JP2017120974A - MEMS element - Google Patents

MEMS element Download PDF

Info

Publication number
JP2017120974A
JP2017120974A JP2015256231A JP2015256231A JP2017120974A JP 2017120974 A JP2017120974 A JP 2017120974A JP 2015256231 A JP2015256231 A JP 2015256231A JP 2015256231 A JP2015256231 A JP 2015256231A JP 2017120974 A JP2017120974 A JP 2017120974A
Authority
JP
Japan
Prior art keywords
movable
electrode film
movable electrode
mems element
movable region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015256231A
Other languages
Japanese (ja)
Other versions
JP6662509B2 (en
Inventor
竜平 根本
Ryuhei Nemoto
竜平 根本
孝英 臼井
Takahide Usui
孝英 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2015256231A priority Critical patent/JP6662509B2/en
Publication of JP2017120974A publication Critical patent/JP2017120974A/en
Application granted granted Critical
Publication of JP6662509B2 publication Critical patent/JP6662509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Pressure Sensors (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a MEMS element suitable for improving the sensitivity.SOLUTION: The movable electrode of a MEMS element is fixed to a back plate including a fixed electrode 5 by means of a coupling part 11. The movable electrode thus fixed includes a first movable region 3a vibrating by receiving the external pressure at both ends of the coupling part, and a second movable region 3b placed at a position away from the coupling part 11. The second movable region 3b is placed oppositely to the fixed electrode 5, and detects the magnitude of the external pressure received by the first movable region 3a as a capacitance change.SELECTED DRAWING: Figure 5

Description

本発明は、MEMS素子に関し、特にマイクロフォン、各種センサ、スイッチ等として用いられる容量型のMEMS素子に関する。   The present invention relates to a MEMS element, and more particularly to a capacitive MEMS element used as a microphone, various sensors, switches, and the like.

従来、半導体プロセスを用いたMEMS(Micro Electro Mechanical Systems)素子では、半導体基板上に固定電極、犠牲層及び可動電極を形成した後、犠牲層の一部を除去することで、スペーサーを介して固定された固定電極と可動電極との間にエアーギャップ(中空)構造が形成されている。   Conventionally, in a micro electro mechanical systems (MEMS) device using a semiconductor process, a fixed electrode, a sacrificial layer, and a movable electrode are formed on a semiconductor substrate, and then a part of the sacrificial layer is removed to be fixed via a spacer. An air gap (hollow) structure is formed between the fixed electrode and the movable electrode.

例えば、容量型MEMS素子であるコンデンサマイクロフォンでは、外圧の一つである音圧を通過させる複数の貫通孔を備えた固定電極と、音圧を受けて振動する可動電極とを対向配置し、音圧を受けて振動する可動電極の変位を電極間の容量変化として検出する構成となっている。   For example, in a condenser microphone that is a capacitive MEMS element, a fixed electrode having a plurality of through-holes that allow sound pressure, which is one of external pressures, to pass through and a movable electrode that vibrates in response to sound pressure are arranged to face each other. The displacement of the movable electrode that receives pressure and vibrates is detected as a change in capacitance between the electrodes.

ところで、コンデンサマイクロフォンのS/N比を向上させるためには、音圧による可動電極の変位を大きくする必要がある。そのため可動電極のバネ性を小さくする方法が提案されている。また、可動電極と固定電極とで形成されるエアーギャップで発生するノイズを小さくすればよいことが知られている(特許文献1段落番号0003〜0004)。   By the way, in order to improve the S / N ratio of the condenser microphone, it is necessary to increase the displacement of the movable electrode due to the sound pressure. Therefore, a method for reducing the spring property of the movable electrode has been proposed. In addition, it is known that noise generated in an air gap formed by a movable electrode and a fixed electrode may be reduced (Patent Document 1, paragraph numbers 0003 to 0004).

一般的なこの種のMEMS素子の断面図を図6(a)に示す。図6(a)に示すように、基板1上に熱酸化膜2を介して可動電極膜3が形成されている。可動電極膜3上には、スペーサー4を介して固定電極膜5と窒化膜6が形成され、この固定電極膜5と窒化膜6からなるバックプレートには貫通孔7が形成されている。また可動電極膜3と固定電極膜5との間にはエアーギャップ9が形成され、固定電極膜3と固定電極膜5にそれぞれ接続する配線部10が形成されている。   A cross-sectional view of a general MEMS device of this type is shown in FIG. As shown in FIG. 6A, a movable electrode film 3 is formed on a substrate 1 via a thermal oxide film 2. A fixed electrode film 5 and a nitride film 6 are formed on the movable electrode film 3 via a spacer 4, and a through hole 7 is formed in a back plate made of the fixed electrode film 5 and the nitride film 6. In addition, an air gap 9 is formed between the movable electrode film 3 and the fixed electrode film 5, and wiring portions 10 connected to the fixed electrode film 3 and the fixed electrode film 5 are formed.

図6(a)に示すMEMS素子において、可動電極膜3が熱酸化膜2とスペーサー4によって全周にわたり固定されていると、可動電極膜3のバネ性が大きくなり、可動範囲が狭くなってしまう。そこで、図6(b)に模式的に示すように、可動電極膜3の外周の一部を切り欠いてスリット8を形成し、スリット8間の可動電極膜3の端部を図6(a)に示すように熱酸化膜2とスペーサー4によって固定することで、可動電極膜3のバネ性を小さくするように工夫されている。その結果、可動電極膜3の変位を大きくすることができ、感度を向上させることが可能となる。なお図6(b)は、可動電極膜3を露出した状態の平面図を示しており、図6(a)で記載した配線部10と配線部10と接続するための引出電極の図示は省略している。   In the MEMS element shown in FIG. 6A, when the movable electrode film 3 is fixed over the entire circumference by the thermal oxide film 2 and the spacer 4, the spring property of the movable electrode film 3 is increased and the movable range is narrowed. End up. Therefore, as schematically shown in FIG. 6B, a slit 8 is formed by cutting out a part of the outer periphery of the movable electrode film 3, and the end of the movable electrode film 3 between the slits 8 is formed as shown in FIG. As shown in FIG. 4B, the movable electrode film 3 is fixed by the thermal oxide film 2 and the spacer 4 so that the spring property of the movable electrode film 3 is reduced. As a result, the displacement of the movable electrode film 3 can be increased, and the sensitivity can be improved. FIG. 6B is a plan view showing a state in which the movable electrode film 3 is exposed. The wiring portion 10 described in FIG. 6A and the drawing electrode for connecting to the wiring portion 10 are not shown. doing.

ところで、図6に示す可動電極膜3は、スリット8のない構造と比較すると可動範囲が広くなるものの、可動電極膜3はその端部を熱酸化膜2とスペーサー4に挟持された状態となっているため、変位幅は制限され、感度の向上にも限界があった。   By the way, although the movable electrode film 3 shown in FIG. 6 has a wider movable range as compared with the structure without the slit 8, the movable electrode film 3 is sandwiched between the thermal oxide film 2 and the spacer 4. Therefore, the displacement range is limited, and there is a limit to improving the sensitivity.

一方、エアーギャップで発生するノイズを小さくすることは、可動電極膜3と固定電極膜5の間の寸法(エアーギャップの間隔)を大きくすることで解決できる。しかしながら、可動電極膜3と固定電極膜5の間の寸法を大きくすることは、検出する容量値(シグナル)の低下も招き、S/N比の向上のためには効果的ではない。   On the other hand, reducing the noise generated in the air gap can be solved by increasing the dimension (interval of the air gap) between the movable electrode film 3 and the fixed electrode film 5. However, increasing the dimension between the movable electrode film 3 and the fixed electrode film 5 causes a decrease in the detected capacitance value (signal), and is not effective for improving the S / N ratio.

さらにまた貫通孔7を音圧が通過する際に発生するノイズを小さくする必要もある。この貫通孔7で発生するノイズを小さくすることは、貫通孔7を大きくすることで解決できる。しかしながら、貫通孔7を大きくすることも、検出する容量値(シグナル)の低下を招き、S/N比の向上のためには効果的ではない。   Furthermore, it is necessary to reduce the noise generated when the sound pressure passes through the through hole 7. Reducing the noise generated in the through hole 7 can be solved by increasing the through hole 7. However, increasing the size of the through hole 7 also causes a decrease in the detected capacitance value (signal), and is not effective for improving the S / N ratio.

特開2012−175509号公報JP 2012-175509 A

従来のMEMS素子において、可動電極膜の端部を固定させたままで可動電極膜のバネ性を弱める方法では、変位幅が限られ、さらに感度の向上を図ることができなかった。また、可動電極膜3と固定電極膜5の間隔や貫通孔の大きさを調整する方法では、間隔を広げたり、貫通孔を大きくするとノイズの減少と同時にシグナルが減少し、逆に間隔を狭くしたり、貫通孔を小さくするとシグナルの増加と同時にノイズが増加し、所望の特性を得ることが難しかった。本発明はこのような問題を解消し、感度の向上に好適なMEMS素子を提供することを目的とする。   In the conventional MEMS element, the method of weakening the spring property of the movable electrode film while the end of the movable electrode film is fixed has limited the displacement width and cannot further improve the sensitivity. Further, in the method of adjusting the distance between the movable electrode film 3 and the fixed electrode film 5 and the size of the through-hole, if the distance is increased or the through-hole is enlarged, the signal decreases simultaneously with the noise reduction, and conversely the distance is narrowed. However, when the through hole is made small, noise increases simultaneously with an increase in signal, and it is difficult to obtain desired characteristics. An object of the present invention is to solve such problems and provide a MEMS element suitable for improving sensitivity.

上記目的を達成するため、本願請求項1に係る発明は、バックチャンバーを備えた基板上に、固定電極を含むバックプレートと可動電極とを対向配置したMEMS素子において、前記可動電極は、連結部により前記固定電極を含むバックプレートに固定され、該連結部を挟んで一方に配置した外力を受けて変位する第1の可動領域と、前記連結部を挟んで他方に配置した前記第1の可動領域で発生した変位に応じて変位する第2の可動領域とを含み、前記第2の可動領域は、前記固定電極と対向配置して、前記第2の可動領域と前記固定電極との間の容量変化から前記第1の可動領域が受けた前記外圧の大きさを検知することを特徴とする。   In order to achieve the above object, an invention according to claim 1 of the present application is a MEMS device in which a back plate including a fixed electrode and a movable electrode are arranged opposite to each other on a substrate provided with a back chamber. The first movable region fixed to the back plate including the fixed electrode and displaced by receiving an external force disposed on one side of the connecting portion, and the first movable region disposed on the other side of the connecting portion. A second movable region that is displaced according to the displacement generated in the region, and the second movable region is disposed opposite to the fixed electrode, and between the second movable region and the fixed electrode. The external pressure received by the first movable region is detected from a change in capacity.

本願請求項2に係る発明は、請求項1記載のMEMS素子において、前記固定電極の一部に開口部を備え、該開口部内に前記第1の可動領域が露出していることを特徴とする。   The invention according to claim 2 of the present application is the MEMS element according to claim 1, wherein an opening is provided in a part of the fixed electrode, and the first movable region is exposed in the opening. .

本願請求項3に係る発明は、請求項1または2いずれか記載のMEMS素子において、前記連結部は前記第1の可動領域と前記第2の可動領域とを分離する隔壁を構成することを特徴とする。   The invention according to claim 3 of the present application is the MEMS element according to claim 1 or 2, wherein the connecting portion constitutes a partition that separates the first movable region and the second movable region. And

本発明のMEMS素子は、固定電極を含むバックプレートと可動電極とを連結部によって固定し、この連結部を挟んで、可動電極の一方に外圧を受ける第1の可動領域を、他方に固定電極との間の容量変化を検知する第2の可動領域をそれぞれ配置する構成とし、第2の可動領域の端部を自由端とすることで、第2の可動領域の変位の制限がなく、感度の向上を可能としている。   In the MEMS element of the present invention, a back plate including a fixed electrode and a movable electrode are fixed by a connecting portion, and a first movable region that receives external pressure on one of the movable electrodes is sandwiched between the connecting portions, and a fixed electrode on the other side. The second movable area for detecting the change in capacitance between the second movable area and the end of the second movable area is a free end, so that there is no restriction on the displacement of the second movable area, and the sensitivity It is possible to improve.

本発明のMEMS素子の可動電極を構成する第1の可動領域と第2の可動領域とは、連結部を支点としてそれぞれ逆方向へ変位する構成となっている。すなわち「てこ」のように動くことになる。このように構成することで、連結部から所定の寸法だけ離して固定電極と可動電極とを配置することで、大きな容量変化として検知することが可能となり、MEMS素子の感度を向上させることを可能としている。   The first movable region and the second movable region constituting the movable electrode of the MEMS element of the present invention are configured to be displaced in opposite directions with the connecting portion as a fulcrum. In other words, it will move like a lever. With this configuration, it is possible to detect a large capacitance change by disposing the fixed electrode and the movable electrode apart from the connecting portion by a predetermined dimension, and it is possible to improve the sensitivity of the MEMS element. It is said.

また本発明のMEMS素子は、広い開口部を設ける構成とすることにより、従来例で示したバックプレートに形成した貫通孔に起因するノイズの発生がなくなり、MEMS素子の感度を向上させることを可能としている。   In addition, the MEMS element of the present invention has a configuration in which a wide opening is provided, so that noise due to the through hole formed in the back plate shown in the conventional example is eliminated, and the sensitivity of the MEMS element can be improved. It is said.

さらに本発明のMEMS素子は、連結部を連続した構造とし隔壁を構成することで、可動電極に形成した貫通孔の大きさを調整するだけで低域感度を調整することができ、好適である。   Furthermore, the MEMS element of the present invention is suitable because the low-frequency sensitivity can be adjusted only by adjusting the size of the through-hole formed in the movable electrode by forming the partition with a continuous structure of the connecting portion. .

本発明のMEMS素子を説明する図である。It is a figure explaining the MEMS element of this invention. 本発明のMEMS素子を説明する図である。It is a figure explaining the MEMS element of this invention. 本発明のMEMS素子を説明する図である。It is a figure explaining the MEMS element of this invention. 本発明のMEMS素子を説明する図である。It is a figure explaining the MEMS element of this invention. 本発明のMEMS素子を説明する図である。It is a figure explaining the MEMS element of this invention. 従来のこの種のMEMS素子を説明する図である。It is a figure explaining this kind of conventional MEMS element.

本発明に係るMEMS素子は、可動電極と固定電極を含むバックプレートとを連結部によって固定する構成としている。また可動電極は、連結部を挟んで一方に配置された外圧を受ける第1の可動領域と、第1の可動領域の受けた外圧の大きさに応じて変位する連結部を挟んで他方に配置された第2の可動領域とを含んだ構成としている。外圧を受ける第1の可動領域は、外圧を受ける面積を大きくするため、露出する構成とするのが好ましい。第2の可動領域は、固定電極と対向して配置し第1の可動領域で受けた外圧に応じた変位するため、この変位から外圧の大きさを検知できることになる。以下、MEMS素子としてコンデンサマイクロフォンを例にとり、本発明の実施例について説明する。   The MEMS element according to the present invention is configured to fix the movable electrode and the back plate including the fixed electrode by the connecting portion. The movable electrode is disposed on the other side of the first movable region that receives the external pressure disposed on one side of the connecting portion and the connecting portion that is displaced according to the magnitude of the external pressure received on the first movable region. The second movable region is included. The first movable region that receives the external pressure is preferably exposed to increase the area that receives the external pressure. Since the second movable region is disposed to face the fixed electrode and is displaced according to the external pressure received by the first movable region, the magnitude of the external pressure can be detected from this displacement. Examples of the present invention will be described below by taking a condenser microphone as an example of the MEMS element.

本発明の第1の実施例について、その製造工程に従い説明する。まず、結晶方位(100)面の厚さ420μmのシリコン基板1上に、厚さ1μm程度の熱酸化膜2を形成し、熱酸化膜2上に、CVD(Chemical Vapor Deposition)法により厚さ0.4μmの導電性ポリシリコン膜を積層形成する。次に通常のフォトリソグラフ法によりパターニングし、可動電極膜3(可動電極に相当)を形成する。ここで本発明は、可動電極膜3を図1(b)に示すような形状とする。すなわち、円形の可動電極膜3の中心に向かって外周から複数のスリットが形成された形状とする。このスリットは、中心部までには達しておらず、扇型に分離された可動電極の一部が、円形の中心部で一体となった形状となる。また、中心部には貫通孔12が形成されている。   A first embodiment of the present invention will be described in accordance with its manufacturing process. First, a thermal oxide film 2 having a thickness of about 1 μm is formed on a silicon substrate 1 having a crystal orientation (100) plane of 420 μm, and a thickness of 0 is formed on the thermal oxide film 2 by a CVD (Chemical Vapor Deposition) method. A 4 μm conductive polysilicon film is laminated. Next, patterning is performed by a normal photolithography method to form a movable electrode film 3 (corresponding to a movable electrode). Here, in the present invention, the movable electrode film 3 has a shape as shown in FIG. That is, a shape is formed in which a plurality of slits are formed from the outer periphery toward the center of the circular movable electrode film 3. The slit does not reach the center, and a part of the movable electrode separated in a fan shape is integrated in a circular center. A through hole 12 is formed at the center.

その後、可動電極膜3上に厚さ2.0〜4.0μm程度のUSG(Undoped Silicate Glass)膜からなる犠牲層4aを積層形成し、通常のフォトリソグラフ法によりパターニングし、連結部形成予定領域の犠牲層4aをエッチング除去し、可動電極膜3を露出させる。連結部形成予定領域は、スリットがない中心部を取り囲むリング状の形状とする。エッチング除去された連結部形成予定領域に犠牲層4aと選択エッチング可能な材料で充填して平坦化し、エッチバックすることで、連結部11を形成する(図1)。連結部11を構成する膜は、絶縁性材料あるいは導電性材料のいずれでもよいが、可動電極膜3と後述するバックプレートを構成する膜、具体的には窒化膜に十分な接着性を有し、さらに可動電極膜3の変形に耐える必要があるため、金属膜とするのが好ましい。なお、金属膜とする場合は、可動電極膜3と固定電極膜5が導通しないようにすることは言うまでもない。   Thereafter, a sacrificial layer 4a made of a USG (Undoped Silicate Glass) film having a thickness of about 2.0 to 4.0 μm is laminated on the movable electrode film 3 and patterned by a normal photolithography method to form a connection portion formation region. The sacrificial layer 4a is removed by etching, and the movable electrode film 3 is exposed. The connection portion formation scheduled region has a ring shape surrounding the central portion where there is no slit. The connection portion 11 is formed by filling the etching-removed region where the connection portion is to be formed with the sacrificial layer 4a and a material that can be selectively etched, flattening, and etching back (FIG. 1). The film constituting the connecting portion 11 may be either an insulating material or a conductive material, but has sufficient adhesion to the movable electrode film 3 and a film constituting the back plate described later, specifically, a nitride film. Further, since it is necessary to withstand the deformation of the movable electrode film 3, it is preferable to use a metal film. Needless to say, when the metal film is used, the movable electrode film 3 and the fixed electrode film 5 are not electrically connected.

犠牲層4a上に、厚さ0.1〜1.0μm程度の導電性ポリシリコン膜を積層形成する。次に通常のフォトリソグラフ法によりパターニングし、固定電極膜5(固定電極に相当)を積層形成する(図2)。この固定電極膜5は、先に形成した可動電極膜3の全面に対向するように形成するのではなく、図2に示すようにスリットが形成され、分離されている外周領域に対向するように形成するのが好ましい。   A conductive polysilicon film having a thickness of about 0.1 to 1.0 μm is formed on the sacrificial layer 4a. Next, patterning is performed by a normal photolithography method, and a fixed electrode film 5 (corresponding to a fixed electrode) is formed in a stacked manner (FIG. 2). The fixed electrode film 5 is not formed so as to face the entire surface of the previously formed movable electrode film 3, but is formed so as to face the separated outer peripheral region as shown in FIG. Preferably formed.

全面に窒化膜6を堆積させた後、通常のフォトリソグラフ法によりパターニングし、先に形成した連結部11を覆い、連結部11より内側に配置された可動電極膜3を露出できる程度の大きさの開口部13を形成する(図3)。   After the nitride film 6 is deposited on the entire surface, it is patterned by a normal photolithography method so as to cover the previously formed connecting portion 11 and to expose the movable electrode film 3 disposed inside the connecting portion 11. The opening 13 is formed (FIG. 3).

可動電極膜3と固定電極膜5のそれぞれ接続する配線部10を形成した後、シリコン基板1の裏面側からシリコン基板1と熱酸化膜2の一部を除去し、バックチャンバー14を形成する(図4)。ここで、バックチャンバー14の大きさは、引出電極を除く可動電極膜3が露出する大きさとし、バックチャンバー14側に犠牲層4aの一部を露出させる。   After forming the wiring part 10 to which the movable electrode film 3 and the fixed electrode film 5 are connected, a part of the silicon substrate 1 and the thermal oxide film 2 is removed from the back side of the silicon substrate 1 to form a back chamber 14 ( FIG. 4). Here, the size of the back chamber 14 is set such that the movable electrode film 3 excluding the extraction electrode is exposed, and a part of the sacrificial layer 4a is exposed on the back chamber 14 side.

その後、開口部13およびバックチャンバー14側に露出する犠牲層4aの一部を除去し、スペーサー4とエアーギャップ9を形成する。このように形成されたMEMS素子は、図5に示すように、固定電極膜5と窒化膜6からなるバックプレートに連結部11を介して可動電極膜3a、3bが固定された状態となる。ここで、連結部11より開口部13側の可動電極膜3aが第1の可動領域に相当し、連結部11より固定電極膜5側の可動電極膜3bが第2の可動領域に相当する。第2の可動領域の可動電極膜3bと固定電極膜5とは対向して配置され、この両電極膜間で容量値を検出する。   Thereafter, a part of the sacrificial layer 4a exposed to the opening 13 and the back chamber 14 side is removed, and the spacer 4 and the air gap 9 are formed. As shown in FIG. 5, the MEMS element formed in this way is in a state in which the movable electrode films 3 a and 3 b are fixed to the back plate including the fixed electrode film 5 and the nitride film 6 via the connecting portion 11. Here, the movable electrode film 3a closer to the opening 13 than the connecting portion 11 corresponds to the first movable region, and the movable electrode film 3b closer to the fixed electrode film 5 than the connecting portion 11 corresponds to the second movable region. The movable electrode film 3b and the fixed electrode film 5 in the second movable region are arranged to face each other, and a capacitance value is detected between the two electrode films.

次に、図5に示すMEMS素子の動作について説明する。外圧は、開口部13を通して第1の可動領域となる可動電極膜3aを変位させる。一部の外圧は、貫通孔12からバックチャンバー14側に通過し、過剰な外圧による可動電極膜3aの破損を防止する。可動電極膜3aは容量値の検出のためには使用していないので、開口部13の大きさは音圧が通過する際にノイズが発生しない十分に大きな形状とすることができる。   Next, the operation of the MEMS element shown in FIG. 5 will be described. The external pressure displaces the movable electrode film 3 a serving as the first movable region through the opening 13. A part of the external pressure passes from the through hole 12 to the back chamber 14 side, and prevents the movable electrode film 3a from being damaged by the excessive external pressure. Since the movable electrode film 3a is not used for detecting the capacitance value, the size of the opening 13 can be set to a sufficiently large shape so that noise does not occur when sound pressure passes.

貫通孔12の大きさは、所望の低域感度が得られる大きさに調整される。本実施例では、連結部がリング状に形成されているため、開口部13から連結部11を通して圧力が漏れることがないので、貫通孔12の大きさの調整のみで感度調整ができ、好適である。なお、感度調整は複雑になるものの、連結部11をリング状にせず、複数に分離した状態としても何ら問題はない。   The size of the through hole 12 is adjusted to a size with which a desired low frequency sensitivity can be obtained. In this embodiment, since the connecting portion is formed in a ring shape, pressure does not leak from the opening 13 through the connecting portion 11, so that the sensitivity can be adjusted only by adjusting the size of the through hole 12. is there. Although sensitivity adjustment is complicated, there is no problem even if the connecting portion 11 is not ring-shaped and separated into a plurality of parts.

第1の可動領域の可動電極膜3aに発生した変位は、連結部11を支点として「てこ」のように動作し、第2の可動領域の可動電極膜3bに逆向きの動きとして伝わる。つまり可動電極膜3aが下向きに変位したときには可動電極膜3bは上向きに変位し、可動電極膜3aが上向きに変位したときには可動電極膜3bは下向きに変位する。   The displacement generated in the movable electrode film 3a in the first movable region operates like a “lever” with the connecting portion 11 as a fulcrum, and is transmitted as a reverse movement to the movable electrode film 3b in the second movable region. That is, when the movable electrode film 3a is displaced downward, the movable electrode film 3b is displaced upward, and when the movable electrode film 3a is displaced upward, the movable electrode film 3b is displaced downward.

容量値の変化は、固定電極膜5と対向する可動電極膜3bの変位の大きさによって検出する。図5に示すように、支点となる連結部11から所定の寸法離れた位置に配置されている可動電極膜3bの変位は、外圧を受けて振動する可動電極膜3aの変位より大きくなり、容量値の変化も大きくなり、感度が向上することがわかる。   The change in capacitance value is detected by the magnitude of displacement of the movable electrode film 3b facing the fixed electrode film 5. As shown in FIG. 5, the displacement of the movable electrode film 3b disposed at a position away from the connecting portion 11 serving as a fulcrum is larger than the displacement of the movable electrode film 3a that vibrates by receiving external pressure, and the capacitance It can be seen that the change in the value also increases and the sensitivity is improved.

このように本実施例のMEMS素子は、第1の可動領域となる可動電極膜3aの変位を増幅して第2の可動領域となる可動電極膜3bに伝えることができ、感度の高いコンデンサマイクロフォンを形成することが可能となる。   As described above, the MEMS element of this embodiment can amplify the displacement of the movable electrode film 3a serving as the first movable region and transmit the amplified displacement to the movable electrode film 3b serving as the second movable region. Can be formed.

以上本発明の実施例について説明したが、本発明はこれらに限定されるものでないことは言うまでもない。たとえば、可動電極膜3や固定電極膜5の形状は円形あるいはリング状に限定するものではなく、それぞれ長方形など矩形形状としてもよい。また実施例1で説明した可動電極3に形成したスリットを、中央部まで延出し、可動電極を複数に分離した形状としても何ら問題ない。   As mentioned above, although the Example of this invention was described, it cannot be overemphasized that this invention is not limited to these. For example, the shapes of the movable electrode film 3 and the fixed electrode film 5 are not limited to a circular shape or a ring shape, and may be a rectangular shape such as a rectangle. In addition, there is no problem even if the slit formed in the movable electrode 3 described in the first embodiment extends to the center and the movable electrode is separated into a plurality of shapes.

1:シリコン基板、2:熱酸化膜、3:可動電極膜、4:スペーサー、4a:犠牲層、5:固定電極膜、6:窒化膜、7:貫通孔、8:スリット、9:エアーギャップ、10:配線部、11:連結部、12:貫通孔、13:開口部、14:バックチャンバー 1: silicon substrate, 2: thermal oxide film, 3: movable electrode film, 4: spacer, 4a: sacrificial layer, 5: fixed electrode film, 6: nitride film, 7: through-hole, 8: slit, 9: air gap 10: Wiring part, 11: Connection part, 12: Through hole, 13: Opening part, 14: Back chamber

Claims (3)

バックチャンバーを備えた基板上に、固定電極を含むバックプレートと可動電極とを対向配置したMEMS素子において、
前記可動電極は、連結部により前記固定電極を含むバックプレートに固定され、該連結部を挟んで一方に配置した外力を受けて変位する第1の可動領域と、前記連結部を挟んで他方に配置した前記第1の可動領域で発生した変位に応じて変位する第2の可動領域とを含み、
前記第2の可動領域は、前記固定電極と対向配置して、前記第2の可動領域と前記固定電極との間の容量変化から前記第1の可動領域が受けた前記外圧の大きさを検知することを特徴とするMEMS素子。
In a MEMS element in which a back plate including a fixed electrode and a movable electrode are arranged opposite to each other on a substrate having a back chamber,
The movable electrode is fixed to a back plate including the fixed electrode by a connecting portion, and is displaced by receiving an external force disposed on one side of the connecting portion and on the other side of the connecting portion. A second movable region that is displaced in accordance with a displacement generated in the first movable region that is disposed,
The second movable region is disposed opposite to the fixed electrode, and detects the magnitude of the external pressure received by the first movable region from a capacitance change between the second movable region and the fixed electrode. A MEMS element characterized in that:
請求項1記載のMEMS素子において、
前記固定電極の一部に開口部を備え、
該開口部内に前記第1の可動領域が露出していることを特徴とするMEMS素子。
The MEMS device according to claim 1, wherein
An opening is provided in a part of the fixed electrode,
The MEMS element, wherein the first movable region is exposed in the opening.
請求項1または2いずれか記載のMEMS素子において、
前記連結部は前記第1の可動領域と前記第2の可動領域とを分離する隔壁を構成することを特徴とするMEMS素子。
The MEMS element according to claim 1 or 2,
The MEMS element according to claim 1, wherein the connecting portion constitutes a partition that separates the first movable region and the second movable region.
JP2015256231A 2015-12-28 2015-12-28 MEMS element Active JP6662509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015256231A JP6662509B2 (en) 2015-12-28 2015-12-28 MEMS element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015256231A JP6662509B2 (en) 2015-12-28 2015-12-28 MEMS element

Publications (2)

Publication Number Publication Date
JP2017120974A true JP2017120974A (en) 2017-07-06
JP6662509B2 JP6662509B2 (en) 2020-03-11

Family

ID=59272674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015256231A Active JP6662509B2 (en) 2015-12-28 2015-12-28 MEMS element

Country Status (1)

Country Link
JP (1) JP6662509B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019042872A (en) * 2017-09-02 2019-03-22 新日本無線株式会社 Mems element and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005440A (en) * 2006-06-26 2008-01-10 Yamaha Corp Capacitor microphone and method of manufacturing the same
JP2014016175A (en) * 2012-07-06 2014-01-30 Hitachi Automotive Systems Ltd Inertial sensor
JP2014048292A (en) * 2012-08-30 2014-03-17 Freescale Semiconductor Inc Pressure sensor with differential capacitive output

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005440A (en) * 2006-06-26 2008-01-10 Yamaha Corp Capacitor microphone and method of manufacturing the same
JP2014016175A (en) * 2012-07-06 2014-01-30 Hitachi Automotive Systems Ltd Inertial sensor
JP2014048292A (en) * 2012-08-30 2014-03-17 Freescale Semiconductor Inc Pressure sensor with differential capacitive output

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019042872A (en) * 2017-09-02 2019-03-22 新日本無線株式会社 Mems element and method of manufacturing the same

Also Published As

Publication number Publication date
JP6662509B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
US10506345B2 (en) System and method for a microphone
US10412504B2 (en) MEMS microphone and method of manufacturing the same
US10158952B2 (en) MEMS microphone and method of manufacturing the same
US20160340173A1 (en) System and method for a mems transducer
US8415717B2 (en) Acoustic sensor
JP2019140638A (en) Piezoelectric element
JP6405276B2 (en) MEMS device and manufacturing method thereof
KR102488122B1 (en) MEMS microphone and method of manufacturing the same
JP4737535B2 (en) Condenser microphone
US10966030B2 (en) MEMS microphone, method of manufacturing the same and MEMS microphone package including the same
KR102486583B1 (en) MEMS microphone, MEMS microphone package and method of manufacturing the same
JP6540160B2 (en) MEMS element
JP6662509B2 (en) MEMS element
JP2021097302A (en) MEMS element
JP2008244752A (en) Electrostatic pressure transducer
JP6382032B2 (en) MEMS element
JP6631778B2 (en) MEMS element
EP3783915A1 (en) Membrane support for dual backplate transducers
JP6699854B2 (en) MEMS element
KR102499855B1 (en) MEMS microphone, MEMS microphone package and method of manufacturing the same
JP6679044B2 (en) MEMS element
JP6863545B2 (en) MEMS device and its manufacturing method
JP2015188947A (en) MEMS element
JP6874943B2 (en) MEMS element
JP2016007681A (en) Mems element and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200129

R150 Certificate of patent or registration of utility model

Ref document number: 6662509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250