JP2017090135A - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
JP2017090135A
JP2017090135A JP2015218063A JP2015218063A JP2017090135A JP 2017090135 A JP2017090135 A JP 2017090135A JP 2015218063 A JP2015218063 A JP 2015218063A JP 2015218063 A JP2015218063 A JP 2015218063A JP 2017090135 A JP2017090135 A JP 2017090135A
Authority
JP
Japan
Prior art keywords
light
distance measuring
reflecting
distance
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015218063A
Other languages
Japanese (ja)
Inventor
俊佑 齋木
Shunsuke Saiki
俊佑 齋木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2015218063A priority Critical patent/JP2017090135A/en
Priority to EP16197019.9A priority patent/EP3173816B1/en
Publication of JP2017090135A publication Critical patent/JP2017090135A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that since a length of a plurality of scanning ranges scanned by distance measuring light is the same, a degree of freedom of the range capable of performing a distance measurement is low.SOLUTION: A distance measurement device includes: a housing; a light source provided inside the housing and emitting distance measuring light; a reflection member provided inside the housing and including a first reflection surface for reflecting distance measuring light emitted by the light source to an outside of the housing and a second reflection surface having a different area from the first reflection surface; a rotation part including a rotation axis for supporting the reflection member and making the reflection member rotate around the rotation axis; and a light receiving member for receiving the distance measuring light reflected by a distance measuring object and reflected on the reflection member so as to be converted into an electrical signal.SELECTED DRAWING: Figure 2

Description

本発明は、測距装置に関する。   The present invention relates to a distance measuring device.

レーザ光等を測距光として用いて、測距対象までの距離を測距する測距装置が知られている。例えば、測距装置は、複数の反射面を有する反射部材を回転させることによって測距光を走査させつつ、測距対象へ投光する。測距装置は、測距対象によって反射された測距光を受光部材によって受光することによって、測距対象までの距離を測距する。   2. Description of the Related Art A distance measuring device that uses a laser beam or the like as distance measuring light to measure a distance to a distance measuring object is known. For example, the distance measuring device projects a distance measuring light by rotating a reflecting member having a plurality of reflecting surfaces, and projects the light onto a distance measuring object. The distance measuring device measures the distance to the distance measuring object by receiving the distance measuring light reflected by the distance measuring object by the light receiving member.

測距装置は、複数の反射面によって測距光を反射することによって、反射部材が回転する方向に沿った複数の範囲(以下、走査範囲)で測距光を走査させることができる。   The distance measuring device can scan the distance measuring light in a plurality of ranges (hereinafter referred to as scanning ranges) along the direction in which the reflecting member rotates by reflecting the distance measuring light by the plurality of reflecting surfaces.

特開2011−203122号公報JP 2011-203122 A 特開2009−103482号公報JP 2009-103482 A

しかしながら、上述の測距装置は、測距光が走査する複数の走査範囲の長さが同じなので、測距可能な範囲の自由度が低いといった課題がある。   However, the distance measuring device described above has a problem that the range of distance measurement possible is low because the lengths of the plurality of scanning ranges scanned by the distance measuring light are the same.

上述した課題を解決し、目的を達成するために、本発明の測距装置は、筐体と、前記筐体内に設けられ、且つ測距光を投光する光源と、前記筐体内に設けられ、且つ前記光源が投光する前記測距光を前記筐体の外部へ反射する第1反射面及び前記第1反射面と面積の異なる第2反射面を有する反射部材と、前記反射部材を支持する回転軸を有し、前記反射部材を前記回転軸の周りで回転させる回転部と、測距対象によって反射され前記反射部材に反射された前記測距光を受光して電気信号に変換する受光部材と、を備える。   In order to solve the above-described problems and achieve the object, a distance measuring device of the present invention is provided in a housing, a light source for projecting ranging light, and provided in the housing. And a reflection member having a first reflection surface for reflecting the distance measuring light projected from the light source to the outside of the housing and a second reflection surface having an area different from that of the first reflection surface, and supporting the reflection member A rotating unit that rotates the reflecting member around the rotating shaft, and a light receiving unit that receives the ranging light reflected by the object to be measured and reflected by the reflecting member and converts the light into an electrical signal. A member.

このように測距装置は、第1反射面の面積と第2反射面の面積とが異なるので、第1反射面に反射された測距光の測距範囲と、第2反射面に反射された測距光の測距範囲とを異ならせることができる。これにより、測距装置は、測距範囲の自由度を向上させることができる。   Thus, since the area of the first reflecting surface is different from the area of the second reflecting surface, the distance measuring device reflects the distance measuring range of the distance measuring light reflected on the first reflecting surface and the second reflecting surface. The distance measuring range of the distance measuring light can be made different. Thereby, the distance measuring device can improve the degree of freedom of the distance measuring range.

上述の測距装置において、前記回転軸は、前記光源が投光する前記測距光の投光方向に対して傾斜していてもよい。これにより、測距装置は、回転軸の周りで回転する第1反射面及び第2反射面により反射された測距光を湾曲状に走査させることができる。   In the distance measuring apparatus described above, the rotation axis may be inclined with respect to a light projecting direction of the distance measuring light projected by the light source. Thereby, the distance measuring device can scan the distance measuring light reflected by the first reflecting surface and the second reflecting surface rotating around the rotation axis in a curved shape.

上述の測距装置において、前記回転軸は、鉛直方向に対して傾斜し、且つ前記測距対象の方向へ傾斜していてもよい。これにより、測距装置は、回転軸の周りで回転する第1反射面及び第2反射面により反射された測距光を、鉛直方向に凸状または凹状に湾曲した線に沿って走査させることができる。   In the distance measuring apparatus described above, the rotation axis may be inclined with respect to the vertical direction and in the direction of the distance measuring object. Thereby, the distance measuring device scans the distance measuring light reflected by the first reflecting surface and the second reflecting surface rotating around the rotation axis along a line curved in a convex or concave shape in the vertical direction. Can do.

上述の測距装置において、前記光源は、鉛直方向に対して傾斜し、且つ前記測距対象の方向へ傾斜した投光方向へ前記測距光を投光してもよい。これにより、測距装置は、投光方向に対して傾斜した回転軸の周りで回転する第1反射面及び第2反射面により反射された測距光を、鉛直方向に凸状または凹状に湾曲した線に沿って走査させることができる。   In the distance measuring apparatus described above, the light source may project the distance measuring light in a light projecting direction that is inclined with respect to a vertical direction and inclined in a direction of the distance measuring target. Thereby, the distance measuring device curves the distance measuring light reflected by the first reflecting surface and the second reflecting surface rotating around the rotation axis inclined with respect to the light projecting direction into a convex shape or a concave shape in the vertical direction. Can be scanned along the line.

上述の測距装置において、前記回転軸または前記光源が投光する前記測距光の投光方向は、前記測距対象の方向と交差する方向に傾斜していてもよい。これにより、測距装置は、回転軸の周りで回転する第1反射面及び第2反射面により反射された測距光を、測距方向と交差する方向のいずれかに偏らせて走査させることができる。   In the distance measuring apparatus described above, the light projecting direction of the distance measuring light projected by the rotating shaft or the light source may be inclined in a direction intersecting the direction of the distance measuring target. As a result, the distance measuring device scans the distance measuring light reflected by the first reflecting surface and the second reflecting surface rotating around the rotation axis in a direction crossing the distance measuring direction. Can do.

図1は、第1実施形態の測距装置の全体構成を説明する縦断面図である。FIG. 1 is a longitudinal sectional view illustrating the overall configuration of the distance measuring apparatus according to the first embodiment. 図2は、反射部材の斜視図である。FIG. 2 is a perspective view of the reflecting member. 図3は、集光部材の斜視図である。FIG. 3 is a perspective view of the light collecting member. 図4は、光学部材と集光部材の透過部との位置関係を説明する平面図である。FIG. 4 is a plan view for explaining the positional relationship between the optical member and the transmission part of the light collecting member. 図5は、測距光の軌跡及び測距範囲を説明する平面図である。FIG. 5 is a plan view for explaining the path of the distance measuring light and the distance measuring range. 図6は、測距光の軌跡及び測距範囲を説明する正面図である。FIG. 6 is a front view for explaining the path of the distance measuring light and the distance measuring range. 図7は、変形例1の反射部材の斜視図である。FIG. 7 is a perspective view of the reflecting member of the first modification. 図8は、変形例2の測距装置の全体構成を説明する断面図である。FIG. 8 is a cross-sectional view illustrating the entire configuration of the distance measuring apparatus according to the second modification. 図9は、変形例3の測距装置の全体構成を説明する断面図である。FIG. 9 is a cross-sectional view illustrating the overall configuration of a distance measuring apparatus according to Modification 3. 図10は、第2実施形態の測距装置の全体構成を説明する断面図である。FIG. 10 is a cross-sectional view illustrating the overall configuration of the distance measuring apparatus according to the second embodiment. 図11は、第2実施形態の集光部材の斜視図である。FIG. 11 is a perspective view of a light collecting member according to the second embodiment. 図12は、第2実施形態の集光部材の平面図である。FIG. 12 is a plan view of the light collecting member of the second embodiment. 図13は、変形例4による測距装置の全体構成を説明する断面図である。FIG. 13 is a cross-sectional view illustrating the overall configuration of a distance measuring apparatus according to Modification 4. 図14は、変形例5による光源及び絞りの配置を説明する図である。FIG. 14 is a diagram illustrating the arrangement of light sources and diaphragms according to the fifth modification. 図15は、変形例6による光源を説明する図である。FIG. 15 is a diagram illustrating a light source according to the sixth modification. 図16は、変形例7による回転部の回転軸を説明する図である。FIG. 16 is a diagram illustrating the rotation axis of the rotating unit according to the modified example 7.

以下の例示的な実施形態や変形例には、同様の構成要素が含まれている。よって、以下では、同様の構成要素には共通の符号が付されるとともに、重複する説明が部分的に省略される。実施形態や変形例に含まれる部分は、他の実施形態や変形例の対応する部分と置き換えて構成されることができる。また、実施形態や変形例に含まれる部分の構成や位置等は、特に言及しない限りは、他の実施形態や変形例と同様である。   Similar components are included in the following exemplary embodiments and modifications. Therefore, below, the same code | symbol is attached | subjected to the same component, and the overlapping description is partially abbreviate | omitted. Portions included in the embodiments and modifications can be configured by replacing corresponding portions in other embodiments and modifications. In addition, the configuration, position, and the like of the parts included in the embodiments and modifications are the same as those in the other embodiments and modifications unless otherwise specified.

実施形態の測距装置は、反射部材に設けられた複数の反射面の面積を互いに異ならせることによって、測距光による測距範囲を反射面毎に異ならせ、測距範囲の自由度を高める。   In the distance measuring apparatus of the embodiment, by making the areas of the plurality of reflecting surfaces provided on the reflecting member different from each other, the distance measuring range by the distance measuring light is made different for each reflecting surface, and the degree of freedom of the distance measuring range is increased. .

<第1実施形態>
図1は、第1実施形態の測距装置10の全体構成を説明する縦断面図である。図1は、測距対象の方向を前方とした場合、測距装置10を側方から見た図である。測距装置10は、例えば、自動車等の外周部に設けられ、周囲の人及び物等の測距対象までの距離を測距する。
<First Embodiment>
FIG. 1 is a vertical cross-sectional view illustrating the overall configuration of the distance measuring device 10 according to the first embodiment. FIG. 1 is a view of the distance measuring device 10 as viewed from the side when the direction of the distance measuring object is the front. The distance measuring device 10 is provided, for example, in an outer peripheral portion of an automobile or the like, and measures the distance to a distance measuring object such as a surrounding person or object.

図1に示すように、第1実施形態の測距装置10は、筐体12と、光源14と、光学部材16と、反射部材18と、回転部20と、集光部材22と、受光部材24と、制御部26とを備える。   As illustrated in FIG. 1, the distance measuring device 10 according to the first embodiment includes a housing 12, a light source 14, an optical member 16, a reflecting member 18, a rotating unit 20, a light collecting member 22, and a light receiving member. 24 and a control unit 26.

筐体12は、本体部30と、筐体窓32とを有する。   The housing 12 includes a main body 30 and a housing window 32.

本体部30は、例えば、樹脂によって構成されている。本体部30は、中空の立体形状に形成されている。本体部30は、光源14、光学部材16、反射部材18、回転部20、集光部材22、及び、受光部材24を収容して保持する。本体部30は、光源14及び受光部材24を保持する保持部材34、36を有する。   The main body 30 is made of resin, for example. The main body 30 is formed in a hollow three-dimensional shape. The main body 30 houses and holds the light source 14, the optical member 16, the reflecting member 18, the rotating unit 20, the light collecting member 22, and the light receiving member 24. The main body 30 includes holding members 34 and 36 that hold the light source 14 and the light receiving member 24.

筐体窓32は、本体部30を構成する面のうち、測距光RLが透過する領域に設けられている。筐体窓32は、測距光RLを透過可能な樹脂またはガラス等によって構成されている。尚、筐体窓32は、開口していてもよい。   The housing window 32 is provided in an area through which the distance measuring light RL is transmitted among the surfaces constituting the main body 30. The housing window 32 is made of resin, glass, or the like that can transmit the distance measuring light RL. The housing window 32 may be opened.

光源14は、測距対象までの距離を測定するための測距光RLを投光する。光源14は、保持部材34に保持且つ固定されて、筐体12内に設けられている。光源14は、半導体レーザ素子等のレーザ光を投光可能なレーザ装置を有する。光源14は、制御部26からの投光信号に基づいて、測距光RLとして矢印AW1で示す方向にレーザ光を投光する。当該一の方向を投光方向とする。本実施形態の投光方向は鉛直方向に平行とし、下方とする。また、投光方向に対して垂直な方向を水平方向とする。水平方向のうち、矢印AW2で示す方向を測距対象の方向(以下、測距方向)とする。より厳密には、測距方向は、平面視において、扇形に広がる測距範囲のうち、中心線に沿った方向である。   The light source 14 projects distance measuring light RL for measuring the distance to the distance measuring object. The light source 14 is held and fixed to the holding member 34 and is provided in the housing 12. The light source 14 includes a laser device capable of projecting laser light such as a semiconductor laser element. Based on the light projection signal from the control unit 26, the light source 14 projects laser light in the direction indicated by the arrow AW1 as the distance measuring light RL. The one direction is set as a light projecting direction. The light projecting direction of the present embodiment is parallel to the vertical direction and is downward. A direction perpendicular to the light projecting direction is defined as a horizontal direction. Of the horizontal directions, the direction indicated by the arrow AW2 is a direction to be measured (hereinafter referred to as a ranging direction). More precisely, the distance measuring direction is a direction along the center line in the distance measuring range spreading in a fan shape in plan view.

光学部材16は、測距光RLに光学的作用を加えて、反射部材18へと投光する。光学的作用の一例は、屈折である。光学部材16は、光源14が投光する往路の測距光RLの投光方向上に配置されている。即ち、光学部材16は、測距光RLの進路上に配置されている。尚、以下の説明において、測距光RLが測距対象に達するまでの進路を往路とし、測距光RLが測距対象に反射された以降の進路を復路とする。光学部材16は、投光方向上において、集光部材22よりも光源14に近い位置に配置されている。光学部材16の一例は、コリメータレンズである。光学部材16は、測距光RLを屈折させて平行光に変換して反射部材18へと投光する。これにより、光学部材16は、測距光RLの分散(または拡散)を抑制する。   The optical member 16 applies an optical action to the distance measuring light RL and projects it onto the reflecting member 18. An example of an optical action is refraction. The optical member 16 is disposed in the light projecting direction of the forward distance measuring light RL that is projected by the light source 14. That is, the optical member 16 is disposed on the path of the distance measuring light RL. In the following description, the course until the distance measurement light RL reaches the distance measurement object is defined as the forward path, and the path after the distance measurement light RL is reflected by the distance measurement object is defined as the return path. The optical member 16 is disposed at a position closer to the light source 14 than the light collecting member 22 in the light projecting direction. An example of the optical member 16 is a collimator lens. The optical member 16 refracts the distance measuring light RL, converts it into parallel light, and projects it onto the reflecting member 18. Thereby, the optical member 16 suppresses dispersion (or diffusion) of the distance measuring light RL.

反射部材18は、光源14が投光する測距光RLを筐体12の外部の測距対象へと反射するとともに、測距対象によって反射された測距光RLを集光部材22及び受光部材24の方向へと反射する。反射部材18は、筐体12内に設けられている。反射部材18は、光源14から投光された測距光RLの進路上に配置されている。反射部材18は、光源14から投光されて、光学部材16を通過して平行光にされた測距光RLを受光する。反射部材18は、例えば、受光した測距光RLを偏向可能なポリゴンミラーによって構成される。反射部材18は、測距光RLを筐体12の外部の測距対象へと反射する複数の反射面40a及び反射面40bを有する。反射面40a、40bは、金属等の反射率の高い材料からなる。   The reflection member 18 reflects the distance measurement light RL projected by the light source 14 to the distance measurement target outside the housing 12 and reflects the distance measurement light RL reflected by the distance measurement target 22 and the light receiving member. Reflects in the direction of 24. The reflection member 18 is provided in the housing 12. The reflecting member 18 is disposed on the path of the distance measuring light RL projected from the light source 14. The reflecting member 18 receives the distance measuring light RL that is projected from the light source 14 and passed through the optical member 16 to be parallel light. The reflecting member 18 is constituted by, for example, a polygon mirror that can deflect the received distance measuring light RL. The reflecting member 18 includes a plurality of reflecting surfaces 40 a and reflecting surfaces 40 b that reflect the distance measuring light RL toward a distance measuring object outside the housing 12. The reflective surfaces 40a and 40b are made of a highly reflective material such as metal.

反射面40a、40bは、光源14が投光した往路の測距光RLの進行方向(即ち、投光方向)に対して傾斜している。反射面40a、40bは、往路の測距光RLを測距対象が存在する外部へと反射する。また、反射面40a、40bは、外部の測距対象によって反射された復路の測距光RLの進行方向に対して傾斜している。反射面40a、40bは、復路の測距光RLを、集光部材22及び受光部材24の方向へと反射する。   The reflecting surfaces 40a and 40b are inclined with respect to the traveling direction (that is, the light projecting direction) of the forward distance measuring light RL projected by the light source 14. The reflecting surfaces 40a and 40b reflect the outward distance measuring light RL to the outside where the distance measuring object exists. The reflecting surfaces 40a and 40b are inclined with respect to the traveling direction of the distance measuring light RL on the return path reflected by the external distance measuring target. The reflecting surfaces 40 a and 40 b reflect the distance measuring light RL on the return path toward the light collecting member 22 and the light receiving member 24.

図1に示す例では、反射部材18は、2面の反射面40a、40bを有する。反射面40a、40bを2面とすることで、3面以上とする場合に比べて、水平方向の測距範囲を大きくすることができる。反射面40aの傾斜角θaは、反射面40bの傾斜角θbと異なる。尚、傾斜角θa、θbは、後述する回転軸46と反射面40a、40bとの間の角度である。本実施形態では、傾斜角θaは、傾斜角θbよりも大きい。   In the example shown in FIG. 1, the reflecting member 18 has two reflecting surfaces 40a and 40b. By using two reflecting surfaces 40a and 40b, it is possible to increase the distance measuring range in the horizontal direction as compared to the case of using three or more surfaces. The inclination angle θa of the reflection surface 40a is different from the inclination angle θb of the reflection surface 40b. Note that the inclination angles θa and θb are angles between a rotation shaft 46 described later and the reflecting surfaces 40a and 40b. In the present embodiment, the inclination angle θa is larger than the inclination angle θb.

図2は、反射部材18の斜視図である。図2に示すように、反射部材18は、平面視において、円形状に構成されている。反射部材18は、中心軸に対して傾斜する方向に沿って一部が除去された部分円柱形状に構成されている。反射部材18は、円柱形状から除去されることによって形成された面を反射面40a、40bとして機能させている。部分円柱形状に構成された反射部材18の中心軸は、回転軸46の中心軸と一致する。   FIG. 2 is a perspective view of the reflecting member 18. As shown in FIG. 2, the reflecting member 18 is configured in a circular shape in plan view. The reflecting member 18 is configured in a partially cylindrical shape with a part removed along a direction inclined with respect to the central axis. The surface formed by removing the reflection member 18 from the cylindrical shape functions as the reflection surfaces 40a and 40b. The central axis of the reflecting member 18 configured in a partial cylindrical shape coincides with the central axis of the rotation shaft 46.

反射面40a、40bは、反射部材18の周方向に沿って配置されている。反射面40a、40bは、回転軸46の方向から見た平面視において、ほぼ扇状に構成されている。反射面40aと反射面40bとの境界は、反射部材18のほぼ径方向に沿う。反射面40aの面積は、反射面40bの面積と異なる。これにより、反射面40aによって反射された測距光RLが走査する領域(または、長さ)は、反射面40bによって反射された測距光RLが走査する領域(または、長さ)と異なる。本実施形態では、反射面40aの面積は、反射面40bの面積よりも小さい。   The reflecting surfaces 40 a and 40 b are arranged along the circumferential direction of the reflecting member 18. The reflection surfaces 40a and 40b are substantially fan-shaped in a plan view viewed from the direction of the rotation shaft 46. The boundary between the reflecting surface 40 a and the reflecting surface 40 b is substantially along the radial direction of the reflecting member 18. The area of the reflective surface 40a is different from the area of the reflective surface 40b. Thereby, the region (or length) scanned by the distance measuring light RL reflected by the reflecting surface 40a is different from the region (or length) scanned by the distance measuring light RL reflected by the reflecting surface 40b. In the present embodiment, the area of the reflection surface 40a is smaller than the area of the reflection surface 40b.

反射部材18は、補正面42を更に有する。補正面42は、光源14から投光された測距光RLを外部に反射することなく、受光部材24へと反射する。これにより、制御部26は、光源14と受光部材24との距離(以下、補正距離)を測定することができる。制御部26は、測距対象までの距離を測定した値から補正距離を減算することにより、より正確な測距を可能とする。   The reflecting member 18 further has a correction surface 42. The correction surface 42 reflects the distance measuring light RL projected from the light source 14 to the light receiving member 24 without reflecting the distance measuring light RL to the outside. Thereby, the control part 26 can measure the distance (henceforth correction distance) of the light source 14 and the light-receiving member 24. FIG. The control unit 26 enables more accurate distance measurement by subtracting the correction distance from the value obtained by measuring the distance to the distance measurement object.

図1に戻って、回転部20は、反射部材18を回転可能に支持するとともに、回転させる。回転部20は、基台44と、回転軸46と、駆動部材48とを有する。   Returning to FIG. 1, the rotating unit 20 rotatably supports the reflecting member 18 and rotates it. The rotating unit 20 includes a base 44, a rotating shaft 46, and a driving member 48.

基台44は、筐体12の一面(例えば、底面)に固定されている。   The base 44 is fixed to one surface (for example, the bottom surface) of the housing 12.

回転軸46は、円柱形状に形成されている。回転軸46は、基台44に回転可能に支持されている。回転軸46は、光源14が投光する測距光RLの投光方向に対して傾斜している。例えば、回転軸46は、鉛直方向に対して傾斜し、かつ、測距対象の方向(即ち、筐体窓32の方向)へ傾斜している。回転軸46は、反射部材18を支持している。これにより、反射部材18は、回転軸46によって回転可能に基台44及び筐体12に支持される。回転軸46は、例えば、反射部材18の中心軸に沿って固定されている。   The rotating shaft 46 is formed in a cylindrical shape. The rotating shaft 46 is rotatably supported by the base 44. The rotation shaft 46 is inclined with respect to the light projecting direction of the distance measuring light RL projected by the light source 14. For example, the rotation shaft 46 is inclined with respect to the vertical direction, and is inclined in the direction of distance measurement (that is, the direction of the housing window 32). The rotating shaft 46 supports the reflecting member 18. Thereby, the reflecting member 18 is supported by the base 44 and the housing 12 so as to be rotatable by the rotation shaft 46. The rotating shaft 46 is fixed along the central axis of the reflecting member 18, for example.

駆動部材48は、例えば、モータによって構成されている。駆動部材48は、制御部26が出力した駆動信号に基づいて、回転駆動力を回転軸46に出力する。これにより、駆動部材48は、回転軸46とともに反射部材18を、回転軸46の中心軸の周りで回転させる。   The drive member 48 is constituted by a motor, for example. The driving member 48 outputs a rotational driving force to the rotating shaft 46 based on the driving signal output from the control unit 26. Accordingly, the driving member 48 rotates the reflecting member 18 together with the rotating shaft 46 around the central axis of the rotating shaft 46.

集光部材22は、復路の測距光RLを受光部材24へと集光する。集光部材22は、反射部材18の反射面40a、40bによって反射された測距光RLの進路上に配置されている。集光部材22は、筐体12の外部の測距対象によって反射され反射部材18によって反射された測距光RLを受光する。集光部材22は、投光方向に対して、ほぼ垂直に配置されている。集光部材22は、光を集光可能な集光レンズによって構成されている。集光部材22は、例えば、フレネルレンズによって構成されている。集光部材22は、受光した測距光RLを集光して、受光部材24へと投光する。   The condensing member 22 condenses the distance measuring light RL on the return path onto the light receiving member 24. The condensing member 22 is disposed on the path of the distance measuring light RL reflected by the reflecting surfaces 40 a and 40 b of the reflecting member 18. The light collecting member 22 receives the distance measuring light RL reflected by the distance measuring object outside the housing 12 and reflected by the reflecting member 18. The condensing member 22 is disposed substantially perpendicular to the light projecting direction. The condensing member 22 is configured by a condensing lens capable of condensing light. The condensing member 22 is composed of, for example, a Fresnel lens. The condensing member 22 condenses the received distance measuring light RL and projects it onto the light receiving member 24.

集光部材22は、外周部に透過部50を有する。透過部50は、集光部材22の外周部のうち、測距対象側に設けられている。光学部材16及び透過部50は、光源14から投光方向に沿って延びる一の直線上に配置されている。透過部50は、光源14が投光する測距光RLの投光方向において、光学部材16と異なる位置に配置されている。透過部50は、例えば、光学部材16よりも投光方向の下流側に、配置されている。   The condensing member 22 has a transmission part 50 on the outer peripheral part. The transmission part 50 is provided on the distance measurement target side in the outer peripheral part of the light collecting member 22. The optical member 16 and the transmission part 50 are arranged on one straight line extending from the light source 14 along the light projecting direction. The transmission unit 50 is arranged at a position different from the optical member 16 in the light projecting direction of the distance measuring light RL projected by the light source 14. The transmission part 50 is arrange | positioned rather than the optical member 16 in the downstream of a light projection direction, for example.

図3は、集光部材22の斜視図である。図3に示すように、集光部材22は、ほぼ円板状に構成されている。透過部50は、集光部材22の外周部の一部を除去して、集光部材22の外周部に設けられた切欠きによって構成されている。透過部50の外周側は、開口している。透過部50は、平面視において、U字状に形成されている。集光部材22の径方向に沿った透過部50の長さは、集光部材22の周方向に沿った透過部50の長さよりも長い。   FIG. 3 is a perspective view of the light collecting member 22. As shown in FIG. 3, the condensing member 22 is configured in a substantially disk shape. The transmission part 50 is configured by a notch provided in the outer peripheral part of the light collecting member 22 by removing a part of the outer peripheral part of the light collecting member 22. The outer peripheral side of the transmission part 50 is open. The transmission part 50 is formed in a U shape in plan view. The length of the transmission part 50 along the radial direction of the light collection member 22 is longer than the length of the transmission part 50 along the circumferential direction of the light collection member 22.

透過部50は、光源14から投光されて反射部材18へと進行する測距光RLに光学的作用を加えることなく、測距光RLの透過(または通過)を許容する。即ち、透過部50は、測距光RLを屈折による集光及び分散等させることなく透過させる。   The transmission unit 50 allows transmission (or passage) of the ranging light RL without applying an optical action to the ranging light RL projected from the light source 14 and traveling to the reflecting member 18. That is, the transmission unit 50 transmits the distance measuring light RL without condensing and dispersing the light by refraction.

集光部材22は、透過部50の周囲に形成された遮光部52を有する。遮光部52は、光を遮光及び吸収可能な材料によって構成されている。例えば、遮光部52は、光を反射しない黒い部材、例えば、黒色の塗料によって構成されている。これにより、遮光部52は、筐体12の内面等によって反射された測距光RL等の測距に不要な光を吸収して、受光部材24が当該光を受光することを抑制する。   The condensing member 22 has a light shielding part 52 formed around the transmission part 50. The light shielding unit 52 is made of a material capable of shielding and absorbing light. For example, the light shielding part 52 is configured by a black member that does not reflect light, for example, black paint. As a result, the light shielding unit 52 absorbs light unnecessary for distance measurement, such as the distance measurement light RL reflected by the inner surface of the housing 12, and suppresses the light receiving member 24 from receiving the light.

遮光部52が光を遮光するので、透過部50及び遮光部52は、光源14から投光された往路の測距光RLの絞りとしても機能する。ここで、透過部50及び遮光部52は、集光部材22の径方向に長く、周方向に短い形状である。従って、透過部50及び遮光部52は、投光方向に対して垂直な面に沿った測距光RLの断面を、集光部材22の径方向に長く、周方向に短い形状に絞って、反射部材18へと投光する。換言すれば、透過部50及び遮光部52は、反射部材18の回転方向における測距光RLの断面の長さが、当該回転方向と直交する方向における測距光RLの断面の長さよりも短くなるように、測距光RLを絞る。反射部材18の回転方向は、平面視における反射部材18の周方向でもある。反射部材18の回転方向と直交する方向は、平面視における反射部材18の径方向でもある。従って、反射部材18は、反射面40a、40b間の境界と交差(例えば、直交)する方向の長さが短い測距光RLを受光することになる。   Since the light shielding unit 52 shields light, the transmission unit 50 and the light shielding unit 52 also function as a stop for the distance measuring light RL in the forward path projected from the light source 14. Here, the transmission part 50 and the light shielding part 52 are long in the radial direction of the light collecting member 22 and short in the circumferential direction. Therefore, the transmission part 50 and the light shielding part 52 narrow the cross section of the distance measuring light RL along the surface perpendicular to the light projecting direction into a shape that is long in the radial direction of the light collecting member 22 and short in the circumferential direction. The light is projected onto the reflecting member 18. In other words, in the transmission part 50 and the light shielding part 52, the length of the cross section of the distance measuring light RL in the rotation direction of the reflecting member 18 is shorter than the length of the cross section of the distance measuring light RL in the direction orthogonal to the rotation direction. Thus, the distance measuring light RL is narrowed down. The rotation direction of the reflection member 18 is also the circumferential direction of the reflection member 18 in plan view. The direction orthogonal to the rotation direction of the reflection member 18 is also the radial direction of the reflection member 18 in plan view. Therefore, the reflecting member 18 receives the distance measuring light RL having a short length in a direction intersecting (for example, orthogonal to) the boundary between the reflecting surfaces 40a and 40b.

図4は、光学部材16と集光部材22の透過部50との位置関係を説明する平面図である。図4に示すように、平面視において、光学部材16は、集光部材22の透過部50と重なるように配置されている。光学部材16及び透過部50は、投光方向と直交する方向において、同じ位置に配置されている。   FIG. 4 is a plan view for explaining the positional relationship between the optical member 16 and the transmission part 50 of the light collecting member 22. As shown in FIG. 4, the optical member 16 is disposed so as to overlap the transmission part 50 of the light collecting member 22 in plan view. The optical member 16 and the transmission part 50 are arranged at the same position in the direction orthogonal to the light projecting direction.

これにより、光学部材16及び透過部50が投光方向において同じ位置に配置されていた場合、当然、光学部材16の平面積よりも透過部50の平面積を大きくしなければならなかった規制がなくなる。従って、透過部50の平面積を、光学部材16の平面積よりも小さくすることができる。この結果、透過部50以外の領域によって構成される集光部材22が測距光RLを集光可能な領域が大きくなる。   Thereby, when the optical member 16 and the transmissive part 50 are arranged at the same position in the light projecting direction, naturally, there is a restriction that the plane area of the transmissive part 50 must be larger than the plane area of the optical member 16. Disappear. Therefore, the plane area of the transmission part 50 can be made smaller than the plane area of the optical member 16. As a result, a region where the condensing member 22 configured by a region other than the transmission part 50 can collect the distance measuring light RL becomes larger.

また、透過部50は、集光部材22の外周部のうち、測距対象側に設けられている。これにより、光源14及び光学部材16を、受光部材24よりも測距対象側に配置して、往路の測距光RLを筐体窓32に近い反射面40a、40bの外周部で反射することができる。従って、往路の測距光RLが通過する筐体窓32の領域が小さくなる。この結果、筐体窓32を小さくできるので、筐体窓32によって反射された測距光RLが、反射部材18によって反射されて受光部材24によってノイズとして受光されることを抑制しつつ、デザイン性を向上できる。   Further, the transmission part 50 is provided on the distance measurement target side in the outer peripheral part of the light collecting member 22. As a result, the light source 14 and the optical member 16 are arranged closer to the distance measuring object than the light receiving member 24, and the distance measuring light RL in the forward path is reflected by the outer peripheral portions of the reflecting surfaces 40 a and 40 b close to the housing window 32. Can do. Therefore, the area of the housing window 32 through which the distance measuring light RL in the forward path passes is reduced. As a result, the housing window 32 can be made smaller, so that the distance measuring light RL reflected by the housing window 32 is reflected by the reflecting member 18 and received by the light receiving member 24 as noise, while being designed. Can be improved.

図1に戻って、受光部材24は、復路の測距光RLを電気的な信号に変換する。受光部材24は、保持部材36に保持されて、筐体12に対して固定されている。受光部材24は、光源14の近傍に固定されている。これにより、筐体12が複数の部品によって構成されている場合でも、受光部材24は、光源14と筐体12の同一の部品に組み付けることができる。受光部材24は、例えば、集光部材22の中心軸上に配置されている。受光部材24は、集光部材22の中心軸上である焦点の近傍に配置してもよい。受光部材24は、例えば、アバランシェフォトダイオード等の受光した光を電気信号に変換するフォトダイオードである。受光部材24は、測距対象によって反射され反射部材18によって反射された後、集光部材22によって集光された測距光RLを受光する。受光部材24は、当該測距光RLを電気的な信号である受光信号に変換して、制御部26へ出力する。   Returning to FIG. 1, the light receiving member 24 converts the distance measuring light RL in the return path into an electrical signal. The light receiving member 24 is held by the holding member 36 and fixed to the housing 12. The light receiving member 24 is fixed in the vicinity of the light source 14. Thereby, even when the housing 12 is composed of a plurality of components, the light receiving member 24 can be assembled to the same components of the light source 14 and the housing 12. For example, the light receiving member 24 is disposed on the central axis of the light collecting member 22. The light receiving member 24 may be disposed in the vicinity of the focal point on the central axis of the light collecting member 22. The light receiving member 24 is a photodiode that converts received light into an electrical signal, such as an avalanche photodiode. The light receiving member 24 receives the distance measuring light RL that is reflected by the object to be measured and reflected by the reflecting member 18 and then collected by the light collecting member 22. The light receiving member 24 converts the distance measuring light RL into a light receiving signal that is an electrical signal and outputs the light receiving signal to the control unit 26.

制御部26は、測距装置10の制御全般を司る。制御部26は、CPUまたは回路等の演算可能な演算装置及びデータを記憶可能な記憶装置等を有する。制御部26は、予め設定された条件に基づいて、光源14及び駆動部材48を制御するとともに、受光部材24から受光信号を取得して、測距対象までの距離を測距する。   The control unit 26 performs overall control of the distance measuring device 10. The control unit 26 includes an arithmetic device such as a CPU or a circuit and a storage device that can store data. The control unit 26 controls the light source 14 and the driving member 48 based on preset conditions, acquires a light reception signal from the light receiving member 24, and measures the distance to the distance measurement target.

次に、上述した測距装置10の測距動作を説明する。   Next, the distance measuring operation of the distance measuring apparatus 10 described above will be described.

図5は、測距光RLの軌跡及び測距範囲を説明する平面図である。図6は、測距光RLの軌跡及び測距範囲を説明する正面図である。尚、図6は、測距対象から測距装置10を見た正面図である。図5及び図6において、実線は反射面40aによって反射された測距光RLaを示し、点線は反射面40bによって反射された測距光RLbを示す。   FIG. 5 is a plan view for explaining the trajectory and distance measurement range of the distance measurement light RL. FIG. 6 is a front view for explaining the locus of the distance measuring light RL and the distance measuring range. FIG. 6 is a front view of the distance measuring device 10 as viewed from the distance measuring object. 5 and 6, the solid line indicates the distance measuring light RLa reflected by the reflecting surface 40a, and the dotted line indicates the distance measuring light RLb reflected by the reflecting surface 40b.

制御部26は、光源14に投光信号を出力する。例えば、制御部26は、一定の時間間隔でパルス状の投光信号を出力する。また、制御部26は、回転部20の駆動部材48へ駆動信号を出力する。   The control unit 26 outputs a light projection signal to the light source 14. For example, the control unit 26 outputs a pulsed light projection signal at a constant time interval. Further, the control unit 26 outputs a drive signal to the drive member 48 of the rotating unit 20.

光源14は、一定の時間間隔で投光信号を取得すると、当該時間間隔で周期的に測距光RLとしてレーザ光を光学部材16へと投光する。光学部材16は、光源14が投光した測距光RLを平行光に変換して、反射部材18の方向へと投光する。測距光RLは、集光部材22の透過部50を透過して、反射部材18へと達する。   When the light source 14 obtains the light projection signal at a constant time interval, the light source 14 periodically projects laser light onto the optical member 16 as the distance measuring light RL at the time interval. The optical member 16 converts the distance measuring light RL projected by the light source 14 into parallel light and projects it in the direction of the reflecting member 18. The distance measuring light RL passes through the transmission part 50 of the light collecting member 22 and reaches the reflecting member 18.

一方、駆動部材48は、駆動信号を取得すると、回転軸46を回転させることにより、回転軸46の周りで反射部材18を回転させる。   On the other hand, when the driving member 48 acquires the driving signal, the driving member 48 rotates the reflecting shaft 18 around the rotating shaft 46 by rotating the rotating shaft 46.

反射部材18は、光学部材16によって平行光に変換された測距光RLを反射面40a、40bによって反射する。ここで、反射部材18の反射面40a、40bは、回転軸46の周りで回転しているので、図5に示すように、水平方向において、異なる位置へと測距光RLを反射する。これにより、測距装置10は、測距光RLを水平方向で移動させつつ、測距対象までの距離を測距する。   The reflecting member 18 reflects the distance measuring light RL converted into parallel light by the optical member 16 by the reflecting surfaces 40a and 40b. Here, since the reflecting surfaces 40a and 40b of the reflecting member 18 rotate around the rotation shaft 46, the distance measuring light RL is reflected to different positions in the horizontal direction as shown in FIG. Thereby, the distance measuring device 10 measures the distance to the distance measuring object while moving the distance measuring light RL in the horizontal direction.

ここで、透過部50は、集光部材22の外周部のうち、測距対象側に設けられている。これにより、反射部材18は往路の測距光RLを周方向の長さの長い反射面40a、40bの外周部で往路の測距光RLを反射するので、水平方向における測距範囲Ara、Arbを大きくできる。   Here, the transmission part 50 is provided on the distance measurement target side in the outer peripheral part of the light collecting member 22. Thereby, the reflecting member 18 reflects the distance measuring light RL in the horizontal direction because the distance measuring light RL in the horizontal direction is reflected by the outer peripheral portions of the reflection surfaces 40a and 40b having a long circumferential length. Can be increased.

反射面40bの面積は、反射面40aの面積よりも大きい。従って、反射面40bによって反射される測距光RLによる測距範囲Arbは、反射面40aによって反射された測距光RLによる測距範囲Araよりも大きい。   The area of the reflective surface 40b is larger than the area of the reflective surface 40a. Accordingly, the distance measurement range Arb by the distance measurement light RL reflected by the reflection surface 40b is larger than the distance measurement range Ara by the distance measurement light RL reflected by the reflection surface 40a.

傾斜角θaは、傾斜角θbよりも大きい。従って、図6に示すように、反射面40bは、ほとんどの測距位置において、反射面40aよりも下方に測距光RLを反射する。例えば、反射面40bは、測距光RLの一部が地面GRに達するように、下方へと反射する。一方、反射面40aは、例えば、測距光RLが地面GRに達しないように、かつ、ほとんどの測距光RLが一般的な人間の身長よりも上方にならない程度に上方へ反射する。   The inclination angle θa is larger than the inclination angle θb. Therefore, as shown in FIG. 6, the reflecting surface 40b reflects the distance measuring light RL below the reflecting surface 40a at most distance measuring positions. For example, the reflecting surface 40b reflects downward so that part of the distance measuring light RL reaches the ground GR. On the other hand, the reflection surface 40a reflects upward so that, for example, the distance measuring light RL does not reach the ground GR, and most of the distance measuring light RL does not rise above the general human height.

回転軸46が、光源14が投光する測距光RLの投光方向に対して傾斜している。従って、回転している反射面40aと測距光RLとの間の角度が、変化する。同様に、回転している反射面40bと測距光RLとの間の角度が、変化する。これにより、反射面40aに反射された測距光RLによる測距位置は、下方に突出した湾曲した軌跡に沿って、移動する。同様に、反射面40bに反射された測距光RLによる測距位置は、下方に突出した湾曲した軌跡に沿って、移動する。   The rotation shaft 46 is inclined with respect to the light projecting direction of the distance measuring light RL projected by the light source 14. Accordingly, the angle between the rotating reflecting surface 40a and the distance measuring light RL changes. Similarly, the angle between the rotating reflecting surface 40b and the distance measuring light RL changes. Thereby, the distance measuring position by the distance measuring light RL reflected by the reflecting surface 40a moves along a curved locus protruding downward. Similarly, the distance measuring position by the distance measuring light RL reflected by the reflecting surface 40b moves along a curved locus protruding downward.

透過部50は、集光部材22の径方向に長い形状を有するので、透過する測距光RLの断面を集光部材22の径方向に長い形状とする。換言すれば、透過部50は、反射部材18の回転方向における測距光RLの断面の長さを、反射部材18の回転方向と直交する方向における測距光RLの長さより短くする。これにより、進行方向と垂直な面に沿った測距光RLの断面の形状が、反射面40a、反射面40b及び補正面42との間の境界に沿って長く、境界と直交する方向に短くなる。これにより、測距光RLが当該境界を跨いでいる間の測距できない時間が短くなる。   Since the transmission part 50 has a shape that is long in the radial direction of the light collecting member 22, the cross section of the distance measuring light RL that is transmitted has a shape that is long in the radial direction of the light collecting member 22. In other words, the transmission unit 50 makes the length of the cross section of the distance measuring light RL in the rotation direction of the reflection member 18 shorter than the length of the distance measurement light RL in the direction orthogonal to the rotation direction of the reflection member 18. Thereby, the shape of the cross section of the distance measuring light RL along the plane perpendicular to the traveling direction is long along the boundary between the reflective surface 40a, the reflective surface 40b, and the correction surface 42, and short in the direction orthogonal to the boundary. Become. As a result, the time during which the distance measurement light RL cannot measure the distance while straddling the boundary is shortened.

測距光RLは、測距対象によって反射された後、反射部材18へと達する。反射部材18は、反射面40aまたは反射面40bによって、測距光RLを集光部材22へと反射する。集光部材22は、測距光RLを集光して、受光部材24へと投光する。受光部材24は、測距光RLを電気的な受光信号に変換して、制御部26へ出力する。   The distance measuring light RL reaches the reflecting member 18 after being reflected by the distance measuring object. The reflecting member 18 reflects the distance measuring light RL to the light collecting member 22 by the reflecting surface 40a or the reflecting surface 40b. The condensing member 22 condenses the distance measuring light RL and projects it onto the light receiving member 24. The light receiving member 24 converts the distance measuring light RL into an electrical light reception signal and outputs it to the control unit 26.

制御部26は、光源14が測距光RLを投光してから受光部材24が測距光RLを受光するまでの時間から測距対象までの距離を算出する。また、制御部26は、反射部材18の回転位置から、反射面40a、40bによって反射された測距光RLが進行する方向を算出して、測距対象の位置及び高さを算出する。   The control unit 26 calculates a distance from the time from when the light source 14 projects the distance measuring light RL to when the light receiving member 24 receives the distance measuring light RL to the distance measuring object. In addition, the control unit 26 calculates the direction and distance of the distance measurement target by calculating the direction in which the distance measurement light RL reflected by the reflection surfaces 40a and 40b travels from the rotational position of the reflection member 18.

上述したように、測距装置10では、反射部材18に面積の異なる反射面40a、40bを設けているので、反射面40aによって反射された測距光RLによる測距範囲Araと、反射面40bによって反射された測距光RLによる測距範囲Arbとを異ならせることができる。これにより、測距装置10は、各反射面40a、40bによる測距範囲の自由度を向上させることができる。   As described above, since the distance measuring device 10 is provided with the reflecting surfaces 40a and 40b having different areas on the reflecting member 18, the distance measuring range Ara by the distance measuring light RL reflected by the reflecting surface 40a and the reflecting surface 40b. The distance measurement range Arb by the distance measurement light RL reflected by can be made different. As a result, the distance measuring device 10 can improve the degree of freedom of the distance measurement range by the reflecting surfaces 40a and 40b.

測距装置10では、回転軸46が投光方向に対して傾斜しているので、回転軸46の周りで回転する反射面40a、40bによって反射された測距光RLの走査面を鉛直方向に湾曲させることができる。更に、回転軸46が、鉛直方向に傾斜して、かつ、測距対象側へ傾斜しているので、測距光RLの走査面を下方に突出した凸状に湾曲させることができる。これにより、測距装置10は、水平方向の1回の測距光RLの走査によって、前方及び側方の測距対象を検出できるとともに、高さの異なる測距対象を検出して測距できる。   In the distance measuring device 10, since the rotation shaft 46 is inclined with respect to the light projecting direction, the scanning surface of the distance measurement light RL reflected by the reflecting surfaces 40a and 40b rotating around the rotation shaft 46 is set in the vertical direction. Can be curved. Furthermore, since the rotation shaft 46 is inclined in the vertical direction and is inclined toward the distance measuring object, the scanning surface of the distance measuring light RL can be curved in a convex shape protruding downward. As a result, the distance measuring device 10 can detect the distance measurement objects in the front and the side by one scanning of the distance measurement light RL in the horizontal direction, and can detect the distance measurement objects having different heights. .

測距装置10では、光源14の投光方向に対して回転軸46を傾斜させて走査面を湾曲させているので、光源14または受光部材24を回転軸46に対して傾斜させる場合に比べて、傾斜角度を小さく、例えば、1/2にすることができる。これにより、測距装置10は、小型化を実現するとともに、自動車等に設けた場合における自動車からの飛び出し量を小さくできる。   In the distance measuring device 10, since the scanning surface is curved by inclining the rotation shaft 46 with respect to the light projecting direction of the light source 14, compared with the case where the light source 14 or the light receiving member 24 is inclined with respect to the rotation shaft 46. The inclination angle can be made small, for example, ½. As a result, the distance measuring device 10 can be miniaturized and can reduce the amount of protrusion from the automobile when it is provided in an automobile or the like.

測距装置10では、反射部材18に2面の反射面40a、40bを設けているので、3面以上の反射面を設ける場合に比べて、水平方向の測距範囲を増加させるとともに、反射面40a、40b間の境界における測距できない時間を低減できる。   In the distance measuring device 10, since the reflecting member 18 is provided with two reflecting surfaces 40a and 40b, the distance measuring range in the horizontal direction is increased and the reflecting surface is increased as compared with the case where three or more reflecting surfaces are provided. The time during which distance measurement cannot be performed at the boundary between 40a and 40b can be reduced.

上述したように、測距装置10では、光学部材16が、投光方向において、透過部50と異なる位置に配置されている。これにより、透過部50の平面積の大きさを、光学部材16の平面積の大きさよりも大きくする必要がないので、例えば、透過部50の平面積を透過させる測距光RLの大きさより小さくすることができる。従って、透過部50が形成される集光部材22において、測距光RLを集光可能な領域を大きくすることができるので、受光部材24が集光部材22によって集光された測距光RLをより多く受光して、測距装置10は、測距性能を向上させることができる。   As described above, in the distance measuring device 10, the optical member 16 is disposed at a position different from the transmission unit 50 in the light projecting direction. Thereby, since it is not necessary to make the size of the plane area of the transmission part 50 larger than the size of the plane area of the optical member 16, for example, it is smaller than the magnitude of the distance measuring light RL that transmits the plane area of the transmission part 50. can do. Accordingly, in the condensing member 22 in which the transmission part 50 is formed, the area in which the ranging light RL can be condensed can be increased, and thus the ranging light RL in which the light receiving member 24 is condensed by the condensing member 22. The distance measuring device 10 can improve the distance measuring performance.

測距装置10では、透過部50を切欠きによって構成しているので、集光部材22の外周部に透過部50を容易に設けることができる。更に、透過部50を集光部材22に設けることによって、測距対象へと投光される測距光RLの進路と、受光する測距光RLの進路をより近づけることができる。これにより、集光部材22は、透過部50を透過した後、測距対象によって反射された測距光RLをより広い領域に対して受光し、かつ、より効率よく受光して、受光部材24へと集光することができる。この結果、測距装置10は、反射される測距光RLの光量が少ない遠方の測距対象の測距性能を向上させるとともに、測距の難しい近距離領域の死角をより低減することができる。   In the distance measuring device 10, since the transmissive part 50 is configured by a notch, the transmissive part 50 can be easily provided on the outer peripheral part of the light collecting member 22. Furthermore, by providing the transmission part 50 on the light collecting member 22, the path of the distance measuring light RL projected onto the distance measuring object and the path of the received distance measuring light RL can be made closer. Thereby, the condensing member 22 receives the distance measuring light RL reflected by the distance measuring object after being transmitted through the transmission unit 50 with respect to a wider area and more efficiently, and receives the light receiving member 24. The light can be condensed. As a result, the distance measuring device 10 can improve the distance measuring performance of a distance measuring object in the distance where the amount of the reflected distance measuring light RL is small, and can further reduce the blind spot in a short distance region where distance measurement is difficult. .

測距装置10では、光学部材16が、測距光RLの分散を抑制するので、測距光RLをより効率よく利用することができる。   In the distance measuring device 10, since the optical member 16 suppresses dispersion of the distance measuring light RL, the distance measuring light RL can be used more efficiently.

測距装置10では、切欠きにより構成される透過部50及び遮光部52が、反射部材18の回転方向における測距光RLの断面の長さを、反射部材18の回転方向と直交する方向における測距光RLの断面の長さより短くする。これにより、測距光RLが、反射面40a、40bの境界を跨いでいる間の測距できない時間を短くすることができるので、測距可能な範囲をより大きくすることができる。   In the distance measuring device 10, the transmission part 50 and the light shielding part 52 configured by notches have the length of the cross section of the distance measuring light RL in the rotation direction of the reflection member 18 in a direction orthogonal to the rotation direction of the reflection member 18. It is shorter than the length of the cross section of the distance measuring light RL. Thereby, since the time during which the distance measuring light RL cannot be measured while straddling the boundary between the reflecting surfaces 40a and 40b can be shortened, the range in which the distance can be measured can be further increased.

<変形例1>
図7は、変形例1の反射部材118の斜視図である。図7に示すように、変形例1の反射部材118は、3面の反射面140a、140b、140cと、補正面42とを有する。反射面140a、140b、140cは、それぞれ面積が異なる。反射面140a、140b、140cは、回転軸46との間の角度である傾斜角がそれぞれ異なる。変形例1の反射部材118は、測距光RLの走査方向と交差(例えば、直交)する方向において、3個所で測距光RLを走査させることができる。これにより、反射部材118は、例えば、走査方向と交差する方向の測距性能を向上させることができる。
<Modification 1>
FIG. 7 is a perspective view of the reflecting member 118 of the first modification. As shown in FIG. 7, the reflective member 118 of Modification 1 has three reflective surfaces 140 a, 140 b, 140 c and a correction surface 42. The reflective surfaces 140a, 140b, and 140c have different areas. The reflection surfaces 140a, 140b, and 140c have different inclination angles that are angles between the reflection surfaces 140a, 140b, and 140c. The reflecting member 118 of the first modification can scan the distance measuring light RL at three positions in a direction intersecting (for example, orthogonal) with the scanning direction of the distance measuring light RL. Thereby, the reflection member 118 can improve the ranging performance in the direction intersecting with the scanning direction, for example.

<変形例2>
図8は、変形例2の測距装置210の全体構成を説明する断面図である。図8に示すように、測距装置210は、受光用反射部材260を有する。受光用反射部材260は、例えば、全反射ミラーである。受光用反射部材260は、集光部材222によって集光された復路の測距光RLの進路上に配置されている。受光部材24は、受光用反射部材260によって反射された測距光RLの進路上に配置されている。変形例2の測距装置210では、受光用反射部材260が、集光部材222によって集光された測距光RLを、受光部材24へと反射する。受光部材24は、受光用反射部材260によって反射された測距光RLを受光信号に変換して制御部26へ出力する。
<Modification 2>
FIG. 8 is a cross-sectional view illustrating the overall configuration of the distance measuring device 210 of the second modification. As shown in FIG. 8, the distance measuring device 210 includes a light receiving reflection member 260. The light receiving reflection member 260 is, for example, a total reflection mirror. The light receiving reflection member 260 is disposed on the path of the distance measuring light RL on the return path collected by the light collecting member 222. The light receiving member 24 is disposed on the path of the distance measuring light RL reflected by the light receiving reflecting member 260. In the distance measuring device 210 of the second modification, the light receiving reflecting member 260 reflects the distance measuring light RL collected by the light collecting member 222 to the light receiving member 24. The light receiving member 24 converts the distance measuring light RL reflected by the light receiving reflecting member 260 into a light receiving signal and outputs the light receiving signal to the control unit 26.

変形例2の測距装置210では、受光用反射部材260によって、受光部材24の配置の自由度を向上させることができる。例えば、受光部材24を光源14よりも反射部材18側に配置することにより、測距装置210の高さを小さくして、小型化を実現できる。   In the distance measuring device 210 according to the second modification, the light receiving reflection member 260 can improve the degree of freedom of arrangement of the light receiving member 24. For example, by disposing the light receiving member 24 closer to the reflecting member 18 than the light source 14, the height of the distance measuring device 210 can be reduced and downsizing can be realized.

<変形例3>
図9は、変形例3の測距装置310の全体構成を説明する断面図である。図9に示すように、集光部材322を外周部に透過部350が形成された凸レンズによって構成してもよい。透過部350は、集光部材322の外周部を一部削除した切欠きによって構成される。
<Modification 3>
FIG. 9 is a cross-sectional view illustrating the overall configuration of the distance measuring apparatus 310 of the third modification. As shown in FIG. 9, the light condensing member 322 may be constituted by a convex lens having a transmission part 350 formed on the outer periphery. The transmission part 350 is configured by a notch obtained by partially removing the outer peripheral part of the light collecting member 322.

<第2実施形態>
図10は、第2実施形態の測距装置410の全体構成を説明する断面図である。図11は、第2実施形態の集光部材422の斜視図である。図12は、第2実施形態の集光部材422の平面図である。
Second Embodiment
FIG. 10 is a cross-sectional view illustrating the overall configuration of the distance measuring apparatus 410 according to the second embodiment. FIG. 11 is a perspective view of the light collecting member 422 of the second embodiment. FIG. 12 is a plan view of the light collecting member 422 of the second embodiment.

図10に示すように、第2実施形態の測距装置410は、集光部材422を備える。図11及び図12に示すように、集光部材422は、集光ミラー面423を有する。集光ミラー面423は、反射率の高い金属等によって構成されている。集光ミラー面423は、湾曲した曲面に構成されている。これにより、集光ミラー面423は、測距光RLを集光しつつ、受光部材24へと向けて反射する。集光部材422の外周部には、切欠きによって構成される透過部450が形成されている。透過部450は、往路の測距光RLを透過する。第2実施形態においても、透過部450は、投光方向において、光学部材16と異なる位置に配置されている。   As shown in FIG. 10, the distance measuring device 410 of the second embodiment includes a light collecting member 422. As shown in FIGS. 11 and 12, the condensing member 422 has a condensing mirror surface 423. The condensing mirror surface 423 is made of a highly reflective metal or the like. The condensing mirror surface 423 is configured as a curved surface. Thereby, the condensing mirror surface 423 reflects the distance measuring light RL toward the light receiving member 24 while condensing the distance measuring light RL. A transmission portion 450 constituted by a notch is formed on the outer peripheral portion of the light collecting member 422. The transmission unit 450 transmits the forward distance measuring light RL. Also in the second embodiment, the transmission unit 450 is disposed at a position different from the optical member 16 in the light projecting direction.

<変形例4>
図13は、変形例4による測距装置510の全体構成を説明する断面図である。図13に示すように、変形例4による測距装置510は、受光用反射部材560を有する。受光用反射部材560は、例えば、全反射ミラーである。受光用反射部材560は、集光部材422によって集光された復路の測距光RLの進路上に配置されている。受光部材24は、受光用反射部材560によって反射された測距光RLの進路上に配置されている。
<Modification 4>
FIG. 13 is a cross-sectional view illustrating the overall configuration of a distance measuring apparatus 510 according to Modification 4. As shown in FIG. 13, the distance measuring device 510 according to Modification 4 includes a light receiving reflection member 560. The light receiving reflection member 560 is, for example, a total reflection mirror. The light receiving reflection member 560 is disposed on the path of the return distance measuring light RL collected by the light collecting member 422. The light receiving member 24 is disposed on the path of the distance measuring light RL reflected by the light receiving reflecting member 560.

変形例4の測距装置510では、受光用反射部材560が、集光部材422によって反射され、かつ、集光された測距光RLを、受光部材24へと反射する。受光部材24は、受光用反射部材560によって反射された測距光RLを受光信号に変換して制御部26へ出力する。   In the distance measuring device 510 of Modification 4, the light receiving reflection member 560 is reflected by the light collecting member 422 and reflects the collected distance measuring light RL to the light receiving member 24. The light receiving member 24 converts the distance measuring light RL reflected by the light receiving reflecting member 560 into a light receiving signal and outputs the light receiving signal to the control unit 26.

変形例4の測距装置510では、受光用反射部材560によって、受光部材24の配置の自由度を向上させることができる。例えば、受光部材24を空きスペースに配置することにより、測距装置510の小型化を実現できる。   In the distance measuring device 510 of Modification 4, the light receiving reflection member 560 can improve the degree of freedom of the arrangement of the light receiving member 24. For example, the ranging device 510 can be downsized by arranging the light receiving member 24 in an empty space.

<変形例5>
図14は、変形例5による光源14及び絞り62の配置を説明する図である。上述の実施形態では、透過部50及び遮光部52を絞りとして機能させたが、絞り62を別に設けてもよい。例えば、絞り62は、光学部材16と集光部材22の透過部50との間であって、往路の測距光RLの進路上に配置される。絞り62は、複数の反射面40a、40bを有する反射部材18の回転方向における測距光RLの断面の長さを、回転方向と直交する方向の測距光RLの断面の長さよりも短くするように、測距光RLを絞る。
<Modification 5>
FIG. 14 is a diagram illustrating the arrangement of the light source 14 and the diaphragm 62 according to the fifth modification. In the above-described embodiment, the transmission unit 50 and the light shielding unit 52 function as a diaphragm, but the diaphragm 62 may be provided separately. For example, the diaphragm 62 is disposed between the optical member 16 and the transmission part 50 of the light collecting member 22 and on the path of the forward distance measuring light RL. The diaphragm 62 makes the length of the cross section of the distance measuring light RL in the rotation direction of the reflecting member 18 having the plurality of reflecting surfaces 40a and 40b shorter than the length of the cross section of the distance measuring light RL in the direction orthogonal to the rotation direction. Thus, the distance measuring light RL is narrowed down.

<変形例6>
図15は、変形例6による光源14を説明する図である。図15に示すように、光源14が、鉛直方向に対して傾斜させた投光方向に測距光RLを投光するようにしてもよい。
例えば、光源14は、鉛直方向に対して傾斜させ、かつ、測距対象の方向に傾斜した投光方向へ測距光RLを投光してもよい。この場合、回転軸46は、鉛直方向に平行であってもよく、傾斜していてもよい。これにより、例えば、回転軸46を鉛直方向に平行に配置した場合、回転に伴う回転部20の破損を抑制することができる。
<Modification 6>
FIG. 15 is a diagram illustrating the light source 14 according to the sixth modification. As shown in FIG. 15, the light source 14 may project the distance measuring light RL in the light projecting direction inclined with respect to the vertical direction.
For example, the light source 14 may project the distance measuring light RL in a light projecting direction that is tilted with respect to the vertical direction and tilted in the direction of the distance measuring target. In this case, the rotating shaft 46 may be parallel to the vertical direction or may be inclined. Thereby, for example, when the rotating shaft 46 is arranged in parallel to the vertical direction, it is possible to suppress damage to the rotating unit 20 due to rotation.

<変形例7>
図16は、変形例7による回転部20の回転軸46を説明する図である。図16は、測距対象側から見た測距装置710の主要部の図である。回転部20の回転軸46は、測距方向と交差(例えば、直交)する方向に傾斜させてもよい。これにより、測距装置710は、測距光RLの走査線を右上がりまたは左上がり等の曲線状にすることができるとともに、測距方向と交差する方向のいずれかに測距光の測距範囲を偏らせることができる。例えば、2個の測距装置710が自動車の前端の左側及び右側に設けられている場合、左側に設けられている測距装置710の測距範囲を自動車の左前方に偏らせ、右側に設けられている測距装置710の測距範囲を自動車の右前方に偏らせることができる。この結果、左右の測距装置710の重複する測距範囲を低減して、2個の測距装置710による測距範囲を広げることができる。尚、光源14の投光方向を、測距方向と交差(例えば、直交)する方向に傾斜させてもよい。
<Modification 7>
FIG. 16 is a diagram for explaining the rotating shaft 46 of the rotating unit 20 according to the modified example 7. FIG. 16 is a diagram of a main part of the distance measuring device 710 as viewed from the distance measuring object side. The rotating shaft 46 of the rotating unit 20 may be inclined in a direction intersecting (for example, orthogonal) with the distance measuring direction. Thereby, the distance measuring device 710 can make the scanning line of the distance measuring light RL into a curved shape such as rising to the right or rising to the left, and the distance measuring light in the direction intersecting the distance measuring direction. The range can be biased. For example, when two distance measuring devices 710 are provided on the left and right sides of the front end of the vehicle, the distance measuring range of the distance measuring device 710 provided on the left side is biased to the left front of the vehicle and provided on the right side. The distance measuring range of the distance measuring device 710 can be biased to the front right of the automobile. As a result, the overlapping ranging ranges of the left and right ranging devices 710 can be reduced, and the ranging ranges by the two ranging devices 710 can be expanded. Note that the light projecting direction of the light source 14 may be inclined in a direction intersecting (for example, orthogonal) with the distance measuring direction.

本発明の実施形態及び変形例を説明したが、これらの実施形態及び変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態及び変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although embodiments and modifications of the present invention have been described, these embodiments and modifications are presented as examples and are not intended to limit the scope of the invention. These novel embodiments and modifications can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

上述の各実施形態及び変形例における構成の配置、形状、個数等は適宜変更してよい。また、各実施形態及び変形例は適宜組み合わせてもよい。   The arrangement, shape, number, and the like of the configurations in the above-described embodiments and modifications may be changed as appropriate. Moreover, you may combine each embodiment and a modified example suitably.

上述の実施形態及び変形例では、制御部26が、測距装置10の内部に設けられている例を示したが、制御部26は測距装置10の外部に設けてもよく、測距装置10とは別にしてもよい。   In the above-described embodiment and the modification, the example in which the control unit 26 is provided inside the distance measuring device 10 has been described. However, the control unit 26 may be provided outside the distance measuring device 10. It may be different from 10.

上述の実施形態及び変形例では、透過部50を切欠きとして構成したが、透過部50は、測距光RLを、例えば屈折等の光学的作用を加えることなく透過するように構成すればよい。従って、透過部50は、両面が測距光RLの投光方向(即ち、進行方向)に対して垂直な面を有し光を透過可能な材料によって構成してもよい。   In the above-described embodiment and modification, the transmissive part 50 is configured as a notch, but the transmissive part 50 may be configured to transmit the distance measuring light RL without applying an optical action such as refraction. . Therefore, the transmission part 50 may be made of a material that has a surface that is perpendicular to the light projecting direction (that is, the traveling direction) of the distance measuring light RL and is capable of transmitting light.

上述の実施形態及び変形例では、集光部材22、322、422をフレネルレンズ、凸レンズ及び集光ミラーで構成する例を示したが、集光部材は集光可能な他の光学部品で構成してもよい。例えば、集光部材は、屈折レンズ、自由曲面レンズ等によって構成してもよい。   In the above-described embodiment and modification, the example in which the condensing members 22, 322, and 422 are configured by a Fresnel lens, a convex lens, and a condensing mirror is shown, but the condensing member is configured by other optical components that can collect light. May be. For example, the condensing member may be constituted by a refractive lens, a free-form surface lens, or the like.

上述した実施形態及び変形例では、反射部材が1面から3面の反射面を有する例を挙げたが、反射部材は4面以上の反射面を有してもよい。また、反射部材が複数の反射面を有する場合、モータ等の駆動部材による回転動作中に回転ムラ及び振動が生じない程度に、反射面の面積等によってバランスを調整することが好ましい。   In the embodiment and the modification described above, the example in which the reflecting member has one to three reflecting surfaces has been described, but the reflecting member may have four or more reflecting surfaces. Further, when the reflecting member has a plurality of reflecting surfaces, it is preferable to adjust the balance by the area of the reflecting surface and the like so that rotation unevenness and vibration do not occur during the rotating operation by a driving member such as a motor.

上述の実施形態では、レーザ装置を有する光源を例に挙げたが、光源にはLED(Light Emitting Diode:発光ダイオード)等を設けてもよい。   In the above-described embodiment, the light source having the laser device is taken as an example, but the light source may be provided with an LED (Light Emitting Diode) or the like.

10、210、310、410、510、610、710…測距装置、14…光源、16…光学部材、18、118、618…反射部材、20…回転部、22、322、422…集光部材、24…受光部材、40a、40b、140a、140b、140c、640…反射面、46…回転軸、48…駆動部材、50、350、450…透過部、52…遮光部、62…絞り、RL…測距光 10, 210, 310, 410, 510, 610, 710 ... distance measuring device, 14 ... light source, 16 ... optical member, 18, 118, 618 ... reflecting member, 20 ... rotating part, 22, 322, 422 ... condensing member , 24 ... Light receiving member, 40a, 40b, 140a, 140b, 140c, 640 ... Reflecting surface, 46 ... Rotating shaft, 48 ... Driving member, 50, 350, 450 ... Transmission part, 52 ... Light shielding part, 62 ... Aperture, RL ... ranging light

Claims (5)

筐体と、
前記筐体内に設けられ、且つ測距光を投光する光源と、
前記筐体内に設けられ、且つ前記光源が投光する前記測距光を前記筐体の外部へ反射する第1反射面及び前記第1反射面と面積の異なる第2反射面を有する反射部材と、
前記反射部材を支持する回転軸を有し、前記反射部材を前記回転軸の周りで回転させる回転部と、
測距対象によって反射され前記反射部材に反射された前記測距光を受光して電気信号に変換する受光部材と、
を備える測距装置。
A housing,
A light source provided in the housing and for projecting ranging light;
A reflecting member provided in the housing and having a first reflecting surface for reflecting the distance measuring light projected by the light source to the outside of the housing and a second reflecting surface having a different area from the first reflecting surface; ,
A rotating part that supports the reflecting member and rotates the reflecting member around the rotating axis;
A light receiving member that receives the distance measuring light reflected by the object to be measured and reflected by the reflecting member, and converts the light into an electrical signal;
Ranging device comprising.
前記回転軸は、前記光源が投光する前記測距光の投光方向に対して傾斜している
請求項1に記載の測距装置。
The distance measuring device according to claim 1, wherein the rotation axis is inclined with respect to a light projecting direction of the distance measuring light projected by the light source.
前記回転軸は、鉛直方向に対して傾斜し、且つ前記測距対象の方向へ傾斜している
請求項1または2に記載の測距装置。
The distance measuring device according to claim 1, wherein the rotation axis is inclined with respect to a vertical direction and is inclined in a direction of the distance measuring object.
前記光源は、鉛直方向に対して傾斜し、且つ前記測距対象の方向へ傾斜した投光方向へ前記測距光を投光する
請求項1から3のいずれか1項に記載の測距装置。
The ranging device according to any one of claims 1 to 3, wherein the light source projects the ranging light in a projection direction that is inclined with respect to a vertical direction and inclined in a direction of the ranging object. .
前記回転軸または前記光源が投光する前記測距光の投光方向は、前記測距対象の方向と交差する方向に傾斜している
請求項1から4のいずれか1項に記載の測距装置。
The distance measuring method according to any one of claims 1 to 4, wherein a light projecting direction of the distance measuring light projected by the rotation axis or the light source is inclined in a direction intersecting with a direction of the distance measuring object. apparatus.
JP2015218063A 2015-11-06 2015-11-06 Distance measuring device Pending JP2017090135A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015218063A JP2017090135A (en) 2015-11-06 2015-11-06 Distance measuring device
EP16197019.9A EP3173816B1 (en) 2015-11-06 2016-11-03 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015218063A JP2017090135A (en) 2015-11-06 2015-11-06 Distance measuring device

Publications (1)

Publication Number Publication Date
JP2017090135A true JP2017090135A (en) 2017-05-25

Family

ID=58767965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015218063A Pending JP2017090135A (en) 2015-11-06 2015-11-06 Distance measuring device

Country Status (1)

Country Link
JP (1) JP2017090135A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291787A (en) * 2004-03-31 2005-10-20 Denso Corp Distance detection device
JP2009063339A (en) * 2007-09-05 2009-03-26 Hokuyo Automatic Co Scanning type range finder
US20110235018A1 (en) * 2010-03-25 2011-09-29 Hokuyo Automatic Co., Ltd. Scanning-type distance measuring apparatus
JP2011197575A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Optical scanner and distance measuring device
JP2011203122A (en) * 2010-03-25 2011-10-13 Nippon Soken Inc Optical radar apparatus
JP2013083624A (en) * 2011-09-28 2013-05-09 Denso Wave Inc Laser radar apparatus
JP2014071038A (en) * 2012-09-28 2014-04-21 Denso Wave Inc Laser radar device
JP2015125007A (en) * 2013-12-25 2015-07-06 株式会社デンソー Polygon mirror and laser radar device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291787A (en) * 2004-03-31 2005-10-20 Denso Corp Distance detection device
JP2009063339A (en) * 2007-09-05 2009-03-26 Hokuyo Automatic Co Scanning type range finder
JP2011197575A (en) * 2010-03-23 2011-10-06 Toyota Central R&D Labs Inc Optical scanner and distance measuring device
US20110235018A1 (en) * 2010-03-25 2011-09-29 Hokuyo Automatic Co., Ltd. Scanning-type distance measuring apparatus
JP2011203122A (en) * 2010-03-25 2011-10-13 Nippon Soken Inc Optical radar apparatus
JP2013083624A (en) * 2011-09-28 2013-05-09 Denso Wave Inc Laser radar apparatus
JP2014071038A (en) * 2012-09-28 2014-04-21 Denso Wave Inc Laser radar device
JP2015125007A (en) * 2013-12-25 2015-07-06 株式会社デンソー Polygon mirror and laser radar device

Similar Documents

Publication Publication Date Title
EP3173816B1 (en) Distance measuring device
US9880264B2 (en) Projection optical system and object detection device
US10067222B2 (en) Laser rangefinder
JP6460445B2 (en) Laser range finder
JP2010537241A (en) Optical device
KR20180126927A (en) A eight-channel ridar
JP2017129573A (en) Photoelectronic sensor and object detection method
JP6892734B2 (en) Light wave distance measuring device
WO2017135224A1 (en) Object detection device of optical scanning type
JP2019159067A (en) Optical device, distance measurement device using the same, and moving body
JP6907947B2 (en) Optical scanning type object detection device
JP2017138298A (en) Optical scanner type object detection device
JP7012091B2 (en) Optical scanning system
JP5452245B2 (en) Lightwave distance measuring device
JP6388383B2 (en) Laser range finder
JP2016020831A (en) Laser rangefinder
JP2017090135A (en) Distance measuring device
JP2017090137A (en) Distance measuring device
JP2017194424A (en) Light emitting/receiving device and distance measuring device
JPWO2017065048A1 (en) Optical scanning type object detection device
WO2017065049A1 (en) Optical-scanning-type object detection device
JP2019023650A (en) Light wave ranging device
JP6812776B2 (en) Distance measurement sensor
JP7369937B2 (en) distance measuring device
JP2021110660A (en) Distance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200407