JP2017094294A - Granule scattering method and granule scattering device, and granule containing article manufacturing method - Google Patents

Granule scattering method and granule scattering device, and granule containing article manufacturing method Download PDF

Info

Publication number
JP2017094294A
JP2017094294A JP2015230330A JP2015230330A JP2017094294A JP 2017094294 A JP2017094294 A JP 2017094294A JP 2015230330 A JP2015230330 A JP 2015230330A JP 2015230330 A JP2015230330 A JP 2015230330A JP 2017094294 A JP2017094294 A JP 2017094294A
Authority
JP
Japan
Prior art keywords
hopper
granular material
total weight
powder
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015230330A
Other languages
Japanese (ja)
Inventor
知大 中澤
Tomohiro Nakazawa
知大 中澤
和俊 大塚
Kazutoshi Otsuka
和俊 大塚
良輔 真鍋
Ryosuke Manabe
良輔 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2015230330A priority Critical patent/JP2017094294A/en
Priority to CN201680057683.1A priority patent/CN108137243B/en
Priority to PCT/JP2016/079143 priority patent/WO2017061339A1/en
Priority to TW105132153A priority patent/TWI682884B/en
Publication of JP2017094294A publication Critical patent/JP2017094294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To make constant the scattering amount of a granule reserved in a feeding device such as a hopper.SOLUTION: The total weight A of a hopper 2 and a granule P stored in the hopper 2 is continuously measured, and a granule supplying operation for supplying the granule F into the hopper 2 till the total weight A becomes an initially set weight, if said total weight A becomes below an initial set weight. Independently of this, the amount of change ΔA of the total quantity A per unit time is measured and the transportation ability of transportation means 3 is controlled in accordance with ΔA, and the transportation ability control operation is performed so that a scattering amount ΔS per unit time period of the granule P to be scattered by the transportation means 3 may become identical to a target spray quantity ΔSper unit time. While the granule supplementing operation is being performed, the transfer ability control operation is paused to hold the transfer ability of the transportation means 3 at the transfer ability just before the pause of the transfer ability control operation.SELECTED DRAWING: Figure 1

Description

本発明は、粉粒体の散布方法及び粉粒体散布装置に関する。また本発明は、粉粒体含有物品の製造方法に関する。   The present invention relates to a powder particle spraying method and a powder particle spraying apparatus. Moreover, this invention relates to the manufacturing method of a granular material containing article.

種々の製品の製造において、連続搬送される基材に対して均一に粉粒体を散布させることが要望されている。斯かる要望に応えることを目的とした技術に関し、例えば特許文献1には、粉粒体を収容する供給装置と、粉粒体を受入れかつ搬送する搬出装置と、粉粒体を滞ることなく搬出装置に導く継ぎ手段と、収容する粉粒体を含む供給装置の全重量を連続して計量する計量装置と、計量装置の計量値から供給装置における単位時間当たりの減少量ΔBが単位時間当たりの希望搬出量ΔB1と一致するように搬出装置の搬出能力を制御する制御装置とを具えた粉粒体定量供給搬出装置が提案されている。   In the manufacture of various products, it is desired to uniformly disperse powder particles on a continuously conveyed substrate. With regard to the technology aimed at meeting such a demand, for example, Patent Document 1 discloses a supply device that accommodates a granular material, an unloading device that receives and conveys the granular material, and an unloading of the granular material without delay. A splicing means that leads to the device, a weighing device that continuously weighs the total weight of the supply device including the granular material to be accommodated, and a decrease amount ΔB per unit time in the supply device from the measured value of the weighing device There has been proposed a powder and granular constant supply carry-out device including a control device that controls the carry-out capability of the carry-out device so as to coincide with the desired carry-out amount ΔB1.

特許文献2には、ホッパーと、ホッパー内に配設され回転駆動することによりホッパー内の粉体材料を下方へ落下させるロータリフィーダと、ホッパーから落下する粉体材料を受け止めてこれを搬送するベルトフィーダと、ベルトフィーダの上方に隙間をあけて配設されてこの隙間を通過する粉体材料の搬送量を調整する搬送量調整器と、ベルトフィーダの下流側端部まで搬送された粉体材料と接触しながら回転駆動することによりこの粉体材料を下方に掻き落として散布する掻き落としロータとを具備する粉体散布装置が記載されている。   Patent Document 2 discloses a hopper, a rotary feeder that is disposed in the hopper and rotationally drives the powder material in the hopper to drop downward, and a belt that receives and conveys the powder material falling from the hopper. A feeder, a conveyance amount adjuster that adjusts the conveyance amount of the powder material that is disposed above the belt feeder and that passes through the gap, and a powder material that is conveyed to the downstream end of the belt feeder There is described a powder spraying device comprising a scraping rotor for scraping and spraying the powder material downward by rotating it while being in contact with it.

特許文献3には、連続搬送される基材上に粉粒体を散布する方法であって、粉粒体を一時貯留する供給部から粉粒体をスクリューフィーダで連続的に切り出し、切り出した粉粒体を落下させて振動搬送部で受け取り、該振動搬送部が備える振動体の振動で粉粒体を分散させながら搬送し、振動搬送部の散布口から粉粒体を基材上に連続散布する方法が提案されている。この方法においては、供給部及びスクリューフィーダ及びこれら内部にある粉粒体の全質量を連続計量し、該計量した複数の計量値に基づいてスクリュー制御部が粉粒体の単位時間あたりの減少量を算出し、かつ、該算出した減少量を単位時間あたりの目標排出量に一致させるようにスクリュー制御部がスクリューフィーダのスクリュー回転数を制御している。また、連続計量された値が、供給部、スクリューフィーダ及びこれら内部にある粉粒体を併せた合計質量の目標下限量を下回ると、粉粒体供給量制御部が、目標上限量になるまで供給部に粉粒体を供給制御している。   Patent Document 3 discloses a method in which powder particles are dispersed on a continuously conveyed substrate, and the powder particles are continuously cut out from a supply unit that temporarily stores the powder particles with a screw feeder, and cut out. Drop the granule and receive it at the vibration conveyance unit, convey it while dispersing the granular material by the vibration of the vibration body provided in the vibration conveyance unit, and continuously spread the granular material on the base material from the spray port of the vibration conveyance unit A method has been proposed. In this method, the supply unit, the screw feeder, and the total mass of the powder particles inside these are continuously weighed, and the screw control unit reduces the amount of powder particles per unit time based on the plurality of measured values. And the screw controller controls the screw rotation speed of the screw feeder so that the calculated reduction amount matches the target discharge amount per unit time. Further, when the continuously weighed value falls below the target lower limit amount of the total mass of the supply unit, the screw feeder, and the powder particles inside thereof, until the powder body supply amount control unit reaches the target upper limit amount. Supply control of the powder particles to the supply unit.

特開平11−153473号公報JP 11-153473 A 特開2007−98285号公報JP 2007-98285 A 特開2013−139337号公報JP 2013-139337 A

ところで、ホッパー等の供給装置内に貯留されている粉粒体を、該ホッパーの下部から自然落下させる場合、ホッパー内に貯留されている粉粒体の量に応じて落下量に差が生じる場合があることが経験的に知られている。したがって、粉粒体の落下量を常に一定にするためには、ホッパー内の粉粒体の質量を常時監視しておき、ホッパー内の粉粒体の質量が一定になるようにホッパー内への粉粒体の供給を連続して行えばよい。しかし、ホッパー内へ粉粒体を連続供給しつつホッパー内の粉粒体の質量を連続的に測定することは、質量計量機器の制約上容易でない場合がある。特に落下量が少量である場合に、該落下量を高精度で制御するには、ホッパー内に貯留されている粉粒体の質量を厳密に管理し、且つ落下量を厳密に管理する必要がある。   By the way, when the granular material stored in the supply device such as the hopper is naturally dropped from the lower part of the hopper, the amount of the dropping is different depending on the amount of the granular material stored in the hopper. It is empirically known that there is. Therefore, in order to keep the amount of fallen powder always constant, the mass of the powder in the hopper is constantly monitored, and the mass of the powder in the hopper is kept constant so that the mass of the powder in the hopper is constant. What is necessary is just to supply a granular material continuously. However, it may not be easy to continuously measure the mass of the granular material in the hopper while continuously supplying the granular material into the hopper due to limitations of the mass measuring device. In particular, when the fall amount is small, in order to control the fall amount with high accuracy, it is necessary to strictly manage the mass of the granular material stored in the hopper and to strictly manage the fall amount. is there.

したがって本発明の課題は、ホッパー等の供給装置内に貯留されている粉粒体の散布量を一定にする方法及び装置を提供することにある。   Therefore, the subject of this invention is providing the method and apparatus which make constant the spraying quantity of the granular material currently stored in supply apparatuses, such as a hopper.

本発明は、ホッパーから排出された粉粒体を、搬送手段によって所定の一方向に搬送して散布する工程を備えた粉粒体の散布方法であって、
前記ホッパー及び該ホッパー内に貯蔵されている前記粉粒体の全重量を連続して計量し、該全重量が閾値を下回ったら、該全重量が初期設定重量となるまで該ホッパー内に該粉粒体を補充する粉粒体補充操作を行い、
前記粉粒体補充操作とは独立して、前記全重量の単位時間当たりの変化量を測定し、該変化量に応じて前記搬送手段の搬送能力を制御することで、該搬送手段によって散布される前記粉粒体の単位時間当たりの散布量が、単位時間当たりの目標散布量と一致するようにする搬送能力制御操作を行い、
前記粉粒体補充操作を行っている間は、前記搬送能力制御操作を休止して、前記搬送手段の搬送能力を、該搬送能力制御操作の休止直前の搬送能力に保持しておく、粉粒体の散布方法を提供するものである。
The present invention is a method for spraying granular material comprising a step of transporting and spraying the granular material discharged from the hopper in a predetermined direction by a transport means,
The total weight of the hopper and the granular material stored in the hopper is continuously weighed, and when the total weight falls below a threshold, the powder is placed in the hopper until the total weight reaches the initial set weight. Perform the powder replenishment operation to replenish the granules,
Independently of the powder and granule replenishment operation, the amount of change per unit time of the total weight is measured, and the transfer capability of the transfer means is controlled according to the change amount, thereby being dispersed by the transfer means. The carrying capacity control operation is performed so that the spraying amount per unit time of the granular material matches the target spraying amount per unit time,
While performing the powder replenishment operation, the conveyance capacity control operation is suspended, and the conveyance capacity of the conveyance means is maintained at the conveyance capacity immediately before the conveyance capacity control operation is suspended. It provides a way to spread the body.

また本発明は、ホッパーから排出された粉粒体を、搬送手段によって所定の一方向に搬送して散布対象物に散布することで、該粉粒体を含む物品を製造する、粉粒体含有物品の製造方法であって、
前記ホッパー及び該ホッパー内に貯蔵されている前記粉粒体の全重量を連続して計量し、該全重量が閾値を下回ったら、該全重量が初期設定重量となるまで該ホッパー内に該粉粒体を補充する粉粒体補充操作を行い、
前記粉粒体補充操作とは独立して、前記全重量の単位時間当たりの変化量を測定し、該変化量に応じて前記搬送手段の搬送能力を制御することで、該搬送手段によって散布される前記粉粒体の単位時間当たりの散布量が、単位時間当たりの目標散布量と一致するようにする搬送能力制御操作を行い、
前記粉粒体補充操作を行っている間は、前記搬送能力制御操作を休止して、前記搬送手段の搬送能力を、該搬送能力制御操作の休止直前の搬送能力に保持しておく、粉粒体含有物品の製造方法を提供するものである。
Moreover, this invention manufactures the articles | goods containing this granular material by conveying the granular material discharged | emitted from the hopper to the spreading | diffusion target object by conveying to a predetermined direction with a conveyance means, and granular material containing A method for manufacturing an article, comprising:
The total weight of the hopper and the granular material stored in the hopper is continuously weighed, and when the total weight falls below a threshold, the powder is placed in the hopper until the total weight reaches the initial set weight. Perform the powder replenishment operation to replenish the granules,
Independently of the powder and granule replenishment operation, the amount of change per unit time of the total weight is measured, and the transfer capability of the transfer means is controlled according to the change amount, thereby being dispersed by the transfer means. The carrying capacity control operation is performed so that the spraying amount per unit time of the granular material matches the target spraying amount per unit time,
While performing the powder replenishment operation, the conveyance capacity control operation is suspended, and the conveyance capacity of the conveyance means is maintained at the conveyance capacity immediately before the conveyance capacity control operation is suspended. A method for producing a body-containing article is provided.

更に本発明は、内部に一時的に貯蔵した粉粒体を、移動路を介して排出口より排出するホッパーと、
前記ホッパーから排出された前記粉粒体を所定の一方向に搬送して散布する搬送手段と、
前記ホッパー及び該ホッパー内に貯蔵される粉粒体の全重量を連続して計量する計量装置と、
前記全重量の単位時間当たりの変化量を測定し、且つ前記搬送手段によって散布される前記粉粒体の単位時間当たりの散布量が、単位時間当たりの目標散布量と一致するように、該変化量に応じて前記搬送手段の搬送能力の制御を行うとともに、この制御とは独立して、該全重量が閾値を下回ったら、該全重量が初期設定重量となるまで前記ホッパー内に前記粉粒体を補充する制御を行う制御手段と、を備えた粉粒体散布装置であって、
前記制御手段は、前記粉粒体が前記ホッパーに補充されている間は、前記搬送手段の搬送能力の制御を休止させるとともに、制御休止中の該搬送手段の搬送能力を、制御休止直前の搬送能力に保持するように構成されている、粉粒体散布装置を提供するものである。
Furthermore, the present invention provides a hopper that discharges the particulates temporarily stored therein from the discharge port via the moving path;
Conveying means for conveying the powder particles discharged from the hopper in a predetermined direction and spraying;
A weighing device for continuously weighing the total weight of the hopper and the granular material stored in the hopper;
The amount of change per unit time of the total weight is measured, and the amount of change per unit time of the powder particles sprayed by the transport means is matched with the target amount of application per unit time. Independent of this control, when the total weight falls below a threshold, the powder particles in the hopper until the total weight reaches the initial set weight. A control means for performing control to replenish the body, and a granular material spraying device comprising:
The control means pauses the control of the transport capability of the transport means while the powder is replenished in the hopper, and the transport capability of the transport means during the control pause is transported immediately before the control pause. It is intended to provide a powder and particle distribution device configured to maintain capacity.

本発明によれば、ホッパー等の供給装置内に貯留されている粉粒体の散布量を一定にすることができる。   ADVANTAGE OF THE INVENTION According to this invention, the application quantity of the granular material currently stored in supply apparatuses, such as a hopper, can be made constant.

図1は、本発明で用いられる粉粒体散布装置の一実施形態を模式的に示す側面図である。FIG. 1 is a side view schematically showing one embodiment of a powder particle distribution device used in the present invention. 図2は、図1に示す粉粒体散布装置を、搬送手段による粉粒体の搬送方向の上流側から見た様子を模式的に示す正面図である。FIG. 2 is a front view schematically showing a state where the granular material spraying apparatus shown in FIG. 1 is viewed from the upstream side in the conveying direction of the granular material by the conveying means. 図3(a)及び図3(b)はそれぞれ、ホッパー及び該ホッパー内に貯蔵される粉粒体の全重量の計測値に基づき、該全重量の単位時間当たりの変化量を算出する方法を説明する図である。FIG. 3 (a) and FIG. 3 (b) show a method for calculating the amount of change per unit time of the total weight based on the measured value of the total weight of the hopper and the granular material stored in the hopper, respectively. It is a figure explaining. 図4は、ホッパー及び該ホッパー内に貯蔵される粉粒体の全重量の計測値の経時変化、該全重量の単位時間当たりの変化量、及び該変化量に基づく振動発生手段の振幅の変化の程度を示すグラフである。FIG. 4 shows the change over time in the measured value of the total weight of the hopper and the granular material stored in the hopper, the amount of change in the total weight per unit time, and the change in the amplitude of the vibration generating means based on the amount of change. It is a graph which shows the grade of. 図5は、図1に示す粉粒体散布装置におけるホッパーの斜視図である。FIG. 5 is a perspective view of a hopper in the granular material spraying apparatus shown in FIG. 1. 図6は、図1に示す粉粒体散布装置における排出口及びその近傍を模式的に示す側面図である。FIG. 6 is a side view schematically showing the discharge port and the vicinity thereof in the powder particle distribution device shown in FIG. 1. 図7(a)及び図7(b)はそれぞれ、粉粒体散布装置に係る排出口を模式的に示す平面図である。FIG. 7A and FIG. 7B are plan views schematically showing discharge ports according to the granular material spraying device. 図8は、実施例1で行われた粉粒体の散布における実測散布量の経時変化を示すグラフである。FIG. 8 is a graph showing the change over time of the measured spray amount in the spraying of the granular material performed in Example 1. 図9は、比較例1で行われた粉粒体の散布における実測散布量の経時変化を示すグラフである。FIG. 9 is a graph showing the change over time in the actual amount of spraying in the spraying of the granular material performed in Comparative Example 1.

以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。まず、本発明の粉粒体の散布方法に用いられる好ましい散布装置の一実施形態を、図1を参照しながら説明する。図1に示す粉粒体散布装置1は、ホッパーから排出された粉粒体を、搬送手段によって所定の一方向に搬送して散布対象物に散布することで、該粉粒体を含む物品を製造する、粉粒体含有物品の製造に好適に用いられるものである。粉粒体散布装置1は、粉粒体Pを内部に一時的に貯蔵可能なホッパー2と、ホッパー2から排出された粉粒体Pを図中符号Xで示す所定の一方向(搬送方向)に搬送し、連続搬送される基材100上に散布する搬送手段3とを備えている。ホッパー2は、搬送手段3(受取手段30)の上方位置に位置している。基材100は例えば、図1に示す如き搬送ロール、あるいはベルトコンベア等の公知の搬送装置により連続搬送することができる。なお、基材100及びその搬送装置は、粉粒体散布装置1を構成するものではない。   The present invention will be described below based on preferred embodiments with reference to the drawings. First, an embodiment of a preferable spraying device used in the powder particle spraying method of the present invention will be described with reference to FIG. The granular material spraying apparatus 1 shown in FIG. 1 conveys the granular material discharged from the hopper in a predetermined direction by the conveying means and spreads it on the object to be dispersed, whereby an article including the granular material is obtained. It is used suitably for manufacture of the granular material containing article to manufacture. The powder particle distribution device 1 includes a hopper 2 capable of temporarily storing the powder particles P therein, and a predetermined direction (conveying direction) indicated by a symbol X in the figure with respect to the powder particles P discharged from the hopper 2. And conveying means 3 for spraying onto the continuously conveyed base material 100. The hopper 2 is located above the conveying means 3 (receiving means 30). The base material 100 can be continuously transported by a known transport device such as a transport roll as shown in FIG. 1 or a belt conveyor. In addition, the base material 100 and its conveying apparatus do not constitute the powder particle distribution apparatus 1.

ホッパー2は、図1に示す如き側面視、すなわち、搬送手段3による粉粒体Pの搬送方向Xと直交する方向から見た場合において、上底が下底より長い台形形状をなしている貯蔵部20と、該貯蔵部20の下端に連接され、該側面視において長方形形状をなす直方体形状の排出部21とを含んで構成されている。貯蔵部20は内部に粉粒体Pの貯蔵が可能な空間を有し、その内部空間に粉粒体Pを一時的に貯蔵することが可能になされている。粉粒体Pは、貯蔵部20の上部開口を通じ、粉体供給装置90によって貯蔵部20の内部空間に供給される。排出部21は内部に粉粒体Pの移動路22を有し、且つ排出部21の下端(貯蔵部20側とは反対側の端部)には、粉粒体Pの排出口23が形成されており、貯蔵部20の内部空間と排出口23とが移動路22を介して連通している。ホッパー2は、斯かる構成により、内部に一時的に貯蔵した粉粒体Pを、移動路22を介して排出口23から排出することが可能になされている。   The hopper 2 has a trapezoidal shape in which the upper base is longer than the lower base when viewed from the side as shown in FIG. 1, that is, when viewed from a direction orthogonal to the conveying direction X of the powder P by the conveying means 3. It includes a portion 20 and a rectangular parallelepiped discharge portion 21 connected to the lower end of the storage portion 20 and having a rectangular shape in the side view. The storage unit 20 has a space in which the granular material P can be stored, and the granular material P can be temporarily stored in the internal space. The powder P is supplied to the internal space of the storage unit 20 by the powder supply device 90 through the upper opening of the storage unit 20. The discharge part 21 has the movement path 22 of the granular material P inside, and the discharge port 23 of the granular material P is formed in the lower end (end part on the opposite side to the storage part 20 side) of the discharge part 21. The internal space of the storage unit 20 and the discharge port 23 communicate with each other via the movement path 22. With such a configuration, the hopper 2 can discharge the granular material P temporarily stored therein from the discharge port 23 via the movement path 22.

搬送手段3は、図1に示すように、ホッパー2から排出された粉粒体Pを受け取る受取手段30と、受取手段30を振動させる振動発生手段31とを含んで構成されている。搬送手段3は、ホッパー2の下端に位置する排出口23に対して隙間Gを置いて配置されている。より具体的には、搬送手段3は、受取手段30の上面30a、すなわち、ホッパー2から排出された粉粒体Pを受け取って搬送する面30aと排出口23との間に所定の隙間Gが形成されるように配置されている。振動発生手段31は、受取手段30の下面30bに固定されている。受取手段30において、粉粒体Pの受け取り及び搬送に利用される(粉粒体Pと接触する)のは、ホッパー2(排出口23)の下方に位置する部分及びその近傍であり、それ以外の部分は基本的に粉粒体Pと接触しない粉粒体非接触部であるところ、振動発生手段31は、受取手段30の該粉粒体非接触部における下面30bに固定されている。   As shown in FIG. 1, the conveying unit 3 includes a receiving unit 30 that receives the powder P discharged from the hopper 2 and a vibration generating unit 31 that vibrates the receiving unit 30. The conveying means 3 is arranged with a gap G with respect to the discharge port 23 located at the lower end of the hopper 2. More specifically, the transport unit 3 has a predetermined gap G between the upper surface 30a of the receiving unit 30, that is, the surface 30a that receives and transports the powder P discharged from the hopper 2 and the discharge port 23. It is arranged to be formed. The vibration generating means 31 is fixed to the lower surface 30 b of the receiving means 30. The receiving means 30 is used for receiving and transporting the granular material P (in contact with the granular material P) in the vicinity of the portion located below the hopper 2 (discharge port 23) and the vicinity thereof. This part is basically a powder non-contact portion that does not come into contact with the powder P, and the vibration generating means 31 is fixed to the lower surface 30b of the powder non-contact portion of the receiving means 30.

搬送手段3は、振動発生手段31を作動させて受取手段30を振動させることによって、受取手段30上の粉粒体Pを所定の方向に搬送可能になされている。粉粒体散布装置1は、振動発生手段31に印加する電圧及び周波数を制御する制御部40を備えており、該制御部40によって、受取手段30の振動数及び/又は振幅を制御し、延いては受取手段30上の粉粒体Pの搬送状態を制御する。すなわち、制御部40による制御下、振動発生手段31の非作動時には、受取手段30は振動していないため、受取手段30上の粉粒体Pの搬送は停止又は抑制されている。斯かる状態から振動発生装手段31を作動させると、受取手段30が振動を開始することによって、受取手段30上の粉粒体Pの停止又は抑制が解除され、粉粒体Pは、図中符号Xで示す方向(搬送方向)に搬送され、最終的には図1及び図2に示すように、受取手段30の端部から落下して、受取手段30の下方を連続搬送されている基材100上に散布される。   The conveying means 3 operates the vibration generating means 31 to vibrate the receiving means 30 so that the granular material P on the receiving means 30 can be conveyed in a predetermined direction. The granular material spraying device 1 includes a control unit 40 that controls the voltage and frequency applied to the vibration generating unit 31, and the control unit 40 controls the frequency and / or amplitude of the receiving unit 30 to extend the frequency. In this case, the conveying state of the powder P on the receiving means 30 is controlled. That is, under the control of the control unit 40, when the vibration generating means 31 is not in operation, the receiving means 30 is not vibrating, so that the conveyance of the granular material P on the receiving means 30 is stopped or suppressed. When the vibration generating means 31 is operated from such a state, the receiving means 30 starts to vibrate, so that the stop or suppression of the powder P on the receiving means 30 is released, and the powder P is shown in the figure. It is transported in the direction indicated by the symbol X (conveying direction), and finally falls from the end of the receiving means 30 as shown in FIGS. 1 and 2, and is continuously transported below the receiving means 30. It is spread on the material 100.

振動発生手段31によって発生する振動を受取手段30上の粉粒体Pに適切に伝えるようにする観点から、受取手段30は平板状のものであることが好ましく、より具体的には、図1に示す如き扁平な平板部材が好ましい。更に、排出口23から排出された粉粒体Pを、受取手段30の搬送方向Xに対して先端部から均一に散布する観点から、搬送方向X以外からの散布を防止するために、受取手段30の側面にガイドを設けても良い。斯かる平板部材からなる受取手段30の材質は特に制限されないが、例えば、各種プラスチックや各種金属などが挙げられる。   From the viewpoint of appropriately transmitting the vibration generated by the vibration generating means 31 to the powder P on the receiving means 30, the receiving means 30 is preferably a flat plate, more specifically, FIG. A flat plate member as shown in FIG. Further, in order to prevent the particles P discharged from the discharge port 23 from being distributed uniformly from the front end portion with respect to the conveying direction X of the receiving means 30, in order to prevent scattering from other than the conveying direction X, the receiving means Guides may be provided on the 30 side surfaces. Although the material of the receiving means 30 which consists of such a flat plate member is not restrict | limited in particular, For example, various plastics, various metals, etc. are mentioned.

振動発生手段31としては、受取手段30上の粉粒体Pを所望の一方向に搬送させ得る振動成分を発生可能なものであれば良く、例えば、圧電セラミック等の圧電素子、振動フィーダ等の公知の振動発生手段が挙げられる。中でも振動フィーダは、振動発生手段31として好ましく用いられる。また、振動発生手段31の振動数は特に制限されないが、粉粒体の搬送性並びに散布の均一性及び定量性等の観点から、好ましくは50Hz以上、更に好ましくは100Hz以上であり、そして、好ましくは500Hz以下、更に好ましくは300Hz以下である。より具体的には、好ましくは50Hz以上500Hz以下であり、更に好ましくは100Hz以上300Hz以下である。   The vibration generating unit 31 may be any unit capable of generating a vibration component capable of transporting the granular material P on the receiving unit 30 in a desired direction. For example, a piezoelectric element such as a piezoelectric ceramic, a vibration feeder, or the like can be used. A well-known vibration generating means is mentioned. Among these, the vibration feeder is preferably used as the vibration generating means 31. Further, the frequency of the vibration generating means 31 is not particularly limited, but is preferably 50 Hz or more, more preferably 100 Hz or more, and preferably from the viewpoint of the transportability of the granular material and the uniformity and quantitativeness of the dispersion. Is 500 Hz or less, more preferably 300 Hz or less. More specifically, it is preferably 50 Hz or more and 500 Hz or less, and more preferably 100 Hz or more and 300 Hz or less.

ホッパー2には計量装置50が取り付けられている。計量装置50としては、ホッパー2及びホッパー2内に貯蔵されている粉粒体Pの全重量を連続して計量可能なものが用いられる。連続して計量可能とは、計量データのサンプリングタイムが1秒以下であることをいう。計量装置50によって計量されたホッパー2及びホッパー2内に貯蔵されている粉粒体Pの全重量の計量データは、データの取得のたびに、先に述べた制御部40に送信されるようになっている。計量装置50の具体例としては電気式計量器が挙げられ、具体的には、ロードセル式計量器や電磁式計量器、音叉式計量器等を用いることができる。   A weighing device 50 is attached to the hopper 2. As the weighing device 50, a device capable of continuously weighing the total weight of the hopper 2 and the powder P stored in the hopper 2 is used. “Continuous weighing” means that the sampling time of the weighing data is 1 second or less. The weighing data of the hopper 2 weighed by the weighing device 50 and the total weight of the powder P stored in the hopper 2 are transmitted to the control unit 40 described above every time the data is acquired. It has become. A specific example of the weighing device 50 is an electric meter, and specifically, a load cell meter, an electromagnetic meter, a tuning fork meter, or the like can be used.

制御部40は、上述のとおり、受取手段30の振動数及び/又は振幅を制御する機能を有する。また制御部40は、計量装置50から送信された計量データを受信できるようになっている。更に制御部40は、ホッパー2の貯蔵部20上に設置されている粉体供給装置90に接続されており、貯蔵部20内への粉粒体Pの供給も制御する機能を有する。制御部40としては、例えば制御・処理用ソフトウエアがインストールされたコンピュータを用いることができる。   As described above, the control unit 40 has a function of controlling the frequency and / or amplitude of the receiving unit 30. Further, the control unit 40 can receive the weighing data transmitted from the weighing device 50. Further, the control unit 40 is connected to a powder supply device 90 installed on the storage unit 20 of the hopper 2 and has a function of controlling the supply of the granular material P into the storage unit 20. As the control unit 40, for example, a computer in which control / processing software is installed can be used.

粉粒体散布装置1を用いた散布の対象となる粉粒体Pとしては、例えば吸水性ポリマー粒子、砂糖、活性炭、小麦粉、ポリエチレンペレット、ポリプロピレンペレット、ポリエチレンテレフタレートチップ、ポリカーボネートチップ、ポリエチレングラニュール、ポリアクリル酸ブチルビーズ等の有機物の粉粒体や、金属粉、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、ガラス、石灰等の無機物の粉粒体が挙げられる。粉粒体Pの形状は特に制限されず、例えば、球状、碁石状、楕円形、楕円柱、針状、キュービック状等が挙げられる。粉粒体散布装置1によれば、粉粒体Pが真球状の場合は勿論のこと、真球状以外の形状であっても、基材100の長手方向(すなわち搬送方向X)及び/又は幅方向Yに均一に定量性良く散布することができる。   Examples of the granular material P to be dispersed using the granular material spraying device 1 include water-absorbing polymer particles, sugar, activated carbon, wheat flour, polyethylene pellets, polypropylene pellets, polyethylene terephthalate chips, polycarbonate chips, polyethylene granules, Examples include organic particles such as polybutyl acrylate beads, and inorganic particles such as metal powder, sodium chloride, potassium chloride, calcium chloride, magnesium chloride, glass, and lime. The shape of the granular material P is not particularly limited, and examples thereof include a spherical shape, a meteorite shape, an elliptical shape, an elliptical column, a needle shape, and a cubic shape. According to the powder particle dispersion device 1, not only when the powder particle P is spherical, but also in a shape other than the spherical shape, the longitudinal direction (that is, the conveyance direction X) and / or the width of the base material 100. It is possible to spray uniformly in the direction Y with good quantitativeness.

基材100は、シート状の基材であることが好ましいが、シート状の基材に限られない。シート状の基材としては、各種製法による不織布、樹脂フィルム、織物、編み物、紙等、及びこれらのうちの同種又は異種のものを複数枚積層した積層体等が挙げられる。   The substrate 100 is preferably a sheet-like substrate, but is not limited to a sheet-like substrate. Examples of the sheet-like base material include non-woven fabrics, resin films, woven fabrics, knitted fabrics, papers, and the like produced by various manufacturing methods, and laminates obtained by laminating a plurality of the same or different materials.

粉粒体散布装置1を用いて、連続搬送されるシート状の基材上に粉粒体を散布する粉粒体の散布方法の一例として、被酸化性金属の粒子、及び水を含む発熱シートを製造する際に、連続搬送される繊維シートからなるシート状の基材上に、高吸水性ポリマーの粒子、金属粒子、固形の電解質等を散布して、発熱組成物を形成する方法が挙げられる。この発熱組成物の層に、塩化ナトリウム等の電解質や吸水性ポリマーといった粉粒体を、本発明の粉粒体散布装置を用いて散布することにより、これら粉粒体が均一な状態で配置された発熱体を得ることができる。このような発熱体であれば、発熱ムラの少ない、優れた発熱特性を得られることが期待できる。なお、本発明の装置及び粉粒体の散布方法は、発熱体の製造方法において好ましいものであるが、他の機能性シートの製造方法にも適用可能である。   As an example of a method for spraying powder particles on a sheet-like substrate that is continuously conveyed using the powder particle spraying device 1, an exothermic sheet containing oxidizable metal particles and water A method of forming a heat-generating composition by spraying particles of superabsorbent polymer, metal particles, solid electrolyte, etc. on a sheet-like base material composed of continuously conveyed fiber sheets. It is done. By disperse | distributing the granular material, such as electrolytes, such as sodium chloride, and a water absorbing polymer, to this exothermic composition layer using the granular material spraying apparatus of this invention, these granular materials are arrange | positioned in a uniform state. A heating element can be obtained. With such a heating element, it can be expected that excellent heat generation characteristics with less unevenness in heat generation can be obtained. In addition, although the apparatus of this invention and the dispersion method of a granular material are preferable in the manufacturing method of a heat generating body, it is applicable also to the manufacturing method of another functional sheet.

粉粒体散布装置1を用いて、連続搬送されるシート状の基材100上に粉粒体Pを散布する場合には、ホッパー2における排出口23を通じて該ホッパー2内に貯留されている粉粒体Pを落下させ、搬送手段3の受取手段30上に散布する。粉粒体Pの落下に連れてホッパー2内での粉粒体Pの貯留量は次第に減少してくる。ホッパー2内での粉粒体Pの量は、ホッパー2及びホッパー2内に貯蔵されている粉粒体Pの全重量の形で計量装置50によって連続的に計量される。なお、以下の説明においては、簡便のため、ホッパー2及びホッパー2内に貯蔵されている粉粒体Pの全重量のことを「ホッパー込み粉粒体重量」とも言う。ホッパー込み粉粒体重量Aの連続計量に先立ち、粉粒体Pの満充填状態でのホッパー込み粉粒体重量Aを予め測定しておくことが好ましい。粉粒体Pの満充填状態でのホッパー込み粉粒体重量Aを予め測定しておくことで、ホッパー2から落下した粉粒体Pの重量Aを、A−Aの計算から容易に算出することができる。 When spraying the powder P on the sheet-like base material 100 that is continuously conveyed using the powder spraying device 1, the powder stored in the hopper 2 through the discharge port 23 in the hopper 2. The particles P are dropped and spread on the receiving means 30 of the conveying means 3. As the granular material P falls, the storage amount of the granular material P in the hopper 2 gradually decreases. The amount of the granular material P in the hopper 2 is continuously measured by the measuring device 50 in the form of the hopper 2 and the total weight of the granular material P stored in the hopper 2. In the following description, for the sake of simplicity, the total weight of the hopper 2 and the powder P stored in the hopper 2 is also referred to as “hopper-containing powder weight”. Prior to the continuous metering hopper inclusive granular weight of A, it is preferable to previously measure the hopper included granular weight of A 1 in a fully filled state of the powder particles P. By previously measuring a hopper included granular weight of A 1 in a fully filled state of the powder particles P, the weight A P of the particulate material P dropped from the hopper 2, facilitates the calculation of A 1 -A Can be calculated.

シート状の基材100上に粉粒体Pを定量で安定的に散布するためには、搬送手段3における受取手段30上に落下した粉粒体Pが、定量で基材100上に散布されるように、受け取り手段30の振幅や振動数を制御することが望ましい。受け取り手段30の振幅や振動数は、振動発生手段31によって制御される。振動発生手段31による振動の制御は、具体的には以下の基準に従い行われることが好ましい。すなわち、ホッパー込み粉粒体重量Aを連続的に測定し、ホッパー込み粉粒体重量Aの単位時間当たりの変化量ΔAを算出する。ΔAは(A−A)/tで定義される。Aは、ある時刻でのホッパー込み粉粒体重量であり、Aは、時間t経過後のホッパー込み粉粒体重量である。ΔAは制御部40において演算される。ホッパー2の重量は不変であるから、ΔAは、ホッパー2内における粉粒体Pの重量の減少速度に等しい。この重量減少速度ΔAに応じて、搬送手段3の搬送能力を制御し、該搬送手段3によって基材100上に散布される粉粒体Pの単位時間当たりの散布量ΔSを、単位時間当たりの目標散布量ΔSに一致させる搬送能力制御操作を行う。搬送能力制御操作においては、例えばΔAがΔSよりも少ない場合には、搬送手段3の搬送能力を高めて散布量ΔSを増加させる操作を行う。逆に、ΔAがΔSよりも多い場合には、搬送手段3の搬送能力を低めて散布量ΔSを減少させる操作を行う。 In order to stably disperse the granular material P on the sheet-like base material 100, the granular material P dropped on the receiving means 30 in the conveying means 3 is dispersed on the base material 100 by a constant amount. Thus, it is desirable to control the amplitude and frequency of the receiving means 30. The amplitude and frequency of the receiving means 30 are controlled by the vibration generating means 31. Specifically, the vibration control by the vibration generating means 31 is preferably performed according to the following criteria. That is, the hopper-containing powder weight A is continuously measured, and the change amount ΔA per unit time of the hopper-containing powder weight A is calculated. ΔA is defined by (A a −A b ) / t. A a is the weight of the hopper-containing powder and granule at a certain time, and A b is the weight of the hopper-containing powder and granule after the elapse of time t. ΔA is calculated in the control unit 40. Since the weight of the hopper 2 is unchanged, ΔA is equal to the rate of decrease in the weight of the granular material P in the hopper 2. In accordance with the weight reduction rate ΔA, the transporting ability of the transporting unit 3 is controlled, and the spraying amount ΔS per unit time of the granular material P sprayed on the base material 100 by the transporting unit 3 is set as the per unit time. for conveying capacity control operation to match the target application rate [Delta] S t. In conveying capacity control operation, for example, when ΔA is less than [Delta] S t performs an operation of increasing the application rate [Delta] S to increase the conveying capacity of the conveying means 3. Conversely, .DELTA.A is when more than [Delta] S t performs an operation to reduce the application rate [Delta] S by lowering the conveying capacity of the conveying means 3.

搬送手段3の搬送能力は、例えば振動発生手段31の振動の振幅若しくは周波数又はそれら両者を制御することで変更が可能である。振動発生手段31の制御には、例えばP制御(比例制御)、PI制御又はPID制御などの公知のフィードバック制御方法を採用することができる。これらの各種の制御方法における係数は、トライアル・アンド・エラーによって決定することができる。   The carrying capacity of the carrying means 3 can be changed by controlling the amplitude and / or frequency of vibration of the vibration generating means 31, for example. For the control of the vibration generating means 31, a known feedback control method such as P control (proportional control), PI control or PID control can be employed. The coefficients in these various control methods can be determined by trial and error.

ホッパー込み粉粒体重量の重量減少速度ΔAは、種々の方法で算出することができる。例えば所定時間t(秒)毎にホッパー込み粉粒体重量を計量し、計量した該ホッパー込み粉粒体重量と、t(秒)前に計量した該ホッパー込み粉粒体重量との差分を算出し、その値をt(秒)で除した値を重量減少速度ΔAと定義することができる。tの値は1秒以上300秒以下であることが好ましい。一例として、図3(a)に示すとおり、5秒ごとにホッパー込み粉粒体重量を測定し、最新の測定値と、5秒前の測定値との差分をとり、その差分を5秒で除すことで、重量減少速度ΔAを算出できる。   The weight reduction rate ΔA of the hopper-containing granule weight can be calculated by various methods. For example, the weight of the hopper-containing powder particles is measured every predetermined time t (seconds), and the difference between the measured weight of the hopper-containing powder particles and the weight of the hopper-containing powder particles measured before t (seconds) is calculated. A value obtained by dividing the value by t (seconds) can be defined as a weight reduction rate ΔA. The value of t is preferably 1 second or more and 300 seconds or less. As an example, as shown in FIG. 3 (a), the weight of the powder containing hopper is measured every 5 seconds, the difference between the latest measured value and the measured value 5 seconds ago is taken, and the difference is calculated in 5 seconds. By dividing, the weight reduction rate ΔA can be calculated.

別法として、所定時間s(秒)毎にホッパー込み粉粒体重量を計量し、計量した該ホッパー込み粉粒体重量と、t(秒)(ただしs<tである。)前に計量した該ホッパー込み粉粒体重量との差分を算出し、その値をt(秒)で除した値を重量減少速度ΔAと定義することもできる。sとtの関係は、t/sの値が1以上3000以下であることが好ましい。またsの値は0.1秒以上10秒以下であることが好ましい。tの値はsの値よりも大きいことを条件として、1秒以上300秒以下であることが好ましい。一例として、図3(b)に示すとおり、1秒ごとにホッパー込み粉粒体重量を測定し、最新の測定値と、5秒前の測定値との差分をとり、その差分を5秒で除すことで、重量減少速度ΔAを算出できる。   Alternatively, the weight of the hopper-containing powder particles is measured every predetermined time s (seconds), and is measured before the measured weight of the hopper-containing powder particles and t (seconds) (where s <t). A value obtained by calculating a difference from the weight of the hopper-containing powder and dividing the value by t (seconds) can be defined as a weight reduction rate ΔA. Regarding the relationship between s and t, the value of t / s is preferably 1 or more and 3000 or less. Moreover, it is preferable that the value of s is 0.1 second or more and 10 seconds or less. It is preferable that the value of t is 1 second or more and 300 seconds or less on condition that the value of t is larger than the value of s. As an example, as shown in FIG. 3 (b), the weight of the hopper-containing powder is measured every second, the difference between the latest measured value and the measured value five seconds before is taken, and the difference is calculated in five seconds. By dividing, the weight reduction rate ΔA can be calculated.

図3(a)に示す重量減少速度ΔAの算出方法は、図3(b)に示す重量減少速度ΔAの算出方法よりも、制御部40における演算の負荷が小さいという利点を有する。一方、図3(b)に示す重量減少速度ΔAの算出方法は、図3(a)に示す重量減少速度ΔAの算出方法よりも精密に重量減少速度ΔAを算出できるという利点がある。   The calculation method of the weight reduction rate ΔA shown in FIG. 3A has an advantage that the calculation load in the control unit 40 is smaller than the calculation method of the weight reduction rate ΔA shown in FIG. On the other hand, the calculation method of the weight reduction rate ΔA shown in FIG. 3B has an advantage that the weight reduction rate ΔA can be calculated more precisely than the calculation method of the weight reduction rate ΔA shown in FIG.

ところで、ホッパー込み粉粒体重量Aは、粉粒体Pを散布する時間の経過とともに次第に減少してくる。先に述べたとおり、ホッパー2等の供給装置内に貯留されている粉粒体Pを、該ホッパー2の下部から落下させる場合、ホッパー2内に貯留されている粉粒体Pの量に応じて落下量に差が生じる場合があることが経験的に知られている。この点について本発明者が鋭意検討した結果、ホッパー内粉粒体重量Aが、粉粒体Pの満充填状態でのホッパー内粉粒体重量Aの好ましくは40質量%以上100質量%以下、更に好ましくは80質量%以上100質量%以下である場合には、粉粒体Pの落下量に差が生じにくく、散布量を安定化させ得ることが判明した。したがって、ホッパー内粉粒体重量Aを、粉粒体Pの満充填状態でのホッパー内粉粒体重量Aの好ましくは40質量%以上100質量%以下、更に好ましくは80質量%以上100質量%以下に維持した状態で粉粒体Pを散布することが好ましい。換言すれば、粉粒体Pの満充填状態でのホッパー内粉粒体重量Aの40質量%の値を閾値として設定し、ホッパー内粉粒体重量Aが閾値である0.4Aを下回ったら、ホッパー内粉粒体重量Aが、初期設定重量、すなわち粉粒体Pの満充填状態でのホッパー内粉粒体重量Aとなるまで、ホッパー2内に粉粒体Pを補充する粉粒体補充操作を行う。本実施形態において実際に計測される重量はホッパー込み粉粒体重量A(すなわちホッパー内粉粒体重量A+ホッパー重量A)であり、ホッパー重量Aは粉粒体Pが空状態でのホッパー込み粉粒体重量なので不変であるから、上述の補充操作は、粉粒体Pの満充填状態でのホッパー内粉粒体重量Aの40質量%の値を閾値として設定し、ホッパー込み粉粒体重量Aを連続して計量して、ホッパー込み粉粒体重量Aが、計測値に対する閾値である0.4A+Aを下回ったら、該ホッパー込み粉粒体重量Aが初期設定重量となるまで該ホッパー2内に該粉粒体を補充する粉粒体補充操作を行うことと同義である。なお「0.4A+Aを下回ったら」とは、0.4A+Aを下回ったその時点だけでなく、0.4A+Aを下回った後の時点も包含する。この粉粒体補充操作は、制御部40から粉体供給装置90に向けて動作指令を発し、粉体供給装置90によって粉粒体Pをホッパー2内に供給することで行われる。また、この粉粒体補充操作は、先に述べた搬送能力制御操作とは独立して行われる。「独立して行われる」とは、粉粒体補充操作と搬送能力制御操作とを、別個の制御系を用いて行うこと意図するものではなく、一つの制御系のみを用い、粉粒体補充操作と搬送能力制御操作とを並列処理によって行うことも包含される。 By the way, the hopper-containing powder weight A gradually decreases with the passage of time for spraying the powder P. As described above, when the granular material P stored in the supply device such as the hopper 2 is dropped from the lower portion of the hopper 2, the amount of the granular material P stored in the hopper 2 depends on the amount. It is empirically known that there may be a difference in the amount of fall. As a result of intensive studies by the inventor on this point, the powder weight A 3 in the hopper is preferably 40% by mass to 100% by mass of the powder weight A 4 in the hopper in the fully filled state of the powder P. Hereinafter, it was found that when the content is 80% by mass or more and 100% by mass or less, it is difficult to cause a difference in the falling amount of the granular material P, and the spraying amount can be stabilized. Therefore, the powder weight A 3 in the hopper is preferably 40% by mass or more and 100% by mass or less, more preferably 80% by mass or more and 100% by mass of the powder weight A 4 in the hopper in the fully filled state of the powder P. It is preferable to spray the granular material P in a state where the mass is maintained at a mass% or less. In other words, a value of 40 mass% of the powder weight A 4 in the hopper in the fully filled state of the powder P is set as a threshold, and the powder weight A 3 in the hopper is a threshold 0.4A 4. The powder P in the hopper 2 is kept until the powder weight A 3 in the hopper reaches the initial set weight, that is, the powder weight A 4 in the hopper in the fully filled state of the powder P. Replenish powder and granules. The weight actually measured in the present embodiment is the hopper-containing powder weight A (that is, the hopper weight A 3 + the hopper weight A 2 ), and the hopper weight A 2 is obtained when the powder P is empty. of from hopper inclusive granular weight amount because it is unchanged, the above-described replenishment operation, set the value of 40% by weight of the hopper particulate weight of a 4 in a fully filled state of the powder or granular material P as a threshold, a hopper When the weight A of the pulverized granule is continuously measured and the weight A of the hopper including the powder falls below 0.4A 4 + A 2 which is the threshold for the measured value, the weight A of the hopper included powder is initially set. It is synonymous with performing the powder replenishment operation which replenishes this granular material in this hopper 2 until it becomes weight. It should be noted that the term "Once below the 0.4A 4 + A 2", 0.4A 4 + A 2 not only that time that falls below the, also includes time after the falls below the 0.4A 4 + A 2. This granular material replenishment operation is performed by issuing an operation command from the control unit 40 to the powder supply device 90 and supplying the granular material P into the hopper 2 by the powder supply device 90. In addition, this powder and granule replenishment operation is performed independently of the previously described conveyance capacity control operation. “Independently performed” is not intended to carry out the powder replenishment operation and the conveyance capacity control operation using separate control systems, and uses only one control system to replenish the granules. Performing the operation and the conveyance capacity control operation by parallel processing is also included.

前記の粉粒体補充操作によってホッパー2内に粉粒体Pを供給している間も、計量装置50を用いたホッパー込み粉粒体重量Aの計量は連続して行われている。しかし、粉粒体Pの供給に起因するホッパー2の振動やその他の要因に起因して、ホッパー2内への粉粒体Pの供給の間は、ホッパー込み粉粒体重量Aの計量を正確に行うことが容易でない。その状況下に前記の搬送能力制御操作を行っても、粉粒体Pの単位時間当たりの散布量ΔSを、単位時間当たりの目標散布量ΔSに容易に一致させることができない。そこで本実施形態においては、図4に示すとおり、粉粒体補充操作を行っている間は、前記搬送能力制御操作を休止することとしている。そして、搬送能力制御操作を休止している間は、搬送手段3の搬送能力を、該搬送能力制御操作の休止直前の搬送能力に保持しておくこととしている。このような制御を行うことで、ホッパー込み粉粒体重量Aの計量値が不安定になるホッパー2内への粉粒体Pの供給の間でも、基材100上への粉粒体Pの散布量を安定化させることができる。 While the granular material P is being supplied into the hopper 2 by the above-described granular material replenishment operation, the weighing of the hopper-containing granular material weight A using the measuring device 50 is continuously performed. However, due to the vibration of the hopper 2 caused by the supply of the granular material P and other factors, the measurement of the weight A including the hopper is accurately performed during the supply of the granular material P into the hopper 2. Not easy to do. Even if the conveying capacity control operation under the circumstances, the scattering amount [Delta] S per unit time of the granular material P, can not be easily matched to the target application rate [Delta] S t per unit time. Therefore, in the present embodiment, as shown in FIG. 4, the conveyance capacity control operation is suspended while the granular material replenishment operation is being performed. While the conveyance capacity control operation is paused, the conveyance capacity of the conveyance means 3 is maintained at the conveyance capacity immediately before the conveyance capacity control operation is suspended. By performing such control, the measured value of the hopper-containing particle weight A becomes unstable, and even during the supply of the powder P into the hopper 2, The amount of application can be stabilized.

搬送能力制御操作の休止は、粉粒体補充操作の完了後、すなわちホッパー込み粉粒体重量Aが、初期設定重量である、粉粒体Pの満充填状態でのホッパー込み粉粒体重量Aに達した後、該ホッパー込み粉粒体重量Aが所定時間にわたり連続して減少したときに解除され、それ以降は搬送能力制御操作が再開される。「ホッパー込み粉粒体重量Aが所定時間にわたり連続して減少したとき」とは、例えばホッパー込み粉粒体重量Aの計測を1秒ごとに連続して行っている場合には、粉粒体補充操作の完了後、ホッパー込み粉粒体重量Aが1秒前よりも少ない状態が5回継続した場合のことである。この処理は処理部40において行われ、該処理部40における判断の結果、振動発生手段31の作動指令が処理部40から振動発生手段31に向けて発せられる。 The suspension of the conveyance capacity control operation is the completion of the powder replenishment operation, that is, the hopper-containing powder weight A in the fully filled state of the powder P in which the hopper-containing powder weight A is the initial set weight. After reaching 1 , the hopper-containing granule weight A is released when it continuously decreases over a predetermined time, and thereafter, the conveying capacity control operation is resumed. “When the hopper-containing powder weight A continuously decreases over a predetermined time” means, for example, when the measurement of the hopper-containing powder weight A is continuously performed every second, the powder After completion of the replenishment operation, the state where the hopper-containing powder weight A is less than 1 second before is continued 5 times. This processing is performed in the processing unit 40, and as a result of the determination in the processing unit 40, an operation command for the vibration generating unit 31 is issued from the processing unit 40 toward the vibration generating unit 31.

以上のとおり粉粒体散布装置1を用いた粉粒体の散布方法によれば、所定の方向に連続搬送される基材100上に粉粒体Pを定量で散布することができる。特に搬送方向Xに沿って見たときの粉粒体Pの散布量を一定化することができる。これに加えて、搬送方向Xと直交する方向、すなわち幅方向Yに沿って見たときの粉粒体Pの散布量も一定化することができる。特に、(i)排出口23を平面視したとき(すなわち粉粒体Pの排出方向と直交する方向の断面視において)、搬送手段3による粉粒体Pの搬送方向Xと直交する方向(幅方向Y)の長さW(図5参照)が、搬送方向Xの長さD(図1、図5及び図6参照)に比して、長い形状をなしていると、基材100の幅方向にも均一に定量性良く粉粒体Pを散布することができる。   As described above, according to the powder particle spraying method using the powder particle spray device 1, the powder particles P can be sprayed quantitatively on the base material 100 continuously conveyed in a predetermined direction. In particular, the spray amount of the granular material P when viewed along the transport direction X can be made constant. In addition to this, it is possible to make the spray amount of the granular material P uniform when viewed along the direction orthogonal to the transport direction X, that is, the width direction Y. In particular, (i) when the discharge port 23 is viewed in plan (that is, in a cross-sectional view perpendicular to the discharge direction of the granular material P), the direction (width) orthogonal to the conveyance direction X of the granular material P by the conveyance means 3 If the length W in the direction Y) (see FIG. 5) is longer than the length D in the transport direction X (see FIGS. 1, 5, and 6), the width of the substrate 100 The powder particles P can be dispersed evenly in the direction with good quantitativeness.

排出部21の下端に位置する排出口23の平面視形状は、排出部21内の移動路22における粉粒体Pの流れに少なからず影響を及ぼす。本発明者らの知見によれば、排出口23の平面視形状が、長方形形状又はそれに準じた形状、すなわち「一方向に長い形状」であると、真円形状や正方形形状の場合に比して、移動路22における粉粒体Pの流れが定常流化されやすく、基材100の幅方向に均一に定量性良く粉粒体Pを散布することができる。この観点から、排出口23においては、「幅方向Yの長さW>搬送方向Xの長さD」なる大小関係が成立していることが好ましい。長さWと長さDとの比は、W/Dとして、好ましくは2以上、更に好ましくは5以上であり、そして、好ましくは1000以下、更に好ましくは100以下である。より具体的には、好ましくは2以上1000以下、更に好ましくは5以上100以下である。長さWは、排出口23の幅方向Yにおける最大長さを意味する。   The shape in plan view of the discharge port 23 located at the lower end of the discharge unit 21 has a considerable influence on the flow of the granular material P in the moving path 22 in the discharge unit 21. According to the knowledge of the present inventors, the shape of the discharge port 23 in plan view is a rectangular shape or a shape equivalent thereto, that is, a “long shape in one direction”, as compared with a perfect circle shape or a square shape. Thus, the flow of the granular material P in the movement path 22 is easily made steady, and the granular material P can be uniformly distributed in the width direction of the base material 100 with good quantitativeness. From this point of view, it is preferable that the discharge port 23 has a relationship of “length W in the width direction Y> length D in the transport direction X”. The ratio of the length W to the length D is preferably 2 or more, more preferably 5 or more, and preferably 1000 or less, more preferably 100 or less, as W / D. More specifically, it is preferably 2 or more and 1000 or less, and more preferably 5 or more and 100 or less. The length W means the maximum length of the discharge port 23 in the width direction Y.

基材100の幅方向Yに均一に定量性良く粉粒体Pを散布する観点から、(ii)移動路22は、搬送方向Xの最大幅Dが粉粒体Pの最大粒子径r(図6参照)の2倍以上5倍未満である(2≦D/r<5)ことが好ましい。移動路22の最大幅Dを粉粒体Pの最大粒子径rの2倍以上とすることで、移動路22において粉粒体Pの詰まりが発生することを効果的に防止できる。また、移動路22の最大幅Dを粉粒体Pの最大粒子径rの5倍未満とすることで、移動路22における粉粒体Pの流れを定常流化することが容易となり、基材100に対して粉粒体Pを幅方向に均一に定量性良く散布できるようになる。移動路22の最大幅Dは、粉粒体Pの最大粒子径rを基準として、好ましくは2倍以上、更に好ましくは3倍以上であり、そして、好ましくは5倍未満、更に好ましくは4倍未満である。より具体的には、好ましくは2倍以上5倍未満、更に好ましくは3倍以上4倍未満である。   From the viewpoint of spraying the granular material P uniformly in the width direction Y of the substrate 100 with good quantitativeness, (ii) the moving path 22 has a maximum width D in the conveying direction X that is the maximum particle diameter r (see FIG. 6) and preferably less than 5 times (2 ≦ D / r <5). By setting the maximum width D of the moving path 22 to be twice or more the maximum particle diameter r of the granular material P, it is possible to effectively prevent clogging of the granular material P in the moving path 22. Further, by setting the maximum width D of the moving path 22 to be less than 5 times the maximum particle diameter r of the granular material P, it becomes easy to make the flow of the granular material P in the moving path 22 steady. With respect to 100, the granular material P can be uniformly distributed in the width direction with good quantitativeness. The maximum width D of the moving path 22 is preferably 2 times or more, more preferably 3 times or more, and preferably less than 5 times, more preferably 4 times, based on the maximum particle diameter r of the granular material P. Is less than. More specifically, it is preferably 2 times or more and less than 5 times, more preferably 3 times or more and less than 4 times.

基材100の幅方向に均一に定量性良く粉粒体Pを散布する観点から、(iii)移動路22は、粉粒体Pの排出方向の長さH(図2及び図5参照)が粉粒体Pの最大粒子径rの1倍以上である(1≦H/r)ことも好ましい。移動路22の長さHを粉粒体Pの最大粒子径rの1倍以上とすることで、移動路22において粉粒体Pの詰まりが発生することを効果的に防止でき、基材100に対して粉粒体Pを幅方向に均一に定量性良く散布することができる。移動路22の長さHは、粉粒体Pの最大粒子径rを基準として、好ましくは5倍以上、更に好ましくは10倍以上である。移動路22の長さHの上限値としては、粉粒体Pの流れの定常流化の観点からは制限されないが、装置の適正な大きさの観点から決定することができ、例えば、粉粒体Pの最大粒子径rの100倍以下であることが好ましい。   From the viewpoint of spraying the granular material P uniformly in the width direction of the base material 100 with good quantitativeness, (iii) the moving path 22 has a length H in the discharging direction of the granular material P (see FIGS. 2 and 5). It is also preferable that it is 1 time or more of the maximum particle diameter r of the powder P (1 ≦ H / r). By setting the length H of the moving path 22 to be equal to or larger than the maximum particle diameter r of the powder P, it is possible to effectively prevent the clogging of the powder P in the moving path 22, and the base material 100. On the other hand, the granular material P can be uniformly distributed in the width direction with good quantitativeness. The length H of the moving path 22 is preferably 5 times or more, more preferably 10 times or more, based on the maximum particle diameter r of the powder P. The upper limit value of the length H of the moving path 22 is not limited from the viewpoint of steady flow of the flow of the granular material P, but can be determined from the viewpoint of an appropriate size of the apparatus. The maximum particle diameter r of the body P is preferably 100 times or less.

基材100の幅方向に均一に定量性良く粉粒体Pを散布する観点から、(iv)隙間G(図1、図2及び図6参照)は、粉粒体Pの最大粒子径rの1倍以上である(1≦G/r)ことも好ましい。ホッパー2(排出部21)の排出口23と搬送手段3(受取手段30)の上面との隙間Gを、粉粒体Pの最大粒子径rの1倍以上とすることで、隙間Gにおいて粉粒体Pの詰まりが発生することを効果的に防止でき、基材100に対して粉粒体Pを幅方向Yに均一に定量性良く散布することができる。隙間Gは、粉粒体Pの最大粒子径rを基準として、好ましくは1.5倍以上、更に好ましくは2倍以上であり、そして、好ましくは10倍以下、更に好ましくは5倍以下である。より具体的には、好ましくは1.5倍以上10倍以下、更に好ましくは2倍以上5倍以下である。   From the viewpoint of spraying the granular material P uniformly in the width direction of the base material 100 with good quantitativeness, (iv) the gap G (see FIGS. 1, 2 and 6) is the maximum particle diameter r of the granular material P. It is also preferable that it is 1 time or more (1 ≦ G / r). By setting the gap G between the discharge port 23 of the hopper 2 (discharge section 21) and the upper surface of the conveying means 3 (receiving means 30) to be not less than 1 times the maximum particle diameter r of the granular material P, the powder in the gap G Generation | occurrence | production of the clogging of the granular material P can be prevented effectively, and the granular material P can be uniformly sprayed with sufficient quantitative property with respect to the base material 100 in the width direction Y. The gap G is preferably 1.5 times or more, more preferably 2 times or more, and preferably 10 times or less, more preferably 5 times or less, based on the maximum particle diameter r of the granular material P. . More specifically, it is preferably 1.5 to 10 times, more preferably 2 to 5 times.

粉粒体Pの最大粒子径rは公知の方法により測定することができる。具体的には例えば、乾式篩法(JIS Z8815−1994)、動的光散乱法、レーザー回折法、遠心沈降法、重力沈降法、画像イメージング法、FFF(フィールド・フロー・フラクショネーション)法、静電気検知体法、コールター法等が挙げられる。これらの中でも、レーザー回折法又はコールター法で測定した最大粒子径rを採用することが、再現性と精度の点から好ましい。対象とする粉粒体の粒子径が5mm程度以下であれば、レーザー回折法を用いて粉粒体の最大粒径rを測定することが好ましい。   The maximum particle diameter r of the granular material P can be measured by a known method. Specifically, for example, dry sieving method (JIS Z8815-1994), dynamic light scattering method, laser diffraction method, centrifugal sedimentation method, gravity sedimentation method, image imaging method, FFF (field flow fractionation) method, Examples include the electrostatic detector method and the Coulter method. Among these, it is preferable from the viewpoint of reproducibility and accuracy to employ the maximum particle diameter r measured by the laser diffraction method or the Coulter method. If the particle diameter of the target granular material is about 5 mm or less, it is preferable to measure the maximum particle diameter r of the granular material using a laser diffraction method.

また、ホッパー2内における粉粒体Pの流れの定常流化及び流動性の更に向上の観点から、前記の(i)ないし(iv)に加え更に、ホッパー2における粉粒体Pと接触する内面の水平方向に対する角度が、粉粒体Pの安息角θ(図6参照)以上であることが好ましい。本実施形態においては、ホッパー2の側壁は、貯蔵部20の傾斜側壁20s(図1及び図2参照)を除き、全て水平方向と直交する垂直方向に延びる垂直壁であり、それら垂直壁の内面の水平方向に対する角度は90°であって粉粒体Pの安息角θよりも大きく、また、貯蔵部20の傾斜側壁20sの内面の水平方向に対する角度は、粉粒体Pの安息角θと同じかそれよりも大きくなされている。「ホッパー2における粉粒体Pと接触する内面の水平方向に対する角度」をθ1とした場合、θ1と粉粒体の安息角θとの比は、θ1/θとして、好ましくは1.2以上、更に好ましくは1.5以上、θ1は、好ましくは1.2θ以上であって90°以下、更に好ましくは1.5θ以上であって90°以下である。   In addition to the above (i) to (iv), in addition to the above (i) to (iv), the inner surface of the hopper 2 that is in contact with the granular material P from the viewpoint of steady flow of the granular material P in the hopper 2 and further improvement of fluidity. It is preferable that the angle with respect to the horizontal direction is equal to or greater than the angle of repose θ of the granular material P (see FIG. 6). In this embodiment, the side walls of the hopper 2 are vertical walls that extend in the vertical direction perpendicular to the horizontal direction except for the inclined side walls 20s (see FIGS. 1 and 2) of the storage unit 20, and the inner surfaces of these vertical walls. The angle with respect to the horizontal direction is 90 ° and is larger than the angle of repose θ of the granular material P, and the angle with respect to the horizontal direction of the inner surface of the inclined side wall 20s of the storage unit 20 is the repose angle θ of the granular material P. It has been made the same or larger. When “angle relative to the horizontal direction of the inner surface of the hopper 2 in contact with the granular material P” is θ1, the ratio between θ1 and the repose angle θ of the granular material is θ1 / θ, preferably 1.2 or more, More preferably, it is 1.5 or more, and θ1 is preferably 1.2θ or more and 90 ° or less, more preferably 1.5θ or more and 90 ° or less.

また、基材100に対する粉粒体Pの散布精度を安定的に向上させる観点から、前記の(i)ないし(iv)に加え更に、図6に示すとおり、排出口23の中心を通って垂直方向に延びる仮想直線VLと搬送手段3(受取手段30の上面30a)との交点23Aは、隙間G、粉粒体Pの安息角θとの関係において、搬送手段3における搬送方向Xの下流側端3DEからG/tanθ以上15G以下の範囲に位置していることが好ましい。換言すれば、搬送手段3(受取手段30)の下流側端3DEと交点23Aとの離間距離Lは、G/tanθ以上15G以下であることが好ましい。斯かる離間距離Lが短いほど、粉粒体Pの散布精度の点で好ましいが、離間距離Lが短すぎると、排出口23から排出された粉粒体Pが、搬送手段3と接触せずに直接その下方に位置する基材100に散布されてしまうおそれがあり、散布精度の安定的な向上を却って阻害するおそれがある。離間距離Lは、G/tanθ以上10G以下であることが更に好ましい。   In addition to the above (i) to (iv), in addition to the above (i) to (iv), as shown in FIG. The intersection 23A between the virtual straight line VL extending in the direction and the conveying means 3 (the upper surface 30a of the receiving means 30) is downstream of the conveying direction 3 in the conveying means 3 in relation to the gap G and the angle of repose θ of the granular material P. It is preferable that it is located in the range of G / tan θ or more and 15 G or less from the end 3DE. In other words, the separation distance L between the downstream end 3DE of the transport unit 3 (receiving unit 30) and the intersection 23A is preferably G / tan θ or more and 15G or less. As the separation distance L is shorter, it is preferable in terms of the dispersion accuracy of the granular material P. However, when the separation distance L is too short, the granular material P discharged from the discharge port 23 does not come into contact with the conveying means 3. There is a possibility that it will be sprayed directly onto the base material 100 located below it, and there is a risk that it will hinder the stable improvement of the spraying accuracy. The separation distance L is more preferably G / tan θ or more and 10 G or less.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は、前記実施形態に制限されず適宜変更可能である。例えばホッパー2の排出部22における排出口23の平面視形状は、図5に示す如き長方形形状に限定されず、円形、楕円形、多角形形状等、任意に設定可能であり、例えば、図7(a)に示す如き長楕円形状、あるいは、図7(b)に示す如き一方向に長い五角形以上の多角形形状とすることができる。尤も、前述したように、排出口23の平面視形状は、搬送手段3による粉粒体Pの搬送方向Xと直交する幅方向Yの長さの方が搬送方向Xの長さよりも長いような、「一方向に長い形状」であることが好ましく、図5並びに図7(a)及び図7(b)に示す排出口23はその一具体例である。   As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment, It can change suitably. For example, the planar view shape of the discharge port 23 in the discharge portion 22 of the hopper 2 is not limited to a rectangular shape as shown in FIG. 5 and can be arbitrarily set to a circular shape, an elliptical shape, a polygonal shape, etc. A long oval shape as shown in (a), or a polygonal shape of a pentagon or more long in one direction as shown in FIG. However, as described above, the shape of the discharge port 23 in plan view is such that the length in the width direction Y perpendicular to the transport direction X of the powder P by the transport means 3 is longer than the length in the transport direction X. , “A shape that is long in one direction”, and the discharge port 23 shown in FIG. 5 and FIGS. 7A and 7B is one specific example.

また、排出口23が幅方向Yに複数の区画に分割され、排出部21が該複数の区画に1対1で対応する複数の移動路22を有していても良く、その場合、複数の移動路22(排出口23)それぞれにおいて、前記の(ii)ないし(iv)が採用されることが好ましい。   The discharge port 23 may be divided into a plurality of sections in the width direction Y, and the discharge unit 21 may have a plurality of movement paths 22 corresponding to the plurality of sections in a one-to-one manner. It is preferable that the above (ii) to (iv) are employed in each of the movement paths 22 (discharge ports 23).

上述した実施形態に関し、本発明は更に以下の粉粒体の散布方法、粉粒体含有物品の製造方法及び粉粒体散布装置を開示する。
<1>
ホッパーから排出された粉粒体を、搬送手段によって所定の一方向に搬送して散布する工程を備えた粉粒体の散布方法であって、
前記ホッパー及び該ホッパー内に貯蔵されている前記粉粒体の全重量を連続して計量し、該全重量が閾値を下回ったら、該全重量が初期設定重量となるまで該ホッパー内に該粉粒体を補充する粉粒体補充操作を行い、
前記粉粒体補充操作とは独立して、前記全重量の単位時間当たりの変化量を測定し、該変化量に応じて前記搬送手段の搬送能力を制御することで、該搬送手段によって散布される前記粉粒体の単位時間当たりの散布量が、単位時間当たりの目標散布量と一致するようにする搬送能力制御操作を行い、
前記粉粒体補充操作を行っている間は、前記搬送能力制御操作を休止して、前記搬送手段の搬送能力を、該搬送能力制御操作の休止直前の搬送能力に保持しておく、粉粒体の散布方法。
<2>
前記粉粒体補充操作の完了後、前記全重量が所定時間にわたり連続して減少したときに、前記搬送能力制御操作を再開する前記<1>に記載の粉粒体の散布方法。
<3>
所定時間t(秒)毎に前記全重量を計量し、計量した該全重量と、t(秒)前に計量した該全重量との差分を算出し、その値をt(秒)で除した値を単位時間当たりの変化量と定義し、該変化量に応じて前記搬送手段の搬送能力を制御する前記<1>又は<2>に記載の粉粒体の散布方法。
<4>
所定時間t(秒)は、1秒以上300秒以下であることが好ましい前記<3>に記載の粉粒体の散布方法。
<5>
所定時間s(秒)毎に前記全重量を計量し、計量した該全重量と、t(秒)(ただしs<tである。)前に計量した該全重量との差分を算出し、その値をt(秒)で除した値を単位時間当たりの変化量と定義し、該変化量に応じて前記搬送手段の搬送能力を制御する前記<1>又は<2>に記載の粉粒体の散布方法。
<6>
所定時間s(秒)は、0.1秒以上10秒以下であることが好ましい前記<5>に記載の粉粒体の散布方法。
<7>
ホッパーから排出された粉粒体を、搬送手段によって所定の一方向に搬送して散布対象物に散布することで、該粉粒体を含む物品を製造する、粉粒体含有物品の製造方法であって、
前記ホッパー及び該ホッパー内に貯蔵されている前記粉粒体の全重量を連続して計量し、該全重量が閾値を下回ったら、該全重量が初期設定重量となるまで該ホッパー内に該粉粒体を補充する粉粒体補充操作を行い、
前記粉粒体補充操作とは独立して、前記全重量の単位時間当たりの変化量を測定し、該変化量に応じて前記搬送手段の搬送能力を制御することで、該搬送手段によって散布される前記粉粒体の単位時間当たりの散布量が、単位時間当たりの目標散布量と一致するようにする搬送能力制御操作を行い、
前記粉粒体補充操作を行っている間は、前記搬送能力制御操作を休止して、前記搬送手段の搬送能力を、該搬送能力制御操作の休止直前の搬送能力に保持しておく、粉粒体含有物品の製造方法。
<8>
前記搬送手段は、前記ホッパーの下端に位置する排出口に対して隙間を置いて配置されている前記<7>に記載の粉粒体含有物品の製造方法。
<9>
前記搬送手段は、前記ホッパーから排出された前記粉粒体を受け取る受取手段と、該受取手段を振動させる振動発生手段とを含んで構成されている前記<7>又は<8>に記載の粉粒体含有物品の製造方法。
<10>
前記搬送手段は、前記振動発生手段を作動させて前記受取手段を振動させることによって、前記受取手段上の前記粉粒体Pを方向に搬送可能になされている前記<9>に記載の粉粒体含有物品の製造方法。
<11>
前記粉粒体は、方向に搬送され、前記受取手段の端部から落下して、該受取手段の下方を連続搬送されている基材上に散布される前記<9>又は<10>に記載の粉粒体含有物品の製造方法。
<12>
前記基材は、シート状の基材である前記<11>に記載の粉粒体含有物品の製造方法。
<13>
前記基材は、繊維シートからなるシート状の基材である前記<11>又は<12>に記載の粉粒体含有物品の製造方法。
<14>
前記基材上に、高吸水性ポリマーの粒子、金属粒子、固形の電解質等を散布して、発熱組成物を形成し、該発熱組成物の層に、塩化ナトリウム等の電解質や吸水性ポリマーといった粉粒体を散布する前記<11>ないし<13>のいずれか1に記載の粉粒体含有物品の製造方法。
<15>
前記ホッパー及び該ホッパー内に貯蔵されている前記粉粒体の全重量のことを、ホッパー込み粉粒体重量とし、
該ホッパー込み粉粒体重量の連続計量に先立ち、前記粉粒体の満充填状態でのホッパー込み粉粒体重量を予め測定しておく前記<7>ないし<14>のいずれか1に記載の粉粒体含有物品の製造方法。
<16>
ホッパー内粉粒体重量が、前記粉粒体の満充填状態でのホッパー内粉粒体重量の好ましくは40質量%以上100質量%以下、更に好ましくは80質量%以上100質量%以下である前記<7>ないし<15>のいずれか1に記載の粉粒体含有物品の製造方法。
<17>
内部に一時的に貯蔵した粉粒体を、移動路を介して排出口より排出するホッパーと、
前記ホッパーから排出された前記粉粒体を所定の一方向に搬送して散布する搬送手段と、
前記ホッパー及び該ホッパー内に貯蔵される粉粒体の全重量を連続して計量する計量装置と、
前記全重量の単位時間当たりの変化量を測定し、且つ前記搬送手段によって散布される前記粉粒体の単位時間当たりの散布量が、単位時間当たりの目標散布量と一致するように、該変化量に応じて前記搬送手段の搬送能力の制御を行うとともに、この制御とは独立して、該全重量が閾値を下回ったら、該全重量が初期設定重量となるまで前記ホッパー内に前記粉粒体を補充する制御を行う制御手段と、を備えた粉粒体散布装置であって、
前記制御手段は、前記粉粒体が前記ホッパーに補充されている間は、前記搬送手段の搬送能力の制御を休止させるとともに、制御休止中の該搬送手段の搬送能力を、制御休止直前の搬送能力に保持するように構成されている、粉粒体散布装置。
<18>
前記制御手段は、前記ホッパーへの前記粉粒体の補充が完了した後、前記全重量が所定時間にわたり連続して減少したときに、前記搬送手段の制御を再開するように構成されている前記<17>に記載の粉粒体散布装置。
<19>
所定時間t(秒)毎に前記全重量を計量し、計量した該全重量と、t(秒)前に計量した該全重量との差分を算出し、その値をt(秒)で除した値を単位時間当たりの変化量と定義し、該変化量に応じて前記制御手段が前記搬送手段の搬送能力の制御を行う前記<17>又は<18>に記載の粉粒体散布装置。
<20>
所定時間s(秒)毎に前記全重量を計量し、計量した該全重量と、t(秒)(ただしs<tである。)前に計量した該全重量との差分を算出し、その値をt(秒)で除した値を単位時間当たりの変化量と定義し、該変化量に応じて前記制御手段が前記搬送手段の搬送能力の制御を行う前記<17>又は<18>に記載の粉粒体散布装置。
<21>
前記ホッパーから排出された前記粉粒体を受け取る受取手段を振動させる振動発生手段に印加する電圧及び周波数を制御する制御部を備えており、該制御部によって、前記受取手段の振動数及び/又は振幅を制御し、前記受取手段上の前記粉粒体の搬送状態を制御する前記<17>ないし<20>のいずれか1に記載の粉粒体散布装置。
<22>
前記ホッパーには、前記計量装置が取り付けられている前記<17>ないし<21>のいずれか1に記載の粉粒体散布装置。
In relation to the above-described embodiment, the present invention further discloses the following powder particle dispersion method, powder particle-containing article production method, and powder particle dispersion apparatus.
<1>
A method of spraying granular material, comprising a step of transporting and spraying the granular material discharged from the hopper in a predetermined direction by a conveying means,
The total weight of the hopper and the granular material stored in the hopper is continuously weighed, and when the total weight falls below a threshold, the powder is placed in the hopper until the total weight reaches the initial set weight. Perform the powder replenishment operation to replenish the granules,
Independently of the powder and granule replenishment operation, the amount of change per unit time of the total weight is measured, and the transfer capability of the transfer means is controlled according to the change amount, thereby being dispersed by the transfer means. The carrying capacity control operation is performed so that the spraying amount per unit time of the granular material matches the target spraying amount per unit time,
While performing the powder replenishment operation, the conveyance capacity control operation is suspended, and the conveyance capacity of the conveyance means is maintained at the conveyance capacity immediately before the conveyance capacity control operation is suspended. How to spread the body.
<2>
The powder particle spraying method according to <1>, wherein the conveyance capacity control operation is resumed when the total weight continuously decreases for a predetermined time after the powder particle replenishment operation is completed.
<3>
The total weight is measured every predetermined time t (seconds), the difference between the total weight weighed and the total weight weighed before t (seconds) is calculated, and the value is divided by t (seconds). The method according to <1> or <2>, wherein the value is defined as a change amount per unit time, and the transfer capability of the transfer unit is controlled according to the change amount.
<4>
It is preferable that the predetermined time t (second) is 1 second or more and 300 seconds or less, the method for spraying granular material according to <3>.
<5>
The total weight is weighed every predetermined time s (seconds), and the difference between the total weight weighed and the total weight weighed before t (seconds) (where s <t) is calculated. The value according to <1> or <2>, wherein a value obtained by dividing the value by t (seconds) is defined as a change amount per unit time, and the transfer capability of the transfer unit is controlled according to the change amount. Spraying method.
<6>
It is preferable that the predetermined time s (seconds) is 0.1 second or more and 10 seconds or less, the method for spraying granular material according to <5>.
<7>
In the method for producing a granular material-containing article, the granular material discharged from the hopper is conveyed in a predetermined direction by a conveying means and dispersed on the object to be dispersed, thereby producing an article including the granular material. There,
The total weight of the hopper and the granular material stored in the hopper is continuously weighed, and when the total weight falls below a threshold, the powder is placed in the hopper until the total weight reaches the initial set weight. Perform the powder replenishment operation to replenish the granules,
Independently of the powder and granule replenishment operation, the amount of change per unit time of the total weight is measured, and the transfer capability of the transfer means is controlled according to the change amount, thereby being dispersed by the transfer means. The carrying capacity control operation is performed so that the spraying amount per unit time of the granular material matches the target spraying amount per unit time,
While performing the powder replenishment operation, the conveyance capacity control operation is suspended, and the conveyance capacity of the conveyance means is maintained at the conveyance capacity immediately before the conveyance capacity control operation is suspended. A method for producing a body-containing article.
<8>
The said conveyance means is a manufacturing method of the granular material containing article as described in said <7> arrange | positioned with the clearance gap between the discharge ports located in the lower end of the said hopper.
<9>
The powder according to <7> or <8>, wherein the transport unit includes a receiving unit that receives the powder discharged from the hopper and a vibration generating unit that vibrates the receiving unit. A method for producing a granule-containing article.
<10>
The transporting means operates the vibration generating means to vibrate the receiving means, thereby enabling the powder P on the receiving means to be transported in the direction. A method for producing a body-containing article.
<11>
The <9> or <10>, wherein the granular material is conveyed in a direction, falls from an end of the receiving unit, and is sprayed on a substrate that is continuously conveyed below the receiving unit. Of producing a granular material-containing article.
<12>
The said base material is a manufacturing method of the granular material containing article as described in said <11> which is a sheet-like base material.
<13>
The said base material is a manufacturing method of the granular material containing article as described in said <11> or <12> which is a sheet-like base material which consists of a fiber sheet.
<14>
A superheat-absorbing polymer particles, metal particles, solid electrolyte, and the like are dispersed on the substrate to form a heat generating composition, and an electrolyte such as sodium chloride or a water-absorbing polymer is formed on the layer of the heat generating composition. <11> thru | or <13> any one of the said <11> thru | or <13> manufacturing method of the granular material containing article which sprays a granular material.
<15>
The total weight of the hopper and the granular material stored in the hopper is the weight of the hopper-containing granular material,
Prior to continuous measurement of the weight of the hopper-containing powder, the weight of the hopper-containing powder in a fully filled state of the powder is measured in advance, according to any one of <7> to <14>. A method for producing a powder-containing article.
<16>
The powder weight in the hopper is preferably 40% by mass or more and 100% by mass or less, and more preferably 80% by mass or more and 100% by mass or less, based on the weight of the powder in the hopper when the powder is fully filled. <7> The manufacturing method of the granular material containing article any one of <15>.
<17>
A hopper that discharges the particulates temporarily stored therein from the discharge port via the moving path;
Conveying means for conveying the powder particles discharged from the hopper in a predetermined direction and spraying;
A weighing device for continuously weighing the total weight of the hopper and the granular material stored in the hopper;
The amount of change per unit time of the total weight is measured, and the amount of change per unit time of the powder particles sprayed by the transport means is matched with the target amount of application per unit time. Independent of this control, when the total weight falls below a threshold, the powder particles in the hopper until the total weight reaches the initial set weight. A control means for performing control to replenish the body, and a granular material spraying device comprising:
The control means pauses the control of the transport capacity of the transport means while the powder particles are being replenished in the hopper, and the transport capacity of the transport means during the control pause is transported immediately before the control pause. A granular material spraying device that is configured to retain its capacity.
<18>
The control means is configured to resume the control of the conveying means when the total weight has continuously decreased over a predetermined time after the replenishment of the granular material to the hopper is completed. <17> The granular material dispersion apparatus according to <17>.
<19>
The total weight is measured every predetermined time t (seconds), the difference between the total weight weighed and the total weight weighed before t (seconds) is calculated, and the value is divided by t (seconds). The granular material spraying device according to <17> or <18>, wherein the value is defined as a change amount per unit time, and the control unit controls the transfer capability of the transfer unit according to the change amount.
<20>
The total weight is weighed every predetermined time s (seconds), and the difference between the total weight weighed and the total weight weighed before t (seconds) (where s <t) is calculated. The value obtained by dividing the value by t (seconds) is defined as a change amount per unit time, and the control means controls the transfer capability of the transfer means in accordance with the change amount according to <17> or <18> The granular material spreading | diffusion apparatus of description.
<21>
A control unit for controlling a voltage and a frequency applied to a vibration generating unit that vibrates a receiving unit that receives the powder particles discharged from the hopper, and the control unit controls the frequency and / or frequency of the receiving unit. The granular material spraying device according to any one of <17> to <20>, wherein amplitude is controlled to control a conveying state of the granular material on the receiving unit.
<22>
The granular material spraying device according to any one of <17> to <21>, wherein the weighing device is attached to the hopper.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、斯かる実施例に制限されない。特に断らない限り、「%」は「質量%」を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such embodiments. Unless otherwise specified, “%” means “mass%”.

〔実施例1〕
図1、図2、図5及び図6に示す粉粒体散布装置1を用い、構成部材の寸法等を以下の表1に示す値に設定した。そして、一方向に連続搬送される基材(不織布、搬送速度40.95m/秒)上に粉粒体を散布した。粉粒体の目標散布量は、0.45g/秒に設定した。粉粒体としては、最大粒子径及び安息角が以下の表1に示す範囲にある吸水性ポリマー粒子を用いた。粉粒体の最大粒子径は、動的光散乱法によって測定し、測定装置として、HORIBA社製レーザー回折/散乱式粒子径分布測定装置LA950V2を用いた。なお、ホッパーは内側壁を含め、全体をステンレス鋼で形成されている。計量装置50としてはロードセルを用い、1秒間隔でホッパー込み粉粒体重量Aを計量した。制御部40による振動発生手段31の制御は、PI制御に基づく振幅制御とした。粉体供給装置90による粉粒体の供給は、ホッパー込み粉粒体重量Aが、0.4A+A(Aは粉粒体の満充填状態でのホッパー内粉粒体重量を表し、Aはホッパー重量を表す。)となった時点で行うようにした。搬送能力制御操作を休止してから再開するまでの時間は、1秒間隔でホッパー込み粉粒体重量Aを計量し、ホッパー込み粉粒体重量Aが1秒前よりも少ない状態が5回継続するまでとした。これらの条件下に、10分間にわたり粉粒体の散布を行ったときの該粉粒体の散布重量を、市販のロードセル(A&D製)を用いて常法に従って、基材への粉粒体の散布重量を1秒間隔で実測した。その結果を図8に示す。
[Example 1]
The granular material dispersion apparatus 1 shown in FIGS. 1, 2, 5, and 6 was used, and the dimensions and the like of the constituent members were set to the values shown in Table 1 below. And the granular material was spread | dispersed on the base material (nonwoven fabric, conveyance speed 40.95 m / sec) continuously conveyed in one direction. The target spray rate of the powder and granular material was set to 0.45 g / second. As the powder, water-absorbing polymer particles having a maximum particle diameter and an angle of repose within the ranges shown in Table 1 below were used. The maximum particle size of the granular material was measured by a dynamic light scattering method, and a laser diffraction / scattering particle size distribution measuring device LA950V2 manufactured by HORIBA was used as a measuring device. The hopper including the inner wall is entirely made of stainless steel. A load cell was used as the weighing device 50, and the hopper-containing powder weight A was measured at intervals of 1 second. The control of the vibration generating means 31 by the control unit 40 is amplitude control based on PI control. As for the supply of the granular material by the powder supply apparatus 90, the hopper-containing powder weight A is 0.4A 4 + A 2 (A 4 represents the weight of the powder in the hopper when the powder is fully filled, a 2 is to perform at the time when a representative of the hopper weight.). The time from when the conveyance capacity control operation is paused to when it resumes, the hopper-containing powder weight A is measured at 1-second intervals, and the state where the hopper-containing powder weight A is less than the previous one is continued five times. Until then. Under these conditions, the dispersion weight of the powder particles when sprayed for 10 minutes is determined according to a conventional method using a commercially available load cell (manufactured by A & D). The spray weight was measured at 1 second intervals. The result is shown in FIG.

〔比較例1〕
実施例1において、粉体供給装置90による粉粒体の供給中も制御部40による振動発生手段31の制御を行った。これ以外は実施例1と同様の条件で粉粒体の散布を行った。そのときの粉粒体の散布量を実施例1と同様に実測した。その結果を図9に示す。
[Comparative Example 1]
In Example 1, the vibration generating means 31 was controlled by the control unit 40 even during the supply of the granular material by the powder supply device 90. Except for this, the powder particles were dispersed under the same conditions as in Example 1. The spray amount of the granular material at that time was measured in the same manner as in Example 1. The result is shown in FIG.

図8と図9との対比から明らかなとおり、本発明に従う実施例1では散布の初期から終期までの全期間にわたって粉粒体の散布量がほぼ一定になっていることが判る。これとは対照的に、比較例1では、粉粒体の散布量が一定にならず、変動していることが判る。   As is clear from the comparison between FIG. 8 and FIG. 9, it can be seen that in Example 1 according to the present invention, the spray amount of the granular material is substantially constant over the entire period from the initial stage to the final stage of the spraying. In contrast to this, in Comparative Example 1, it can be seen that the amount of powdered particles is not constant but fluctuates.

1 粉粒体散布装置
2 ホッパー
20 貯蔵部
21 排出部
22 移動路
23 排出口
3 搬送手段
30 受取手段
31 振動発生手段
32 搬送ロール
33 駆動ロール
34 従動ロール
35 搬送ベルト
40 制御部
50 計量装置
100 基材
P 粉粒体
X 搬送手段による粉粒体の搬送方向
Y 粉粒体の搬送方向と直交する方向(基材の幅方向)
DESCRIPTION OF SYMBOLS 1 Powder distribution apparatus 2 Hopper 20 Storage part 21 Discharge part 22 Movement path 23 Discharge port 3 Conveying means 30 Receiving means 31 Vibration generating means 32 Conveying roll 33 Drive roll 34 Followed roll 35 Conveying belt 40 Control part 50 Measuring apparatus 100 Base Material P Particulate body X Conveyance direction of particulate body by means of transportation Y Direction perpendicular to the transportation direction of particulate body (width direction of base material)

Claims (9)

ホッパーから排出された粉粒体を、搬送手段によって所定の一方向に搬送して散布する工程を備えた粉粒体の散布方法であって、
前記ホッパー及び該ホッパー内に貯蔵されている前記粉粒体の全重量を連続して計量し、該全重量が閾値を下回ったら、該全重量が初期設定重量となるまで該ホッパー内に該粉粒体を補充する粉粒体補充操作を行い、
前記粉粒体補充操作とは独立して、前記全重量の単位時間当たりの変化量を測定し、該変化量に応じて前記搬送手段の搬送能力を制御することで、該搬送手段によって散布される前記粉粒体の単位時間当たりの散布量が、単位時間当たりの目標散布量と一致するようにする搬送能力制御操作を行い、
前記粉粒体補充操作を行っている間は、前記搬送能力制御操作を休止して、前記搬送手段の搬送能力を、該搬送能力制御操作の休止直前の搬送能力に保持しておく、粉粒体の散布方法。
A method of spraying granular material, comprising a step of transporting and spraying the granular material discharged from the hopper in a predetermined direction by a conveying means,
The total weight of the hopper and the granular material stored in the hopper is continuously weighed, and when the total weight falls below a threshold, the powder is placed in the hopper until the total weight reaches the initial set weight. Perform the powder replenishment operation to replenish the granules,
Independently of the powder and granule replenishment operation, the amount of change per unit time of the total weight is measured, and the transfer capability of the transfer means is controlled according to the change amount, thereby being dispersed by the transfer means. The carrying capacity control operation is performed so that the spraying amount per unit time of the granular material matches the target spraying amount per unit time,
While performing the powder replenishment operation, the conveyance capacity control operation is suspended, and the conveyance capacity of the conveyance means is maintained at the conveyance capacity immediately before the conveyance capacity control operation is suspended. How to spread the body.
前記粉粒体補充操作の完了後、前記全重量が所定時間にわたり連続して減少したときに、前記搬送能力制御操作を再開する請求項1に記載の粉粒体の散布方法。   2. The method for spraying granular material according to claim 1, wherein when the total weight continuously decreases over a predetermined time after completion of the powder and granular material replenishment operation, the conveying capacity control operation is resumed. 所定時間t(秒)毎に前記全重量を計量し、計量した該全重量と、t(秒)前に計量した該全重量との差分を算出し、その値をt(秒)で除した値を単位時間当たりの変化量と定義し、該変化量に応じて前記搬送手段の搬送能力を制御する請求項1又は2に記載の粉粒体の散布方法。   The total weight is measured every predetermined time t (seconds), the difference between the total weight weighed and the total weight weighed before t (seconds) is calculated, and the value is divided by t (seconds). The method for spraying granular material according to claim 1 or 2, wherein the value is defined as a change amount per unit time, and the transfer capability of the transfer means is controlled according to the change amount. 所定時間s(秒)毎に前記全重量を計量し、計量した該全重量と、t(秒)(ただしs<tである。)前に計量した該全重量との差分を算出し、その値をt(秒)で除した値を単位時間当たりの変化量と定義し、該変化量に応じて前記搬送手段の搬送能力を制御する請求項1又は2に記載の粉粒体の散布方法。   The total weight is weighed every predetermined time s (seconds), and the difference between the total weight weighed and the total weight weighed before t (seconds) (where s <t) is calculated. The method of spraying granular material according to claim 1 or 2, wherein a value obtained by dividing the value by t (seconds) is defined as a change amount per unit time, and the transfer capability of the transfer means is controlled according to the change amount. . ホッパーから排出された粉粒体を、搬送手段によって所定の一方向に搬送して散布対象物に散布することで、該粉粒体を含む物品を製造する、粉粒体含有物品の製造方法であって、
前記ホッパー及び該ホッパー内に貯蔵されている前記粉粒体の全重量を連続して計量し、該全重量が閾値を下回ったら、該全重量が初期設定重量となるまで該ホッパー内に該粉粒体を補充する粉粒体補充操作を行い、
前記粉粒体補充操作とは独立して、前記全重量の単位時間当たりの変化量を測定し、該変化量に応じて前記搬送手段の搬送能力を制御することで、該搬送手段によって散布される前記粉粒体の単位時間当たりの散布量が、単位時間当たりの目標散布量と一致するようにする搬送能力制御操作を行い、
前記粉粒体補充操作を行っている間は、前記搬送能力制御操作を休止して、前記搬送手段の搬送能力を、該搬送能力制御操作の休止直前の搬送能力に保持しておく、粉粒体含有物品の製造方法。
In the method for producing a granular material-containing article, the granular material discharged from the hopper is conveyed in a predetermined direction by a conveying means and dispersed on the object to be dispersed, thereby producing an article including the granular material. There,
The total weight of the hopper and the granular material stored in the hopper is continuously weighed, and when the total weight falls below a threshold, the powder is placed in the hopper until the total weight reaches the initial set weight. Perform the powder replenishment operation to replenish the granules,
Independently of the powder and granule replenishment operation, the amount of change per unit time of the total weight is measured, and the transfer capability of the transfer means is controlled according to the change amount, thereby being dispersed by the transfer means. The carrying capacity control operation is performed so that the spraying amount per unit time of the granular material matches the target spraying amount per unit time,
While performing the powder replenishment operation, the conveyance capacity control operation is suspended, and the conveyance capacity of the conveyance means is maintained at the conveyance capacity immediately before the conveyance capacity control operation is suspended. A method for producing a body-containing article.
内部に一時的に貯蔵した粉粒体を、移動路を介して排出口より排出するホッパーと、
前記ホッパーから排出された前記粉粒体を所定の一方向に搬送して散布する搬送手段と、
前記ホッパー及び該ホッパー内に貯蔵される粉粒体の全重量を連続して計量する計量装置と、
前記全重量の単位時間当たりの変化量を測定し、且つ前記搬送手段によって散布される前記粉粒体の単位時間当たりの散布量が、単位時間当たりの目標散布量と一致するように、該変化量に応じて前記搬送手段の搬送能力の制御を行うとともに、この制御とは独立して、該全重量が閾値を下回ったら、該全重量が初期設定重量となるまで前記ホッパー内に前記粉粒体を補充する制御を行う制御手段と、を備えた粉粒体散布装置であって、
前記制御手段は、前記粉粒体が前記ホッパーに補充されている間は、前記搬送手段の搬送能力の制御を休止させるとともに、制御休止中の該搬送手段の搬送能力を、制御休止直前の搬送能力に保持するように構成されている、粉粒体散布装置。
A hopper that discharges the particulates temporarily stored therein from the discharge port via the moving path;
Conveying means for conveying the powder particles discharged from the hopper in a predetermined direction and spraying;
A weighing device for continuously weighing the total weight of the hopper and the granular material stored in the hopper;
The amount of change per unit time of the total weight is measured, and the amount of change per unit time of the powder particles sprayed by the transport means is matched with the target amount of application per unit time. Independent of this control, when the total weight falls below a threshold, the powder particles in the hopper until the total weight reaches the initial set weight. A control means for performing control to replenish the body, and a granular material spraying device comprising:
The control means pauses the control of the transport capacity of the transport means while the powder particles are being replenished in the hopper, and the transport capacity of the transport means during the control pause is transported immediately before the control pause. A granular material spraying device that is configured to retain its capacity.
前記制御手段は、前記ホッパーへの前記粉粒体の補充が完了した後、前記全重量が所定時間にわたり連続して減少したときに、前記搬送手段の制御を再開するように構成されている請求項6に記載の粉粒体散布装置。   The control means is configured to resume the control of the conveying means when the total weight continuously decreases over a predetermined time after the replenishment of the granular material to the hopper is completed. Item 7. A granular material spraying device according to Item 6. 所定時間t(秒)毎に前記全重量を計量し、計量した該全重量と、t(秒)前に計量した該全重量との差分を算出し、その値をt(秒)で除した値を単位時間当たりの変化量と定義し、該変化量に応じて前記制御手段が前記搬送手段の搬送能力の制御を行う請求項6又は7に記載の粉粒体散布装置。   The total weight is measured every predetermined time t (seconds), the difference between the total weight weighed and the total weight weighed before t (seconds) is calculated, and the value is divided by t (seconds). 8. The powder particle dispersal device according to claim 6, wherein the value is defined as a change amount per unit time, and the control unit controls the transfer capability of the transfer unit according to the change amount. 所定時間s(秒)毎に前記全重量を計量し、計量した該全重量と、t(秒)(ただしs<tである。)前に計量した該全重量との差分を算出し、その値をt(秒)で除した値を単位時間当たりの変化量と定義し、該変化量に応じて前記制御手段が前記搬送手段の搬送能力の制御を行う請求項6又は7に記載の粉粒体散布装置。   The total weight is weighed every predetermined time s (seconds), and the difference between the total weight weighed and the total weight weighed before t (seconds) (where s <t) is calculated. The powder according to claim 6 or 7, wherein a value obtained by dividing the value by t (seconds) is defined as a change amount per unit time, and the control unit controls the transfer capability of the transfer unit according to the change amount. Granule spraying device.
JP2015230330A 2015-10-06 2015-11-26 Granule scattering method and granule scattering device, and granule containing article manufacturing method Pending JP2017094294A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015230330A JP2017094294A (en) 2015-11-26 2015-11-26 Granule scattering method and granule scattering device, and granule containing article manufacturing method
CN201680057683.1A CN108137243B (en) 2015-10-06 2016-09-30 Powder/granular material distribution device, powder/granular material distribution method, and method for manufacturing powder/granular material-containing article
PCT/JP2016/079143 WO2017061339A1 (en) 2015-10-06 2016-09-30 Particulate matter spraying device, particulate matter spraying method, and method for producing particulate matter-containing article
TW105132153A TWI682884B (en) 2015-10-06 2016-10-05 Powder and granule dispersion device, powder and granule dispersion method, and method for manufacturing powder and granule-containing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015230330A JP2017094294A (en) 2015-11-26 2015-11-26 Granule scattering method and granule scattering device, and granule containing article manufacturing method

Publications (1)

Publication Number Publication Date
JP2017094294A true JP2017094294A (en) 2017-06-01

Family

ID=58805081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015230330A Pending JP2017094294A (en) 2015-10-06 2015-11-26 Granule scattering method and granule scattering device, and granule containing article manufacturing method

Country Status (1)

Country Link
JP (1) JP2017094294A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043735A (en) * 2017-09-04 2019-03-22 花王株式会社 Particulate matter scattering device
JP2019052013A (en) * 2017-09-14 2019-04-04 花王株式会社 Powder particle spraying device and method for producing powder particle-containing article
JP2019073373A (en) * 2017-10-17 2019-05-16 花王株式会社 Granular material sprayer
WO2019220748A1 (en) * 2018-05-14 2019-11-21 花王株式会社 Particulate spray amount inspection device and inspection method, and device and method for manufacturing particulate-containing article
JP2021046305A (en) * 2019-09-19 2021-03-25 花王株式会社 Sprinkling method of granular powder
WO2021166375A1 (en) * 2020-02-21 2021-08-26 花王株式会社 Particulate spraying apparatus and particulate spraying method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112938A (en) * 1977-03-11 1978-10-02 Nat Jutaku Kenzai Powder painting apparatus
JPH10185663A (en) * 1996-12-27 1998-07-14 Sekisui Chem Co Ltd Screw feeder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112938A (en) * 1977-03-11 1978-10-02 Nat Jutaku Kenzai Powder painting apparatus
JPH10185663A (en) * 1996-12-27 1998-07-14 Sekisui Chem Co Ltd Screw feeder

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043735A (en) * 2017-09-04 2019-03-22 花王株式会社 Particulate matter scattering device
JP2019052013A (en) * 2017-09-14 2019-04-04 花王株式会社 Powder particle spraying device and method for producing powder particle-containing article
JP7017901B2 (en) 2017-10-17 2022-02-09 花王株式会社 Granule spraying device
JP2019073373A (en) * 2017-10-17 2019-05-16 花王株式会社 Granular material sprayer
WO2019220748A1 (en) * 2018-05-14 2019-11-21 花王株式会社 Particulate spray amount inspection device and inspection method, and device and method for manufacturing particulate-containing article
JP2019200063A (en) * 2018-05-14 2019-11-21 花王株式会社 Apparatus and method for inspecting powder and granular material spraying amount, and apparatus and method for manufacturing article having powder and granular material
CN111868485A (en) * 2018-05-14 2020-10-30 花王株式会社 Device and method for inspecting amount of scattering of powder or granule, and device and method for manufacturing article containing powder or granule
JP2021046305A (en) * 2019-09-19 2021-03-25 花王株式会社 Sprinkling method of granular powder
JP7356851B2 (en) 2019-09-19 2023-10-05 花王株式会社 How to spread powder and granules
JP2021133360A (en) * 2020-02-21 2021-09-13 花王株式会社 Particulate matter spraying device and particulate matter spraying method
CN113795444A (en) * 2020-02-21 2021-12-14 花王株式会社 Powder distribution device and powder distribution method
WO2021166375A1 (en) * 2020-02-21 2021-08-26 花王株式会社 Particulate spraying apparatus and particulate spraying method
CN113795444B (en) * 2020-02-21 2022-04-26 花王株式会社 Powder distribution device and powder distribution method

Similar Documents

Publication Publication Date Title
JP2017094294A (en) Granule scattering method and granule scattering device, and granule containing article manufacturing method
TWI682884B (en) Powder and granule dispersion device, powder and granule dispersion method, and method for manufacturing powder and granule-containing article
JP2013139337A5 (en)
WO2013084831A1 (en) Application method for powder and application device and method for manufacturing heating element using same
WO2017061339A1 (en) Particulate matter spraying device, particulate matter spraying method, and method for producing particulate matter-containing article
JP2010094507A (en) Device for dosing powdery or granular substance into capsule or the like
JP2019052013A (en) Powder particle spraying device and method for producing powder particle-containing article
US5996855A (en) Cross-feed auger and method
TWI759991B (en) Powder and granule dispersing device and powder and granule dispersing method
KR101315147B1 (en) Apparatus for continuous powder feeding
WO2021166731A1 (en) Method for spraying particulate matter and method for producing article containing particulate matter
JP2018030707A (en) Dispersion method for granular powder
JP6688710B2 (en) Powder-granulating device and powder-granulating method
JP5428042B2 (en) Substance supply and metering device, particle processing device, coating device and coating system
JP7356851B2 (en) How to spread powder and granules
WO2019220748A1 (en) Particulate spray amount inspection device and inspection method, and device and method for manufacturing particulate-containing article
JP6882125B2 (en) Granule spraying device
JP6396791B2 (en) Powder and particle dispersion device and powder particle dispersion method
JP7228475B2 (en) Granule sprayer
KR101590002B1 (en) Continuous feeder of uniformly fine powder having a cohesion prevent unit
JP7043662B1 (en) Gas transfer type ultrasonic squirt fine powder quantitative supply system and gas transfer type ultrasonic squirt fine powder quantitative supply method
JP2019073373A (en) Granular material sprayer
KR101559371B1 (en) Continuous feeder of uniformly fine powder
JP4644117B2 (en) Powder and particle dispersion method and apparatus
WO2017163628A1 (en) Powder dispensing device, powder supply device, and powder dispensing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201124