JP2017072475A - Optical nondestructive inspection apparatus and optical nondestructive inspection method - Google Patents

Optical nondestructive inspection apparatus and optical nondestructive inspection method Download PDF

Info

Publication number
JP2017072475A
JP2017072475A JP2015199387A JP2015199387A JP2017072475A JP 2017072475 A JP2017072475 A JP 2017072475A JP 2015199387 A JP2015199387 A JP 2015199387A JP 2015199387 A JP2015199387 A JP 2015199387A JP 2017072475 A JP2017072475 A JP 2017072475A
Authority
JP
Japan
Prior art keywords
intensity
laser
nondestructive inspection
phase difference
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015199387A
Other languages
Japanese (ja)
Other versions
JP6620499B2 (en
Inventor
松本 直樹
Naoki Matsumoto
直樹 松本
良太 梅澤
Ryota Umezawa
良太 梅澤
吉田 航也
Kouya Yoshida
航也 吉田
順 松本
Jun Matsumoto
順 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015199387A priority Critical patent/JP6620499B2/en
Publication of JP2017072475A publication Critical patent/JP2017072475A/en
Application granted granted Critical
Publication of JP6620499B2 publication Critical patent/JP6620499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical nondestructive inspection apparatus and an optical nondestructive inspection method that can nondestructively find the area of a joint boundary face between a first member and a second member joined together on the joint boundary surface.SOLUTION: An optical nondestructive inspection apparatus has: a laser output device 27 which emits heating laser light such that intensity at a measurement point SP set on a surface of a first member between a first member 51 and a second member 52 joined on a joint boundary surface 53 varies in a sine wave shape; laser light intensity detection means 41 of detecting intensity of the heating laser light at the measurement point SP; infrared intensity detecting means 31 of detecting intensity of infrared light emitted from the measurement point and varying in a sine wave shape; a phase difference detection device 60 which receives a detection signal from the laser light intensity detecting means and a detection signal from the infrared light intensity detecting means and detecting a phase difference between both the detection means; and a determination device 70 which calculates the area of the joint boundary surface based upon the phase difference received from the phase difference detection device.SELECTED DRAWING: Figure 1

Description

本発明は、接合界面にて互いに接合された第1部材と第2部材における接合界面の面積を、光学的に非破壊にて求める、光学非破壊検査装置及び光学非破壊検査方法に関する。   The present invention relates to an optical nondestructive inspection apparatus and an optical nondestructive inspection method for optically determining the area of a bonded interface between a first member and a second member bonded to each other at a bonded interface.

近年では、種々の材質の第1部材と第2部材との接合が有り、接合状態の検査が望まれている。接合状態の検査において、従来では、生産ロットの中から適当にサンプルを抜き取り、当該サンプルを破壊して接合状態を確認し、当該ロットの製品は、破壊したサンプルと同等の接合状態を有している、とみなしていた。この従来の方法は、接合状態を確認するためにサンプルを破壊しなければならない。   In recent years, there are joining of a first member and a second member made of various materials, and inspection of the joining state is desired. In the inspection of the bonding state, conventionally, a sample is appropriately extracted from the production lot, the sample is destroyed and the bonding state is confirmed, and the product of the lot has a bonding state equivalent to the broken sample. I thought it was. In this conventional method, the sample must be broken to confirm the bonding state.

ここで特許文献1には、試料の熱伝導率を計測する熱物性測定装置が記載されている。熱物性測定装置は、試料の表面に、正弦波状に強度が変化するように変調された第1加熱光と第2加熱光をそれぞれ照射し、試料の表面からの正弦波状の放射光の強度を検出している。そして、照射した正弦波状の第1加熱光及び第2加熱光の強度と、正弦波状の放射光の強度と、の位相差から、試料の熱伝導率を求めている。   Here, Patent Document 1 describes a thermophysical property measuring apparatus that measures the thermal conductivity of a sample. The thermophysical property measuring apparatus irradiates the surface of the sample with the first heating light and the second heating light, which are modulated so that the intensity changes sinusoidally, and the intensity of the sinusoidal radiation from the surface of the sample. Detected. Then, the thermal conductivity of the sample is obtained from the phase difference between the intensity of the irradiated sinusoidal first heating light and second heating light and the intensity of the sinusoidal radiation light.

また特許文献2には、試料の熱拡散率を計測する熱拡散率測定装置が記載されている。熱拡散率測定装置は、加熱レーザビームを照射する加熱レーザビーム照射手段と、加熱レーザビームの強度を周期的に変化させる周波数発生器と、赤外光集光手段と、放射温度計と、ロックインアンプと、制御手段と、を有している。そして試料の一方の側から、周波数発生器からの信号で強度が正弦波状に変調された加熱レーザビームを照射し、試料の他方の側から放射される正弦波状の強度の赤外光を、赤外光集光手段と放射温度計を介してロックインアンプに入力している。またロックインアンプには、周波数発生器からの信号も入力されている。そして制御手段は、周波数発生器からの信号と放射された赤外光との位相差がロックインアンプから入力され、周波数発生器からの信号の周波数と、位相差と、に基づいて試料の熱拡散率を求めている。   Patent Document 2 describes a thermal diffusivity measuring device that measures the thermal diffusivity of a sample. The thermal diffusivity measuring device includes a heating laser beam irradiation means for irradiating a heating laser beam, a frequency generator for periodically changing the intensity of the heating laser beam, an infrared light condensing means, a radiation thermometer, a lock An in-amplifier and control means are provided. Then, from one side of the sample, a heating laser beam whose intensity is modulated sinusoidally with a signal from the frequency generator is irradiated, and infrared light having a sinusoidal intensity emitted from the other side of the sample is reddish. The light is input to the lock-in amplifier via the external light collecting means and the radiation thermometer. A signal from a frequency generator is also input to the lock-in amplifier. The control means inputs the phase difference between the signal from the frequency generator and the emitted infrared light from the lock-in amplifier, and based on the frequency of the signal from the frequency generator and the phase difference, The diffusion rate is being calculated.

特開2012−189525号公報JP 2012-189525 A 特開2011−185852号公報JP 2011-185852 A

特許文献1に記載の熱物性測定装置は、試料の熱伝導率を非破壊にて検査できるが、第1部材と第2部材とを接合した試料の接合状態を求めることはできない。また特許文献2に記載の熱拡散率測定装置は、試料の熱拡散率を非破壊にて検査できるが、第1部材と第2部材とを接合した試料の接合状態を求めることはできない。   The thermophysical property measuring apparatus described in Patent Document 1 can inspect the thermal conductivity of a sample in a non-destructive manner, but cannot determine the bonding state of the sample in which the first member and the second member are bonded. Moreover, although the thermal diffusivity measuring apparatus of patent document 2 can test | inspect the thermal diffusivity of a sample nondestructively, it cannot obtain | require the joining state of the sample which joined the 1st member and the 2nd member.

本発明は、このような点に鑑みて創案されたものであり、接合界面にて互いに接合された第1部材と第2部材において、非破壊にて接合界面の面積を求めることができる、光学非破壊検査装置及び光学非破壊検査方法を提供することを課題とする。   The present invention was devised in view of such points, and in the first member and the second member joined to each other at the joining interface, the area of the joining interface can be obtained nondestructively. It is an object to provide a nondestructive inspection apparatus and an optical nondestructive inspection method.

上記課題を解決するため、本発明に係る光学非破壊検査装置及び光学非破壊検査方法は、次の手段をとる。まず、本発明の第1の発明は、接合界面にて互いに接合された第1部材と第2部材である計測対象物における第1部材の表面に設定した計測点に加熱用レーザを照射して、前記計測点から取得される情報、または前記加熱用レーザに関する情報と、前記計測点から取得される情報と、に基づいて、前記接合界面の面積を求める、光学非破壊検査装置であって、前記計測点における強度が正弦波状に変化するように前記加熱用レーザを出射するレーザ出力装置と、前記計測点の前記加熱用レーザの強度、を検出するレーザ強度検出手段と、前記計測点から放射された赤外線の強度であって正弦波状に変化する前記赤外線の強度を検出する赤外線強度検出手段と、前記レーザ強度検出手段からの検出信号と前記赤外線強度検出手段からの検出信号を取り込んで、正弦波状に変化する前記加熱用レーザの強度と、正弦波状に変化する前記赤外線の強度と、の位相差を検出する位相差検出装置と、前記位相差検出装置から取り込んだ前記位相差に基づいて前記接合界面の面積である接合界面面積を算出する判定装置と、を有する、光学非破壊検査装置である。   In order to solve the above problems, an optical nondestructive inspection apparatus and an optical nondestructive inspection method according to the present invention take the following means. First, the first invention of the present invention irradiates a heating laser to a measurement point set on the surface of the first member of the measurement object that is the first member and the second member that are joined to each other at the joining interface. An optical nondestructive inspection apparatus for obtaining an area of the bonding interface based on information acquired from the measurement point or information on the heating laser and information acquired from the measurement point, Laser output device for emitting the heating laser so that the intensity at the measurement point changes in a sine wave shape, laser intensity detection means for detecting the intensity of the heating laser at the measurement point, and radiation from the measurement point Infrared intensity detecting means for detecting the intensity of the infrared rays, which changes in a sinusoidal shape, and a detection signal from the laser intensity detecting means and a detection signal from the infrared intensity detecting means A phase difference detection device that detects a phase difference between the intensity of the heating laser that is captured and changes sinusoidally and the intensity of the infrared that is changed sinusoidally; and the phase difference captured from the phase difference detection device And a determination device that calculates a bonding interface area that is an area of the bonding interface based on the optical nondestructive inspection device.

次に、本発明の第2の発明は、上記第1の発明に係る光学非破壊検査装置であって、前記計測点の前記加熱用レーザの強度は、前記計測点に照射される前記加熱用レーザである照射光の強度であって正弦波状に変化する前記照射光の強度、または、前記計測点にて反射された前記加熱用レーザの反射光の強度であって正弦波状に変化する前記反射光の強度、である、光学非破壊検査装置である。   Next, a second invention of the present invention is the optical nondestructive inspection apparatus according to the first invention, wherein the intensity of the heating laser at the measurement point is the value for the heating applied to the measurement point. The intensity of the irradiation light that is a laser and changes in a sinusoidal shape, or the intensity of the reflected light of the heating laser reflected at the measurement point and the reflection that changes in a sinusoidal shape This is an optical non-destructive inspection device.

次に、本発明の第3の発明は、上記第1の発明または第2の発明に係る光学非破壊検査装置であって、前記判定装置には、前記第1部材の物理特性である第1物理特性と、前記第2部材の物理特性である第2物理特性と、前記接合界面の物理特性である界面物理特性と、が記憶されている。そして、前記判定装置は、前記位相差と、正弦波状に強度が変化する前記加熱用レーザの周波数と、前記第1物理特性と、に基づいて前記第1部材と前記第2部材とを1つの部材とみなした熱拡散率を求め、求めた前記熱拡散率と、前記第1物理特性と、に基づいて前記第1部材と前記第2部材とを1つの部材とみなした熱伝導率を求め、求めた前記熱伝導率と、前記位相差に基づいた前記計測対象物の見かけ上の熱抵抗と、前記第1物理特性と、前記第2物理特性とから前記接合界面の熱抵抗である接合界面熱抵抗を求め、求めた前記接合界面熱抵抗と、前記界面物理特性と、に基づいて前記接合界面面積を算出する、光学非破壊検査装置である。   Next, a third invention of the present invention is the optical nondestructive inspection device according to the first invention or the second invention, wherein the determination device includes a first physical property of the first member. Physical characteristics, second physical characteristics that are physical characteristics of the second member, and interface physical characteristics that are physical characteristics of the bonding interface are stored. And the said determination apparatus makes the said 1st member and the said 2nd member into one based on the said phase difference, the frequency of the said laser for heating which changes intensity | strength in a sine wave shape, and the said 1st physical characteristic. Obtaining the thermal diffusivity regarded as a member, and obtaining the thermal conductivity considering the first member and the second member as one member based on the obtained thermal diffusivity and the first physical characteristics. A junction which is a thermal resistance of the junction interface from the obtained thermal conductivity, an apparent thermal resistance of the measurement object based on the phase difference, the first physical characteristic, and the second physical characteristic. An optical nondestructive inspection apparatus that calculates an interface thermal resistance and calculates the bonded interface area based on the determined bonded interface thermal resistance and the interface physical characteristics.

次に、本発明の第4の発明は、上記第3の発明に係る光学非破壊検査装置であって、前記判定装置は、所定の通信回線に接続されており、前記第1物理特性と、前記第2物理特性と、前記界面物理特性とを、前記通信回線を介して受信して記憶する、光学非破壊検査装置である。   Next, a fourth invention of the present invention is the optical nondestructive inspection device according to the third invention, wherein the determination device is connected to a predetermined communication line, and the first physical characteristic, An optical nondestructive inspection apparatus that receives and stores the second physical characteristic and the interface physical characteristic via the communication line.

次に、本発明の第5の発明は、上記第3の発明または第4の発明に係る光学非破壊検査装置であって、前記第1物理特性と前記第2物理特性と前記界面物理特性は、前記第1部材における前記計測点から前記第1部材と前記第2部材の接触面までの距離である熱拡散長と、前記第1部材の比熱容量と、前記第1部材の密度と、前記第1部材の熱抵抗と、前記第2部材の熱抵抗と、前記接合界面の厚さ、または、前記接合界面熱抵抗に対する前記接合界面面積に関する接合係数と、を含む、光学非破壊検査装置である。   Next, a fifth invention of the present invention is the optical nondestructive inspection apparatus according to the third invention or the fourth invention, wherein the first physical property, the second physical property, and the interface physical property are The thermal diffusion length, which is the distance from the measurement point in the first member to the contact surface of the first member and the second member, the specific heat capacity of the first member, the density of the first member, An optical nondestructive inspection apparatus including a thermal resistance of a first member, a thermal resistance of the second member, a thickness of the bonding interface, or a bonding coefficient related to the bonding interface area with respect to the bonding interface thermal resistance. is there.

次に、本発明の第6の発明は、上記第1の発明〜第5の発明のいずれか1つに係る光学非破壊検査装置であって、前記レーザ出力装置は、入力された変調信号に基づいて強度が変調されたレーザを出射する半導体レーザ光源と、前記変調信号を出力する変調信号出力手段と、にて構成されている、あるいは、所定の強度のレーザを音響光学変調器に向けて出射するレーザ光源と、入力された変調信号に基づいて入射されたレーザを回折する音響光学変調器と、前記変調信号を出力する変調信号出力手段と、にて構成されている、光学非破壊検査装置である。   Next, a sixth invention of the present invention is the optical nondestructive inspection device according to any one of the first to fifth inventions, wherein the laser output device outputs an input modulation signal. A semiconductor laser light source for emitting a laser whose intensity is modulated on the basis thereof, and a modulation signal output means for outputting the modulation signal, or a laser having a predetermined intensity is directed toward the acousto-optic modulator An optical nondestructive inspection comprising an emitted laser light source, an acousto-optic modulator that diffracts an incident laser based on an input modulation signal, and a modulation signal output means for outputting the modulation signal Device.

次に、本発明の第7の発明は、接合界面にて互いに接合された第1部材と第2部材である計測対象物における第1部材の表面に設定した計測点に加熱用レーザを照射して、前記計測点から取得される情報、または前記加熱用レーザに関する情報と前記計測点から取得される情報、に基づいて、前記接合界面の面積を求める、光学非破壊検査方法であって、レーザ出力装置と、位相差検出装置と、判定装置と、を用いる。そして、前記レーザ出力装置にて、前記計測点における強度が正弦波状に変化するように前記加熱用レーザを出射するレーザ出射ステップと、前記位相差検出装置にて、前記計測点の前記加熱用レーザの強度、を計測するレーザ強度計測ステップと、前記位相差検出装置にて、前記計測点から放射された赤外線の強度であって正弦波状に変化する前記赤外線の強度を計測する赤外線強度計測ステップと、前記位相差検出装置にて、計測された正弦波状に変化する前記加熱用レーザの強度と、計測された正弦波状に変化する前記赤外線の強度と、の位相差を求め、求めた前記位相差を前記判定装置に出力する位相差計測ステップと、前記判定装置にて、前記位相差に基づいて、前記接合界面の面積である接合界面面積を算出する接合界面面積算出ステップと、を有する、光学非破壊検査方法である。   Next, according to a seventh aspect of the present invention, a heating laser is irradiated to a measurement point set on the surface of the first member of the measurement object that is the first member and the second member that are joined to each other at the joining interface. An optical nondestructive inspection method for determining an area of the bonding interface based on information acquired from the measurement point, or information on the heating laser and information acquired from the measurement point, An output device, a phase difference detection device, and a determination device are used. A laser emission step of emitting the heating laser so that the intensity at the measurement point changes in a sine wave shape at the laser output device; and the heating laser at the measurement point at the phase difference detection device. A laser intensity measuring step for measuring the intensity of the infrared ray, and an infrared intensity measuring step for measuring the intensity of the infrared ray radiated from the measurement point and changing in a sinusoidal shape with the phase difference detection device, The phase difference between the intensity of the heating laser that changes to a measured sine wave and the intensity of the infrared that changes to a measured sine wave is obtained by the phase difference detection device. Phase difference measuring step for outputting to the determination device, and the determination device calculates a bonding interface area, which is an area of the bonding interface, based on the phase difference It has a step, and is an optical non-destructive testing methods.

次に、本発明の第8の発明は、上記第7の発明に係る光学非破壊検査方法であって、前記計測点の前記加熱用レーザの強度は、前記計測点に照射される前記加熱用レーザである照射光の強度であって正弦波状に変化する前記照射光の強度、または、前記計測点にて反射された前記加熱用レーザの反射光の強度であって正弦波状に変化する前記反射光の強度、である、光学非破壊検査方法である。   Next, an eighth invention of the present invention is the optical nondestructive inspection method according to the seventh invention, wherein the intensity of the heating laser at the measurement point is applied to the measurement point irradiated to the measurement point. The intensity of the irradiation light that is a laser and changes in a sinusoidal shape, or the intensity of the reflected light of the heating laser reflected at the measurement point and the reflection that changes in a sinusoidal shape This is an optical nondestructive inspection method.

次に、本発明の第9の発明は、上記第7の発明または第8の発明に係る光学非破壊検査方法であって、前記判定装置に、前記第1部材の物理特性である第1物理特性と、前記第2部材の物理特性である第2物理特性と、前記接合界面の物理特性である界面物理特性と、を記憶しておく。そして、前記接合界面面積算出ステップにおいて、前記判定装置にて、前記位相差と、正弦波状に強度が変化する前記加熱用レーザの周波数と、前記第1物理特性と、に基づいて前記第1部材と前記第2部材とを1つの部材とみなした熱拡散率を求め、求めた前記熱拡散率と、前記第1物理特性と、に基づいて前記第1部材と前記第2部材とを1つの部材とみなした熱伝導率を求め、求めた前記熱伝導率と、前記位相差に基づいた前記計測対象物の見かけ上の熱抵抗と、前記第1物理特性と、前記第2物理特性とから前記接合界面の熱抵抗である接合界面熱抵抗を求め、求めた前記接合界面熱抵抗と、前記界面物理特性と、に基づいて前記接合界面面積を算出する、光学非破壊検査方法である。   Next, a ninth invention of the present invention is the optical nondestructive inspection method according to the seventh invention or the eighth invention, wherein the determination device has a first physical property that is a physical characteristic of the first member. Characteristics, second physical characteristics that are physical characteristics of the second member, and interface physical characteristics that are physical characteristics of the bonding interface are stored. In the bonding interface area calculating step, the determination device uses the first member based on the phase difference, the frequency of the heating laser whose intensity changes sinusoidally, and the first physical characteristic. And the second member are regarded as one member, and based on the obtained thermal diffusivity and the first physical characteristic, the first member and the second member are combined into one member. Obtaining the thermal conductivity regarded as a member, from the obtained thermal conductivity, the apparent thermal resistance of the measurement object based on the phase difference, the first physical characteristic, and the second physical characteristic The optical nondestructive inspection method calculates a bonding interface thermal resistance which is a thermal resistance of the bonding interface, and calculates the bonding interface area based on the determined bonding interface thermal resistance and the interface physical characteristics.

次に、本発明の第10の発明は、上記第9の発明に係る光学非破壊検査方法であって、前記第1物理特性と、前記第2物理特性と、前記界面物理特性とを、所定の通信回線を介して配信して前記判定装置に記憶させる、光学非破壊検査方法である。   Next, a tenth invention of the present invention is the optical nondestructive inspection method according to the ninth invention, wherein the first physical property, the second physical property, and the interface physical property are predetermined. This is an optical nondestructive inspection method that is distributed via the communication line and stored in the determination device.

次に、本発明の第11の発明は、上記第9の発明または第10の発明に係る光学非破壊検査方法であって、前記第1物理特性と前記第2物理特性と前記界面物理特性は、前記第1部材における前記計測点から前記第1部材と前記第2部材の接触面までの距離である熱拡散長と、前記第1部材の比熱容量と、前記第1部材の密度と、前記第1部材の熱抵抗と、前記第2部材の熱抵抗と、前記接合界面の厚さ、または、前記接合界面熱抵抗に対する前記接合界面面積に関する接合係数と、を含む、光学非破壊検査方法である。   Next, an eleventh aspect of the present invention is the optical nondestructive inspection method according to the ninth aspect or the tenth aspect, wherein the first physical characteristic, the second physical characteristic, and the interface physical characteristic are The thermal diffusion length, which is the distance from the measurement point in the first member to the contact surface of the first member and the second member, the specific heat capacity of the first member, the density of the first member, An optical nondestructive inspection method comprising: a thermal resistance of the first member; a thermal resistance of the second member; a thickness of the bonding interface; or a bonding coefficient relating to the bonding interface area with respect to the bonding interface thermal resistance. is there.

次に、本発明の第12の発明は、上記第7の発明〜第11の発明のいずれか1つに係る光学非破壊検査方法であって、前記レーザ出力装置として、入力された変調信号に基づいて強度が変調されたレーザを出射する半導体レーザ光源と、前記変調信号を出力する変調信号出力手段と、にて構成されている前記レーザ出力装置、あるいは、所定の強度のレーザを音響光学変調器に向けて出射するレーザ光源と、入力された変調信号に基づいて入射されたレーザを回折する音響光学変調器と、前記変調信号を出力する変調信号出力手段と、にて構成されている前記レーザ出力装置、を用いる、光学非破壊検査方法である。   Next, a twelfth aspect of the present invention is an optical nondestructive inspection method according to any one of the seventh to eleventh aspects of the present invention, in which an input modulation signal is applied as the laser output device. The laser output device comprising: a semiconductor laser light source that emits a laser whose intensity is modulated on the basis thereof; and a modulation signal output means that outputs the modulation signal; or an acousto-optic modulation of a laser having a predetermined intensity A laser light source that emits light toward the device, an acousto-optic modulator that diffracts an incident laser based on an input modulation signal, and a modulation signal output unit that outputs the modulation signal. An optical nondestructive inspection method using a laser output device.

第1の発明によれば、正弦波状に変化する加熱用レーザの強度と、正弦波状に変化する赤外線の強度と、の位相差に基づいて接合界面の面積を求める。従って、接合界面にて互いに接合された第1部材と第2部材において、非破壊にて接合界面の面積を求めることができる。   According to the first invention, the area of the bonding interface is obtained based on the phase difference between the intensity of the heating laser that changes sinusoidally and the intensity of the infrared light that changes sinusoidally. Therefore, in the first member and the second member that are bonded to each other at the bonding interface, the area of the bonding interface can be obtained without destruction.

第2の発明によれば、レーザ強度検出手段にて検出する加熱用レーザの強度は、計測点に照射される加熱用レーザである照射光の強度、または、計測点にて反射された加熱用レーザの反射光の強度、である。従って、第1部材の表面状態等に応じて、測定しやすい加熱用レーザを選択することができるので便利である。   According to the second aspect of the invention, the intensity of the heating laser detected by the laser intensity detecting means is the intensity of the irradiation light that is the heating laser irradiated to the measurement point or the heating laser reflected at the measurement point. The intensity of the reflected light of the laser. Therefore, a heating laser that is easy to measure can be selected according to the surface state of the first member, etc., which is convenient.

第3の発明によれば、位相差と、加熱用レーザの周波数と、第1物理特性と、第2物理特性と、界面物理特性と、計測対象物の見かけ上の熱抵抗と、を用いて、第1部材の熱拡散率、第1部材と第2部材を1つの部材とみなした熱伝導率、接合界面熱抵抗、接合界面面積、を非破壊にて求めることができる。   According to the third invention, the phase difference, the frequency of the heating laser, the first physical characteristic, the second physical characteristic, the interface physical characteristic, and the apparent thermal resistance of the measurement object are used. The thermal diffusivity of the first member, the thermal conductivity in which the first member and the second member are regarded as one member, the bonding interface thermal resistance, and the bonding interface area can be obtained nondestructively.

第4の発明によれば、計測対象物である第1部材と第2部材の材質やサイズが、1通りでなく、種々の組み合わせで複数の計測対象物がある場合であっても、判定装置に、計測対象物に対応する第1物理特性と第2物理特性と界面物理特性と、を容易に記憶させることができるので便利である。   According to the fourth invention, even if the first member and the second member, which are measurement objects, are not different in material and size, there are a plurality of measurement objects in various combinations. In addition, the first physical characteristic, the second physical characteristic, and the interface physical characteristic corresponding to the measurement object can be easily stored, which is convenient.

第5の発明によれば、第1物理特性と第2物理特性と界面物理特性における具体的な特性を特定しており、接合界面の面積を適切に求めることができる。   According to the fifth aspect, specific characteristics in the first physical characteristic, the second physical characteristic, and the interface physical characteristic are specified, and the area of the bonding interface can be appropriately obtained.

第6の発明によれば、正弦波状に強度が変化する加熱用レーザを比較的容易に得ることができる。   According to the sixth aspect of the present invention, a heating laser whose intensity changes sinusoidally can be obtained relatively easily.

第7の発明によれば、接合界面にて互いに接合された第1部材と第2部材において、非破壊にて接合界面の面積を求めることができる光学非破壊検査方法を適切に実現することができる。   According to the seventh aspect of the present invention, it is possible to appropriately realize an optical nondestructive inspection method capable of obtaining the area of the bonding interface nondestructively in the first member and the second member bonded to each other at the bonding interface. it can.

第8の発明によれば、レーザ強度検出手段にて検出する加熱用レーザの強度は、計測点に照射される加熱用レーザである照射光の強度、または、計測点にて反射された加熱用レーザの反射光の強度、である。従って、第1部材の表面状態等に応じて、測定しやすい加熱用レーザを選択することができるので便利である。   According to the eighth aspect of the invention, the intensity of the heating laser detected by the laser intensity detecting means is the intensity of the irradiation light that is the heating laser irradiated to the measurement point, or the heating reflected by the measurement point. The intensity of the reflected light of the laser. Therefore, a heating laser that is easy to measure can be selected according to the surface state of the first member, etc., which is convenient.

第9の発明によれば、位相差と、加熱用レーザの周波数と、第1物理特性と、第2物理特性と、界面物理特性と、計測対象物の見かけ上の熱抵抗と、を用いて、第1部材の熱拡散率、第1部材と第2部材を1つの部材とみなした熱伝導率、接合界面熱抵抗、接合界面面積、を求めることができる光学非破壊検査方法を適切に実現することができる。   According to the ninth aspect, the phase difference, the heating laser frequency, the first physical characteristic, the second physical characteristic, the interface physical characteristic, and the apparent thermal resistance of the measurement object are used. Appropriately realizing an optical nondestructive inspection method capable of obtaining the thermal diffusivity of the first member, the thermal conductivity considering the first member and the second member as one member, the bonding interface thermal resistance, and the bonding interface area can do.

第10の発明によれば、判定装置に、計測対象物に対応する第1物理特性と第2物理特性と界面物理特性と、を容易に記憶させることができるので便利である。   According to the tenth invention, it is convenient because the determination device can easily store the first physical characteristic, the second physical characteristic, and the interface physical characteristic corresponding to the measurement object.

第11の発明によれば、第1物理特性と第2物理特性と界面物理特性における具体的な特性を特定しており、接合界面の面積を適切に求めることができる。   According to the eleventh aspect, the specific characteristics of the first physical characteristic, the second physical characteristic, and the interface physical characteristic are specified, and the area of the bonding interface can be obtained appropriately.

第12の発明によれば、正弦波状に強度が変化する加熱用レーザを比較的容易に得ることができる。   According to the twelfth aspect of the present invention, a heating laser whose intensity changes sinusoidally can be obtained relatively easily.

光学非破壊検査装置の全体構成の第1の実施の形態を説明する図である。It is a figure explaining 1st Embodiment of the whole structure of an optical nondestructive inspection apparatus. 光学非破壊検査装置の全体構成の第2の実施の形態を説明する図である。It is a figure explaining 2nd Embodiment of the whole structure of an optical nondestructive inspection apparatus. 判定装置及び位相差検出装置の処理手順の例を説明するフローチャートである。It is a flowchart explaining the example of the process sequence of a determination apparatus and a phase difference detection apparatus. 判定装置に記憶されている物理特性情報の例を説明する図である。It is a figure explaining the example of the physical characteristic information memorize | stored in the determination apparatus. 位相差検出装置に入力される照射光強度と赤外線強度の例と、測定された位相差の例を説明する図である。It is a figure explaining the example of the irradiation light intensity | strength and infrared rays intensity | strength input into a phase difference detection apparatus, and the example of the measured phase difference. 接合界面にて互いに接合された第1部材と第2部材のモデルと、第1物理特性、第2物理特性、界面物理特性、の例を説明する図である。It is a figure explaining the example of the model of the 1st member and the 2nd member joined mutually at the joining interface, the 1st physical characteristic, the 2nd physical characteristic, and the interface physical characteristic. 判定装置に表示される判定結果の例を説明する図である。It is a figure explaining the example of the determination result displayed on a determination apparatus.

以下、本発明の実施の形態を、図面を用いて順に説明する。以下に説明する第1の実施の形態の光学非破壊検査装置1、第2の実施の形態の光学非破壊装置1Aは、いずれも、接合界面53にて互いに接合された第1部材51と第2部材52である計測対象物における第1部材51の表面に設定した計測点SPに、正弦波状に強度が変化する加熱用レーザを照射して、計測点SPから取得される温度応答、または加熱用レーザの検出と計測点SPから取得される温度応答、に基づいて、接合界面53の面積(面積に関する情報)を求める。また「接合界面」とは、上記の「接合」されている領域であって面状の領域を指す。   Hereinafter, embodiments of the present invention will be described in order with reference to the drawings. Both the optical nondestructive inspection apparatus 1 according to the first embodiment and the optical nondestructive apparatus 1A according to the second embodiment described below and the first member 51 and the first member 51 bonded to each other at the bonding interface 53 are used. A temperature response acquired from the measurement point SP or heating by irradiating the measurement point SP set on the surface of the first member 51 of the measurement object which is the two member 52 with a heating laser whose intensity changes in a sine wave shape. The area of the bonding interface 53 (information on the area) is obtained based on the detection of the laser for use and the temperature response acquired from the measurement point SP. The “bonding interface” refers to the above-described “bonded” area and a planar area.

また、加熱用レーザに関する情報と計測点SPから取得される情報に基づいて接合界面の面積を求める場合、計測点SPに照射される正弦波状に変化する照射光(加熱用レーザ)の強度と、計測点SPから放射される正弦波状に変化する赤外線(所定波長の赤外線)の強度と、の位相差や、正弦波状の照射光の強度の周波数等に基づいて前記面積を求める。   Moreover, when calculating | requiring the area of a joining interface based on the information regarding the laser for heating and the information acquired from measurement point SP, the intensity | strength of the irradiation light (heating laser) which changes to the sine wave shape irradiated to measurement point SP, The said area is calculated | required based on the phase difference with the intensity | strength of the infrared rays (infrared ray of predetermined wavelength) radiated | emitted from measurement point SP, and the intensity | strength of the intensity | strength of irradiation light of a sine wave shape.

また、計測点SPから取得される情報に基づいて接合界面の面積を求める場合、計測点SPにて反射された正弦波状に変化する反射光(加熱用レーザの反射光)の強度と、計測点SPから放射される正弦波状に変化する赤外線(所定波長の赤外線)の強度と、の位相差や、正弦波状の反射光の強度の周波数等に基づいて前記面積を求める。   Further, when the area of the bonding interface is obtained based on information acquired from the measurement point SP, the intensity of the reflected light (reflected light of the heating laser) reflected at the measurement point SP and the measurement point SP, and the measurement point The said area is calculated | required based on the phase difference of the intensity | strength of the infrared rays (infrared rays of a predetermined wavelength) radiated | emitted from SP, and the intensity | strength of the intensity | strength of the reflected light of a sine wave shape.

●[第1の実施の形態の光学非破壊検査装置1の全体構成(図1)]
まず図1を用いて、第1の実施の形態における光学非破壊検査装置1の全体構成について説明する。第1の実施の形態の光学非破壊検査装置1は、加熱用レーザの強度の計測を、計測点に照射される加熱用レーザである照射光の強度であって正弦波状に変化する照射光の強度を計測するタイプの光学非破壊検査装置の例を示している。光学非破壊検査装置1は、レーザ出力装置27、集光手段10(図1、図2の例では、反射型対物レンズ)、レーザ強度検出手段41、赤外線強度検出手段31、位相差検出装置60、判定装置70等を有している。また、以下の説明では、第1部材51が銅であり、第2部材52が銅であり、第1部材51と第2部材52とが、溶接によって接合界面53にて接合されている例で説明する。
● [Overall Configuration of Optical Nondestructive Inspection Apparatus 1 of First Embodiment (FIG. 1)]
First, the overall configuration of the optical nondestructive inspection apparatus 1 according to the first embodiment will be described with reference to FIG. The optical nondestructive inspection apparatus 1 according to the first embodiment measures the intensity of the heating laser by measuring the intensity of the irradiation light that is the heating laser irradiated to the measurement point and changes in a sinusoidal shape. The example of the optical nondestructive inspection device of the type which measures intensity is shown. The optical nondestructive inspection apparatus 1 includes a laser output device 27, a condensing unit 10 (a reflective objective lens in the examples of FIGS. 1 and 2), a laser intensity detecting unit 41, an infrared intensity detecting unit 31, and a phase difference detecting unit 60. And a determination device 70 and the like. In the following description, the first member 51 is copper, the second member 52 is copper, and the first member 51 and the second member 52 are joined at the joining interface 53 by welding. explain.

レーザ出力装置27は、例えば半導体レーザ光源21と、コリメートレンズ22と、変調信号出力手段25と、を有している。変調信号出力手段25は、例えばオシレータであり、判定装置70からの制御信号に基づいて、電圧が所定周波数かつ所定振幅で正弦波状に変化する変調信号を発生させる。半導体レーザ光源21は、強度を調整するための強度調整用入力を備えており、この強度調整用入力には、変調信号出力手段25から変調信号が入力される。そして半導体レーザ光源21は、変調信号出力手段25からの変調信号に基づいて、強度が正弦波状に変化する加熱用レーザLaを出射する。半導体レーザ光源21から出射された加熱用レーザLaは、コリメートレンズ22にて平行光に変換されて加熱レーザ選択反射手段23に達する。なお出射された加熱用レーザが平行光である場合は、コリメートレンズ22を省略することができる。従って、計測点SPに集光される加熱用レーザLaの強度は正弦波状に変化し、その周波数は変調信号の周波数に同期する。なお、加熱用レーザの出力は、計測対象物を破壊することなく加熱できる出力に調整されている。   The laser output device 27 includes, for example, a semiconductor laser light source 21, a collimator lens 22, and a modulation signal output unit 25. The modulation signal output means 25 is, for example, an oscillator, and generates a modulation signal whose voltage changes in a sine wave shape with a predetermined frequency and a predetermined amplitude based on a control signal from the determination device 70. The semiconductor laser light source 21 includes an intensity adjustment input for adjusting the intensity. A modulation signal is input from the modulation signal output means 25 to the intensity adjustment input. The semiconductor laser light source 21 emits a heating laser La whose intensity changes in a sine wave shape based on the modulation signal from the modulation signal output means 25. The heating laser La emitted from the semiconductor laser light source 21 is converted into parallel light by the collimator lens 22 and reaches the heating laser selective reflection means 23. If the emitted heating laser is parallel light, the collimating lens 22 can be omitted. Accordingly, the intensity of the heating laser La focused on the measurement point SP changes in a sine wave shape, and its frequency is synchronized with the frequency of the modulation signal. Note that the output of the heating laser is adjusted to an output that can be heated without destroying the measurement object.

集光手段10は、自身の光軸に沿って一方の側から(図1の例では上方から)入射された平行光を、焦点位置として第1部材51の表面に設定した計測点SPに向けて集光して他方の側から(図1の例では下方から)出射する。また集光手段10は、(焦点位置である)計測点SPから放射及び反射されて他方の側から入射された光を、自身の光軸に沿った平行光である第1測定光L11に変換して一方の側から出射する。なお集光手段10は、光を透過させて屈折する集光レンズで構成することも可能であるが、異なる複数の波長の光を扱うので、色収差が発生する集光レンズではあまり好ましくない。そこで、(非球面)反射ミラー10A、10Bにて集光手段を構成することで、色収差の発生を排除し、広い波長帯に対応させている。なお集光手段10は、対物レンズが好ましい。   The condensing means 10 directs the parallel light incident from one side along its own optical axis (from above in the example of FIG. 1) toward the measurement point SP set on the surface of the first member 51 as a focal position. Then, the light is condensed and emitted from the other side (from the lower side in the example of FIG. 1). Further, the condensing unit 10 converts the light emitted and reflected from the measurement point SP (which is a focal position) and incident from the other side into the first measurement light L11 which is parallel light along its own optical axis. And exits from one side. The condensing means 10 can be composed of a condensing lens that transmits light and refracts it. However, since the condensing unit 10 handles light of a plurality of different wavelengths, it is not preferable for a condensing lens that generates chromatic aberration. Thus, the (aspherical) reflecting mirrors 10A and 10B constitute the light condensing means to eliminate the occurrence of chromatic aberration and to cope with a wide wavelength band. The condensing means 10 is preferably an objective lens.

レーザ出力装置27から出射される加熱用レーザLaの光軸と、集光手段10の光軸と、が交差する位置には、加熱レーザ選択反射手段23が配置されている。例えば加熱レーザ選択反射手段23は、加熱用レーザLaの波長の光を反射し、加熱用レーザの波長以外の波長の光を透過するダイクロイックミラーである。なお図1の例では、加熱レーザ選択反射手段23は、加熱用レーザLaの波長の光を、数[%]程度(例えば2%程度)透過する。そして加熱用レーザLaが透過した先には、レーザ強度検出手段41が配置されている。   The heating laser selective reflection means 23 is disposed at a position where the optical axis of the heating laser La emitted from the laser output device 27 and the optical axis of the light converging means 10 intersect. For example, the heating laser selective reflection means 23 is a dichroic mirror that reflects light having the wavelength of the heating laser La and transmits light having a wavelength other than the wavelength of the heating laser. In the example of FIG. 1, the heating laser selective reflection means 23 transmits light having the wavelength of the heating laser La about several [%] (for example, about 2%). A laser intensity detecting means 41 is arranged at the tip through which the heating laser La has passed.

レーザ強度検出手段41は、例えば加熱用レーザの波長の光のエネルギーを検出可能なフォトセンサである。加熱レーザ選択反射手段23を透過した加熱用レーザ(正弦波状に強度が変化する加熱用レーザ)は、集光レンズ42にて集光されてレーザ強度検出手段41に入力される。そしてレーザ強度検出手段41からの検出信号は、例えばセンサアンプにて増幅されて位相差検出装置60に入力される。   The laser intensity detection means 41 is a photosensor that can detect the energy of light having a wavelength of a heating laser, for example. The heating laser transmitted through the heating laser selective reflection means 23 (heating laser whose intensity changes in a sine wave shape) is condensed by the condenser lens 42 and input to the laser intensity detection means 41. The detection signal from the laser intensity detection means 41 is amplified by, for example, a sensor amplifier and input to the phase difference detection device 60.

集光手段10にて平行光に変換された第1測定光L11(計測点SPにて反射した照射光と計測点SPから放射された赤外線を含む測定光)には、計測点SPから放射された所定波長の赤外線が含まれている。第1測定光L11の先には、赤外線強度検出手段31が配置されている。   The first measurement light L11 (measurement light including irradiation light reflected at the measurement point SP and infrared light emitted from the measurement point SP) converted into parallel light by the condensing means 10 is emitted from the measurement point SP. Infrared light having a predetermined wavelength is included. An infrared intensity detection means 31 is disposed at the tip of the first measurement light L11.

赤外線強度検出手段31は、例えば所定波長の赤外線のエネルギーを検出可能な赤外線センサである。第1測定光路L11に含まれている所定波長の赤外線(正弦波状に強度が変化する赤外線)は、集光レンズ32にて集光されて赤外線強度検出手段31に入力される。そして赤外線強度検出手段31からの検出信号は、例えばセンサアンプにて増幅されて位相差検出装置60に入力される。   The infrared intensity detecting means 31 is an infrared sensor capable of detecting infrared energy having a predetermined wavelength, for example. Infrared light having a predetermined wavelength (infrared light whose intensity changes in a sine wave shape) included in the first measurement optical path L <b> 11 is collected by the condenser lens 32 and input to the infrared intensity detection means 31. The detection signal from the infrared intensity detection means 31 is amplified by, for example, a sensor amplifier and input to the phase difference detection device 60.

位相差検出装置60は、例えばロックインアンプであり、レーザ強度検出手段41からの正弦波状に強度が変化する検出信号(正弦波状検出信号1)と、赤外線強度検出手段31からの正弦波状に強度が変化する検出信号(正弦波状検出信号2)と、が入力される。そして位相差検出装置60は、正弦波状検出信号1と正弦波状検出信号2との位相差を測定し、測定した位相差を判定装置70に出力する。なお、レーザ強度検出手段41からの検出信号は、計測点SPに照射される加熱用レーザLaである照射光の強度であって正弦波状に変化する照射光の強度に応じた信号である。また、赤外線強度検出手段31からの検出信号は、計測点SPから放射された赤外線の強度であって正弦波状に変化する赤外線の強度に応じた信号である。そして上記の位相差には、接合界面の面積に関する情報が含まれている。   The phase difference detection device 60 is, for example, a lock-in amplifier, and has a detection signal (sinusoidal detection signal 1) whose intensity changes in a sine wave form from the laser intensity detection means 41 and a sine wave intensity from the infrared intensity detection means 31. Is input as a detection signal (sinusoidal detection signal 2). The phase difference detection device 60 measures the phase difference between the sine wave detection signal 1 and the sine wave detection signal 2 and outputs the measured phase difference to the determination device 70. The detection signal from the laser intensity detecting means 41 is a signal corresponding to the intensity of the irradiation light that is the heating laser La irradiated to the measurement point SP and changes in a sinusoidal shape. Further, the detection signal from the infrared intensity detecting means 31 is a signal corresponding to the intensity of the infrared ray radiated from the measurement point SP and changing in the form of a sine wave. The phase difference includes information regarding the area of the bonding interface.

判定装置70は、例えばパーソナルコンピュータであり、レーザ出力装置27に制御信号を出力し、位相差検出装置60から位相差を取り込む。そして判定装置70は、後述するように、取り込んだ位相差と、計測点SPでの強度が正弦波状に変化する加熱用レーザの周波数と、記憶している第1物理特性(第1部材の物理特性)、第2物理特性(第2部材の物理特性)、界面物理特性(接合界面の物理特性)と、に基づいて、接合界面53の面積を求める。なお、第1物理特性、第2物理特性、界面物理特性、の詳細、及び接合界面の面積を求める手順については後述する。   The determination device 70 is, for example, a personal computer, outputs a control signal to the laser output device 27, and takes in the phase difference from the phase difference detection device 60. Then, as will be described later, the determination device 70 captures the phase difference, the frequency of the heating laser whose intensity at the measurement point SP changes sinusoidally, and the stored first physical characteristics (physical properties of the first member). Characteristics), second physical characteristics (physical characteristics of the second member), and interface physical characteristics (physical characteristics of the bonding interface), the area of the bonding interface 53 is obtained. Details of the first physical property, the second physical property, the interface physical property, and the procedure for obtaining the area of the bonding interface will be described later.

なお、例えば施設に光学非破壊検査装置1を設ける場合、施設内の通信回線80(例えば施設内LAN)に、判定装置70を接続して、第1物理特性と第2物理特性と界面物理特性を含む物理特性情報(図4参照)を、通信回線80に接続された配信装置81(配信サーバ)から配信すると便利である。光学非破壊検査装置1の判定装置70は、通信回線80を介して、第1物理特性と第2物理特性と界面物理特性を含む物理特性情報を受信して記憶する。特に、施設内に複数の光学非破壊装置1を設けた場合、1台ずつ第1物理特性、第2物理特性、界面物理特性を記憶させる場合と比較して、手間無く容易に複数の光学非破壊装置1に、第1物理特性、第2物理特性、界面物理特性を受信させて記憶させることができるので、便利である。   For example, when the optical nondestructive inspection apparatus 1 is provided in a facility, a determination device 70 is connected to a communication line 80 (for example, an in-facility LAN) in the facility, and the first physical characteristic, the second physical characteristic, and the interface physical characteristic are connected. It is convenient to distribute physical characteristic information (see FIG. 4) including “” from the distribution device 81 (distribution server) connected to the communication line 80. The determination device 70 of the optical nondestructive inspection apparatus 1 receives and stores physical property information including the first physical property, the second physical property, and the interface physical property via the communication line 80. In particular, when a plurality of optical non-destructive devices 1 are provided in a facility, a plurality of optical non-destructive devices 1 can be easily and easily compared with the case where the first physical characteristics, the second physical characteristics, and the interface physical characteristics are stored one by one. This is convenient because the destruction device 1 can receive and store the first physical characteristic, the second physical characteristic, and the interface physical characteristic.

●[第2の実施の形態の光学非破壊検査装置1Aの全体構成(図2)]
次に図2を用いて、第2の実施の形態における光学非破壊検査装置1Aの全体構成について説明する。第2の実施の形態の光学非破壊検査装置1Aは、加熱用レーザの強度の計測を、計測点にて反射された加熱用レーザの反射光の強度であって正弦波状に変化する反射光の強度を計測するタイプの光学非破壊検査装置の例を示している。第2の実施の形態の光学非破壊検査装置1Aは、第1の実施の形態の光学非破壊検査装置1に対して、レーザ出力装置27がレーザ出力装置27Aに変更されて加熱用レーザLaが線状である点と、加熱レーザ選択反射手段23が省略されている点と、反射光選択反射手段43が追加されている点が異なる。以下、これらの相違点について主に説明する。相違点以外の構成については、第1の実施の形態にて説明したとおりであるので、説明を省略する。なお図2の例では、説明上、ワーク(接合界面53にて接合された第1部材51と第2部材52)への入射光である加熱用レーザLaの入射角度と、加熱用レーザLaの反射光の反射角度(光軸Xの角度)と、に合わせてワークの傾斜角度を設定している例を示している。
● [Overall Configuration of Optical Nondestructive Inspection Apparatus 1A of Second Embodiment (FIG. 2)]
Next, the overall configuration of the optical nondestructive inspection apparatus 1A according to the second embodiment will be described with reference to FIG. The optical nondestructive inspection apparatus 1A according to the second embodiment measures the intensity of the heating laser by measuring the intensity of the reflected light of the heating laser reflected at the measurement point and changing in a sinusoidal shape. The example of the optical nondestructive inspection device of the type which measures intensity is shown. The optical nondestructive inspection apparatus 1A of the second embodiment is different from the optical nondestructive inspection apparatus 1 of the first embodiment in that the laser output device 27 is changed to the laser output device 27A and the heating laser La is changed. The difference is that it is linear, the heating laser selective reflection means 23 is omitted, and the reflected light selective reflection means 43 is added. Hereinafter, these differences will be mainly described. Since the configuration other than the difference is as described in the first embodiment, the description is omitted. In the example of FIG. 2, for the sake of explanation, the incident angle of the heating laser La that is incident light on the workpiece (the first member 51 and the second member 52 bonded at the bonding interface 53), and the heating laser La An example is shown in which the tilt angle of the workpiece is set in accordance with the reflection angle of reflected light (the angle of the optical axis X).

レーザ出力装置27Aは、例えば線状の加熱用レーザLaを出射するレーザ光源21Aと、音響光学変調器24と、変調信号出力手段25と、を有しており、計測点SPに照射された加熱用レーザLaの強度が正弦波状に変化するように、判定装置70からの制御信号に基づいて、加熱用レーザLaを出射する。変調信号出力手段25は、例えばオシレータであり、判定装置70からの制御信号に基づいて、電圧が所定周波数かつ所定振幅で正弦波状に変化する変調信号を発生させる。レーザ光源21Aから出射された線状の加熱用レーザは、音響光学変調器24に入力され、後述するように音響光学変調器24によって回折される。音響光学変調器24は、光変調器(EOM)デバイスや、弾性表面波(SAW)デバイスを含む。例えば光変調器デバイスは、圧電結晶中に光を透過させるとき、変調信号出力手段25からの変調信号に基づいて電界や超音波を印加して圧電効果を生じさせ、圧電結晶中の屈折率を変化させる。そして屈折されて加熱用レーザは、回折光として取り出される。すなわち、加熱用レーザLaの照射位置は、計測点SPを中心として揺動し、結果として計測点SPに照射された加熱用レーザLaの強度は正弦波状に変化し、その周波数は変調信号の周波数に同期する。なお、加熱用レーザの出力は、計測対象物を破壊することなく加熱できる出力に調整されている。またレーザ出力装置27Aから出射された加熱用レーザLaは、例えば、ピンホールPHを通過した後、対物レンズLTにて計測点SPに集光されている。   The laser output device 27A includes, for example, a laser light source 21A that emits a linear heating laser La, an acousto-optic modulator 24, and a modulation signal output means 25, and the heating applied to the measurement point SP. The heating laser La is emitted based on a control signal from the determination device 70 so that the intensity of the laser La changes in a sine wave shape. The modulation signal output means 25 is, for example, an oscillator, and generates a modulation signal whose voltage changes in a sine wave shape with a predetermined frequency and a predetermined amplitude based on a control signal from the determination device 70. The linear heating laser emitted from the laser light source 21A is input to the acousto-optic modulator 24 and is diffracted by the acousto-optic modulator 24 as described later. The acousto-optic modulator 24 includes an optical modulator (EOM) device and a surface acoustic wave (SAW) device. For example, when an optical modulator device transmits light into a piezoelectric crystal, an electric field or an ultrasonic wave is applied based on the modulation signal from the modulation signal output means 25 to generate a piezoelectric effect, and the refractive index in the piezoelectric crystal is changed. Change. The refracted heating laser is extracted as diffracted light. That is, the irradiation position of the heating laser La swings around the measurement point SP, and as a result, the intensity of the heating laser La irradiated to the measurement point SP changes in a sine wave shape, and the frequency thereof is the frequency of the modulation signal. Sync to. Note that the output of the heating laser is adjusted to an output that can be heated without destroying the measurement object. Further, the heating laser La emitted from the laser output device 27A is focused on the measurement point SP by the objective lens LT after passing through the pinhole PH, for example.

第1測定光L11(計測点SPにて反射した照射光と計測点SPから放射された赤外線を含む測定光)の光路中のいずれかの位置には、反射光選択反射手段43が配置されている。例えば反射光選択反射手段43は、加熱用レーザLaが計測点SPにて反射した反射光の波長(すなわち加熱用レーザの波長)の光を反射し、反射光の波長以外の光を透過するダイクロイックミラーである。そして反射光選択反射手段43が反射光の波長の光を反射した先には、集光レンズ42及びレーザ強度検出手段41が配置されている。なお、集光レンズ42及びレーザ強度検出手段41については、第1の実施の形態にて説明したとおりであるので、説明を省略する。   The reflected light selective reflection means 43 is disposed at any position in the optical path of the first measurement light L11 (measurement light including irradiation light reflected at the measurement point SP and infrared light emitted from the measurement point SP). Yes. For example, the reflected light selective reflection means 43 reflects the light having the wavelength of the reflected light (that is, the wavelength of the heating laser) reflected by the heating laser La at the measurement point SP and transmits light other than the wavelength of the reflected light. It is a mirror. A condensing lens 42 and a laser intensity detecting means 41 are disposed at the point where the reflected light selective reflecting means 43 reflects the light having the wavelength of the reflected light. The condensing lens 42 and the laser intensity detection means 41 are the same as those described in the first embodiment, and thus description thereof is omitted.

●[判定装置70及び位相差検出装置60の処理手順(図3〜図5)]
次に図3に示すフローチャートを用いて、判定装置70及び位相差検出装置60の処理手順の例について説明する。例えば作業者が判定装置70を起動すると、位相差検出装置60が連動して起動され、判定装置70はステップS15へと処理を進め、位相差検出装置60はステップS140へと処理を進める。
[Processing procedure of determination device 70 and phase difference detection device 60 (FIGS. 3 to 5)]
Next, an example of processing procedures of the determination device 70 and the phase difference detection device 60 will be described using the flowchart shown in FIG. For example, when the operator activates the determination device 70, the phase difference detection device 60 is activated in conjunction with the determination device 70. The determination device 70 proceeds to step S15, and the phase difference detection device 60 proceeds to step S140.

まず、判定装置70におけるステップS15〜ステップS35の処理手順について説明する。ステップS15にて判定装置70は、受信データ(通信回線80を介して受信するデータ)があるか否かを判定し、受信データがある場合(Yes)はステップS20に進み、受信データが無い場合(No)はステップS30に進む。   First, the processing procedure of step S15 to step S35 in the determination apparatus 70 will be described. In step S15, the determination device 70 determines whether there is received data (data received via the communication line 80). If there is received data (Yes), the process proceeds to step S20, and there is no received data. (No) advances to step S30.

ステップS20に進んだ場合、判定装置70は、通信回線80を介してデータを受信し、ステップS25に進む。そしてステップS25にて判定装置70は、受信が終了したか否かを判定し、受信が終了した場合(Yes)はステップS30に進み、受信が終了していない場合(No)はステップS20に戻る。   When the process proceeds to step S20, the determination apparatus 70 receives data via the communication line 80, and proceeds to step S25. Then, in step S25, the determination device 70 determines whether or not the reception is finished. If the reception is finished (Yes), the process proceeds to step S30. If the reception is not finished (No), the process returns to step S20. .

判定装置70が受信するデータは、図1及び図2に示す配信装置81から配信される物理特性情報であり、図4に物理特性情報70Aの例を示す。例えば物理特性情報70Aには、品番、第1物理特性、第2物理特性、界面物理特性、面積許容最小値、面積許容最大値、が含まれている。例えば配信装置81は、所定のタイミング(施設内で検査する計測対象物の品番が変わる毎、物理特性情報の内容が変更される毎、等)で物理特性情報の配信を行い、判定装置70は、通信回線80を介して配信装置81から物理特性情報を受信し、受信した物理特性情報を記憶する。   The data received by the determination device 70 is physical characteristic information distributed from the distribution device 81 shown in FIGS. 1 and 2, and FIG. 4 shows an example of the physical characteristic information 70A. For example, the physical property information 70A includes a product number, a first physical property, a second physical property, an interface physical property, an area allowable minimum value, and an area allowable maximum value. For example, the distribution device 81 distributes the physical property information at a predetermined timing (every time the product number of the measurement target to be inspected in the facility changes, every time the physical property information is changed, etc.), and the determination device 70 The physical characteristic information is received from the distribution device 81 via the communication line 80, and the received physical characteristic information is stored.

計測対象物は、第1部材の材質、第1部材のサイズ、第2部材の材質等に応じて複数あるので、「品番」で計測対象物が区別されている。そして当該「品番」に応じて、(第1部材の)熱拡散長(x)、(第1部材の)比熱容量(c1)、(第1部材の)密度(ρ1)、(第1部材の)熱抵抗(R1)、(第2部材の)熱抵抗(R2)、接合係数(Ks)(または接合界面の厚さ(d))、面積許容最小値、面積許容最大値、が対応付けられている。   Since there are a plurality of measurement objects according to the material of the first member, the size of the first member, the material of the second member, etc., the measurement object is distinguished by “product number”. And according to the “product number”, the thermal diffusion length (x) (of the first member), the specific heat capacity (c1) (of the first member), the density (ρ1) (of the first member), (of the first member) ) Thermal resistance (R1), thermal resistance (R2) (of the second member), bonding coefficient (Ks) (or bonding interface thickness (d)), area allowable minimum value, area allowable maximum value are associated with each other. ing.

第1物理特性は、第1部材51に関する物理情報であり、第1部材の熱拡散長(x)、第1部材の比熱容量(c1)、第1部材の密度(ρ1)、第1部材の熱抵抗(R1)、を含む。なお第1部材の熱拡散長(x)とは、図6に示すように計測点SPから第1部材と第2部材の接触面までの距離である。第2物理情報は、第2部材52に関する物理情報であり、第2部材の熱抵抗(R2)を含む。界面物理特性は、接合界面53に関する物理特性を考慮した接合面積に対する接合係数Ks(接合界面熱抵抗に対する接合界面面積に関する接合係数に相当)、または接合界面の厚さ(d)を含む。   The first physical characteristic is physical information related to the first member 51, and the thermal diffusion length (x) of the first member, the specific heat capacity (c1) of the first member, the density (ρ1) of the first member, and the first member Thermal resistance (R1). The heat diffusion length (x) of the first member is a distance from the measurement point SP to the contact surface of the first member and the second member as shown in FIG. The second physical information is physical information related to the second member 52 and includes the thermal resistance (R2) of the second member. The interface physical characteristics include a bonding coefficient Ks with respect to the bonding area in consideration of physical characteristics regarding the bonding interface 53 (corresponding to a bonding coefficient regarding the bonding interface area with respect to the bonding interface thermal resistance) or a thickness (d) of the bonding interface.

面積許容最小値は、本フローチャートにて最終的に算出された接合界面の面積において、正常と判定される際の最小値を示している。面積許容最大値は、本フローチャートにて最終的に算出された接合界面の面積において、正常と判定される際の最大値を示している。すなわち、判定装置70は、算出された接合界面の面積が、面積許容最小値以上かつ面積許容最大値以下である場合、第1部材と第2部材の接合状態は正常であると判定し、算出された接合界面の面積が、面積許容最小値よりも小さい場合、または面積許容最大値よりも大きい場合、第1部材と第2部材の接合状態は異常であると判定する。   The area allowable minimum value indicates the minimum value when it is determined to be normal in the area of the joint interface finally calculated in this flowchart. The area allowable maximum value indicates the maximum value when it is determined to be normal in the area of the joint interface finally calculated in this flowchart. That is, the determination device 70 determines that the bonding state of the first member and the second member is normal when the calculated area of the bonding interface is not less than the area allowable minimum value and not more than the area allowable maximum value, and is calculated. When the area of the bonded interface is smaller than the allowable area minimum value or larger than the allowable area maximum value, it is determined that the bonded state of the first member and the second member is abnormal.

ステップS30に進んだ場合、判定装置70は、作業者からの計測指示の有無を判定し、計測指示がある場合(Yes)はステップS25に進み、計測指示が無い場合(No)はステップS30に戻る。なお、計測指示には「品番」の入力が含まれており、作業者は、キーボードやバーコードリーダ(計測対象物に品番に対応するバーコードが付与されている場合)等から品番を入力する。   When the process proceeds to step S30, the determination device 70 determines whether or not there is a measurement instruction from the worker. If there is a measurement instruction (Yes), the process proceeds to step S25, and if there is no measurement instruction (No), the process proceeds to step S30. Return. The measurement instruction includes an input of “product number”, and the operator inputs the product number from a keyboard, a barcode reader (when a barcode corresponding to the product number is attached to the measurement object), or the like. .

ステップS35に進んだ場合、判定装置70は、レーザ出力装置27(またはレーザ出力装置27A)に向けて制御信号を出力する。レーザ出力装置27(またはレーザ出力装置27A)は、入力された制御信号に基づいて、計測点SPに照射された加熱用レーザの強度が正弦波状に変化するように加熱用レーザを出射する。そして判定装置70は、ステップS35の処理を終えると、ステップS60にて、位相差検出装置60からの位相差の入力を待つ。このステップS35の処理は、計測点SPにおける強度が正弦波状に変化するように加熱用レーザを出射するレーザ出射ステップに相当する。   When the process proceeds to step S35, the determination device 70 outputs a control signal to the laser output device 27 (or the laser output device 27A). Based on the input control signal, the laser output device 27 (or laser output device 27A) emits a heating laser so that the intensity of the heating laser irradiated to the measurement point SP changes in a sine wave shape. And the determination apparatus 70 waits for the input of the phase difference from the phase difference detection apparatus 60 in step S60, after finishing the process of step S35. The process of step S35 corresponds to a laser emission step of emitting a heating laser so that the intensity at the measurement point SP changes in a sine wave shape.

次に、位相差検出装置60におけるステップS140〜ステップS155の処理手順について説明する。ステップS140にて、位相差検出装置60は、レーザ強度検出手段41からの検出信号の入力の有無(照射光(図1参照)または反射光(図2参照)である加熱用レーザの有無)を判定し、検出信号(加熱用レーザ)の入力が有る場合(Yes)はステップS145に進み、検出信号(加熱用レーザ)の入力が無い場合(No)はステップS140に戻る。   Next, the processing procedure of steps S140 to S155 in the phase difference detection device 60 will be described. In step S140, the phase difference detection device 60 determines whether or not a detection signal is input from the laser intensity detection means 41 (whether there is a heating laser that is irradiation light (see FIG. 1) or reflected light (see FIG. 2)). If the detection signal (heating laser) is input (Yes), the process proceeds to step S145. If the detection signal (heating laser) is not input (No), the process returns to step S140.

ステップS145に進んだ場合、位相差検出装置60は、赤外線強度検出手段31からの検出信号に基づいた温度応答の有無を判定し、温度応答が有る場合(Yes)はステップS150に進み、温度応答が無い場合(No)はステップS145に戻る。なお、所定波長の赤外線の入力の有無で判定してもよい。   When the process proceeds to step S145, the phase difference detection device 60 determines whether there is a temperature response based on the detection signal from the infrared intensity detection means 31, and when there is a temperature response (Yes), the process proceeds to step S150, where the temperature response If there is no (No), the process returns to step S145. The determination may be made based on the presence or absence of input of infrared rays having a predetermined wavelength.

ステップS150に進んだ場合、位相差検出装置60は、レーザ強度検出手段41からの検出信号に基づいて、強度が正弦波状に変化する照射光(図1の構成の場合)または反射光(図2の構成の場合)を計測する。なお図5に、計測された照射光(または反射光)の例を示す。また位相差検出装置60は、赤外線強度検出手段31からの検出信号に基づいて、強度が正弦波状に変化する赤外線を計測する。なお図5に、計測された赤外線の例を示す。そして位相差検出装置60は、計測した(正弦波状に強度が変化する)照射光(または反射光)と、計測した(正弦波状に強度が変化する)赤外線と、の位相差δ(図5参照)を計測してステップS155に進む。   When the process proceeds to step S150, the phase difference detection device 60, based on the detection signal from the laser intensity detection means 41, the irradiation light (in the case of the configuration of FIG. 1) or the reflected light (FIG. In the case of the configuration). FIG. 5 shows an example of measured irradiation light (or reflected light). The phase difference detection device 60 measures infrared light whose intensity changes in a sine wave shape based on the detection signal from the infrared intensity detection means 31. FIG. 5 shows an example of measured infrared rays. The phase difference detection device 60 then detects the phase difference δ (see FIG. 5) between the measured irradiation light (or reflected light) (the intensity changes in a sine wave shape) and the measured infrared light (the intensity changes in a sine wave shape). ) And the process proceeds to step S155.

このステップS150の処理は、計測点SPにて反射された加熱用レーザの反射光の強度であって正弦波状に変化する反射光の強度、または計測点SPに照射される加熱用レーザである照射光の強度であって正弦波状に変化する照射光の強度、を計測するレーザ強度計測ステップを含む。またステップS150の処理は、計測点SPから放射された赤外線の強度であって正弦波状に変化する赤外線の強度を計測する赤外線強度計測ステップを含む。またステップS150の処理は、計測された正弦波状に変化する反射光の強度または照射光の強度と、計測された正弦波状に変化する赤外線の強度と、の位相差を求め、求めた位相差を判定装置に出力する位相差計測ステップを含む。   The processing in step S150 is the intensity of the reflected light of the heating laser reflected at the measurement point SP and the intensity of the reflected light that changes in a sine wave shape, or the irradiation that is the heating laser that is applied to the measurement point SP. It includes a laser intensity measurement step for measuring the intensity of light and the intensity of irradiation light that changes in a sinusoidal shape. Further, the process of step S150 includes an infrared intensity measurement step of measuring the intensity of infrared rays emitted from the measurement point SP and changing in the form of a sine wave. The process of step S150 calculates the phase difference between the intensity of reflected light or irradiation light that changes in a measured sine wave shape and the intensity of infrared light that changes in a measured sine wave shape, and calculates the calculated phase difference. A phase difference measurement step of outputting to the determination device.

ステップS155にて位相差検出装置60は、計測した位相差δを判定装置70に向けて出力し、ステップS140に戻る。   In step S155, the phase difference detection device 60 outputs the measured phase difference δ toward the determination device 70, and returns to step S140.

次に、判定装置70におけるステップS60〜ステップS80の処理手順について説明する。ステップS60にて判定装置70は、位相差検出装置60からの位相差の入力の有無を判定し、位相差の入力が有る場合(Yes)はステップS65に進み、位相差の入力が無い場合(No)はステップS60に戻る。   Next, the process procedure of step S60 to step S80 in the determination apparatus 70 will be described. In step S60, the determination device 70 determines whether or not a phase difference is input from the phase difference detection device 60. If there is a phase difference input (Yes), the process proceeds to step S65, and if there is no phase difference input ( No) returns to step S60.

ステップS65に進んだ場合、判定装置70は、位相差を取り込み、レーザ出力装置27(またはレーザ出力装置27A)に制御信号を出力し、レーザ出力装置27(またはレーザ出力装置27A)からの加熱用レーザの出射を停止させてステップS70に進む。   When the process proceeds to step S65, the determination device 70 takes in the phase difference, outputs a control signal to the laser output device 27 (or laser output device 27A), and for heating from the laser output device 27 (or laser output device 27A). The laser emission is stopped and the process proceeds to step S70.

ステップS70にて判定装置70は、取り込んだ位相差に基づいて、第1部材と第2部材を1つの部材とみなしたときの熱拡散率αtを算出し、ステップS75に進む。第1部材と第2部材を1つの部材とみなしたときの熱拡散率をαt、位相差をδ(位相差検出装置60からの出力値)、加熱用レーザである照射光(または反射光)の周波数をf、第1部材51の熱拡散長をx、とした場合、以下の(式1)が成立する。この(式1)より、判定装置70は、位相差δと、照射光(または反射光)の周波数fと、第1物理特性(この場合、第1部材の熱拡散長x)と、に基づいて、熱拡散率αtを求めることができる。なお、照射光(または反射光)の周波数fは、予めわかっており判定装置70に予め記憶されていてもよいし、位相差検出装置60にて計測した照射光(または反射光)から位相差検出装置60が周波数fを求め、求めた周波数fを判定装置70に出力するようにしてもよい。また第1部材の熱拡散長xは、判定装置70が記憶している物理特性情報(図4参照)と、ステップS30にて入力された品番にて特定される。熱拡散長xは、第1部材における計測点から、第1部材と第2部材との接触面までの距離であり、例えば、データテーブルにて与えられる。なお図6に、接合界面53にて互いに接合された第1部材51と第2部材52(計測対象物)のモデルの例を示す。
αt=π・f・(x/δ)2 (式1)
In step S70, the determination device 70 calculates the thermal diffusivity αt when the first member and the second member are regarded as one member based on the captured phase difference, and proceeds to step S75. When the first member and the second member are regarded as one member, the thermal diffusivity is αt, the phase difference is δ (output value from the phase difference detection device 60), and the irradiation light (or reflected light) is a heating laser. Where f is the frequency and x is the thermal diffusion length of the first member 51, the following (Equation 1) holds. From this (Equation 1), the determination device 70 is based on the phase difference δ, the frequency f of the irradiated light (or reflected light), and the first physical characteristics (in this case, the thermal diffusion length x of the first member). Thus, the thermal diffusivity αt can be obtained. Note that the frequency f of the irradiation light (or reflected light) is known in advance and may be stored in advance in the determination device 70, or the phase difference from the irradiation light (or reflected light) measured by the phase difference detection device 60. The detection device 60 may obtain the frequency f and output the obtained frequency f to the determination device 70. The thermal diffusion length x of the first member is specified by the physical characteristic information (see FIG. 4) stored in the determination device 70 and the product number input in step S30. The thermal diffusion length x is the distance from the measurement point on the first member to the contact surface between the first member and the second member, and is given by, for example, a data table. FIG. 6 shows an example of a model of the first member 51 and the second member 52 (measurement object) joined together at the joining interface 53.
αt = π · f · (x / δ) 2 (Formula 1)

ステップS75にて判定装置70は、算出した熱拡散率αtに基づいて、第1部材と第2部材を1つの部材とみなしたときの熱伝導率λtを算出し、ステップS80に進む。熱伝導率をλt、熱拡散率をαt、第1部材の比熱容量をc1、第1部材の密度をρ1、とした場合、以下の(式2)が成立し、この(式2)より、判定装置70は、熱拡散率αtと、第1物理特性(この場合、第1部材の比熱容量c1と、第1部材の密度ρ1)と、に基づいて、熱伝導率λtを求めることができる。また第1部材の比熱容量と密度は、判定装置70が記憶している物理特性情報(図4参照)と、ステップS30にて入力された品番にて特定される。
λt=αt・ρ1・c1 (式2)
In step S75, the determination apparatus 70 calculates the thermal conductivity λt when the first member and the second member are regarded as one member based on the calculated thermal diffusivity αt, and proceeds to step S80. When the thermal conductivity is λt, the thermal diffusivity is αt, the specific heat capacity of the first member is c1, and the density of the first member is ρ1, the following (Equation 2) is established. The determination device 70 can obtain the thermal conductivity λt based on the thermal diffusivity αt and the first physical characteristics (in this case, the specific heat capacity c1 of the first member and the density ρ1 of the first member). . The specific heat capacity and density of the first member are specified by the physical characteristic information (see FIG. 4) stored in the determination device 70 and the product number input in step S30.
λt = αt · ρ1 · c1 (Formula 2)

ステップS80にて判定装置70は、算出した熱伝導率λtに基づいて、接合界面53の面積である接合界面面積Sを算出し、算出した接合界面面積Sが正常または異常であることを示す判定結果を出力(図7参照)して処理を終了する。   In step S80, the determination apparatus 70 calculates a bonding interface area S that is the area of the bonding interface 53 based on the calculated thermal conductivity λt, and determines that the calculated bonding interface area S is normal or abnormal. A result is output (refer FIG. 7), and a process is complete | finished.

ここで、第1部材の熱抵抗をR1、第2部材の熱抵抗をR2、熱伝導率λtから推定される計測対象物全体の熱抵抗をRt、接合界面の熱抵抗である接合界面熱抵抗をRs、とした場合、以下の(式3)が成立する。また、接合界面熱抵抗をRs、接合界面面積をS、接合界面熱抵抗Rsに対する接合界面面積Sに関する接合係数をKs、とした場合、以下の(式4)が成立する。そして(式4)より、(式5)を得ることができる。なお、Ksは、接合界面の厚さをdとして、Ks=d/λ1で推定してもよい。またλ1は、第1部材の熱伝導率であり、予め求められているものとする。従って、(式5)より、(式6)を得ることができる。なお、接合係数Ks、接合界面の厚さdは、予め試験結果やシミュレーション結果等にて求めておく。
Rs=Rt−(R1+R2) (式3)
Rs=(1/S)・Ks (式4)
S=(1/Rs)・Ks (式5)
S=(1/Rs)・(d/λ1) (式6)
Here, the thermal resistance of the first member is R1, the thermal resistance of the second member is R2, the thermal resistance of the entire measurement object estimated from the thermal conductivity λt is Rt, and the thermal resistance of the bonding interface is the bonding interface thermal resistance. Is Rs, the following (Equation 3) holds. Further, when the bonding interface thermal resistance is Rs, the bonding interface area is S, and the bonding coefficient regarding the bonding interface area S with respect to the bonding interface thermal resistance Rs is Ks, the following (Equation 4) is established. From (Expression 4), (Expression 5) can be obtained. Ks may be estimated by Ks = d / λ1 where d is the thickness of the bonding interface. Further, λ1 is the thermal conductivity of the first member, and is obtained in advance. Therefore, (Expression 6) can be obtained from (Expression 5). Note that the bonding coefficient Ks and the thickness d of the bonding interface are obtained in advance from test results and simulation results.
Rs = Rt− (R1 + R2) (Formula 3)
Rs = (1 / S) · Ks (Formula 4)
S = (1 / Rs) · Ks (Formula 5)
S = (1 / Rs) · (d / λ1) (Formula 6)

計測対象物全体(第1部材と第2部材)の見かけ上の熱抵抗Rtについては、位相差δから、見かけ上の熱伝導率λtを求め、熱伝導率λtが熱抵抗Rtに対して反比例するλt−Rt特性データ等により、計測対象物全体の見かけ上の熱抵抗Rtを求めることができる。また第1部材の熱抵抗R1と第2部材の熱抵抗R2は、判定装置70が記憶している物理特性情報(図4参照)と、ステップS30にて入力された品番にて特定される。第1部材の材質とサイズ(または質量)がわかっていれば、第1部材の熱抵抗R1はわかっている、第2部材の材質とサイズ(または質量)がわかっていれば、第2部材の熱抵抗R2はわかっている。これらと(式3)より、Rsの値を求めることができる。そして求めたRsの値と(式5)あるいは(式6)より、判定装置70は、接合界面53の接合界面面積Sを算出することができる。従って、判定装置70は、第1部材の熱伝導率λ1と、位相差δと、第1物理特性(この場合、第1部材の熱抵抗R1)と、第2物理特性(この場合、第2部材の熱抵抗R2)と、界面物理特性(この場合、接合係数Ksまたは接合界面の厚さd)と、に基づいて、接合界面面積Sを算出する。そして上記のステップS70〜ステップS80の処理は、位相差に基づいて、接合界面面積を算出する接合界面面積算出ステップに相当する。   For the apparent thermal resistance Rt of the entire measurement object (first member and second member), the apparent thermal conductivity λt is obtained from the phase difference δ, and the thermal conductivity λt is inversely proportional to the thermal resistance Rt. The apparent thermal resistance Rt of the entire object to be measured can be obtained from the λt-Rt characteristic data or the like. The thermal resistance R1 of the first member and the thermal resistance R2 of the second member are specified by the physical characteristic information (see FIG. 4) stored in the determination device 70 and the product number input in step S30. If the material and size (or mass) of the first member are known, the thermal resistance R1 of the first member is known. If the material and size (or mass) of the second member is known, the second member The thermal resistance R2 is known. From these and (Equation 3), the value of Rs can be obtained. The determination device 70 can calculate the bonding interface area S of the bonding interface 53 from the obtained Rs value and (Expression 5) or (Expression 6). Therefore, the determination device 70 includes the first member thermal conductivity λ1, the phase difference δ, the first physical characteristic (in this case, the thermal resistance R1 of the first member), and the second physical characteristic (in this case, the second The bonding interface area S is calculated based on the thermal resistance R2) of the member and the interface physical characteristics (in this case, the bonding coefficient Ks or the thickness d of the bonding interface). The processes in steps S70 to S80 correspond to a bonding interface area calculating step for calculating the bonding interface area based on the phase difference.

また図7に、判定装置70の表示手段に、算出した接合界面面積Sを含む判定結果情報70Gを表示した例を示す。図7中における許容最小値(min)は、判定装置70が記憶している物理特性情報(図4参照)と、ステップS30にて入力された品番にて特定された面積最小許容値である。また図7中における許容最大値(max)は、判定装置70が記憶している物理特性情報(図4参照)と、ステップS30にて入力された品番にて特定された面積許容最大値である。判定装置70は、算出した接合界面の面積Sが、許容最小値(min)以上かつ許容最大値(max)以下である場合、接合状態は「正常」であると判定し、許容最小値(min)よりも小さいまたは許容最大値(max)よりも大きい場合、接合状態は「異常」であると判定する。図7の例は、「正常」と判定した場合の例を示している。作業者は、判定結果情報70Gを見ることで、計測対象物の接合状態が、正常であるか異常であるかを知ることができる。   FIG. 7 shows an example in which determination result information 70 </ b> G including the calculated bonding interface area S is displayed on the display unit of the determination device 70. The allowable minimum value (min) in FIG. 7 is the area minimum allowable value specified by the physical characteristic information (see FIG. 4) stored in the determination apparatus 70 and the product number input in step S30. Further, the allowable maximum value (max) in FIG. 7 is the maximum allowable area value specified by the physical characteristic information (see FIG. 4) stored in the determination device 70 and the product number input in step S30. . The determination device 70 determines that the bonding state is “normal” when the calculated area S of the bonding interface is not less than the allowable minimum value (min) and not more than the allowable maximum value (max), and the allowable minimum value (min ) Or larger than the allowable maximum value (max), it is determined that the bonding state is “abnormal”. The example of FIG. 7 shows an example when it is determined as “normal”. By looking at the determination result information 70G, the operator can know whether the joining state of the measurement target is normal or abnormal.

以上、本発明の光学非破壊検査装置及び光学非破壊検査方法は、正弦波状に強度が変化する照射光(または反射光)と、正弦波状に強度が変化する放射赤外線と、の位相差を用いることで、接合界面にて互いに接合された第1部材と第2部材において、非破壊にて接合界面の面積を求めることができる。   As described above, the optical nondestructive inspection apparatus and the optical nondestructive inspection method of the present invention use a phase difference between irradiation light (or reflected light) whose intensity changes sinusoidally and radiation infrared rays whose intensity changes sinusoidally. Thus, in the first member and the second member joined to each other at the joining interface, the area of the joining interface can be obtained without destruction.

上記のとおり、本発明の光学非破壊検査装置及び光学非破壊検査方法は、赤外線と反射光(または照射光)との位相差を用いる。従って、計測点SPから放射される赤外線による絶対温度(絶対強度)を求める必要がなく、正弦波状に変化する赤外線の強度(赤外線の強度の変化による正弦波状の波形(振幅の精度は不要))を検出できればよい。同様に、計測点SPにて反射される反射光(またはレーザ出力装置からの照射光)の絶対強度を求める必要がなく、正弦波状に変化する反射光(または照射光)の強度(反射光または照射光の強度の変化による正弦波状の波形(振幅の精度は不要))を検出できればよい。従って、計測点SPの表面の状態の影響を受けることなく、高い精度で接合界面の面積Sを求めることができる。従って、外乱の影響による誤差の発生を低減できるので、高い精度で接合界面の面積Sを求めることができる。   As described above, the optical nondestructive inspection apparatus and the optical nondestructive inspection method of the present invention use a phase difference between infrared rays and reflected light (or irradiation light). Therefore, it is not necessary to obtain the absolute temperature (absolute intensity) by the infrared rays radiated from the measurement point SP, and the intensity of the infrared rays changing in a sine wave shape (sinusoidal waveform (amplitude accuracy is not required) due to the change in the infrared ray intensity) Can be detected. Similarly, it is not necessary to obtain the absolute intensity of the reflected light (or irradiation light from the laser output device) reflected at the measurement point SP, and the intensity of the reflected light (or irradiation light) that changes in a sine wave shape (reflected light or It is only necessary to be able to detect a sinusoidal waveform (amplitude accuracy is unnecessary) due to a change in the intensity of irradiation light. Therefore, the area S of the bonding interface can be obtained with high accuracy without being affected by the surface state of the measurement point SP. Therefore, since the generation of errors due to the influence of disturbance can be reduced, the area S of the bonding interface can be obtained with high accuracy.

本発明の光学非破壊検査装置の構成、外観等、及び光学非破壊検査方法の処理手順等は、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。   The configuration, appearance, etc. of the optical nondestructive inspection apparatus of the present invention and the processing procedure of the optical nondestructive inspection method can be variously changed, added, or deleted without changing the gist of the present invention.

本発明の光学非破壊検査方法は、第1部材51と第2部材52が金属であること限定されず、種々の材質の物質に適用可能である。また接合方法は、溶接に限定されず、種々の方法で接合された第1部材と第2部材の接合界面の面積の判定に適用することができる。   The optical nondestructive inspection method of the present invention is not limited to the fact that the first member 51 and the second member 52 are metals, and can be applied to substances of various materials. The joining method is not limited to welding, and can be applied to the determination of the area of the joining interface between the first member and the second member joined by various methods.

加熱用レーザには、赤外線レーザや紫外線レーザや可視光レーザ等、種々のレーザを用いることができる。   Various lasers such as an infrared laser, an ultraviolet laser, and a visible laser can be used as the heating laser.

本実施の形態の説明では、位相差検出装置60と判定装置70とを別々の装置で構成した例を説明したが、位相差検出装置と判定装置とを一体化した装置としてもよい。   In the description of the present embodiment, the example in which the phase difference detection device 60 and the determination device 70 are configured as separate devices has been described. However, the phase difference detection device and the determination device may be integrated.

1、1A 光学非破壊検査装置
10 集光手段(対物レンズ)
21 半導体レーザ光源
21A レーザ光源
22 コリメートレンズ
23 加熱レーザ選択反射手段
24 音響光学変調器
25 変調信号出力手段
27、27A レーザ出力装置
31 赤外線強度検出手段
32、42 集光レンズ
41 レーザ強度検出手段
51 第1部材
52 第2部材
53 接合界面
60 位相差検出装置
70 判定装置
70A 物理特性情報
80 通信回線
81 配信装置
c1 第1部材の比熱容量
d 接合界面の厚さ
Ks 接合係数
La 加熱用レーザ
R1 第1部材の熱抵抗
R2 第2部材の熱抵抗
Rs 接合界面熱抵抗
Rt 計測対象物全体の熱抵抗
S 接合界面面積
SP 計測点
x 熱拡散長
αt 第1部材と第2部材を1つの部材とみなしたときの熱拡散率
λ1 第1部材の熱伝導率
λt 第1部材と第2部材を1つの部材とみなしたときの熱伝導率
δ 位相差
ρ1 第1部材の密度

1, 1A Optical nondestructive inspection device 10 Condensing means (objective lens)
DESCRIPTION OF SYMBOLS 21 Semiconductor laser light source 21A Laser light source 22 Collimating lens 23 Heating laser selective reflection means 24 Acousto-optic modulator 25 Modulation signal output means 27, 27A Laser output device 31 Infrared intensity detection means 32, 42 Condensing lens 41 Laser intensity detection means 51 1st 1 member 52 2nd member 53 bonding interface 60 phase difference detection device 70 determination device 70A physical characteristic information 80 communication line 81 distribution device c1 specific heat capacity of first member d thickness of bonding interface Ks bonding coefficient La heating laser R1 first Thermal resistance of the member R2 Thermal resistance of the second member Rs Bonding interface thermal resistance Rt Thermal resistance of the entire measurement object S Bonding interface area SP Measurement point x Thermal diffusion length αt The first member and the second member were regarded as one member Thermal diffusivity of λ1 Thermal conductivity of the first member λt The first member and the second member were considered as one member Density of Kinonetsu conductivity δ phase difference ρ1 first member

Claims (12)

接合界面にて互いに接合された第1部材と第2部材である計測対象物における第1部材の表面に設定した計測点に加熱用レーザを照射して、前記計測点から取得される情報、または前記加熱用レーザに関する情報と、前記計測点から取得される情報と、に基づいて、前記接合界面の面積を求める、光学非破壊検査装置であって、
前記計測点における強度が正弦波状に変化するように前記加熱用レーザを出射するレーザ出力装置と、
前記計測点の前記加熱用レーザの強度、を検出するレーザ強度検出手段と、
前記計測点から放射された赤外線の強度であって正弦波状に変化する前記赤外線の強度を検出する赤外線強度検出手段と、
前記レーザ強度検出手段からの検出信号と前記赤外線強度検出手段からの検出信号を取り込んで、正弦波状に変化する前記加熱用レーザの強度と、正弦波状に変化する前記赤外線の強度と、の位相差を検出する位相差検出装置と、
前記位相差検出装置から取り込んだ前記位相差に基づいて前記接合界面の面積である接合界面面積を算出する判定装置と、を有する、
光学非破壊検査装置。
Information obtained from the measurement point by irradiating a heating laser to the measurement point set on the surface of the first member of the measurement object that is the first member and the second member joined to each other at the joint interface, or An optical nondestructive inspection apparatus for obtaining an area of the bonding interface based on information on the heating laser and information acquired from the measurement point,
A laser output device for emitting the heating laser so that the intensity at the measurement point changes in a sinusoidal shape;
Laser intensity detecting means for detecting the intensity of the heating laser at the measurement point;
Infrared intensity detecting means for detecting the intensity of the infrared rays emitted from the measurement point and changing in a sinusoidal shape,
Taking in the detection signal from the laser intensity detection means and the detection signal from the infrared intensity detection means, the phase difference between the intensity of the heating laser that changes sinusoidally and the intensity of the infrared that changes sinusoidally A phase difference detection device for detecting
A determination device that calculates a bonding interface area that is an area of the bonding interface based on the phase difference captured from the phase difference detection device;
Optical nondestructive inspection device.
請求項1に記載の光学非破壊検査装置であって、
前記計測点の前記加熱用レーザの強度は、
前記計測点に照射される前記加熱用レーザである照射光の強度であって正弦波状に変化する前記照射光の強度、または、前記計測点にて反射された前記加熱用レーザの反射光の強度であって正弦波状に変化する前記反射光の強度、である、
光学非破壊検査装置。
The optical nondestructive inspection apparatus according to claim 1,
The intensity of the heating laser at the measurement point is
The intensity of the irradiation light that is the heating laser irradiated to the measurement point, and the intensity of the irradiation light that changes sinusoidally, or the intensity of the reflected light of the heating laser reflected at the measurement point And the intensity of the reflected light changing sinusoidally,
Optical nondestructive inspection device.
請求項1または2に記載の光学非破壊検査装置であって、
前記判定装置には、前記第1部材の物理特性である第1物理特性と、前記第2部材の物理特性である第2物理特性と、前記接合界面の物理特性である界面物理特性と、が記憶されており、
前記判定装置は、
前記位相差と、正弦波状に強度が変化する前記加熱用レーザの周波数と、前記第1物理特性と、に基づいて前記第1部材と前記第2部材とを1つの部材とみなした熱拡散率を求め、
求めた前記熱拡散率と、前記第1物理特性と、に基づいて前記第1部材と前記第2部材とを1つの部材とみなした熱伝導率を求め、
求めた前記熱伝導率と、前記位相差に基づいた前記計測対象物の見かけ上の熱抵抗と、前記第1物理特性と、前記第2物理特性とから前記接合界面の熱抵抗である接合界面熱抵抗を求め、
求めた前記接合界面熱抵抗と、前記界面物理特性と、に基づいて前記接合界面面積を算出する、
光学非破壊検査装置。
The optical nondestructive inspection apparatus according to claim 1 or 2,
The determination device includes a first physical characteristic that is a physical characteristic of the first member, a second physical characteristic that is a physical characteristic of the second member, and an interface physical characteristic that is a physical characteristic of the bonding interface. Remembered,
The determination device includes:
Thermal diffusivity in which the first member and the second member are regarded as one member based on the phase difference, the frequency of the heating laser whose intensity changes sinusoidally, and the first physical characteristics Seeking
Based on the obtained thermal diffusivity and the first physical characteristics, obtain the thermal conductivity considering the first member and the second member as one member,
The bonding interface which is the thermal resistance of the bonding interface from the obtained thermal conductivity, the apparent thermal resistance of the measurement object based on the phase difference, the first physical characteristic, and the second physical characteristic Find the thermal resistance,
Calculate the bonding interface area based on the determined bonding interface thermal resistance and the interface physical properties,
Optical nondestructive inspection device.
請求項3に記載の光学非破壊検査装置であって、
前記判定装置は、所定の通信回線に接続されており、前記第1物理特性と、前記第2物理特性と、前記界面物理特性とを、前記通信回線を介して受信して記憶する、
光学非破壊検査装置。
The optical nondestructive inspection apparatus according to claim 3,
The determination device is connected to a predetermined communication line, and receives and stores the first physical characteristic, the second physical characteristic, and the interface physical characteristic via the communication line.
Optical nondestructive inspection device.
請求項3または4に記載の光学非破壊検査装置であって、
前記第1物理特性と前記第2物理特性と前記界面物理特性は、
前記第1部材における前記計測点から前記第1部材と前記第2部材の接触面までの距離である熱拡散長と、
前記第1部材の比熱容量と、
前記第1部材の密度と、
前記第1部材の熱抵抗と、
前記第2部材の熱抵抗と、
前記接合界面の厚さ、または、前記接合界面熱抵抗に対する前記接合界面面積に関する接合係数と、を含む、
光学非破壊検査装置。
The optical nondestructive inspection apparatus according to claim 3 or 4,
The first physical property, the second physical property, and the interface physical property are:
A thermal diffusion length which is a distance from the measurement point in the first member to a contact surface of the first member and the second member;
Specific heat capacity of the first member;
The density of the first member;
Thermal resistance of the first member;
Thermal resistance of the second member;
A thickness of the bonding interface, or a bonding coefficient relating to the bonding interface area with respect to the bonding interface thermal resistance,
Optical nondestructive inspection device.
請求項1〜5のいずれか一項に記載の光学非破壊検査装置であって、
前記レーザ出力装置は、
入力された変調信号に基づいて強度が変調されたレーザを出射する半導体レーザ光源と、前記変調信号を出力する変調信号出力手段と、にて構成されている、
あるいは、所定の強度のレーザを音響光学変調器に向けて出射するレーザ光源と、入力された変調信号に基づいて入射されたレーザを回折する音響光学変調器と、前記変調信号を出力する変調信号出力手段と、にて構成されている、
光学非破壊検査装置。
It is an optical nondestructive inspection device according to any one of claims 1 to 5,
The laser output device is
A semiconductor laser light source that emits a laser whose intensity is modulated based on an input modulation signal, and a modulation signal output unit that outputs the modulation signal.
Alternatively, a laser light source that emits a laser having a predetermined intensity toward the acousto-optic modulator, an acousto-optic modulator that diffracts the incident laser based on the input modulation signal, and a modulation signal that outputs the modulation signal And output means,
Optical nondestructive inspection device.
接合界面にて互いに接合された第1部材と第2部材である計測対象物における第1部材の表面に設定した計測点に加熱用レーザを照射して、前記計測点から取得される情報、または前記加熱用レーザに関する情報と前記計測点から取得される情報、に基づいて、前記接合界面の面積を求める、光学非破壊検査方法であって、
レーザ出力装置と、位相差検出装置と、判定装置と、を用いて、
前記レーザ出力装置にて、前記計測点における強度が正弦波状に変化するように前記加熱用レーザを出射するレーザ出射ステップと、
前記位相差検出装置にて、前記計測点の前記加熱用レーザの強度、を計測するレーザ強度計測ステップと、
前記位相差検出装置にて、前記計測点から放射された赤外線の強度であって正弦波状に変化する前記赤外線の強度を計測する赤外線強度計測ステップと、
前記位相差検出装置にて、計測された正弦波状に変化する前記加熱用レーザの強度と、計測された正弦波状に変化する前記赤外線の強度と、の位相差を求め、求めた前記位相差を前記判定装置に出力する位相差計測ステップと、
前記判定装置にて、前記位相差に基づいて、前記接合界面の面積である接合界面面積を算出する接合界面面積算出ステップと、を有する、
光学非破壊検査方法。
Information obtained from the measurement point by irradiating a heating laser to the measurement point set on the surface of the first member of the measurement object that is the first member and the second member joined to each other at the joint interface, or An optical nondestructive inspection method for obtaining an area of the bonding interface based on information on the heating laser and information acquired from the measurement point,
Using a laser output device, a phase difference detection device, and a determination device,
In the laser output device, a laser emission step of emitting the heating laser so that the intensity at the measurement point changes in a sine wave shape,
In the phase difference detection device, a laser intensity measurement step for measuring the intensity of the heating laser at the measurement point;
In the phase difference detection device, an infrared intensity measurement step of measuring the intensity of the infrared ray that is the intensity of the infrared ray emitted from the measurement point and changes in a sinusoidal shape;
In the phase difference detection device, the phase difference between the intensity of the heating laser that changes in a measured sine wave shape and the intensity of the infrared ray that changes in a measured sine wave shape is obtained, and the obtained phase difference is calculated. A phase difference measuring step for outputting to the determination device;
In the determination device, based on the phase difference, a bonding interface area calculation step of calculating a bonding interface area that is an area of the bonding interface,
Optical nondestructive inspection method.
請求項7に記載の光学非破壊検査方法であって、
前記計測点の前記加熱用レーザの強度は、
前記計測点に照射される前記加熱用レーザである照射光の強度であって正弦波状に変化する前記照射光の強度、または、前記計測点にて反射された前記加熱用レーザの反射光の強度であって正弦波状に変化する前記反射光の強度、である、
光学非破壊検査方法。
The optical nondestructive inspection method according to claim 7,
The intensity of the heating laser at the measurement point is
The intensity of the irradiation light that is the heating laser irradiated to the measurement point, and the intensity of the irradiation light that changes sinusoidally, or the intensity of the reflected light of the heating laser reflected at the measurement point And the intensity of the reflected light changing sinusoidally,
Optical nondestructive inspection method.
請求項7または8に記載の光学非破壊検査方法であって、
前記判定装置に、前記第1部材の物理特性である第1物理特性と、前記第2部材の物理特性である第2物理特性と、前記接合界面の物理特性である界面物理特性と、を記憶しておき、
前記接合界面面積算出ステップにおいて、
前記判定装置にて、
前記位相差と、正弦波状に強度が変化する前記加熱用レーザの周波数と、前記第1物理特性と、に基づいて前記第1部材と前記第2部材とを1つの部材とみなした熱拡散率を求め、
求めた前記熱拡散率と、前記第1物理特性と、に基づいて前記第1部材と前記第2部材とを1つの部材とみなした熱伝導率を求め、
求めた前記熱伝導率と、前記位相差に基づいた前記計測対象物の見かけ上の熱抵抗と、前記第1物理特性と、前記第2物理特性とから前記接合界面の熱抵抗である接合界面熱抵抗を求め、
求めた前記接合界面熱抵抗と、前記界面物理特性と、に基づいて前記接合界面面積を算出する、
光学非破壊検査方法。
The optical nondestructive inspection method according to claim 7 or 8,
The determination device stores a first physical characteristic that is a physical characteristic of the first member, a second physical characteristic that is a physical characteristic of the second member, and an interface physical characteristic that is a physical characteristic of the bonding interface. Aside,
In the bonding interface area calculation step,
In the determination device,
Thermal diffusivity in which the first member and the second member are regarded as one member based on the phase difference, the frequency of the heating laser whose intensity changes sinusoidally, and the first physical characteristics Seeking
Based on the obtained thermal diffusivity and the first physical characteristics, obtain the thermal conductivity considering the first member and the second member as one member,
The bonding interface which is the thermal resistance of the bonding interface from the obtained thermal conductivity, the apparent thermal resistance of the measurement object based on the phase difference, the first physical characteristic, and the second physical characteristic Find the thermal resistance,
Calculate the bonding interface area based on the determined bonding interface thermal resistance and the interface physical properties,
Optical nondestructive inspection method.
請求項9に記載の光学非破壊検査方法であって、
前記第1物理特性と、前記第2物理特性と、前記界面物理特性とを、所定の通信回線を介して配信して前記判定装置に記憶させる、
光学非破壊検査方法。
The optical nondestructive inspection method according to claim 9,
The first physical characteristic, the second physical characteristic, and the interface physical characteristic are distributed via a predetermined communication line and stored in the determination device;
Optical nondestructive inspection method.
請求項9または10に記載の光学非破壊検査方法であって、
前記第1物理特性と前記第2物理特性と前記界面物理特性は、
前記第1部材における前記計測点から前記第1部材と前記第2部材の接触面までの距離である熱拡散長と、
前記第1部材の比熱容量と、
前記第1部材の密度と、
前記第1部材の熱抵抗と、
前記第2部材の熱抵抗と、
前記接合界面の厚さ、または、前記接合界面熱抵抗に対する前記接合界面面積に関する接合係数と、を含む、
光学非破壊検査方法。
The optical nondestructive inspection method according to claim 9 or 10,
The first physical property, the second physical property, and the interface physical property are:
A thermal diffusion length which is a distance from the measurement point in the first member to a contact surface of the first member and the second member;
Specific heat capacity of the first member;
The density of the first member;
Thermal resistance of the first member;
Thermal resistance of the second member;
A thickness of the bonding interface, or a bonding coefficient relating to the bonding interface area with respect to the bonding interface thermal resistance,
Optical nondestructive inspection method.
請求項7〜11のいずれか一項に記載の光学非破壊検査方法であって、
前記レーザ出力装置として、
入力された変調信号に基づいて強度が変調されたレーザを出射する半導体レーザ光源と、前記変調信号を出力する変調信号出力手段と、にて構成されている前記レーザ出力装置、
あるいは、所定の強度のレーザを音響光学変調器に向けて出射するレーザ光源と、入力された変調信号に基づいて入射されたレーザを回折する音響光学変調器と、前記変調信号を出力する変調信号出力手段と、にて構成されている前記レーザ出力装置、を用いる、
光学非破壊検査方法。

The optical nondestructive inspection method according to any one of claims 7 to 11,
As the laser output device,
The laser output device comprising: a semiconductor laser light source that emits a laser whose intensity is modulated based on an input modulation signal; and a modulation signal output unit that outputs the modulation signal;
Alternatively, a laser light source that emits a laser having a predetermined intensity toward the acousto-optic modulator, an acousto-optic modulator that diffracts the incident laser based on the input modulation signal, and a modulation signal that outputs the modulation signal Using the laser output device configured with output means,
Optical nondestructive inspection method.

JP2015199387A 2015-10-07 2015-10-07 Optical nondestructive inspection apparatus and optical nondestructive inspection method Active JP6620499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015199387A JP6620499B2 (en) 2015-10-07 2015-10-07 Optical nondestructive inspection apparatus and optical nondestructive inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015199387A JP6620499B2 (en) 2015-10-07 2015-10-07 Optical nondestructive inspection apparatus and optical nondestructive inspection method

Publications (2)

Publication Number Publication Date
JP2017072475A true JP2017072475A (en) 2017-04-13
JP6620499B2 JP6620499B2 (en) 2019-12-18

Family

ID=58537451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015199387A Active JP6620499B2 (en) 2015-10-07 2015-10-07 Optical nondestructive inspection apparatus and optical nondestructive inspection method

Country Status (1)

Country Link
JP (1) JP6620499B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020379A (en) * 2017-07-18 2019-02-07 株式会社ジェイテクト Optical nondestructive inspection method and optical nondestructive inspection device
JP2020056597A (en) * 2018-09-28 2020-04-09 株式会社カネカ Method and device for evaluating thermal diffusion performance of semiconductor-related member, and method and device for calculating thermal resistance of semiconductor-related member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021127596A1 (en) 2021-10-22 2023-04-27 Linseis Messgeräte Gesellschaft mit beschränkter Haftung thermal conductivity meter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343325A (en) * 2005-05-12 2006-12-21 Kobe Steel Ltd Device and method for measuring thermophysical property
JP2009069009A (en) * 2007-09-13 2009-04-02 Shinko:Kk Inspection method of micro metal jointed part
JP2011185852A (en) * 2010-03-10 2011-09-22 National Institute Of Advanced Industrial Science & Technology Device for measurement of thermal diffusivity
JP2011191232A (en) * 2010-03-16 2011-09-29 Joyo Machine Co Ltd Method and device of determining acceptance/rejection of fine diameter wire bonding
JP2013122414A (en) * 2011-12-12 2013-06-20 Honda Motor Co Ltd Nondestructive inspection system
JP2014222206A (en) * 2013-05-14 2014-11-27 株式会社ジェイテクト Optical nondestructive inspection method and optical nondestructive inspection apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343325A (en) * 2005-05-12 2006-12-21 Kobe Steel Ltd Device and method for measuring thermophysical property
JP2009069009A (en) * 2007-09-13 2009-04-02 Shinko:Kk Inspection method of micro metal jointed part
JP2011185852A (en) * 2010-03-10 2011-09-22 National Institute Of Advanced Industrial Science & Technology Device for measurement of thermal diffusivity
JP2011191232A (en) * 2010-03-16 2011-09-29 Joyo Machine Co Ltd Method and device of determining acceptance/rejection of fine diameter wire bonding
JP2013122414A (en) * 2011-12-12 2013-06-20 Honda Motor Co Ltd Nondestructive inspection system
JP2014222206A (en) * 2013-05-14 2014-11-27 株式会社ジェイテクト Optical nondestructive inspection method and optical nondestructive inspection apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020379A (en) * 2017-07-18 2019-02-07 株式会社ジェイテクト Optical nondestructive inspection method and optical nondestructive inspection device
JP7098956B2 (en) 2017-07-18 2022-07-12 株式会社ジェイテクト Optical non-destructive inspection method and optical non-destructive inspection equipment
JP2020056597A (en) * 2018-09-28 2020-04-09 株式会社カネカ Method and device for evaluating thermal diffusion performance of semiconductor-related member, and method and device for calculating thermal resistance of semiconductor-related member
JP7126200B2 (en) 2018-09-28 2022-08-26 株式会社カネカ Method and apparatus for evaluating thermal diffusion performance of semiconductor-related members, and method and apparatus for calculating thermal resistance of semiconductor-related members

Also Published As

Publication number Publication date
JP6620499B2 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
CN105928906B (en) A kind of material reflectance dynamic measurement system varied with temperature and measurement method
JP6255713B2 (en) Optical nondestructive inspection method and optical nondestructive inspection apparatus
JP6620499B2 (en) Optical nondestructive inspection apparatus and optical nondestructive inspection method
JP6545765B2 (en) Thermal diffusivity measurement device
EP2796858A1 (en) Optical non-destructive inspection apparatus and optical non-destructive inspection method
JP2016114523A5 (en)
JP2015108546A (en) Thermal diffusivity measuring apparatus
JP6604210B2 (en) Optical nondestructive inspection method and optical nondestructive inspection apparatus
JP4980147B2 (en) Thermophysical property measuring device, thermophysical property measuring method
EP2796857A1 (en) Optical non-destructive inspection apparatus and optical non-destructive inspection method
JP6730792B2 (en) Thermophysical property measuring device and thermophysical property measuring method
JP6852008B2 (en) Optical inspection equipment, semiconductor devices and optical inspection methods
JP6218959B2 (en) Analysis apparatus and analysis method
CN109416332B (en) Thermal diffusivity measuring device, thermal diffusivity measuring method, and program
JP7098956B2 (en) Optical non-destructive inspection method and optical non-destructive inspection equipment
EP3206226B1 (en) Analysis system and analysis method
JP2019020383A (en) Optical non-destructive inspection device, and optical non-destructive inspection method
JP7351503B2 (en) Thermal resistance information acquisition device, thermal resistance information acquisition method, program, and contact information acquisition device
JP2014222205A (en) Optical nondestructive inspection method and optical nondestructive inspection apparatus
CN109270081B (en) Optical nondestructive inspection method and optical nondestructive inspection apparatus
JP2011196766A (en) Method for measuring shape of measured object having light transmittance
JP2019020382A (en) Optical non-destructive inspection device, and optical non-destructive inspection method
CN205749280U (en) A kind of apparatus for measuring refractive index based on standard sample
JP2021021673A (en) Inspection information estimation device for optical nondestructive inspection device and optical nondestructive inspection system
JP6965596B2 (en) Optical non-destructive inspection equipment and optical non-destructive inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191105

R150 Certificate of patent or registration of utility model

Ref document number: 6620499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150