JP2017124719A - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP2017124719A
JP2017124719A JP2016004620A JP2016004620A JP2017124719A JP 2017124719 A JP2017124719 A JP 2017124719A JP 2016004620 A JP2016004620 A JP 2016004620A JP 2016004620 A JP2016004620 A JP 2016004620A JP 2017124719 A JP2017124719 A JP 2017124719A
Authority
JP
Japan
Prior art keywords
section
traffic jam
accelerator opening
engine
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016004620A
Other languages
Japanese (ja)
Inventor
友希 小川
Yuki Ogawa
友希 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016004620A priority Critical patent/JP2017124719A/en
Publication of JP2017124719A publication Critical patent/JP2017124719A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Navigation (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle control device capable of improving fuel efficiency in a hybrid vehicle.SOLUTION: A vehicle control device comprises: a congestion section detection part 114 for detecting a congestion section in a travel direction of an own vehicle; a target setting part 116 for setting a target charge ratio of a secondary battery 126 to a specific target charge ratio at a start point of the congestion section, and setting the target charge ratio to an ordinary basic target charge ratio after passing an end point of the congestion section; a sensor unit 108 for detecting an accelerator opening; and a charge ratio control part 124 for controlling an engine 120 and a motor 122 on the basis of the target charge ratio of the secondary battery 126. The charge ratio control part 124 drives the engine on the basis of the specific target charge ratio when the accelerator opening exceeds a first accelerator opening, in a section from the start point of the congestion section to the start point of the congestion section, and drives the engine 120 on the basis of the specific target charge ratio when the accelerator opening exceeds a second accelerator opening which is larger than an accelerator opening α, in a section from the start point of the congestion section to the end point of the congestion section.SELECTED DRAWING: Figure 2

Description

本発明は、ハイブリッド車両に用いられる車両制御装置に関する。   The present invention relates to a vehicle control device used for a hybrid vehicle.

ハイブリッド車両は、エンジンとモータの2種類の駆動源を有する。モータは二次電池(バッテリー)の電気エネルギーを駆動力に変換する。車両が下降傾斜する路面を走るときには、車軸の回転をモータに伝え、モータの起電力により二次電池を充電することもできる。エンジンは駆動力を提供するだけでなく、二次電池を充電することもできる。   A hybrid vehicle has two types of drive sources, an engine and a motor. The motor converts the electric energy of the secondary battery (battery) into driving force. When the vehicle runs on a road surface that is inclined downward, the rotation of the axle is transmitted to the motor, and the secondary battery can be charged by the electromotive force of the motor. In addition to providing driving force, the engine can also charge the secondary battery.

二次電池の充電率(SOC:State of Charge)の大きな変化は二次電池を劣化させてしまう。このため、通常、SOCには下限値と上限値を設定し、SOCがその上限値と下限値の間の範囲(以下、「許容範囲」とよぶ)に収まるように充放電制御される。   A large change in the state of charge (SOC) of the secondary battery deteriorates the secondary battery. For this reason, normally, a lower limit value and an upper limit value are set for the SOC, and charge / discharge control is performed so that the SOC falls within a range between the upper limit value and the lower limit value (hereinafter referred to as “allowable range”).

特許文献1では、走行先に渋滞区間があるときには、渋滞区間の手前のある地点から渋滞区間の開始地点まで二次電池の目標充電率を上げている。目標充電率を上げて積極的にエンジンを駆動させ、充電区間に入る前にSOCを上げることで、渋滞区間においてSOCが下限に達しにくくなり、強制充電が生じるのを防ぐことができるとしている。   In Patent Document 1, when there is a traffic jam section at the travel destination, the target charging rate of the secondary battery is increased from a certain point before the traffic jam section to the start point of the traffic jam section. Increasing the target charging rate and actively driving the engine and increasing the SOC before entering the charging section makes it difficult for the SOC to reach the lower limit in the traffic jam section and prevent forced charging from occurring.

特開2014−15125号公報JP 2014-15125 A

特許文献1に記載の技術では、車両が渋滞区間に進入すると、低速電動走行となるためSOCは徐々に低下する。このため、やはり渋滞区間においてSOCは下限値に到達しやすいと考えられる。SOCが下限値に達すると、エンジンを駆動して強制充電する必要が生じる。   In the technique described in Patent Document 1, when the vehicle enters a traffic jam section, the low-speed electric traveling is performed, so that the SOC gradually decreases. For this reason, it is considered that the SOC easily reaches the lower limit value in the traffic jam section. When the SOC reaches the lower limit value, it becomes necessary to drive the engine and perform forced charging.

本発明はこうした状況に鑑みてなされたものであり、その目的は、ハイブリッド車両において、燃費効率を向上できる車両制御装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a vehicle control device capable of improving fuel efficiency in a hybrid vehicle.

上記課題を解決するために、本発明のある態様の車両制御装置は、エンジン、モータおよび前記モータに電力を供給する二次電池を備え、前記エンジンが発生させる起電力により前記二次電池を充電可能なハイブリッド車両に搭載され、自車両の走行経路を予測する予測部と、予測された走行経路において、自車両の進行方向に渋滞区間を検出する渋滞区間検出部と、渋滞区間の開始地点よりも所定距離だけ手前の地点において前記二次電池の目標充電率を通常時の目標充電率よりも高い値に設定し、渋滞区間の終了地点以降の地点において前記二次電池の目標充電率を通常時の目標充電率に設定する目標設定部と、アクセル開度を検出するアクセル開度検出部と、前記二次電池の目標充電率に基づいて前記エンジンおよびモータを制御することにより、前記二次電池の充電率を制御する充電率制御部と、を備える。前記充電率制御部は、渋滞区間の開始地点よりも前記所定距離だけ手前の地点から渋滞区間の開始地点の間は、アクセル開度が第1アクセル開度を超えると、通常時よりも高い値に設定された目標充電率に基づいて前記エンジンを駆動し、渋滞区間の開始地点から渋滞区間の終了地点の間は、アクセル開度が第1アクセル開度よりも大きい第2アクセル開度を超えると、通常時よりも高い値に設定された目標充電率に基づいて前記エンジンを駆動する。   In order to solve the above-described problems, a vehicle control apparatus according to an aspect of the present invention includes an engine, a motor, and a secondary battery that supplies power to the motor, and charges the secondary battery with an electromotive force generated by the engine. From a prediction unit that is mounted on a hybrid vehicle capable of predicting the travel route of the host vehicle, a traffic jam section detection unit that detects a traffic jam section in the traveling direction of the host vehicle, and a start point of the traffic jam section Also, the target charging rate of the secondary battery is set to a value higher than the target charging rate at the normal time at a point in front of the predetermined distance, and the target charging rate of the secondary battery is normally set at a point after the end point of the traffic jam section. A target setting unit for setting the target charging rate at the time, an accelerator opening detecting unit for detecting the accelerator opening, and controlling the engine and motor based on the target charging rate of the secondary battery And a, and a charge rate controller for controlling the charging rate of the secondary battery. When the accelerator opening exceeds the first accelerator opening between the point just before the predetermined distance from the start point of the traffic jam section and the start point of the traffic jam section, the charging rate control unit is higher than normal. The engine is driven based on the target charging rate set to, and the accelerator opening exceeds the second accelerator opening that is larger than the first accelerator opening between the start point of the congestion section and the end point of the congestion section. And the engine is driven based on a target charging rate set to a value higher than normal.

この態様によると、渋滞区間の手前の区間に加えて渋滞区間でもエンジンを積極的に駆動するため、渋滞区間においてSOCが下限値に到達しにくくなる。したがって、渋滞区間において強制充電が生じにくくなる。また、渋滞区間では、渋滞区間の手前の区間に比べて、エンジンを駆動して充電を実行させるアクセル開度条件が厳しくなるため、必要以上にエンジンが駆動されるのを抑止できる。すなわち、上述の態様によると、燃費効率を向上できる。   According to this aspect, since the engine is actively driven in the traffic jam section in addition to the section before the traffic jam section, the SOC hardly reaches the lower limit value in the traffic jam section. Therefore, forced charging is less likely to occur in a traffic jam section. Further, in the traffic jam section, the accelerator opening condition for driving the engine to perform charging becomes stricter than in the section before the traffic jam section, so that the engine can be prevented from being driven more than necessary. That is, according to the above-described aspect, fuel efficiency can be improved.

本発明によれば、燃費効率を向上できる車両制御装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the vehicle control apparatus which can improve a fuel consumption efficiency can be provided.

渋滞区間の充電率制御方法を説明するための模式図である。It is a schematic diagram for demonstrating the charging rate control method of a traffic congestion area. 車両制御システムの機能ブロック図である。It is a functional block diagram of a vehicle control system. 車両制御装置による処理を示すフローチャートである。It is a flowchart which shows the process by a vehicle control apparatus. 渋滞時充電処理を示すフローチャートである。It is a flowchart which shows the charging process at the time of traffic jam.

(実施の形態)
実施の形態に係る車両制御装置の概要を説明する。
図1は、車両制御装置による渋滞区間の充電率制御方法を説明するための模式図である。図1の上段は、車両100が予定する走行経路における渋滞区間を示す。車両制御装置は、カーナビゲーションシステムから渋滞情報を取得する。カーナビゲーションシステムにおいては、走行経路は複数の区間(図1では区間0〜区間7)に分割管理される。車両100は、区間0を走行中であるとする。区間3〜6は渋滞区間であるとする。図1の下段は、SOC(二次電池の充電率)の変化を示す。SOCは0%が最低値であり、100%が最大値である。SOCには許容範囲が設定される。許容範囲は下限値CD〜上限値CUの範囲であり、具体的には、下限値CD=40%、上限値CU=60%程度が想定される。目標充電率は、この許容範囲内に設定される。通常、目標充電率は下限値CDと上限値CUの平均値CM、おおむね、50%程度に設定される。以下、通常時の目標充電率を「基本目標充電率」とよぶ。
(Embodiment)
An outline of the vehicle control device according to the embodiment will be described.
FIG. 1 is a schematic diagram for explaining a charging rate control method in a traffic jam section by the vehicle control device. The upper part of FIG. 1 shows a traffic jam section on a travel route planned by the vehicle 100. The vehicle control device acquires traffic jam information from the car navigation system. In the car navigation system, the travel route is divided and managed into a plurality of sections (section 0 to section 7 in FIG. 1). Assume that vehicle 100 is traveling in section 0. Assume that sections 3 to 6 are traffic jam sections. The lower part of FIG. 1 shows a change in SOC (charge rate of the secondary battery). The SOC has a minimum value of 0% and a maximum value of 100%. An allowable range is set for the SOC. The allowable range is a range from the lower limit value CD to the upper limit value CU. Specifically, the lower limit value CD = 40% and the upper limit value CU = 60% are assumed. The target charging rate is set within this allowable range. Usually, the target charging rate is set to an average value CM of the lower limit value CD and the upper limit value CU, generally about 50%. Hereinafter, the target charging rate at the normal time is referred to as “basic target charging rate”.

渋滞区間においては、車両100は低速走行となる。そのため、通常、電動走行が優先され、SOCが低下しやすい。これに対し従来では、当初においては目標充電率を基本目標充電率に固定し、渋滞区間の開始地点(図1の場合、区間2と区間3の境界点)よりも所定距離だけ手前の地点(図1の場合、区間0と区間1の境界点)において目標充電率を上限値CUに上げ(以下、上限値CUまで一時的に上げた目標充電率を「特殊目標準電率」とよぶ)、渋滞区間の開始地点において目標充電率を基本目標充電率に戻す充電率制御方法が提案されている。SOC−P1は、このときのSOCの変化を示す。この制御方法では、渋滞区間に入る前にエンジンを積極的に駆動して、渋滞区間に入る前にSOC−P1を上昇させる。しかしながら、車両が区間3(渋滞区間)に進入すると、低速電動走行となるためSOC−P1は徐々に低下する。このため、やはり渋滞区間においてSOC−P1は下限値CDに到達しやすい。SOC−P1が下限値CDに達すると、エンジンを駆動して強制充電する必要が生じる。   In the traffic jam section, the vehicle 100 runs at a low speed. For this reason, electric travel is usually prioritized and the SOC is likely to decrease. On the other hand, at the beginning, the target charging rate is initially fixed at the basic target charging rate, and a point (a boundary point between the section 2 and the section 3 in the case of FIG. 1) a point before a predetermined distance (in FIG. 1) In the case of FIG. 1, the target charge rate is raised to the upper limit value CU at the boundary point between the zone 0 and the zone 1 (hereinafter, the target charge rate temporarily raised to the upper limit value CU is referred to as “special eye standard power rate”). A charging rate control method for returning the target charging rate to the basic target charging rate at the start point of the traffic jam section has been proposed. SOC-P1 indicates a change in SOC at this time. In this control method, the engine is actively driven before entering the traffic jam section, and the SOC-P1 is raised before entering the traffic jam section. However, when the vehicle enters the section 3 (congested section), the SOC-P1 gradually decreases because of low-speed electric traveling. For this reason, SOC-P1 easily reaches the lower limit value CD in the traffic jam section. When SOC-P1 reaches the lower limit value CD, it is necessary to drive the engine and perform forced charging.

これに対し本実施の形態では、充電区間の開始地点において目標充電率を基本目標充電率に戻さずに目標充電率を特殊目標充電率に上げたままとし、渋滞区間の終了地点(図1の場合、区間6と区間7の境界点)またはその直後の地点において目標充電率を基本目標充電率に戻す。SOC−P2は、このときのSOCの変化を示す。この制御方法では、充電区間に入った後もエンジンを積極的に駆動するため、下限値CDに到達しない程度にすなわち強制充電が生じない程度にSOC−P2の低下を抑えることができる。以下、目標充電率が特殊目標充電率に設定される区間、具体的には渋滞区間の開始地点よりも所定距離だけ手前の地点から渋滞区間の終了地点までの区間(図1の場合、区間1〜6)を「渋滞制御区間」とよぶ。また、渋滞制御区間においてエンジンを積極的に駆動することを「渋滞時充電処理」とよぶ。   On the other hand, in the present embodiment, the target charging rate remains at the special target charging rate without returning the target charging rate to the basic target charging rate at the starting point of the charging interval, and the end point of the congestion interval (see FIG. 1). In this case, the target charging rate is returned to the basic target charging rate at a boundary point between the section 6 and the section 7) or at a point immediately after that. SOC-P2 indicates a change in the SOC at this time. In this control method, since the engine is actively driven even after entering the charging section, it is possible to suppress the decrease in SOC-P2 to the extent that the lower limit value CD is not reached, that is, to the extent that forced charging does not occur. Hereinafter, a section in which the target charging rate is set to the special target charging rate, specifically, a section from a point a predetermined distance before the start point of the traffic jam section to the end point of the traffic jam section (section 1 in the case of FIG. 1). ~ 6) is called "traffic control section". In addition, actively driving the engine in a traffic jam control section is called “charge processing during traffic jam”.

ここで、渋滞区間においては、SOC−P2が下限値CDに達しなければよく、SOC−P2を上昇させる必要はない。渋滞区間において必要以上にエンジンを駆動すると、燃費効率がかえって低下する。したがって、本実施の形態では、渋滞区間に入った後の渋滞制御区間(図1の場合、区間3〜6)では、渋滞区間に入る前の渋滞制御区間(図1の場合、区間1〜2)よりも、エンジンを駆動して充電を実行させる条件であるアクセル開度についての条件を厳しくする。以下、具体的に説明する。   Here, in the traffic jam section, it is sufficient that the SOC-P2 does not reach the lower limit CD, and it is not necessary to raise the SOC-P2. If the engine is driven more than necessary in a traffic jam section, fuel efficiency will be reduced. Therefore, in this embodiment, in the traffic jam control section after entering the traffic jam section (sections 3 to 6 in the case of FIG. 1), the traffic jam control section before entering the traffic jam section (sections 1 to 2 in the case of FIG. 1). ), The condition regarding the accelerator opening, which is a condition for driving the engine to execute charging, is made stricter. This will be specifically described below.

図2は、車両制御システム106の機能ブロック図である。車両制御システム106の各構成要素は、任意のコンピュータのCPU、メモリ、メモリにロードされた本図の構成要素を実現するプログラム、そのプログラムを格納するハードディスクなどの記憶ユニット、ネットワーク接続用インタフェースを中心にハードウェアとソフトウェアの任意の組み合わせによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。   FIG. 2 is a functional block diagram of the vehicle control system 106. Each component of the vehicle control system 106 is centered on an arbitrary computer CPU, memory, a program that realizes the components shown in the figure loaded in the memory, a storage unit such as a hard disk for storing the program, and a network connection interface. It is realized by any combination of hardware and software. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.

車両制御システム106は、車両制御装置128、センサユニット108、カーナビゲーションシステム110、エンジン120、モータ122および二次電池126を含む。センサユニット108は、外部環境や自車の走行軌道に関する情報を検出する。センサユニット108は、アクセル開度センサ、操舵角センサおよび車速センサを含む。センサユニット108は、検出した情報を車両制御装置128に送信する。   The vehicle control system 106 includes a vehicle control device 128, a sensor unit 108, a car navigation system 110, an engine 120, a motor 122, and a secondary battery 126. The sensor unit 108 detects information related to the external environment and the traveling track of the host vehicle. The sensor unit 108 includes an accelerator opening sensor, a steering angle sensor, and a vehicle speed sensor. The sensor unit 108 transmits the detected information to the vehicle control device 128.

カーナビゲーションシステム110は、データベースの地図情報とGPS(Global Positioning System)から得られる位置情報を比較することにより走行中または走行先の区間を特定する。また、カーナビゲーションシステム110は、VICS(Vehicle Information and Communication System)(登録商標)等から渋滞情報を取得する。   The car navigation system 110 identifies a section during traveling or a destination by comparing map information in a database and position information obtained from GPS (Global Positioning System). In addition, the car navigation system 110 acquires traffic jam information from VICS (Vehicle Information and Communication System) (registered trademark) or the like.

二次電池126は、リチウムイオン二次電池(蓄電池)である。車両制御装置128は、エンジン120およびモータ122を制御することにより、二次電池126のSOCをコントロールする。   The secondary battery 126 is a lithium ion secondary battery (storage battery). The vehicle control device 128 controls the SOC of the secondary battery 126 by controlling the engine 120 and the motor 122.

車両制御装置128は、予測部112、渋滞区間検出部114、目標設定部116、条件設定部118および充電率制御部124を含む。本実施形態における車両制御装置128の各機能ブロックは、ECU(Electronic Control Unit)およびその上で実行されるソフトウェアプログラムにより構成される。   The vehicle control device 128 includes a prediction unit 112, a traffic jam section detection unit 114, a target setting unit 116, a condition setting unit 118, and a charging rate control unit 124. Each functional block of the vehicle control device 128 in the present embodiment is configured by an ECU (Electronic Control Unit) and a software program executed thereon.

予測部112は、センサユニット108からの車速や操舵角といった情報やカーナビゲーションシステム110における経路設定情報から車両100の走行経路を予測する。渋滞区間検出部114は、走行中の区間だけでなく、走行が予測される区間の情報をカーナビゲーションシステム110から定期的に取得(先読み)する。渋滞区間検出部114は、渋滞区間の有無およびその長さといった情報を検出する。目標設定部116は、渋滞区間の有無に応じて、目標充電率を設定する。目標設定部116は、通常時の目標充電率には基本目標充電率を設定し、渋滞制御区間の目標充電率には特殊目標充電率(上限値UD)を設定する。   The prediction unit 112 predicts the travel route of the vehicle 100 from information such as the vehicle speed and the steering angle from the sensor unit 108 and route setting information in the car navigation system 110. The traffic jam section detection unit 114 periodically acquires (pre-reads) information on not only the section being traveled but also the section on which travel is predicted from the car navigation system 110. The traffic jam section detection unit 114 detects information such as the presence / absence of a traffic jam section and its length. The target setting unit 116 sets a target charging rate according to the presence or absence of a traffic jam section. The target setting unit 116 sets the basic target charging rate as the target charging rate at the normal time, and sets the special target charging rate (upper limit value UD) as the target charging rate in the traffic jam control section.

条件設定部118は、エンジン120を駆動して二次電池の充電を実行させるアクセル開度条件を設定する。条件設定部118は、渋滞区間に入る前の渋滞制御区間ではアクセル開度条件にアクセル開度αを設定し、渋滞区間に入った後の渋滞制御区間ではアクセル開度条件に比較的高いアクセル開度β(>アクセル開度α)を設定する。つまり、渋滞区間に入った後の渋滞制御区間では、渋滞区間に入る前の渋滞制御区間と比べ、充電を実行させるアクセル開度条件を厳しくする。   The condition setting unit 118 sets an accelerator opening condition for driving the engine 120 to charge the secondary battery. The condition setting unit 118 sets the accelerator opening α in the accelerator opening condition in the traffic jam control section before entering the traffic jam section, and opens a relatively high accelerator opening condition in the traffic jam control section after entering the traffic jam section. The degree β (> accelerator opening α) is set. That is, in the traffic jam control section after entering the traffic jam section, the accelerator opening condition for executing charging is made stricter than in the traffic jam control section before entering the traffic jam section.

充電率制御部124は、目標設定部116により設定された目標充電率と条件設定部118により設定されたアクセル開度条件に基づきエンジン120およびモータ122を制御することにより、二次電池126のSOCをコントロールする。具体的には、充電率制御部124は、通常時は、SOCが基本目標充電率に近づくようエンジン120およびモータ122を制御し、渋滞制御区間では、SOCが特殊目標充電率に近づくようエンジン120およびモータ122を制御する。充電率制御部124は特に、渋滞区間に入る前の渋滞制御区間(図1の場合、区間1〜2)では、車両100のアクセル開度がアクセル開度αを超えるとエンジン120を駆動して駆動力を提供するとともに二次電池を充電し、渋滞区間に入った後の渋滞制御区間(図2の場合、区間3〜6)では、車両100のアクセル開度がアクセル開度βを超えるとエンジン120を駆動して駆動力を提供するとともに二次電池を充電するよう制御する。   The charging rate control unit 124 controls the SOC of the secondary battery 126 by controlling the engine 120 and the motor 122 based on the target charging rate set by the target setting unit 116 and the accelerator opening condition set by the condition setting unit 118. Control. Specifically, the charging rate control unit 124 normally controls the engine 120 and the motor 122 so that the SOC approaches the basic target charging rate, and in the traffic jam control section, the engine 120 causes the SOC to approach the special target charging rate. And controls the motor 122. The charge rate control unit 124 drives the engine 120 when the accelerator opening of the vehicle 100 exceeds the accelerator opening α, particularly in the traffic control section before entering the traffic section (sections 1 and 2 in the case of FIG. 1). When the accelerator opening of the vehicle 100 exceeds the accelerator opening β in the traffic congestion control section (section 3 to 6 in the case of FIG. 2) after providing the driving force and charging the secondary battery and entering the traffic congestion section. The engine 120 is driven to provide a driving force and control to charge the secondary battery.

図3は、車両制御装置128による処理を示すフローチャートである。図3に示す処理は、一定間隔、たとえば数ミリ秒ごとに繰り返し実行されるループ処理である。   FIG. 3 is a flowchart showing processing by the vehicle control device 128. The process shown in FIG. 3 is a loop process that is repeatedly executed at regular intervals, for example, every several milliseconds.

渋滞区間検出部114は、予測部112が予測した走行経路上に、一定(たとえば500m)以上の長さの渋滞区間が走行経路上に存在するかを判定する(S10)。そのような渋滞区間が存在しないときには(S10のN)、以下の処理は実行されず、次回の実行タイミングを待つ。渋滞区間が存在するときには(S10のY)、目標設定部116は渋滞制御区間の開始地点(すなわち渋滞区間の開始地点より所定距離だけ手前の地点)を決定する(S12)。目標設定部116は、車両100が渋滞制御区間の開始地点から渋滞区間の開始地点までを走行したときにSOCが特殊目標充電率まで上昇するよう渋滞制御区間の開始地点を決定すればよい。図1では、区間2と区間3の境界点を渋滞制御区間の開始地点に決定した場合を示している。   The traffic jam section detection unit 114 determines whether or not a traffic jam section having a certain length (for example, 500 m) or longer exists on the travel route on the travel route predicted by the prediction unit 112 (S10). When such a traffic jam section does not exist (N in S10), the following processing is not executed and the next execution timing is awaited. When there is a traffic jam section (Y in S10), the target setting unit 116 determines the start point of the traffic jam control section (that is, a spot a predetermined distance before the start point of the traffic jam section) (S12). The target setting unit 116 may determine the start point of the traffic jam control section so that the SOC increases to the special target charging rate when the vehicle 100 travels from the start point of the traffic jam control section to the start point of the traffic jam section. FIG. 1 shows a case where the boundary point between the section 2 and the section 3 is determined as the start point of the congestion control section.

車両100が渋滞制御区間の開始地点に到達していなければ(S14のN)、処理はS14で待機する。車両100が渋滞制御区間の開始地点に到達すると(S14のY)、車両制御装置128は渋滞時充電処理を実行する(S16)。S16の渋滞時充電処理については、図4で後述する。   If the vehicle 100 has not reached the start point of the traffic jam control section (N in S14), the process waits in S14. When the vehicle 100 reaches the start point of the traffic jam control section (Y in S14), the vehicle control device 128 executes a traffic jam charging process (S16). The charging process at the time of traffic jam in S16 will be described later with reference to FIG.

車両100が渋滞制御区間の終了地点(すなわち渋滞区間の終了地点)に到達していない限り(S18のN)、渋滞時充電処理は継続する。車両100が渋滞区間の終了地点に到達すると(S18のY)、渋滞時充電処理は完了し、いったん処理は終了して次回の実行タイミングまで待機する。なお、車両100が目的地に到達したり、充電制御機能がオフされり、あるいは電源がオフされたときには、図3のループ処理は終了する。   As long as the vehicle 100 has not reached the end point of the traffic jam control section (that is, the end point of the traffic jam section) (N in S18), the charging process during the traffic jam continues. When the vehicle 100 reaches the end point of the traffic congestion section (Y in S18), the charging process at the time of traffic congestion is completed, and once the processing is completed, it waits until the next execution timing. Note that when the vehicle 100 reaches the destination, the charge control function is turned off, or the power is turned off, the loop process of FIG. 3 ends.

図4は、渋滞時充電処理を示すフローチャートである。図4は図3のS16に対応する。目標設定部116は、目標充電率を基本目標充電率よりも高い特殊目標充電率(上限値UD)に設定する(S20)。車両100が渋滞区間の開始地点に到達していなければ(S22のN)、条件設定部118はアクセル開度条件にアクセル開度αを設定する(S24)。車両100が渋滞区間の開始地点に到達すると(S22のY)、条件設定部118はアクセル開度条件にアクセル開度β(>アクセル開度α)を設定する(S26)。本実施の形態では、条件設定部118は、カーナビゲーションシステム110から取得した走行中の区間の渋滞情報に基づいて、渋滞区間に到達したか否かを判断する。充電率制御部124は、特殊目標充電率と、アクセル開度条件に基づいて、エンジン120およびモータ122を制御する。   FIG. 4 is a flowchart showing a charging process in a traffic jam. FIG. 4 corresponds to S16 of FIG. The target setting unit 116 sets the target charging rate to a special target charging rate (upper limit UD) that is higher than the basic target charging rate (S20). If the vehicle 100 has not reached the start point of the traffic jam section (N in S22), the condition setting unit 118 sets the accelerator opening α to the accelerator opening condition (S24). When the vehicle 100 reaches the start point of the traffic jam section (Y in S22), the condition setting unit 118 sets the accelerator opening β (> accelerator opening α) as the accelerator opening condition (S26). In the present embodiment, condition setting unit 118 determines whether or not the traffic congestion section has been reached based on the traffic congestion information of the traveling section acquired from car navigation system 110. The charging rate control unit 124 controls the engine 120 and the motor 122 based on the special target charging rate and the accelerator opening condition.

以上説明した本実施の形態に係る車両制御装置128によると、渋滞区間においても目標充電率に特殊目標充電率が設定される。すなわち、渋滞区間においても、積極的にエンジンを駆動してSOCの低下を抑えることができる。これにより、渋滞区間において強制充電が生じにくくなる。また、渋滞区間では、充電を実行させる条件は比較的厳しく設定されるため、必要以上にエンジンを駆動するのが抑えられる。つまり、本実施の形態に係る車両制御装置128によると、燃費効率を向上できる。   According to the vehicle control device 128 according to the present embodiment described above, the special target charging rate is set as the target charging rate even in a traffic jam section. That is, even in a traffic jam section, the engine can be actively driven to suppress the decrease in SOC. This makes it difficult for forced charging to occur in a traffic jam section. In a traffic jam section, conditions for executing charging are set to be relatively strict, so that driving the engine more than necessary can be suppressed. That is, according to the vehicle control device 128 according to the present embodiment, fuel efficiency can be improved.

以上、実施例をもとに本発明を説明した。実施例はあくまでも例示であり、各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   In the above, this invention was demonstrated based on the Example. The embodiments are merely examples, and it will be understood by those skilled in the art that various modifications can be made to the combination of each component and each processing process, and such modifications are within the scope of the present invention.

(変形例)
実施の形態では、車両制御装置128は、カーナビゲーションシステム110から取得した走行中の区間の渋滞情報に基づいて、渋滞区間に到達したか否かを判断する場合について説明した。この場合、車両制御装置128は、渋滞区間に挟まれた比較的短い非渋滞区間を走行中は、渋滞区間を走行中ではないと判断する。これに対し本変形例では、渋滞区間に挟まれた非渋滞区間の長さが所定の長さ(たとえば200m)以下である場合、すなわち渋滞区間に挟まれた非渋滞区間が比較的短い場合、非渋滞区間とその非渋滞区間を挟む渋滞区間とをひとまとまりの渋滞区間として取り扱ってもよい。たとえば、カーナビゲーションシステム110から取得した渋滞情報によると区間3、4、6が渋滞区間で区間5が非渋滞区間の場合、区間5の長さが200m以下であれば、区間3〜6をひとまとまりの渋滞区間として取り扱う。この場合、車両100が区間5を走行中であるとき、車両制御装置128は、車両100は渋滞区間を走行中であると判断する。
(Modification)
In the embodiment, the case has been described in which the vehicle control device 128 determines whether or not the vehicle has reached the traffic jam section based on the traffic jam information of the running segment acquired from the car navigation system 110. In this case, the vehicle control device 128 determines that the vehicle is not traveling in the traffic congestion section while traveling in a relatively short non-congestion section sandwiched between the traffic congestion sections. On the other hand, in this modification, when the length of the non-congested section sandwiched between the congested sections is a predetermined length (for example, 200 m) or less, that is, when the non-congested section sandwiched between the congested sections is relatively short, A non-congested section and a congested section sandwiching the non-congested section may be handled as a group of congested sections. For example, according to the traffic jam information acquired from the car navigation system 110, if the zones 3, 4, and 6 are traffic jam zones and the zone 5 is a non-jamm traffic zone, if the length of the zone 5 is 200 m or less, the zones 3 to 6 Treat as a congested section of traffic. In this case, when the vehicle 100 is traveling in the section 5, the vehicle control device 128 determines that the vehicle 100 is traveling in the traffic jam section.

100…車両、106…車両制御システム、108…センサユニット、110…カーナビゲーションシステム、112…予測部、114…渋滞区間検出部、116…目標設定部、118…条件設定部、120…エンジン、122…モータ、124…充電率制御部、126…二次電池、128…車両制御装置。 DESCRIPTION OF SYMBOLS 100 ... Vehicle, 106 ... Vehicle control system, 108 ... Sensor unit, 110 ... Car navigation system, 112 ... Prediction part, 114 ... Congestion area detection part, 116 ... Target setting part, 118 ... Condition setting part, 120 ... Engine, 122 ... Motor, 124 ... Charge rate control unit, 126 ... Secondary battery, 128 ... Vehicle control device.

Claims (1)

エンジン、モータおよび前記モータに電力を供給する二次電池を備え、前記エンジンが発生させる起電力により前記二次電池を充電可能なハイブリッド車両に搭載され、
自車両の走行経路を予測する予測部と、
予測された走行経路において、自車両の進行方向に渋滞区間を検出する渋滞区間検出部と、
渋滞区間の開始地点よりも所定距離だけ手前の地点において前記二次電池の目標充電率を通常時の目標充電率よりも高い値に設定し、渋滞区間の終了地点以降の地点において前記二次電池の目標充電率を通常時の目標充電率に設定する目標設定部と、
アクセル開度を検出するアクセル開度検出部と、
前記二次電池の目標充電率に基づいて前記エンジンおよびモータを制御することにより、前記二次電池の充電率を制御する充電率制御部と、を備え、
前記充電率制御部は、渋滞区間の開始地点よりも前記所定距離だけ手前の地点から渋滞区間の開始地点の間は、アクセル開度が第1アクセル開度を超えると、通常時よりも高い値に設定された目標充電率に基づいて前記エンジンを駆動し、渋滞区間の開始地点から渋滞区間の終了地点の間は、アクセル開度が第1アクセル開度よりも大きい第2アクセル開度を超えると、通常時よりも高い値に設定された目標充電率に基づいて前記エンジンを駆動することを特徴とする車両制御装置。
An engine, a motor, and a secondary battery for supplying electric power to the motor; and mounted on a hybrid vehicle capable of charging the secondary battery by an electromotive force generated by the engine;
A prediction unit for predicting the traveling route of the host vehicle;
In the predicted travel route, a traffic jam section detection unit that detects a traffic jam section in the traveling direction of the host vehicle,
The target charge rate of the secondary battery is set to a value higher than the target charge rate at the normal time at a point a predetermined distance before the start point of the traffic jam section, and the secondary battery at a point after the end point of the traffic jam section A target setting unit that sets the target charging rate of to the normal target charging rate,
An accelerator position detector for detecting the accelerator position;
A charge rate control unit that controls the charge rate of the secondary battery by controlling the engine and the motor based on the target charge rate of the secondary battery, and
When the accelerator opening exceeds the first accelerator opening between the point before the predetermined distance from the start point of the traffic jam section and the start point of the traffic jam section, the charge rate control unit is higher than normal. The engine is driven based on the target charging rate set to, and the accelerator opening exceeds the second accelerator opening that is larger than the first accelerator opening between the start point of the congestion section and the end point of the congestion section. And a vehicle control device that drives the engine based on a target charging rate set to a value higher than normal.
JP2016004620A 2016-01-13 2016-01-13 Vehicle control device Pending JP2017124719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016004620A JP2017124719A (en) 2016-01-13 2016-01-13 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016004620A JP2017124719A (en) 2016-01-13 2016-01-13 Vehicle control device

Publications (1)

Publication Number Publication Date
JP2017124719A true JP2017124719A (en) 2017-07-20

Family

ID=59363648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016004620A Pending JP2017124719A (en) 2016-01-13 2016-01-13 Vehicle control device

Country Status (1)

Country Link
JP (1) JP2017124719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018216218A1 (en) 2017-09-26 2019-03-28 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling a hybrid vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018216218A1 (en) 2017-09-26 2019-03-28 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling a hybrid vehicle
US10895469B2 (en) 2017-09-26 2021-01-19 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method of controlling hybrid vehicle

Similar Documents

Publication Publication Date Title
CN106314422B (en) Apparatus for controlling state of charge of hybrid vehicle and method for using the same
JP6802222B2 (en) Peak efficiency recommendations and sharing
JP4325626B2 (en) Hybrid vehicle operation control system
US11964575B2 (en) Control apparatus
JP5412954B2 (en) Vehicle control device
JP2017136938A (en) Vehicular control device
JP2015050927A (en) Method for electrically regenerating energy accumulator
US11117491B2 (en) Electric vehicle control device
US20160280203A1 (en) Controlling system for hybrid electric vehicle and controlling method thereof
CN106891884A (en) Controller of vehicle
JP2008260361A (en) Vehicular control apparatus
EP3012167B1 (en) Vehicular information-processing device
JP2010279108A (en) Battery charge control device for electric vehicles
JP2014015125A (en) Control device for hybrid vehicle
JP2017534522A (en) Engine control system
JP2016088440A (en) Hybrid drive vehicle output controller
KR101826555B1 (en) Power control system and power control method for green car
JP2017124707A (en) Vehicle control device
JP2017124719A (en) Vehicle control device
JP2020069896A (en) Movement support apparatus for hybrid vehicle
JP2022150718A (en) Travel control apparatus, method, and program
JP4888776B2 (en) Vehicle power generation control device
JP2017065617A (en) Vehicle control apparatus
JP2010111135A (en) Method and device for controlling hybrid vehicle
JP2020058207A (en) Electric vehicle