the discharge side of the compressor 22. The spillback flow path 251 connects the second flow path 211b and the common path 231a so as to bypass the compressor 22.

なお、スピルバック流路251は、流入側開閉弁212と逆止弁232a〜232cとの間において圧縮機22を迂回するように流入側流路211および流出側流路231に繋がっていればよい。このため、スピルバック流路251は、圧縮機22の吸込側において、バッファタンク211cに繋がっていてもよいし、第1流路211aのうち流入側開閉弁212とバッファタンク211cとの間の部位に繋がっていてもよい。また、スピルバック流路251は、圧縮機22の吐出側において、個別路231b〜231dのうち逆止弁232a〜232cよりも圧縮機22側の部位に繋がっていてもよい。   The spillback flow path 251 may be connected to the inflow side flow path 211 and the outflow side flow path 231 so as to bypass the compressor 22 between the inflow side on-off valve 212 and the check valves 232a to 232c. . For this reason, the spillback flow path 251 may be connected to the buffer tank 211c on the suction side of the compressor 22, or a portion between the inflow side on-off valve 212 and the buffer tank 211c in the first flow path 211a. It may be connected to. Further, the spillback flow path 251 may be connected to a part closer to the compressor 22 than the check valves 232a to 232c among the individual paths 231b to 231d on the discharge side of the compressor 22.

スピルバック開閉弁252は、スピルバック流路251の開度を調整する弁であって、当該スピルバック流路251に取り付けられている。具体的に、スピルバック開閉弁252は、スピルバック流路251を全開と全閉との間で開度調整可能な開度調整弁である。   The spillback opening / closing valve 252 is a valve that adjusts the opening degree of the spillback flow path 251, and is attached to the spillback flow path 251. Specifically, the spillback opening / closing valve 252 is an opening adjustment valve capable of adjusting the opening of the spillback flow path 251 between fully open and fully closed.

供給路261は、第1〜第4蓄圧器241〜243に貯留された水素ガスをディスペンサ11へ送る流路である。供給路261は、個別路231b〜231dのうち逆止弁232a〜232cよりも蓄圧器241〜243側の部位にそれぞれ繋がる複数の個別路と、
当該各個別路が繋がるとともにディスペンサ11へ延びる共通路と、を含む。
The supply path 261 is a flow path for sending the hydrogen gas stored in the first to fourth pressure accumulators 241 to 243 to the dispenser 11. The supply path 261 includes a plurality of individual paths respectively connected to the pressure accumulators 241 to 243 side of the check valves 232a to 232c among the individual paths 231b to 231d.
And a common path that connects the individual paths and extends to the dispenser 11.

開閉弁262a〜262cは、蓄圧器241〜243のうちいずれの蓄圧器からディスペンサ11へ水素ガスを供給するかを決定するための弁である。開閉弁262a〜262cは、供給路261の各個別路に取り付けられており、当該各個別路を開閉可能である。   The on-off valves 262 a to 262 c are valves for determining which of the pressure accumulators 241 to 243 is to supply hydrogen gas to the dispenser 11. The on-off valves 262a to 262c are attached to the individual paths of the supply path 261, and can open and close the individual paths.

逆止弁263a〜263cは、ディスペンサ11に供給された水素ガスが蓄圧器241〜243へと逆流することを阻止する弁である。逆止弁263a〜263cは、供給路261の各個別路231b〜231dのうち開閉弁262a〜262cよりもディスペンサ11側の部位に取り付けられている。   The check valves 263a to 263c are valves that prevent the hydrogen gas supplied to the dispenser 11 from flowing back to the pressure accumulators 241 to 243. The check valves 263a to 263c are attached to portions on the dispenser 11 side of the on / off valves 262a to 262c in the individual paths 231b to 231d of the supply path 261.

クーラーユニット27は、ディスペンサ11に供給された水素ガスを冷却する。クーラーユニット27は、冷凍機271と、ブライン流路272と、熱交換器273と、を有する。なお、図1では、冷凍機271内の図示は省略し、矩形にて示す。本実施形態では、図1に示すように、熱交換器273がディスペンサ11に内蔵されており、ブライン流路272が冷凍機271と熱交換器273とを通過するように構成されている。供給路261を通じてディスペンサ11へと供給された水素ガスは、熱交換器273においてブライン流路272を流れる冷媒によって冷却される。そして、水素ガスとの熱交換によって昇温した冷媒は、冷凍機において冷却されることになる。   The cooler unit 27 cools the hydrogen gas supplied to the dispenser 11. The cooler unit 27 includes a refrigerator 271, a brine channel 272, and a heat exchanger 273. In addition, in FIG. 1, illustration in the refrigerator 271 is abbreviate | omitted and it shows with a rectangle. In the present embodiment, as shown in FIG. 1, the heat exchanger 273 is built in the dispenser 11, and the brine channel 272 is configured to pass through the refrigerator 271 and the heat exchanger 273. The hydrogen gas supplied to the dispenser 11 through the supply path 261 is cooled by the refrigerant flowing through the brine flow path 272 in the heat exchanger 273. And the refrigerant | coolant heated up by heat exchange with hydrogen gas will be cooled in a refrigerator.

制御部28は、例えば図略のCPU、ROM、RAM、EEPROM 等からなるMPU等を備えており、ROMに記憶されたプログラムを実行することにより、以下の各種制御を行う。なお、図1では、説明の便宜上、制御部28を1つの矩形にて示すが、制御部28の機能を実現する手段は任意であって、1つの構成要素によって制御部28の全ての機能が実現されるものではない。   The control unit 28 includes, for example, an MPU including a CPU, ROM, RAM, EEPROM, etc. (not shown), and performs the following various controls by executing programs stored in the ROM. In FIG. 1, for convenience of explanation, the control unit 28 is shown by one rectangle. However, the means for realizing the function of the control unit 28 is arbitrary, and all the functions of the control unit 28 are controlled by one component. It is not realized.

制御部28は、流入側開閉弁212の開閉制御、圧縮機22の起動制御、流出側開閉弁233a〜233cの開閉制御、開度調整弁252の開閉制御、および開閉弁262a〜262cの開閉制御を行う。   The control unit 28 controls the opening / closing of the inflow side opening / closing valve 212, the start-up control of the compressor 22, the opening / closing control of the outflow side opening / closing valves 233a to 233c, the opening / closing control of the opening adjustment valve 252, and the opening / closing control of the opening / closing valves 262a to 262c. I do.

ここで、図1に加えて、図2を参照しながら、ガス供給装置2の運転停止手順について説明する。   Here, the procedure for stopping the operation of the gas supply device 2 will be described with reference to FIG. 2 in addition to FIG. 1.

本実施形態では、図2に示す開始時点において、圧縮機22が駆動中であり、蓄圧器241〜243のうち蓄圧器241に圧縮された水素ガスが供給されているものとする。このため、図2に示す開始時点において、流入側開閉弁212および流出側開閉弁233aが開いているとともに、流出側開閉弁233b,233cが閉じている。なお、図2に示す開始時点では、蓄圧器242,243には十分に水素ガスが貯留されている。   In the present embodiment, it is assumed that the compressor 22 is being driven and hydrogen gas compressed into the pressure accumulator 241 among the pressure accumulators 241 to 243 is supplied at the start point shown in FIG. For this reason, at the start time shown in FIG. 2, the inflow side on / off valve 212 and the outflow side on / off valve 233a are open, and the outflow side on / off valves 233b and 233c are closed. In addition, hydrogen gas is fully stored in the pressure accumulators 242 and 243 at the start time shown in FIG.

圧縮機22の駆動に応じて蓄圧器241に圧縮された水素ガスが供給され、当該蓄圧器241に十分な量の水素ガスが貯留されることにより、蓄圧器241〜243の全てに十分な量の水素ガスが貯留されることになる。この状態を図略の圧力検出器が検出すると、制御部28は、当該圧力検出器から圧縮機22を停止するための停止信号を受信する。   The compressed hydrogen gas is supplied to the pressure accumulator 241 in accordance with the driving of the compressor 22, and a sufficient amount of hydrogen gas is stored in the pressure accumulator 241, so that a sufficient amount for all of the pressure accumulators 241 to 243 is obtained. Of hydrogen gas is stored. When the pressure detector (not shown) detects this state, the control unit 28 receives a stop signal for stopping the compressor 22 from the pressure detector.

前記停止信号を受けた制御部28は、流入側開閉弁212を閉じる閉制御を行う(ステップST1)。これにより、流入側開閉弁212が閉じられ、ガス製造装置12から圧縮機22への水素ガスの供給が遮断される。   Upon receiving the stop signal, the control unit 28 performs a closing control for closing the inflow side on-off valve 212 (step ST1). Thereby, the inflow side on-off valve 212 is closed, and the supply of hydrogen gas from the gas production device 12 to the compressor 22 is shut off.

ステップST1にて流入側開閉弁212の閉制御を行った制御部28は、当該閉制御から所定時間t経過するまで他の制御を行わず(ステップST2にてNo)、所定時間tが経過した後に(ステップST2にてYes)、圧縮機22の停止制御を開始する(ステップST3)。停止制御を受けた圧縮機22は、モータの回転を徐々に弱めながら駆動を続け、停止制御を開始してから時間tが経過した時点で完全に停止することになる。 Control unit 28 performing the closing control of the inflow-side valve 212 at step ST1 does not perform another control from the closed control until a predetermined time t 1 has elapsed (No at step ST2), a predetermined time t 1 After the elapse (Yes in step ST2), stop control of the compressor 22 is started (step ST3). Compressor 22 which receives a stop control continues gradually weaken while driving the rotation of the motor, it will be completely stopped when the time t 2 from the start of stop control has elapsed.

ステップST3にて圧縮機22の停止制御を開始した制御部28は、流出側開閉弁233aを閉じる閉制御を行う(ステップST4)。これにより、流出側開閉弁233aが閉じられ、蓄圧器241から圧縮機22への水素ガスの逆流が完全に遮断される。   The control part 28 which started the stop control of the compressor 22 in step ST3 performs the closing control which closes the outflow side on-off valve 233a (step ST4). Thereby, the outflow side on-off valve 233a is closed, and the backflow of hydrogen gas from the pressure accumulator 241 to the compressor 22 is completely blocked.

ステップST4にて流出側開閉弁233aを閉じる閉制御を行った制御部28は、スピルバック開閉弁252を全開とする開度調整制御を行う(ステップST5)。これにより、スピルバック流路251が完全に開放され、当該スピルバック流路251を通じて圧縮機22の吐出側から吸込側へと水素ガスが流入することによって当該吐出側と吸込側とが均圧化し、ガス供給装置2の運転停止が完了する。   The control unit 28 that has performed the closing control for closing the outflow side opening / closing valve 233a in step ST4 performs opening degree adjustment control for fully opening the spillback opening / closing valve 252 (step ST5). As a result, the spillback flow path 251 is completely opened, and hydrogen gas flows from the discharge side to the suction side of the compressor 22 through the spillback flow path 251 to equalize the pressure on the discharge side and the suction side. The operation stop of the gas supply device 2 is completed.

なお、本実施形態では、圧縮機22と蓄圧器241とを繋ぐ流路に逆止弁232aが設けられているため、流出側開閉弁233aを開いた状態でスピルバック開閉弁252を開いても蓄圧器241から圧縮機22へと水素ガスが逆流することはない。このため、ステップST4は、ステップST5と同時またはステップST5の後に行ってもよいし、省略されてもよい。   In this embodiment, since the check valve 232a is provided in the flow path connecting the compressor 22 and the pressure accumulator 241, even if the spillback on / off valve 252 is opened with the outflow side on / off valve 233a opened. Hydrogen gas does not flow backward from the accumulator 241 to the compressor 22. For this reason, step ST4 may be performed simultaneously with step ST5 or after step ST5, or may be omitted.

ここで、図3に、流入側開閉弁212を閉じてから経過した時間と圧縮機22の吸込側の圧力との関係を示す。流入側開閉弁212が閉じられる前の圧縮機22の吸込側の圧力は圧力Pである。そして、流入側開閉弁212が閉じられた直後は、圧縮機22への水素ガスの供給が遮断される一方で、圧縮機22が当該圧縮機22、第2流路211b、およびバッファタンク211cに残留した水素ガスの一部を吐出側へと吐出する。これにより、圧縮機22の吸込側の圧力が徐々に低下していくことになる。 Here, FIG. 3 shows the relationship between the time elapsed after closing the inflow side on-off valve 212 and the pressure on the suction side of the compressor 22. Suction side pressure in the compressor 22 before the inlet side on-off valve 212 is closed the pressure P 0. Immediately after the inflow side on-off valve 212 is closed, the supply of hydrogen gas to the compressor 22 is shut off, while the compressor 22 is connected to the compressor 22, the second flow path 211b, and the buffer tank 211c. Part of the remaining hydrogen gas is discharged to the discharge side. As a result, the pressure on the suction side of the compressor 22 gradually decreases.

その後、所定時間tが経過した時点で圧縮機22の停止制御が開始されるが、圧縮機22のモータの回転が完全に停止するまでには時間tを要するため、流入側開閉弁212を閉じてから時間t+tが経過するまでは圧縮機22の吸込側の圧力が低下し続ける。 Thereafter, stop control of the compressor 22 is started when the predetermined time t 1 has elapsed, but since the time t 2 is required until the rotation of the motor of the compressor 22 is completely stopped, the inflow-side on-off valve 212 The pressure on the suction side of the compressor 22 continues to decrease until the time t 1 + t 2 elapses after the valve is closed.

そして、時間t+tが経過し、圧縮機22が完全に停止するとともに、スピルバック開閉弁252が全開となると、当該スピルバック開閉弁252を通じて圧縮機22の吐出側から吸込側へ水素ガスが流入することにより、吸込側の圧力が徐々に上昇していく。そして、圧縮機22の吸込側と吐出側とが均圧化された時点において、吸込側の圧力が安定する。バッファタンク211cの容積は、前記安定した時点における圧縮機22の吸込側の圧力が所定の圧力Pよりも低くなるように設定されることになる。 When the time t 1 + t 2 elapses and the compressor 22 is completely stopped and the spillback opening / closing valve 252 is fully opened, hydrogen gas passes from the discharge side to the suction side of the compressor 22 through the spillback opening / closing valve 252. Flows in, the pressure on the suction side gradually increases. Then, when the suction side and the discharge side of the compressor 22 are equalized, the pressure on the suction side is stabilized. The volume of the buffer tank 211c would suction side pressure of the compressor 22 at the time the stable is set to be lower than the predetermined pressure P 2.

以上のように、本実施形態に係るガス供給装置2では、制御部28が圧縮機22の停止信号を受けて流入側開閉弁212を閉じる制御を行う。ここで、圧縮機22は、停止制御を受けてから完全に停止するまでに所定時間tを要するため、流入側開閉弁212は圧縮機22が完全に停止する前に閉じられることになる。すなわち、ガス供給装置2では、流入側開閉弁212が閉じられることによって流入側流路211への水素ガスの供給が停止された状態で、しばらくの間は圧縮機22が駆動し続けることになり、当該圧縮機22内に残留した水素ガスの少なくとも一部が流出側流路211側へ吐出される。このため、圧縮機22が完全に停止した後に、流入側開閉弁212の下流側に設けられたバッファタンク211cに対して圧縮機22から流れ込む水素ガスの流量を低減することができる。そのため、極端に大きな容積を有するバッファタンク211cを用いなくとも、圧縮機22の吸込側の圧力を所定の圧力P以下に維持しつつ残留した水素ガスを当該バッファタンク211cに貯留することができ、ガス供給装置2の小型化を実現することができる。 As described above, in the gas supply device 2 according to this embodiment, the control unit 28 receives the stop signal of the compressor 22 and performs control to close the inflow side on-off valve 212. Here, the compressor 22, it takes a predetermined time t 2 until the complete stop after receiving the stop control, the inflow-side valve 212 will be closed before the compressor 22 is completely stopped. That is, in the gas supply device 2, the compressor 22 continues to be driven for a while while the supply of the hydrogen gas to the inflow side flow passage 211 is stopped by closing the inflow side on-off valve 212. At least a part of the hydrogen gas remaining in the compressor 22 is discharged to the outflow side channel 211 side. For this reason, after the compressor 22 stops completely, the flow volume of the hydrogen gas which flows in from the compressor 22 with respect to the buffer tank 211c provided in the downstream of the inflow side on-off valve 212 can be reduced. Therefore, without using the buffer tank 211c with an extremely large volume, the hydrogen gas remaining while maintaining the pressure of the suction side at a predetermined pressure P 0 the following compressor 22 can be stored in the buffer tank 211c The gas supply device 2 can be downsized.

さらに、ガス供給装置2では、制御部28が流入側開閉弁212を閉じた後所定時間tが経過した後に圧縮機22の停止制御を開始するため、流入側開閉弁212が閉じられてから圧縮機22が完全に停止するまでにt+tの時間を要する。このため、流入側開閉弁212が閉じられた後に、圧縮機22、第2流路211b、およびバッファタンク211cに残留した水素ガスの一部をより確実に吐出側の供給路261に吐出することができる。 Furthermore, in the gas supply device 2, the control unit 28 starts the stop control of the compressor 22 after a predetermined time t 1 has elapsed after the inflow side on-off valve 212 is closed. It takes time t 1 + t 2 until the compressor 22 is completely stopped. For this reason, after the inflow side on-off valve 212 is closed, a part of the hydrogen gas remaining in the compressor 22, the second flow path 211b, and the buffer tank 211c is more reliably discharged to the supply path 261 on the discharge side. Can do.

さらに、ガス供給装置2では、制御部28が流入側開閉弁212を閉じた後にスピルバック開閉弁252を開く制御を行うことによって、圧縮機22の吸込側と吐出側とを均圧化し、これにより圧縮機22が完全に停止した後すぐに当該圧縮機22の吸込側の圧力が一定の圧力値に保たれることになる。このため、圧縮機22が完全に停止した後に当該圧縮機22の吸込側の圧力がゆっくりと上昇しつつ長時間経過後に一定の圧力値に保たれることを抑止できる。これにより、圧縮機22の吸込側の圧力が所定の圧力を超えているか否かの判断を圧縮機22の停止後すぐに行うことができる。   Further, in the gas supply device 2, the control unit 28 performs control to open the spillback on / off valve 252 after closing the inflow side on / off valve 212, thereby equalizing the suction side and the discharge side of the compressor 22. As a result, the pressure on the suction side of the compressor 22 is maintained at a constant pressure value immediately after the compressor 22 is completely stopped. For this reason, it is possible to prevent the pressure on the suction side of the compressor 22 from slowly rising after the compressor 22 is completely stopped and kept at a constant pressure value after a long time. Thereby, it can be determined immediately after the compressor 22 is stopped whether or not the pressure on the suction side of the compressor 22 exceeds a predetermined pressure.

さらに、ガス供給装置2では、制御部28がスピルバック開閉弁252を開く前に流出側開閉弁を閉じる制御を行う。このため、スピルバック開閉弁252を開いたときに蓄圧器241に貯留された水素ガスが逆流することを確実に防止することができる。   Further, in the gas supply device 2, the control unit 28 performs control to close the outflow side opening / closing valve before opening the spillback opening / closing valve 252. For this reason, it is possible to reliably prevent the hydrogen gas stored in the pressure accumulator 241 from flowing backward when the spillback opening / closing valve 252 is opened.

なお、本実施形態では、制御部28が圧縮機22の停止信号を受けて各弁の開閉制御および圧縮機22の停止制御を行うが、これに限らず、制御部28がなすこれらの制御工程が作業者の手によってなされてもよい。この場合、ガス供給装置2は、圧縮機22の停止制御を開始するための運転停止スイッチを備え、作業者は、図2のフローにしたがって手動で各弁の開閉制御および運転スイッチの入力による圧縮機の停止制御を行うことになる。
(第2の実施形態)
次に、第2の実施形態に係るガス供給装置2について図4を参照しながら説明する。なお、本実施形態では、第1実施形態と異なる部分についてのみ説明を行い、第1実施形態と同じ構造、作用及び効果の説明は省略する。
In the present embodiment, the control unit 28 receives the stop signal of the compressor 22 and performs opening / closing control of each valve and stop control of the compressor 22, but is not limited thereto, and these control steps performed by the control unit 28. May be made by the hand of the operator. In this case, the gas supply device 2 is provided with an operation stop switch for starting the stop control of the compressor 22, and the operator manually performs open / close control of each valve and compression by input of the operation switch according to the flow of FIG. The machine will be stopped.
(Second Embodiment)
Next, a gas supply device 2 according to a second embodiment will be described with reference to FIG. In the present embodiment, only parts different from the first embodiment will be described, and descriptions of the same structure, operation, and effect as those of the first embodiment will be omitted.

第2の実施形態に係るガス供給装置2は、第1の実施形態に係るガス供給装置2と同じ構成を有しているが、運転停止方法が異なっている。   The gas supply device 2 according to the second embodiment has the same configuration as the gas supply device 2 according to the first embodiment, but the operation stopping method is different.

第2の実施形態では、図4に示すように、圧縮機22の停止信号を受けた制御部28は、流入側開閉弁212を閉じる閉制御を行うと同時に(ステップST11)、圧縮機22の停止制御を開始する(ステップST12)。その後、流出側開閉弁233aを閉じる閉制御を行うとともに(ステップST13)、制御部28がスピルバック開閉弁252を全開とする開度調整制御を行うことにより(ステップST14)、ガス供給装置2の運転停止が完了する。   In the second embodiment, as shown in FIG. 4, the control unit 28 that has received the stop signal of the compressor 22 performs the closing control to close the inflow side on-off valve 212 (step ST11), and at the same time, Stop control is started (step ST12). Then, while performing the closing control which closes the outflow side on-off valve 233a (step ST13), when the control part 28 performs the opening degree adjustment control which fully opens the spillback on-off valve 252 (step ST14), the gas supply apparatus 2 Shutdown is complete.

第2の実施形態では、流入側開閉弁212を閉じると同時に圧縮機22の停止制御が行われるが、停止制御を受けた圧縮機22は、モータの回転を徐々に弱めながら完全停止するため、流入側開閉弁212が閉じられてから時間tが経過するまでは圧縮機22が駆動された状態にある。このため、流入側開閉弁212が閉じられてから圧縮機22が完全に停止するまでの間に、圧縮機22、第2流路211b、およびバッファタンク211cに残留した水素ガスを吐出側の供給路261へ吐出することができる。そのため、比較的小さいバッファタンク211cを用いることができ、ガス供給装置2の小型化を実現することができる。
(第3の実施形態)
次に、第3の実施形態に係るガス供給装置2について図5を参照しながら説明する。なお、本実施形態では、第1実施形態と異なる部分についてのみ説明を行い、第1実施形態と同じ構造、作用及び効果の説明は省略する。
In the second embodiment, the stop control of the compressor 22 is performed at the same time as the inflow side on-off valve 212 is closed, but the compressor 22 that has received the stop control completely stops while gradually reducing the rotation of the motor. after the inflow side valve 212 is closed until the time t 2 has elapsed in a state where the compressor 22 is driven. Therefore, hydrogen gas remaining in the compressor 22, the second flow path 211b, and the buffer tank 211c is supplied on the discharge side after the inflow side on-off valve 212 is closed until the compressor 22 is completely stopped. The ink can be discharged to the path 261. Therefore, a relatively small buffer tank 211c can be used, and the gas supply device 2 can be downsized.
(Third embodiment)
Next, a gas supply device 2 according to a third embodiment will be described with reference to FIG. In the present embodiment, only parts different from the first embodiment will be described, and descriptions of the same structure, operation, and effect as those of the first embodiment will be omitted.

第3の実施形態に係るガス供給装置2は、第1の実施形態に係るガス供給装置2とは異なりスピルバック流路251およびスピルバック開閉弁252を有していない。このため、第2の実施形態に係るガス供給装置2において、図2に示すフローにて運転停止する場合にはステップST5が不要となり、図4に示すフローにて運転停止する場合にはステップST14が不要となる。   Unlike the gas supply device 2 according to the first embodiment, the gas supply device 2 according to the third embodiment does not include the spillback flow path 251 and the spillback opening / closing valve 252. Therefore, in the gas supply device 2 according to the second embodiment, step ST5 is not necessary when the operation is stopped by the flow shown in FIG. 2, and step ST14 is required when the operation is stopped by the flow shown in FIG. Is no longer necessary.

第3の実施形態に係るガス供給装置2においても、圧縮機22の停止時には、例えば圧縮機22のシールの隙間から第2流路211bへと水素ガスが漏れ出ることにより、当該水素ガスがバッファタンク211cへと徐々に流入することになる。これにより、時間をかけて圧縮機22の吸込側の圧力が上昇することになる。そのため、第1の実施形態および第2の実施形態と同じく、流入側開閉弁212を閉じた後または閉じると同時に圧縮機22の停止制御を開始し、圧縮機22が完全に停止した後にバッファタンク211cへ流入する水素ガスの流量を減らすことにより、圧縮機22の吸込側の圧力を所定の圧力以下に保ちつつバッファタンク211cの小型化を実現することが可能である。   Also in the gas supply device 2 according to the third embodiment, when the compressor 22 is stopped, for example, hydrogen gas leaks from the seal gap of the compressor 22 into the second flow path 211b, so that the hydrogen gas is buffered. It will gradually flow into the tank 211c. As a result, the pressure on the suction side of the compressor 22 increases over time. Therefore, as in the first embodiment and the second embodiment, after the inflow side on-off valve 212 is closed or closed, the stop control of the compressor 22 is started, and the buffer tank is stopped after the compressor 22 is completely stopped. By reducing the flow rate of the hydrogen gas flowing into 211c, it is possible to reduce the size of the buffer tank 211c while keeping the pressure on the suction side of the compressor 22 below a predetermined pressure.

以上説明した各実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記の各実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   Each embodiment described above should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of each embodiment but by the scope of claims for patent, and all modifications within the meaning and scope equivalent to the scope of claims for patent are included.

例えば、上記の第1〜第3の実施形態では、ガス供給装置2が3つの蓄圧器241〜243を備えているが、蓄圧器の数はこれに限らず、1つでもよいし4つ以上であってもよい。すなわち、蓄圧器の数は任意であって、ガス供給装置2の使用態様に応じて適宜変更することができる。   For example, in said 1st-3rd embodiment, although the gas supply apparatus 2 is provided with the three pressure accumulators 241-243, the number of pressure accumulators is not restricted to this, One may be sufficient and it is four or more It may be. That is, the number of the pressure accumulators is arbitrary, and can be appropriately changed according to the usage mode of the gas supply device 2.

2 ガス供給装置
22 圧縮機
28 制御部
211 流入側流路
211c バッファタンク
212 流入側開閉弁
231 流出側流路
233a〜233c 流出側開閉弁
241〜243 蓄圧器
251 スピルバック流路
252 スピルバック開閉弁
2 Gas supply device 22 Compressor 28 Control unit 211 Inflow side flow path 211c Buffer tank 212 Inflow side on / off valve 231 Outflow side flow path 233a to 233c Outflow side on / off valve 241 to 243 Accumulator 251 Spillback flow path 252 Spillback on / off valve

Claims (6)

ガスを圧縮する圧縮機と、
ガスを貯留可能なバッファタンクを有するとともに前記圧縮機に繋がる流入側流路と、
前記流入側流路のうち前記バッファタンクよりも上流側において当該流入側流路を開閉可能な流入側開閉弁と、
前記圧縮機の吐出側に繋がる流出側流路と、
前記圧縮機の停止信号を受けて、前記流入側開閉弁を閉じる制御を行う制御部と、を備えるガス供給装置。
A compressor for compressing the gas;
An inflow channel that has a buffer tank capable of storing gas and is connected to the compressor;
An inflow side on-off valve capable of opening and closing the inflow side channel on the upstream side of the buffer tank in the inflow side channel;
An outflow side channel connected to the discharge side of the compressor;
A gas supply device comprising: a control unit that receives the stop signal of the compressor and performs control to close the inflow side on-off valve.
前記流入側開閉弁と前記流出側弁部材との間において前記圧縮機を迂回するように前記流入側流路と前記流出側流路とを繋ぐスピルバック流路と、
前記スピルバック流路を開閉可能なスピルバック開閉弁と、をさらに備え、
前記制御部は、前記流入側開閉弁を閉じた後に前記スピルバック開閉弁を開く制御を行う、請求項1に記載のガス供給装置。
A spillback flow path connecting the inflow side flow path and the outflow side flow path so as to bypass the compressor between the inflow side on-off valve and the outflow side valve member;
A spillback opening and closing valve capable of opening and closing the spillback flow path,
The gas supply device according to claim 1, wherein the control unit performs control to open the spillback on / off valve after closing the inflow side on / off valve.
前記流出側流路を開閉可能な流出側開閉弁をさらに備え、
前記制御部は、前記スピルバック開閉弁を開くと同時または前記スピルバック開閉弁を開く前に前記流出側開閉弁を閉じる制御を行う、請求項2に記載のガス供給装置。
Further comprising an outflow side on-off valve capable of opening and closing the outflow side channel;
The gas supply device according to claim 2, wherein the control unit performs control to close the outflow side on-off valve simultaneously with opening the spillback on-off valve or before opening the spillback on-off valve.
ガスを圧縮する圧縮機と、ガスを貯留可能なバッファタンクを有するとともに前記圧縮機に繋がる流入側流路と、前記流入側流路のうち前記バッファタンクよりも前記圧縮機から遠い側において当該流入側流路を開閉可能な流入側開閉弁と、前記圧縮機の吐出側に繋がる流出側流路と、を備えるガス供給装置の運転停止方法であって、
前記流入側開閉弁を閉じると同時または前記流入側開閉弁を閉じた後に前記圧縮機を停止する制御を開始するガス供給装置の運転停止方法。
A compressor that compresses gas; a buffer tank that can store gas; and an inflow channel that is connected to the compressor; and the inflow on the side of the inflow channel that is farther from the compressor than the buffer tank A gas supply device operation stopping method comprising: an inflow side on-off valve capable of opening and closing a side flow path; and an outflow side flow path connected to a discharge side of the compressor,
An operation stopping method for a gas supply device, wherein control for stopping the compressor is started simultaneously with closing the inflow side on-off valve or after closing the inflow side on-off valve.
前記流入側開閉弁を閉じた後に、前記圧縮機を迂回するように前記流入側流路と前記流出側流路とを繋ぐスピルバック流路に設けられたスピルバック開閉弁を開く、請求項4に記載のガス供給装置の運転停止方法。   The spillback opening / closing valve provided in the spillback flow path connecting the inflow side flow path and the outflow side flow path is opened so as to bypass the compressor after the inflow side open / close valve is closed. A method for stopping the operation of the gas supply device according to claim 1. 前記スピルバック開閉弁を開くと同時または前記スピルバック開閉弁を開く前に、前記流出側流路に設けられた流出側開閉弁を閉じる、請求項5に記載のガス供給装置の運転停止方法。   The gas supply device operation stopping method according to claim 5, wherein the outflow side on / off valve provided in the outflow side flow path is closed simultaneously with opening of the spillback on / off valve or before opening the spillback on / off valve.
JP2016015399A 2016-01-29 2016-01-29 Gas supply apparatus and method for stopping operation of gas supply apparatus Pending JP2017131862A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016015399A JP2017131862A (en) 2016-01-29 2016-01-29 Gas supply apparatus and method for stopping operation of gas supply apparatus
EP17744366.0A EP3388669A4 (en) 2016-01-29 2017-01-27 Gas supply device and method for stopping operation of gas supply device
CN201780007949.6A CN108474373A (en) 2016-01-29 2017-01-27 The operating method of shutting down of gas supply device and gas supply device
US16/070,403 US20190041003A1 (en) 2016-01-29 2017-01-27 Gas supply device and method for stopping operation of gas supply device
CA3010999A CA3010999C (en) 2016-01-29 2017-01-27 Gas supply device and method for stopping operation of gas supply device
PCT/JP2017/002870 WO2017131136A1 (en) 2016-01-29 2017-01-27 Gas supply device and method for stopping operation of gas supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015399A JP2017131862A (en) 2016-01-29 2016-01-29 Gas supply apparatus and method for stopping operation of gas supply apparatus

Publications (1)

Publication Number Publication Date
JP2017131862A true JP2017131862A (en) 2017-08-03

Family

ID=59398184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015399A Pending JP2017131862A (en) 2016-01-29 2016-01-29 Gas supply apparatus and method for stopping operation of gas supply apparatus

Country Status (6)

Country Link
US (1) US20190041003A1 (en)
EP (1) EP3388669A4 (en)
JP (1) JP2017131862A (en)
CN (1) CN108474373A (en)
CA (1) CA3010999C (en)
WO (1) WO2017131136A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089018A (en) * 2019-12-03 2021-06-10 株式会社神戸製鋼所 Control method for compression system, compression system and hydrogen station
WO2023203860A1 (en) * 2022-04-21 2023-10-26 株式会社デンソー Hydrogen production system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3067092B1 (en) * 2017-05-31 2020-08-14 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude STATION AND METHOD FOR FILLING A PRESSURIZED GAS TANK (S)
US11499765B2 (en) 2018-08-01 2022-11-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refueling containers with pressurized gas
CN110792923A (en) 2018-08-01 2020-02-14 乔治洛德方法研究和开发液化空气有限公司 Device and method for filling a container with a pressurized gas
US11506339B2 (en) * 2018-08-01 2022-11-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and process for refueling containers with pressurized gas
DK180963B1 (en) * 2019-10-30 2022-08-16 Nel Hydrogen As A hydrogen refueling station and method for refueling a hydrogen vehicle
JP6756065B1 (en) * 2020-06-29 2020-09-16 株式会社神戸製鋼所 Compressor unit stop control method and compressor unit
FR3115347B1 (en) * 2020-10-16 2022-10-07 Air Liquide Device and method for filling pressurized gas tanks

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133894A (en) * 1993-11-11 1995-05-23 Sanyo Electric Co Ltd Natural gas charging method
CN201215251Y (en) * 2008-05-30 2009-04-01 四川金星压缩机制造有限公司 Self-recovering system for compressed natural gas
US20150013831A1 (en) * 2013-07-11 2015-01-15 Boyer, Inc. Cng/lng filling station
CN204213621U (en) * 2014-10-27 2015-03-18 中汽迈赫(天津)工程设计研究院有限公司 High-purity gas supercharging bulking system
JP2015105709A (en) * 2013-11-29 2015-06-08 株式会社神戸製鋼所 Gas charging device, and gas charging method
CN204879428U (en) * 2015-08-21 2015-12-16 安姆达清洁能源技术(苏州)有限公司 Import buffer tank and natural gas compressor of retrieving jar with integrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3863644B2 (en) * 1997-09-11 2006-12-27 大陽日酸株式会社 Mixed gas supply device
FR2908859B1 (en) * 2006-11-22 2009-02-20 Air Liquide METHOD AND STATION FOR REFUELING IN HYDROGEN

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133894A (en) * 1993-11-11 1995-05-23 Sanyo Electric Co Ltd Natural gas charging method
CN201215251Y (en) * 2008-05-30 2009-04-01 四川金星压缩机制造有限公司 Self-recovering system for compressed natural gas
US20150013831A1 (en) * 2013-07-11 2015-01-15 Boyer, Inc. Cng/lng filling station
JP2015105709A (en) * 2013-11-29 2015-06-08 株式会社神戸製鋼所 Gas charging device, and gas charging method
CN204213621U (en) * 2014-10-27 2015-03-18 中汽迈赫(天津)工程设计研究院有限公司 High-purity gas supercharging bulking system
CN204879428U (en) * 2015-08-21 2015-12-16 安姆达清洁能源技术(苏州)有限公司 Import buffer tank and natural gas compressor of retrieving jar with integrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089018A (en) * 2019-12-03 2021-06-10 株式会社神戸製鋼所 Control method for compression system, compression system and hydrogen station
JP7214613B2 (en) 2019-12-03 2023-01-30 株式会社神戸製鋼所 COMPRESSION SYSTEM CONTROL METHOD, COMPRESSION SYSTEM AND HYDROGEN STATION
WO2023203860A1 (en) * 2022-04-21 2023-10-26 株式会社デンソー Hydrogen production system

Also Published As

Publication number Publication date
EP3388669A4 (en) 2019-08-14
CN108474373A (en) 2018-08-31
EP3388669A1 (en) 2018-10-17
CA3010999C (en) 2019-08-20
CA3010999A1 (en) 2017-08-03
WO2017131136A1 (en) 2017-08-03
US20190041003A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
WO2017131136A1 (en) Gas supply device and method for stopping operation of gas supply device
US10480715B2 (en) Gas supply device and method for starting operation of gas supply device
US10473268B2 (en) Compressor unit and gas supply apparatus
JP2012047234A (en) Gas filling device
JP6279340B2 (en) Gas supply device, hydrogen station and gas supply method
EP3023714B1 (en) A method for controlling a vapour compression system with an ejector
WO2012147340A1 (en) Hydrogen station
JP2009150628A (en) Oil equalizing system for high pressure shell compressor used in air conditioner
WO2006030779A1 (en) Heat pump, heat pump system, and rankine cycle
JP5839545B2 (en) Hydrogen station
JP5387846B2 (en) Gas station and gas filling system
WO2015052981A1 (en) Oil supply type compressor
JP6634297B2 (en) Gas supply device
JP5716207B1 (en) Cooling system
JP2022177312A (en) Outdoor unit and refrigeration cycle device
US20240167741A1 (en) Refrigeration apparatus, control method of refrigeration apparatus, and temperature control system
JP7214613B2 (en) COMPRESSION SYSTEM CONTROL METHOD, COMPRESSION SYSTEM AND HYDROGEN STATION
JP2010127374A (en) Hydrogen storage system
JP2019183993A (en) Gas supply device and stop control method thereof
JP6969449B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602