JP2017050933A - Uninterruptible power supply system - Google Patents

Uninterruptible power supply system Download PDF

Info

Publication number
JP2017050933A
JP2017050933A JP2015171033A JP2015171033A JP2017050933A JP 2017050933 A JP2017050933 A JP 2017050933A JP 2015171033 A JP2015171033 A JP 2015171033A JP 2015171033 A JP2015171033 A JP 2015171033A JP 2017050933 A JP2017050933 A JP 2017050933A
Authority
JP
Japan
Prior art keywords
power supply
uninterruptible power
load
inverter
uninterruptible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015171033A
Other languages
Japanese (ja)
Other versions
JP6418109B2 (en
Inventor
一正 松岡
Kazumasa Matsuoka
一正 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2015171033A priority Critical patent/JP6418109B2/en
Publication of JP2017050933A publication Critical patent/JP2017050933A/en
Application granted granted Critical
Publication of JP6418109B2 publication Critical patent/JP6418109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an uninterruptible power supply system capable of performing highly efficient power supply while keeping power supply reliability.SOLUTION: Three uninterruptible power supply devices including power supply side breakers connected in parallel to inverters 7a to 7c to switch bypass power supplies without interruption and non-interruption changers composed of a power supply side contactor and a semiconductor switch perform parallel redundant operation to supply power to a load 11. One of the uninterruptible power supply devices is taken as a specific device 1c; the remaining devices are taken as non-specific devices 1a, 1b. The non-specific devices comprise a load sharing controller for controlling output current so that uniform sharing with respect to the load is established at the time of normal operation. The specific device comprises a load sharing controller and a standby current controller that, in order to become in a state in which a load can be supplied with power immediately, controls output current of a corresponding inverter; and is capable of being switched to any of the controllers, where switching to the standby current controller is performed when the non-specific devices are in normal operation and switching to the load sharing controller is performed when a non-specific device is in a failure state or stop state.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、複数台の無停電電源装置からなり並列冗長運転が可能な無停電電源システムに関する。   Embodiments of the present invention relate to an uninterruptible power supply system that includes a plurality of uninterruptible power supply devices and is capable of parallel redundant operation.

従来の高信頼性を目的とした並列冗長の無停電電源システムでは、並列接続された各無停電電源装置にそれぞれ備えている負荷に交流電力を供給するインバータの電流制御回路は、いずれも同一で分担電流制御回路の動作しか行えない構成となっていた。   In a conventional redundant redundant uninterruptible power supply system aiming at high reliability, the current control circuits of the inverters that supply AC power to the loads included in each uninterruptible power supply connected in parallel are the same. Only the shared current control circuit can be operated.

特開2011−188706号公報JP 2011-188706 A

前述の従来の並列冗長の無停電電源システムでは、負荷が軽く無停電電源装置を停止しても冗長性を維持できるにもかかわらず、並列接続された無停電電源装置は運転を継続させていたため、無停電電源システムとしてのシステム効率が低下していた。また、効率向上のために並列接続されば無停電電源装置をインバータ停止状態として運用する場合、インバータ停止状態から復旧するまでは並列冗長性を欠くこととなり、負荷給電信頼性を低下させることが考えられる。   In the above-mentioned conventional parallel redundant uninterruptible power supply system, even though the load is light and the uninterruptible power supply can be stopped, redundancy can be maintained, but the uninterruptible power supply connected in parallel has continued to operate. The system efficiency as an uninterruptible power supply system was decreasing. Also, if the uninterruptible power supply is operated in the inverter stopped state if it is connected in parallel to improve efficiency, parallel redundancy will be lost until the inverter is recovered from the inverter stopped state, and load power supply reliability may be reduced. It is done.

本実施形態は、上記の欠点を除去するためになされたもので、給電信頼性を維持しつつ、高効率な給電が可能な無停電電源システムを得ることを目的とする。   The present embodiment has been made to eliminate the above-described drawbacks, and an object thereof is to obtain an uninterruptible power supply system capable of highly efficient power supply while maintaining power supply reliability.

実施形態の代表例によれば、各々に交流電力を出力するインバータを含む少なくとも3台の無停電電源装置を備え、前記各無停電電源装置を並列冗長運転により負荷に対して電力供給を行うものであって、前記各無停電電源装置は運転中前記負荷に対して負荷分担が均等になるように該当するインバータの出力電流を制御する負荷分担制御装置を備えた無停電電源システムにおいて、前記無停電電源装置のうちの少なくとも1台は、前記負荷分担制御装置に対して切換可能で、前記負荷に対して直ぐに給電可能な状態になるように該当するインバータの出力電流を制御する待機電流制御装置を備え、運転中の前記無停電電源装置が故障状態又は停止状態のときこれを除き、残りの正常運転が可能な無停電電源装置と、前記待機電流制御装置から前記負荷分担制御装置に切換えることで運転可能な前記待機電流制御装置を備えた無停電電源装置とにより前記負荷に給電継続ができるようにした無停電電源システムである。   According to a representative example of the embodiment, at least three uninterruptible power supply units each including an inverter that outputs AC power are provided, and each uninterruptible power supply unit supplies power to a load by parallel redundant operation. The uninterruptible power supply system includes a load sharing control device that controls an output current of a corresponding inverter so that the load sharing is equal to the load during operation. At least one of the power interruption power supply devices is switchable with respect to the load sharing control device, and a standby current control device that controls the output current of the corresponding inverter so that power can be immediately supplied to the load. Except when the uninterruptible power supply unit in operation is in a failure state or a stopped state, the remaining uninterruptible power supply unit capable of normal operation and the standby current control unit Wherein a UPS system to allow feeding continuously to the load by the uninterruptible power supply provided with the standby current controller operable by switching to a load sharing control device.

以上述べた実施形態によれば、給電信頼性を維持しつつ、高効率な給電が可能な無停電電源システムを提供できる。   According to the embodiment described above, it is possible to provide an uninterruptible power supply system capable of highly efficient power supply while maintaining power supply reliability.

実施形態1の概略構成を説明するための図。FIG. 3 is a diagram for explaining a schematic configuration of the first embodiment. 図1のインバータ運転判定回路を説明するための図。The figure for demonstrating the inverter driving | running determination circuit of FIG. 図1のインバータ制御装置を説明するための図。The figure for demonstrating the inverter control apparatus of FIG. 図1の動作を説明するための図。The figure for demonstrating the operation | movement of FIG. 実施形態2の概略構成を説明するための図。FIG. 5 is a diagram for explaining a schematic configuration of a second embodiment. 実施形態3の概略構成を説明するための図。FIG. 5 is a diagram for explaining a schematic configuration of a third embodiment. 実施形態4の概略構成を説明するための図。FIG. 6 is a diagram for explaining a schematic configuration of a fourth embodiment.

以下、実施形態について説明するが、その概略構成は、従来の無停電電源システムにおいて、無停電電源装置のうちの少なくとも1台は、前記負荷分担制御装置に対して切換可能で、負荷に対して直ぐに給電可能な状態になるように該当するインバータの出力電流を制御する待機電流制御装置を備え、運転中の無停電電源装置が故障状態又は停止状態のときこれを除き、残りの正常運転が可能な無停電電源装置と、待機電流制御装置から負荷分担制御装置に切換えることで運転可能な待機電流制御装置を備えた無停電電源装置とにより負荷に給電継続ができるようにした無停電電源システムである。   Hereinafter, although embodiment is described, the outline composition is the conventional uninterruptible power supply system. At least one of the uninterruptible power supply units can be switched to the load sharing control device, Equipped with a standby current control device that controls the output current of the corresponding inverter so that power can be supplied immediately, and when the uninterruptible power supply in operation is faulty or stopped, the remaining normal operation is possible An uninterruptible power supply system that enables continuous power supply to the load with an uninterruptible power supply and an uninterruptible power supply with a standby current controller that can be operated by switching from a standby current controller to a load sharing controller. is there.

従来の無停電電源システムは、各々に交流電力を出力するインバータを含む少なくとも3台の無停電電源装置を備え、各無停電電源装置を並列冗長運転により負荷に対して電力供給を行うものであって、各無停電電源装置は運転中前記負荷に対して負荷分担が均等になるように該当するインバータの出力電流を制御する負荷分担制御装置を備えたものである。   A conventional uninterruptible power supply system includes at least three uninterruptible power supply devices including inverters that output AC power to each, and each uninterruptible power supply device supplies power to a load by parallel redundant operation. Each uninterruptible power supply is provided with a load sharing control device for controlling the output current of the corresponding inverter so that the load sharing becomes equal to the load during operation.

以下図1により無停電電源システムの実施形態1について説明するが、ここでは並列冗長運転が可能な複数台例えば3台の無停電電源装置1a、1b、1cからなり、これらからの出力である交流電力を負荷11に供給するものであって、ここでは無停電電源装置1a、1bを非特定無停電電源装置と称し、無停電電源装置1cを特定無停電電源装置と称する。   Hereinafter, Embodiment 1 of the uninterruptible power supply system will be described with reference to FIG. 1. Here, a plurality of units capable of parallel redundant operation, for example, three uninterruptible power supply devices 1 a, 1 b, and 1 c, and an AC output from these units. Electric power is supplied to the load 11. Here, the uninterruptible power supply devices 1 a and 1 b are referred to as non-specific uninterruptible power supply devices, and the uninterruptible power supply device 1 c is referred to as a specific uninterruptible power supply device.

始めに、無停電電源装置1aについて説明する。第1の交流電源を構成する例えば交流入力電源2aと、第2の交流電源を構成するバイパス電源3aの2つの電源を入力としている。無停電電源装置1aは、交流入力電源2aからの交流電力を交流入力遮断器4aを介してコンバータ5aに入力して直流電力に変換し、この変換された直流電力をインバータ7aに入力して交流電力に変換し、交流電力をインバータ側接触器10aを介して負荷11へ給電を行うと共に、コンバータ5aにより変換した直流電力を電力貯蔵手段例えば蓄電池6aに供給して蓄電池6aを充電し、蓄電池6の充電が完了したときこの放電電力をインバータ7aに供給し、ここで得られる交流電力を負荷11に供給するようになっている。   First, the uninterruptible power supply 1a will be described. For example, two power sources, ie, an AC input power source 2a constituting the first AC power source and a bypass power source 3a constituting the second AC power source are input. The uninterruptible power supply 1a inputs AC power from the AC input power source 2a to the converter 5a through the AC input circuit breaker 4a to convert it into DC power, and inputs the converted DC power to the inverter 7a to generate AC. The electric power is converted into electric power, and AC power is supplied to the load 11 via the inverter-side contactor 10a, and the DC power converted by the converter 5a is supplied to power storage means, for example, the storage battery 6a to charge the storage battery 6a. When the charging is completed, the discharge power is supplied to the inverter 7a, and the AC power obtained here is supplied to the load 11.

インバータ7aはインバータ制御回路8aの出力であるインバータ制御指令9aに基づき正弦波出力を行い、インバータ側接触器10aを介して負荷11へ給電を行うものである。   The inverter 7a outputs a sine wave based on an inverter control command 9a which is an output of the inverter control circuit 8a, and supplies power to the load 11 via the inverter side contactor 10a.

さらに商用電源3aからの交流電力を、以下に述べるバイパス回路17aを介して負荷11に供給するようになっている。バイパス回路17aは、電源側遮断器14aと、電源側接触器13aと並列接続された半導体スイッチ12aからなる無瞬断切換器とで構成されている。   Further, AC power from the commercial power source 3a is supplied to the load 11 via a bypass circuit 17a described below. The bypass circuit 17a includes a power supply circuit breaker 14a and an uninterruptible switching device including a semiconductor switch 12a connected in parallel with the power supply contactor 13a.

また、シーケンス制御回路21aを備え、これは無停電電源装置1a自身の故障を検出したとき故障検出信号22aを出力したり、さらには無停電電源装置1a自身の停止を検出したとき停止検出信号23aを出力したりするものである。   Further, a sequence control circuit 21a is provided, which outputs a failure detection signal 22a when a failure of the uninterruptible power supply 1a itself is detected, and further detects a stop detection signal 23a when a stop of the uninterruptible power supply 1a itself is detected. Is output.

以上述べた構成は、無停電電源装置1bも同一であり、同一部分には同一符号を付し、その説明を省略する。   The configuration described above is the same for the uninterruptible power supply 1b, and the same portions are denoted by the same reference numerals and the description thereof is omitted.

ここで、無停電電源装置1cは、無停電電源装置1a、1bと異なる点は、前述したシーケンス制御回路21a、21bと、インバータ制御回路8a、8bを備えておらず、新たに図2に示すインバータ運転判定回路24と、図3に示すインバータ制御装置30とを備えている。   Here, the uninterruptible power supply 1c is different from the uninterruptible power supplies 1a and 1b in that the sequence control circuits 21a and 21b and the inverter control circuits 8a and 8b are not provided, and are newly shown in FIG. An inverter operation determination circuit 24 and an inverter control device 30 shown in FIG. 3 are provided.

インバータ運転判定回路24は、図2に示すように論理和素子25a、25b、25cからなり、論理和素子25aの入力にはシーケンス制御回路21aからの出力である故障検出信号22a、停止検出信号23aを入力し、また論理和素子25bの入力にはシーケンス制御回路21bからの出力である故障検出信号22b、停止検出信号23bを入力し、論理和素子25cの入力には論理和素子25a、25bの出力が入力され、論理和素子25cの出力である、インバータ運転切換指令26はインバータ制御装置30に入力されるようになっている。   As shown in FIG. 2, the inverter operation determination circuit 24 includes logical sum elements 25a, 25b, and 25c. The logical sum element 25a has a failure detection signal 22a and a stop detection signal 23a as outputs from the sequence control circuit 21a. The failure detection signal 22b and the stop detection signal 23b, which are outputs from the sequence control circuit 21b, are input to the input of the logical sum element 25b, and the logical sum elements 25a and 25b are input to the input of the logical sum element 25c. An output is input, and an inverter operation switching command 26, which is an output of the OR element 25c, is input to the inverter control device 30.

インバータ制御装置30は、図3に示すようにインバータ電流指令を出力するインバータ制御回路(電流指令生成回路)15と、負荷分担制御装置例えば分担電流制御回路16と、待機電流制御装置例えば待機電流制御回路28と、インバータ制御回路15からの出力である、インバータ電流指令を分担電流制御回路16と待機電流制御回路28のいずれかに切換可能であって、インバータ運転判定回路24からのインバータ運転切換指令26によって切換えられる切換装置27を備えている。切換装置27は、入側切換回路27aと出側切換回路か27bらなり、入側切換回路27aはインバータ制御回路15の出力側と分担電流制御回路16及び待機電流制御回路28の入力側に設けら、出側切換回路27bは分担電流制御回路16及び待機電流制御回路28の出力側に設けられている。   As shown in FIG. 3, the inverter control device 30 includes an inverter control circuit (current command generation circuit) 15 that outputs an inverter current command, a load sharing control device such as a shared current control circuit 16, and a standby current control device such as a standby current control. The inverter current command, which is an output from the circuit 28 and the inverter control circuit 15, can be switched to either the shared current control circuit 16 or the standby current control circuit 28, and the inverter operation switching command from the inverter operation determination circuit 24. 26 is provided with a switching device 27 that can be switched by 26. The switching device 27 comprises an input side switching circuit 27a and an output side switching circuit 27b. The input side switching circuit 27a is provided on the output side of the inverter control circuit 15 and on the input side of the shared current control circuit 16 and the standby current control circuit 28. Thus, the output side switching circuit 27 b is provided on the output side of the shared current control circuit 16 and the standby current control circuit 28.

交流入力電源2aが停電した場合、コンバータ5aは停止(ゲートブロック)し、蓄電池6aからの直流電力を入力としインバータ7aはインバータ側接触器10aを介して負荷11へ給電を行うことで、負荷11に対して電力供給を継続することができる。   When the AC input power source 2a fails, the converter 5a stops (gate block), and the inverter 7a feeds the load 11 via the inverter-side contactor 10a with the DC power from the storage battery 6a as an input. Power supply can be continued.

各々の無停電電源装置1a、1bのシーケンス制御回路21a、21bからの出力信号である故障検出信号22a、22b及び停止検出信号23a、23bは特定の無停電電源装置1aのインバータ運転判定回路24に入力される。また、インバータ運転判定回路24の出力、すなわちインバータ運転切換指令26はインバータ制御装置30に入力されている。   Failure detection signals 22a and 22b and stop detection signals 23a and 23b, which are output signals from the sequence control circuits 21a and 21b of the uninterruptible power supply devices 1a and 1b, are sent to the inverter operation determination circuit 24 of the specific uninterruptible power supply device 1a. Entered. The output of the inverter operation determination circuit 24, that is, the inverter operation switching command 26 is input to the inverter control device 30.

次に、以上述べた実施形態1の動作について、図4を参照して説明する。   Next, the operation of the first embodiment described above will be described with reference to FIG.

図4(A)は最初に設定した運転状態を示している。すなわち、No.1 UPS1a及びNo.2 UPS1bでそれぞれ50%の負荷給電を行っており、No.3 UPS1cは主回路接続はなされているが、負荷11への給電は行わないようにする(0%の負荷給電)、具体的には待機電流制御回路28が接続されている状態を示している。   FIG. 4A shows the operation state set first. That is, no. 1 UPS 1a and No. 1 2 50% load power is supplied to each UPS 1b. 3 UPS 1c is connected to the main circuit, but power supply to the load 11 is not performed (0% load power supply). Specifically, the standby current control circuit 28 is connected. .

図4(B)は異常発生時の運転状態を示している。すなわち、図4(A)の状態から、例えばNo.1 UPS1aが故障発生した場合、シーケンス制御回路21aからインバータ運転判定回路24に対して故障検出信号22aが与えられ、この結果図2の論理和素子25a、25cが共に出力が「1」となり、インバータ運転判定回路24からインバータ運転切換指令26がインバータ制御装置30に与えられ、切換回路27a、27bが同時に切換えられ、No.3 UPS1cのインバータ制御方式を通常の分担電流制御回路16に切り換えることで、直ちに(例えば4ms以下)切り換えることができる。ここで、4ms以下とは無瞬断(1/4サイクル−0V以内)であることを意味している。   FIG. 4B shows the operating state when an abnormality occurs. That is, from the state of FIG. 1 When a failure occurs in the UPS 1a, a failure detection signal 22a is given from the sequence control circuit 21a to the inverter operation determination circuit 24. As a result, the outputs of both the OR elements 25a and 25c in FIG. An inverter operation switching command 26 is given from the operation determination circuit 24 to the inverter control device 30, and the switching circuits 27a and 27b are simultaneously switched. 3 By switching the inverter control system of the UPS 1c to the normal shared current control circuit 16, switching can be performed immediately (for example, 4 ms or less). Here, 4 ms or less means no instantaneous interruption (within ¼ cycle−0 V).

図4(C)は図4(A)の状態と、図4(B)の状態を示すタイムチャートである。   FIG. 4C is a time chart showing the state of FIG. 4A and the state of FIG.

以上述べたことから、特定の無停電電源装置1cに待機電流制御回路28及び分担電流制御回路16を備えると共にこれらの切換が可能になっており、非特定の無停電電源装置1a、1bの故障検出信号22a、22b又は停止検出信号23a、23bが入力されたとき、待機電流制御回路28から分担電流制御回路16に即座に切換えられることから、給電信頼性を損なうことなく、効率のよい無停電電源システムが得られる。これに対して、従来のシステムは、インバータの制御回路は全て分担電流制御回路しか備えていないので、他号機で故障等の異常が発生した際に直ちに無停電電源装置による給電できないケースが考えられる。   As described above, the specific uninterruptible power supply 1c is provided with the standby current control circuit 28 and the shared current control circuit 16 and can be switched between them. The failure of the nonspecific uninterruptible power supply 1a, 1b When the detection signals 22a and 22b or the stop detection signals 23a and 23b are input, the standby current control circuit 28 is immediately switched to the shared current control circuit 16, so that an efficient uninterruptible operation without impairing power supply reliability. A power system is obtained. In contrast, in the conventional system, since all inverter control circuits have only a shared current control circuit, there is a case where power cannot be supplied immediately by the uninterruptible power supply when an abnormality such as a failure occurs in another unit. .

また、図3のインバータ制御装置30において、分坦電流制御回路16及び待機電流制御回路28の入力側及び出力側に切換回路27a、27bが設けられているので、分坦電流制御回路16及び待機電流制御回路28に積分要素が含まれていても、確実に動作する。   Further, in the inverter control device 30 of FIG. 3, since the switching circuits 27a and 27b are provided on the input side and the output side of the sharing current control circuit 16 and the standby current control circuit 28, the sharing current control circuit 16 and the standby current control circuit 30 Even if the current control circuit 28 includes an integral element, it operates reliably.

さらに、無停電電源装置の上位系統が異なる状態となった場合、例えば、一方が商用でもう一方が自家発電設備の様な場合でも、負荷11に対して、2つの無停電電源装置同士が常に同期をとることで、負荷11に対して常に同期がとれた無停電電源を供給できる状態にすることで、負荷給電信頼性を向上させることができる。   Furthermore, when the upper system of the uninterruptible power supply is in a different state, for example, even when one is commercial and the other is a private power generation facility, the two uninterruptible power supplies are always connected to the load 11. By taking the synchronization, it is possible to improve the load power supply reliability by making it possible to supply the uninterruptible power supply that is always synchronized to the load 11.

さらにまた、インバータ給電していないシステムは、大容量の蓄電池システム、例えばリチウムイオン二次電池(SCiBなど)のような、鉛蓄電池に比べエネルギー密度が高いため、同一設置面積でも大容量の電力貯蔵が可能なむ蓄電池システムを適用することで、停電バックアップ運転時間を延長させることができる。   Furthermore, a system that is not fed by an inverter has a higher energy density than a lead-acid battery such as a large-capacity storage battery system such as a lithium ion secondary battery (SCiB, etc.). By applying a storage battery system that can do this, the power outage backup operation time can be extended.

ここで、バイパス回路17a、17b、17cについて説明する。例えば、500k×(3−1)=1000kVAという無停電電源システムの場合、上記無停電電源装置1a,1b及び1cを500kVAとして3台構成となり、無停電電源装置1aが万一の故障によりインバータ7aでの給電が継続できない場合、インバータ側接触器8をオフさせ、他の健全な無停電電源装置1b及び1cの負荷給電の経路から切り離すことで、負荷11への電力供給を継続することができる。更にもう1台の無停電電源装置1bが万一の故障によりインバータ7bでの給電が継続できない場合でかつ健全な無停電電源装置1cで給電できない電力量となった場合は、半導体スイッチ12a,12b,12c及び商用電源側接触器13a,13b,13cをオンすることで、商用電源3と商用遮断器13a,13b,13cとを介する電源系統から負荷11への給電を行うことで、負荷11への電力供給を継続することができる。   Here, the bypass circuits 17a, 17b, and 17c will be described. For example, in the case of an uninterruptible power supply system of 500 k × (3-1) = 1000 kVA, the uninterruptible power supply devices 1a, 1b, and 1c are configured as 500 kVA, and the three units are configured. When the power supply cannot be continued, the inverter-side contactor 8 is turned off, and the power supply to the load 11 can be continued by disconnecting the other uninterruptible power supply devices 1b and 1c from the load power supply path. . Further, when the other uninterruptible power supply 1b cannot continue to be fed by the inverter 7b due to a failure, and when the amount of power cannot be fed by the sound uninterruptible power supply 1c, the semiconductor switches 12a and 12b , 12c and the commercial power supply side contactors 13a, 13b, 13c are turned on to supply power to the load 11 from the power supply system via the commercial power supply 3 and the commercial circuit breakers 13a, 13b, 13c. Power supply can be continued.

図5は実施形態2を説明するためのものであり、無停電電源装置1a、1b、1cを全て同一構成としたものである。具体的には、無停電電源装置1cには新たに無停電電源装置1c自身の故障検出新号22c、または無停電電源装置1c自身の停止検出信号を出力するシーケンス制御回路21cと、図1の無停電電源装置1cに有していたインバータ運転判定回路24を24cとすると共に、この出力であるインバータ運転指令26を26cとし、さらに図1の無停電電源装置1cに有していたインバータ制御装置30を30cとすると共に、この出力であるインバータ制御出力9を9cとし、無停電電源装置1a、1cもこれと同一に構成したもので、その上で以下のようしたものである。   FIG. 5 is for explaining the second embodiment, in which the uninterruptible power supply devices 1a, 1b and 1c are all configured identically. Specifically, the uninterruptible power supply 1c newly outputs a failure detection new signal 22c of the uninterruptible power supply 1c itself or a stop detection signal of the uninterruptible power supply 1c itself, and a sequence control circuit 21c of FIG. The inverter operation determination circuit 24 included in the uninterruptible power supply 1c is set to 24c, the inverter operation command 26 which is the output is set to 26c, and the inverter control apparatus included in the uninterruptible power supply 1c in FIG. 30 is set to 30c, the inverter control output 9 which is the output is set to 9c, and the uninterruptible power supply devices 1a and 1c are also configured in the same manner, and are as follows.

すなわち、各インバータ運転判定回路24a、24b、24cには、自分以外のシーケンス制御回路21a、21b、21cからの故障検出信号22a、22b、22c及び停止検出信号23a、23b、23cがそれぞれ入力されるようになっている。具体的には、インバータ運転判定回路24aには故障検出信号22b、22c及び停止検出信号23b、23cが入力され、同様にインバータ運転判定回路24bには故障検出信号22a、22c及び停止検出信号23a、23cが入力され、またインバータ運転判定回路24cには故障検出信号22a、22b及び停止検出信号23a、23bが入力されるようになっている。   That is, the failure detection signals 22a, 22b, and 22c and the stop detection signals 23a, 23b, and 23c from the sequence control circuits 21a, 21b, and 21c other than itself are input to the inverter operation determination circuits 24a, 24b, and 24c, respectively. It is like that. Specifically, the failure detection signals 22b and 22c and the stop detection signals 23b and 23c are input to the inverter operation determination circuit 24a, and similarly, the failure detection signals 22a and 22c and the stop detection signal 23a, 23c is input, and failure detection signals 22a and 22b and stop detection signals 23a and 23b are input to the inverter operation determination circuit 24c.

インバータ運転判定回路24a、24b、24cからの出力であるインバータ運転切換指令26a、26b、26cは、それぞれインバータ制御装置30a、30b、30cに入力されるようになっている。インバータ制御装置30a、30b、30cの出力であるインバータ制御出力9a、9b、9cはそれぞれインバータ7a、7b、7cに入力されるようになっている。これ以外の構成は図1と同一である。   Inverter operation switching commands 26a, 26b, and 26c, which are outputs from the inverter operation determination circuits 24a, 24b, and 24c, are input to the inverter control devices 30a, 30b, and 30c, respectively. Inverter control outputs 9a, 9b, 9c, which are the outputs of the inverter control devices 30a, 30b, 30c, are input to the inverters 7a, 7b, 7c, respectively. The rest of the configuration is the same as in FIG.

従って、図1の実施形態と同様に、無停電電源装置1a、1bがそれぞれ50%で運転していたとき、無停電電源装置1aが故障等になったときインバータ運転判定回路24b、24cからインバータ運転切換指令26b、26cが出力され、インバータ制御装置30b、30cからのインバータ制御出力9b、9cによりインバータ7b、7cが運転され、結果として無停電電源装置1b、1cがそれぞれ50%となり、図1と同様な作用効果が得られる。   Therefore, as in the embodiment of FIG. 1, when the uninterruptible power supply 1a, 1b is operating at 50%, or when the uninterruptible power supply 1a becomes faulty, the inverter operation determination circuits 24b, 24c Operation switching commands 26b and 26c are output, and inverters 7b and 7c are operated by inverter control outputs 9b and 9c from inverter control devices 30b and 30c. As a result, uninterruptible power supply devices 1b and 1c become 50%, respectively. The same effect can be obtained.

図6は実施形態3を説明するためのものであり、図1の実施形態と異なる点は、図1では各無停電電源装置1a、1b、1cに備えていたバイパス回路17a、17b、17cを全て省き、商用電源側遮断器14と半導体スイッチ12と商用電源側接触器13とインバータ側接触器10からなる共通のバイパス回路17を設け、これを各無停電電源装置1a、1b、1cに並列接続したものである。これ以外の構成は図1と同一である。従って、図1の実施形態と同様な作用効果が得られる。   FIG. 6 is for explaining the third embodiment. The difference from the embodiment of FIG. 1 is that the bypass circuits 17a, 17b, 17c provided in the uninterruptible power supply devices 1a, 1b, 1c in FIG. All are omitted, and a common bypass circuit 17 including the commercial power supply side circuit breaker 14, the semiconductor switch 12, the commercial power supply side contactor 13, and the inverter side contactor 10 is provided, and this is connected in parallel to each uninterruptible power supply 1a, 1b, 1c. Connected. The rest of the configuration is the same as in FIG. Therefore, the same effect as the embodiment of FIG. 1 can be obtained.

図7は実施形態4を説明するためのものであり、無停電電源装置1a、1b、1cを全て同一構成とし、図1では各無停電電源装置1a、1b、1cに備えていたバイパス回路17a、17b、17cを全て省き、商用電源側遮断器14と半導体スイッチ12と商用電源側接触器13とインバータ側接触器10からなる共通のバイパス回路17を設け、これを各無停電電源装置1a、1b、1cに並列接続したものである。これ以外の構成は図1と同一である。従って、図1の実施形態と同様な作用効果が得られる。   FIG. 7 is for explaining the fourth embodiment. The uninterruptible power supply devices 1a, 1b and 1c are all configured identically. In FIG. 1, the bypass circuit 17a provided in each uninterruptible power supply device 1a, 1b and 1c. , 17b, 17c are all omitted, and a common bypass circuit 17 including the commercial power supply side circuit breaker 14, the semiconductor switch 12, the commercial power supply side contactor 13, and the inverter side contactor 10 is provided, which is connected to each uninterruptible power supply 1a, 1b and 1c are connected in parallel. The rest of the configuration is the same as in FIG. Therefore, the same effect as the embodiment of FIG. 1 can be obtained.

前述の実施形態では、各インバータ7a、7b、7cの入力には、電力貯蔵手段例えば蓄電池6、6a、6b、6cからの直流電力、もしくは交流電源2a、2b、2cからの交流電力を直流電力に変換する電力変換器例えばコンバータ5a、5b、5cからの直流電力、あるいは電力貯蔵手段例えば蓄電池6、6a、6b、6cからの直流電力と前記コンバータ5a、5b、5cからの直流電力のいずれかが供給されるものについて説明したが、これに限らず何らかの手段によりインバータ7a、7b、7cから交流電力が得られるものであれば何でもよい。   In the foregoing embodiment, the inverters 7a, 7b and 7c have inputs to which DC power from power storage means such as the storage batteries 6, 6a, 6b and 6c, or AC power from the AC power supplies 2a, 2b and 2c is supplied as DC power. DC power from converters 5a, 5b, 5c, or power storage means, for example, DC power from storage batteries 6, 6a, 6b, 6c and DC power from the converters 5a, 5b, 5c However, the present invention is not limited to this, and any device may be used as long as AC power can be obtained from the inverters 7a, 7b, and 7c by some means.

前述した図4の説明には、以下の内容が含まれることは言うまでもない。すなわち、各々に交流電力を出力するインバータを含む少なくとも3台の無停電電源装置を備え、前記無停電電源装置を並列冗長運転により負荷に対して電力供給を行う無停電電源システムであって、前記無停電電源装置のうちの1台を特定無停電電源装置とし、かつその残りを非特定無停電電源装置としたとき、前記非特定無停電電源装置は各々が正常運転のとき前記負荷に対して負荷分担が均等になるように該当するインバータの出力電流が制御され、前記特定無停電電源装置は前記負荷への給電を阻止する待機電流制御方式及び前記分担電流制御方式のいずれかに切換え可能であり、前記非特定無停電電源装置のみが動作して前記負荷に電力を供給している第1の動作過程と、前記第1の動作過程のとき運転状態にある前記非特定無停電電源装置が故障、停止等の異常状態のとき前記異常状態の無停電電源装置を除き、前記特定無停電電源装置のインバータを前記負荷への給電が阻止される待機電流制御方式から前記分担電流制御方式に切換え、これと前記残りの非特定無停電電源装置とで前記負荷に電力を供給する第2の動作過程と、前記第2の動作過程のとき動作状態にある無停電電源装置が前記異常状態となったとき、バイパス交流電源のバイパス系統を活かして前記負荷に電力供給を行う第3の動作過程を経る無停電電源システムである。   Needless to say, the above description of FIG. 4 includes the following contents. That is, an uninterruptible power supply system that includes at least three uninterruptible power supply devices each including an inverter that outputs alternating current power, and supplies power to a load by parallel redundant operation of the uninterruptible power supply device, When one of the uninterruptible power supply units is a specific uninterruptible power supply unit and the rest is a nonspecific uninterruptible power supply unit, the nonspecific uninterruptible power supply units are connected to the load when each is in normal operation. The output current of the corresponding inverter is controlled so that the load sharing is equalized, and the specific uninterruptible power supply can be switched to either a standby current control method that prevents power supply to the load or the shared current control method. There is a first operation process in which only the non-specific uninterruptible power supply is operating to supply power to the load, and the non-specific uninterruptible that is in an operating state during the first operation process. The shared current control from the standby current control system in which the power supply to the load is blocked by the inverter of the specific uninterruptible power supply except for the uninterruptible uninterruptible power supply when the power supply is in an abnormal state such as failure or stop A second operation process in which power is supplied to the load with this and the remaining non-specified uninterruptible power supply, and the uninterruptible power supply that is in an operation state during the second operation process When it becomes a state, it is an uninterruptible power supply system which passes through the 3rd operation | movement process which supplies electric power to the said load using the bypass system of a bypass alternating current power supply.

前述の実施形態で説明したインバータ運転判定回路24、24a、24b、24cからのインバータ運転切換指令26、26a、26b、26cは、無停電電源装置1c、1a、1b、1cとは別に設ける監視装置(図示せず)から得るようにしてもよい。   The inverter operation switching commands 26, 26a, 26b, and 26c from the inverter operation determination circuits 24, 24a, 24b, and 24c described in the above-described embodiment are provided separately from the uninterruptible power supply devices 1c, 1a, 1b, and 1c. (Not shown) may be obtained.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…無停電電源装置、2…交流入力電源、3…商用電源、4…交流入力遮断器、5…コンバータ、6…蓄電池、7…インバータ、8…インバータ制御回路、9…インバータ制御出力、10…インバータ側接触器、11…負荷、12…半導体スイッチ、13…商用電源側接触器、14…商用電源側遮断器、15…インバータ制御回路(電流指令生成部) 、16…分担電流制御回路、17…バイパス回路、21…シーケンス制御回路、22…故障検出信号、23…停止検出信号、24…インバータ運転判定回路、25…論理和回路、26…インバータ運転切換指令、27…切換回路、28…待機電流制御回路、30…インバータ制御装置。 DESCRIPTION OF SYMBOLS 1 ... Uninterruptible power supply device, 2 ... AC input power supply, 3 ... Commercial power supply, 4 ... AC input circuit breaker, 5 ... Converter, 6 ... Storage battery, 7 ... Inverter, 8 ... Inverter control circuit, 9 ... Inverter control output, 10 Inverter side contactor, 11 ... Load, 12 ... Semiconductor switch, 13 ... Commercial power source side contactor, 14 ... Commercial power source side circuit breaker, 15 ... Inverter control circuit (current command generator), 16 ... Shared current control circuit, DESCRIPTION OF SYMBOLS 17 ... Bypass circuit, 21 ... Sequence control circuit, 22 ... Failure detection signal, 23 ... Stop detection signal, 24 ... Inverter operation determination circuit, 25 ... Logical sum circuit, 26 ... Inverter operation switching command, 27 ... Switching circuit, 28 ... Standby current control circuit, 30... Inverter control device.

Claims (9)

各々に交流電力を出力するインバータを含む少なくとも3台の無停電電源装置を備え、前記各無停電電源装置を並列冗長運転により負荷に対して電力供給を行うものであって、前記各無停電電源装置は運転中前記負荷に対して負荷分担が均等になるように該当するインバータの出力電流を制御する負荷分担制御装置を備えた無停電電源システムにおいて、
前記無停電電源装置のうちの少なくとも1台は、前記負荷分担制御装置に対して切換可能で、前記負荷に対して直ぐに給電可能な状態になるように該当するインバータの出力電流を制御する待機電流制御装置を備え、運転中の前記無停電電源装置が故障状態又は停止状態のときこれを除き、残りの正常運転が可能な無停電電源装置と、前記待機電流制御装置から前記負荷分担制御装置に切換えることで運転可能な前記待機電流制御装置を備えた無停電電源装置とにより前記負荷に給電継続ができるようにしたことを特徴とする無停電電源システム。
Comprising at least three uninterruptible power supply units each including an inverter that outputs AC power, and supplying each of the uninterruptible power supply units to a load by parallel redundant operation, In the uninterruptible power supply system equipped with a load sharing control device that controls the output current of the corresponding inverter so that the load sharing becomes equal to the load during operation,
At least one of the uninterruptible power supply units is switchable with respect to the load sharing control device, and a standby current that controls the output current of the corresponding inverter so that power can be immediately supplied to the load. When the uninterruptible power supply device in operation is in a failure state or stopped state, the remaining uninterruptible power supply device capable of normal operation and the standby current control device to the load sharing control device are provided. An uninterruptible power supply system characterized in that power can be continuously supplied to the load by an uninterruptible power supply device equipped with the standby current control device operable by switching.
各々に交流電力を出力するインバータを含む少なくとも3台の無停電電源装置を備え、前記各無停電電源装置を並列冗長運転により負荷に対して電力供給を行う無停電電源システムであって、
前記無停電電源装置のうちの1台を特定無停電電源装置とし、かつその残りを非特定無停電電源装置としたとき、
前記非特定無停電電源装置は各々が正常運転のとき前記負荷に対して負荷分担が均等になるように該当するインバータの出力電流を制御する負荷分担制御装置を備え、
前記特定無停電電源装置は、前記負荷に対して直ぐに給電可能な状態になるように該当するインバータの出力電流を制御する待機電流制御装置及び前記負荷に対して負荷分担が均等になるように該当するインバータの出力電流を制御する負荷分担制御装置を備えると共にそのいずれかに切換可能で、前記非特定無停電電源装置が正常運転のとき前記待機電流制御装置に切換わり、前記非特定無停電電源装置の少なくとも1台が故障状態又は停止状態のとき、前記負荷分担制御装置に切換わり、前記特定無停電電源装置と前記非特定無停電電源装置のうちの正常運転が可能なものとで運転継続することを特徴とする無停電電源システム。
An uninterruptible power supply system comprising at least three uninterruptible power supply devices each including an inverter that outputs alternating current power, and supplying each of the uninterruptible power supply devices to a load by parallel redundant operation,
When one of the uninterruptible power supplies is a specific uninterruptible power supply and the rest is a non-specific uninterruptible power supply,
The non-specific uninterruptible power supply device includes a load sharing control device that controls the output current of the corresponding inverter so that the load sharing is equal to the load when each is in normal operation,
The specific uninterruptible power supply corresponds to a standby current control device that controls the output current of the corresponding inverter so that the load can be immediately supplied to the load and the load sharing to be equal to the load A load sharing control device for controlling the output current of the inverter to be switched to any one of them, and when the non-specific uninterruptible power supply device is in normal operation, the standby current control device is switched to the non-specific uninterruptible power supply. When at least one of the devices is in a failure state or in a stopped state, the load sharing control device is switched and operation continues with the specific uninterruptible power supply and the non-specific uninterruptible power supply capable of normal operation. An uninterruptible power supply system.
各々に交流電力を出力するインバータを含む少なくとも3台の無停電電源装置を備え、前記無停電電源装置を並列冗長運転により負荷に対して電力供給を行う無停電電源システムであって、
前記無停電電源装置のうちの1台を特定無停電電源装置とし、かつその残りを非特定無停電電源装置としたとき、
前記非特定無停電電源装置は各々が正常運転のとき前記負荷に対して負荷分担が均等になるように該当するインバータの出力電流が制御され、
前記特定無停電電源装置は前記負荷への給電を阻止する待機電流制御方式及び前記分担電流制御方式のいずれかに切換え可能であり、前記非特定無停電電源装置のみが動作して前記負荷に電力を供給している第1の動作過程と、
前記第1の動作過程のとき運転状態にある前記非特定無停電電源装置が故障、停止等の異常状態のとき前記異常状態の無停電電源装置を除き、前記特定無停電電源装置のインバータを前記負荷への給電が阻止される待機電流制御方式から前記分担電流制御方式に切換え、これと前記残りの非特定無停電電源装置とで前記負荷に電力を供給する第2の動作過程と、
前記第2の動作過程のとき動作状態にある無停電電源装置が前記異常状態となったとき、バイパス交流電源のバイパス系統を活かして前記負荷に電力供給を行う第3の動作過程を経ること特徴とする無停電電源システム。
An uninterruptible power supply system comprising at least three uninterruptible power supply devices each including an inverter that outputs alternating current power, and supplying power to the load by parallel redundant operation of the uninterruptible power supply device,
When one of the uninterruptible power supplies is a specific uninterruptible power supply and the rest is a non-specific uninterruptible power supply,
The non-specific uninterruptible power supply is controlled so that the output current of the corresponding inverter is controlled so that the load sharing is equal to the load when each is in normal operation,
The specific uninterruptible power supply can be switched to either a standby current control system that blocks power supply to the load or the shared current control system, and only the non-specific uninterruptible power supply operates to power the load A first operating process of supplying
When the non-specific uninterruptible power supply in the operating state during the first operation process is in an abnormal state such as failure or stop, except for the abnormal uninterruptible power supply, the inverter of the specific uninterruptible power supply is A second operation process of switching from the standby current control method in which power supply to the load is blocked to the shared current control method and supplying power to the load with this and the remaining non-specific uninterruptible power supply device;
When the uninterruptible power supply that is in an operating state during the second operation process enters the abnormal state, a third operation process is performed in which power is supplied to the load by utilizing a bypass system of a bypass AC power supply. And uninterruptible power system.
各々に交流電力を出力するインバータを含み、かつ前記インバータに並列に接続され、バイパス電源と前記バイパス電源を無瞬断に切換えるための無瞬断切換器を有するバイパス回路を備えた少なくとも3台の無停電電源装置を備え、前記各無停電電源装置を並列冗長運転により負荷に対して電力供給を行う無停電電源システムであって、
前記無停電電源装置のうちの1台を特定無停電電源装置とし、かつその残りを非特定無停電電源装置としたとき、
前記非特定無停電電源装置は各々が正常運転のとき前記負荷に対して負荷分担が均等になるように該当するインバータの出力電流を制御する負荷分担制御装置を備え、
前記特定無停電電源装置は、前記負荷に対して直ぐに給電可能な状態になるように該当するインバータの出力電流を制御する待機電流制御装置及び前記負荷に対して負荷分担が均等になるように該当するインバータの出力電流を制御する負荷分担制御装置を備えると共にそのいずれかに切換可能で、前記非特定無停電電源装置が正常運転のとき前記待機電流制御装置に切換わり、且つ前記非特定無停電電源装置が故障状態又は停止状態のとき、前記負荷分担制御装置に切換わるようにしたことを特徴とする無停電電源システム。
At least three bypass circuits each including an inverter that outputs AC power and having a bypass power source connected in parallel to the inverter and having a non-instantaneous switching device for switching the bypass power source to non-instantaneous interruption An uninterruptible power supply system comprising an uninterruptible power supply, wherein each uninterruptible power supply is configured to supply power to a load by parallel redundant operation,
When one of the uninterruptible power supplies is a specific uninterruptible power supply and the rest is a non-specific uninterruptible power supply,
The non-specific uninterruptible power supply device includes a load sharing control device that controls the output current of the corresponding inverter so that the load sharing is equal to the load when each is in normal operation,
The specific uninterruptible power supply corresponds to a standby current control device that controls the output current of the corresponding inverter so that the load can be immediately supplied to the load and the load sharing to be equal to the load A load sharing control device for controlling the output current of the inverter to be switched, and can be switched to any one of them, and when the non-specific uninterruptible power supply is in normal operation, the standby current control device is switched, and the non-specific uninterruptible power supply An uninterruptible power supply system, wherein when the power supply device is in a failure state or a stopped state, the load sharing control device is switched.
各々に交流電力を出力するインバータを含み、かつ前記インバータに並列に接続され、バイパス電源と前記バイパス電源を無瞬断に切換えるための無瞬断切換器を有するバイパス回路を備えた少なくとも3台の無停電電源装置を備え、前記各無停電電源装置を並列冗長運転により負荷に対して電力供給を行う無停電電源システムであって、
前記各無停電電源装置は前記負荷に対して負荷分担が均等になるように該当するインバータの出力電流を制御する負荷分担制御装置と、前記負荷に対して直ぐに給電可能な状態になるように該当するインバータの出力電流を制御する待機電流制御装置とを備え、且つこのいずれかに切換可能で、前記無停電電源装置の少なくとも運転中の2台が正常運転のとき、この各々は負荷分担制御装置となり、残りの運転していない無停電電源装置は待機電流制御装置となり、前記運転中の無停電電源装置のうちの1台が故障状態又は停止状態のとき、その故障状態又は停止状態の無停電電源装置を除く残りの正常状態の無停電電源装置は待機電流制御装置から負荷分担制御装置に切換えられるようにしたことを特徴とする無停電電源システム。
At least three bypass circuits each including an inverter that outputs AC power and having a bypass power source connected in parallel to the inverter and having a non-instantaneous switching device for switching the bypass power source to non-instantaneous interruption An uninterruptible power supply system comprising an uninterruptible power supply, wherein each uninterruptible power supply is configured to supply power to a load by parallel redundant operation,
Each uninterruptible power supply corresponds to a load sharing control device that controls the output current of the corresponding inverter so that the load sharing is even with respect to the load, and to be able to supply power immediately to the load And a standby current control device for controlling the output current of the inverter that can be switched to any one of them, and when at least two of the uninterruptible power supply devices are operating normally, each of these is a load sharing control device The remaining uninterruptible uninterruptible power supply becomes a standby current control device, and when one of the operating uninterruptible power supplies is in a failed state or stopped state, the uninterruptible state in that failed state or stopped state An uninterruptible power supply system characterized in that the remaining uninterruptible power supply apparatus in a normal state excluding the power supply apparatus can be switched from a standby current control apparatus to a load sharing control apparatus.
各々に交流電力を出力するインバータを含む少なくとも3台の無停電電源装置を備え、前記各無停電電源装置を並列冗長運転により負荷に対して電力供給を行うものであって、かつ前記各インバータの出力と前記負荷の間に共通に接続され、バイパス電源と前記バイパス電源を無瞬断に切換えるための無瞬断切換器を有する共通のバイパス回路を備え無停電電源システムであって、
前記無停電電源装置のうちの1台を特定無停電電源装置とし、かつその残りを非特定無停電電源装置としたとき、
前記非特定無停電電源装置は各々が正常運転のとき前記負荷に対して負荷分担が均等になるように該当するインバータの出力電流を制御する負荷分担制御装置を備え、
前記特定無停電電源装置は、前記負荷に対して直ぐに給電可能な状態になるように該当するインバータの出力電流を制御する待機電流制御装置及び前記負荷に対して負荷分担が均等になるように該当するインバータの出力電流を制御する負荷分担制御装置を備えると共にそのいずれかに切換可能で、前記非特定無停電電源装置が正常運転のとき前記待機電流制御装置に切換わり、前記非特定無停電電源装置が故障状態又は停止状態のとき、前記負荷分担制御装置に切換わるようにしたことを特徴とする無停電電源システム。
Comprising at least three uninterruptible power supply units each including an inverter that outputs AC power, and supplying each of the uninterruptible power supply units to a load by parallel redundant operation; and An uninterruptible power supply system comprising a common bypass circuit connected in common between an output and the load, and having a common bypass circuit having an uninterruptible switching device for switching the bypass power source and the bypass power source uninterruptedly,
When one of the uninterruptible power supplies is a specific uninterruptible power supply and the rest is a non-specific uninterruptible power supply,
The non-specific uninterruptible power supply device includes a load sharing control device that controls the output current of the corresponding inverter so that the load sharing is equal to the load when each is in normal operation,
The specific uninterruptible power supply corresponds to a standby current control device that controls the output current of the corresponding inverter so that the load can be immediately supplied to the load and the load sharing to be equal to the load A load sharing control device for controlling the output current of the inverter to be switched to any one of them, and when the non-specific uninterruptible power supply device is in normal operation, the standby current control device is switched to the non-specific uninterruptible power supply. An uninterruptible power supply system, wherein the load sharing control device is switched when the device is in a failure state or a stopped state.
各々に交流電力を出力するインバータを含む少なくとも3台の無停電電源装置を備え、前記各無停電電源装置を並列冗長運転により負荷に対して電力供給を行うものであって、かつ前記各インバータの出力と前記負荷の間に共通に接続され、バイパス電源と前記バイパス電源を無瞬断に切換えるための無瞬断切換器を有する共通のバイパス回路を備えた無停電電源システムであって、
前記各無停電電源装置は前記負荷に対して負荷分担が均等になるように該当するインバータの出力電流を制御する負荷分担制御装置と、前記負荷に対して直ぐに給電可能な状態になるように該当するインバータの出力電流を制御する待機電流制御装置とを備え、且つこのいずれかに切換可能で、前記無停電電源装置の少なくとも運転中の2台が正常運転のとき、この各々は負荷分担制御装置となり、残りの運転していない無停電電源装置は待機電流制御装置となり、前記運転中の無停電電源装置のうちの1台が故障状態又は停止状態のとき、その故障状態又は停止状態の無停電電源装置を除く残りの正常状態の無停電電源装置は待機電流制御装置から負荷分担制御装置に切換えられるようにしたことを特徴とする無停電電源システム。
Comprising at least three uninterruptible power supply units each including an inverter that outputs AC power, and supplying each of the uninterruptible power supply units to a load by parallel redundant operation; and An uninterruptible power supply system including a common bypass circuit that is connected in common between an output and the load and has a non-instantaneous switching device for switching the bypass power source and the bypass power source to uninterruptible power,
Each uninterruptible power supply corresponds to a load sharing control device that controls the output current of the corresponding inverter so that the load sharing is even with respect to the load, and to be able to supply power immediately to the load And a standby current control device for controlling the output current of the inverter that can be switched to any one of them, and when at least two of the uninterruptible power supply devices are operating normally, each of these is a load sharing control device The remaining uninterruptible uninterruptible power supply becomes a standby current control device, and when one of the operating uninterruptible power supplies is in a failed state or stopped state, the uninterruptible state in that failed state or stopped state An uninterruptible power supply system characterized in that the remaining uninterruptible power supply apparatus in a normal state excluding the power supply apparatus can be switched from a standby current control apparatus to a load sharing control apparatus.
前記負荷分担制御装置及び前記待機電流制御装置は、自分以外の無停電電源装置の故障状態又は停止状態の検出信号の少なくとも一つが入力されたとき自分のインバータに対して運転切換指令が出力されるインバータ運転判定回路と、インバータの出力電流指令生成回路と、これからの出力電流指令を前記インバータ運転判定回路からのインバータ運転切換指令により分担電流制御回路と待機電流制御回路との切換を行う切換回路から構成されている請求項1〜7のいずれか一つに記載の無停電電源システム。   The load sharing control device and the standby current control device output an operation switching command to their own inverter when at least one of the detection signals of a failure state or a stop state of an uninterruptible power supply device other than itself is input. From an inverter operation determination circuit, an inverter output current command generation circuit, and a switching circuit that switches between a shared current control circuit and a standby current control circuit based on an inverter operation switching command from the inverter operation determination circuit. The uninterruptible power supply system as described in any one of Claims 1-7 comprised. 前記各インバータの入力には、電力貯蔵手段からの直流電力、もしくは交流電源からの交流電力を直流電力に変換する電力変換器からの直流電力、あるいは前記電力貯蔵手段からの直流電力と前記電力変換器からの直流電力のいずれかが供給される請求項1〜7のいずれか一つに記載の無停電電源システム。   The input of each inverter includes DC power from power storage means, DC power from a power converter that converts AC power from an AC power source into DC power, or DC power from the power storage means and the power conversion. The uninterruptible power supply system according to any one of claims 1 to 7, wherein any one of the direct-current power from the power supply is supplied.
JP2015171033A 2015-08-31 2015-08-31 Uninterruptible power supply system Active JP6418109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015171033A JP6418109B2 (en) 2015-08-31 2015-08-31 Uninterruptible power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015171033A JP6418109B2 (en) 2015-08-31 2015-08-31 Uninterruptible power supply system

Publications (2)

Publication Number Publication Date
JP2017050933A true JP2017050933A (en) 2017-03-09
JP6418109B2 JP6418109B2 (en) 2018-11-07

Family

ID=58279682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171033A Active JP6418109B2 (en) 2015-08-31 2015-08-31 Uninterruptible power supply system

Country Status (1)

Country Link
JP (1) JP6418109B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020141511A (en) * 2019-02-28 2020-09-03 東芝三菱電機産業システム株式会社 Power supply system
KR20210020121A (en) 2018-11-21 2021-02-23 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Power supply system
CN113467224A (en) * 2021-06-30 2021-10-01 浙江中控技术股份有限公司 Redundant equipment switching method
CN115843410A (en) * 2022-09-09 2023-03-24 航霈科技(深圳)有限公司 Redundant power supply device, system, uninterruptible power supply equipment, switch and control method
EP4177686A1 (en) * 2021-11-04 2023-05-10 Rockwell Automation Technologies, Inc. Concurrent operation of input/output (io) modules in a duplex configuration
US11852691B2 (en) 2021-08-24 2023-12-26 Rockwell Automation Technologies, Inc. Input/output (IO) module power supply with online load test capability
US11860599B2 (en) 2021-09-27 2024-01-02 Rockwell Automation Technologies, Inc. High availability redundant power distribution system diagnostic operations
US11899445B2 (en) 2021-09-27 2024-02-13 Rockwell Automation Technologies, Inc. High availability redundant power distribution systems and methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228224A (en) * 1989-02-28 1990-09-11 Tohoku Electric Power Co Inc Uninterruptive power supply
JPH05130740A (en) * 1991-10-31 1993-05-25 Hitachi Ltd Uninterruptible power supply system
JPH05276671A (en) * 1992-03-24 1993-10-22 Toshiba Corp Parallel redundant uninterruptible power supply
JP2007028837A (en) * 2005-07-20 2007-02-01 Fuji Electric Systems Co Ltd Parallel power feeding system for uninterruptible power supply device
JP2008236993A (en) * 2007-03-23 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion system
JP2013031325A (en) * 2011-07-29 2013-02-07 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply system
JP2013110887A (en) * 2011-11-22 2013-06-06 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power=supply device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02228224A (en) * 1989-02-28 1990-09-11 Tohoku Electric Power Co Inc Uninterruptive power supply
JPH05130740A (en) * 1991-10-31 1993-05-25 Hitachi Ltd Uninterruptible power supply system
JPH05276671A (en) * 1992-03-24 1993-10-22 Toshiba Corp Parallel redundant uninterruptible power supply
JP2007028837A (en) * 2005-07-20 2007-02-01 Fuji Electric Systems Co Ltd Parallel power feeding system for uninterruptible power supply device
JP2008236993A (en) * 2007-03-23 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion system
JP2013031325A (en) * 2011-07-29 2013-02-07 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power supply system
JP2013110887A (en) * 2011-11-22 2013-06-06 Toshiba Mitsubishi-Electric Industrial System Corp Uninterruptible power=supply device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210020121A (en) 2018-11-21 2021-02-23 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Power supply system
US10886843B2 (en) 2019-02-28 2021-01-05 Toshiba Mitsubishi-Electric Industrial Systems Corporation Electric power supplying system
JP2020141511A (en) * 2019-02-28 2020-09-03 東芝三菱電機産業システム株式会社 Power supply system
CN113467224B (en) * 2021-06-30 2023-12-08 浙江中控技术股份有限公司 Redundant equipment switching method
CN113467224A (en) * 2021-06-30 2021-10-01 浙江中控技术股份有限公司 Redundant equipment switching method
US11852691B2 (en) 2021-08-24 2023-12-26 Rockwell Automation Technologies, Inc. Input/output (IO) module power supply with online load test capability
US11860599B2 (en) 2021-09-27 2024-01-02 Rockwell Automation Technologies, Inc. High availability redundant power distribution system diagnostic operations
US11899445B2 (en) 2021-09-27 2024-02-13 Rockwell Automation Technologies, Inc. High availability redundant power distribution systems and methods
EP4177686A1 (en) * 2021-11-04 2023-05-10 Rockwell Automation Technologies, Inc. Concurrent operation of input/output (io) modules in a duplex configuration
US11994962B2 (en) 2021-11-04 2024-05-28 Rockwell Automation Technologies, Inc. Concurrent operation of input/output (IO) modules in a duplex configuration
CN115843410B (en) * 2022-09-09 2023-10-13 航霈科技(深圳)有限公司 Redundant power supply device, system, uninterruptible power supply equipment, switch and control method
CN115843410A (en) * 2022-09-09 2023-03-24 航霈科技(深圳)有限公司 Redundant power supply device, system, uninterruptible power supply equipment, switch and control method
WO2024050812A1 (en) * 2022-09-09 2024-03-14 航霈科技(深圳)有限公司 Redundant power supply device and system, uninterruptible power supply equipment, switch, and control method

Also Published As

Publication number Publication date
JP6418109B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6418109B2 (en) Uninterruptible power supply system
JP6190059B2 (en) Uninterruptible power system
EP3116096B1 (en) Ups circuit
JP4462230B2 (en) Uninterruptible power supply system
JP5347415B2 (en) Uninterruptible power supply system
JP6329089B2 (en) Uninterruptible power supply system
JP5768165B2 (en) Uninterruptible power supply system
KR101444266B1 (en) Energy management system using usual uninterruptible power supply
JP5813426B2 (en) Individual bypass type parallel uninterruptible power supply system
JP2007215344A (en) Uninterruptible power supply system
JP2008312371A (en) Common backup uninterruptible power supply system
JP2009303419A (en) Uninterruptible power supply
KR20140075472A (en) Grid connected off line ac ups
JP2011223731A (en) Uninterruptible power supply system and control method using the same
JP5639752B2 (en) Uninterruptible power supply system
JP2010148297A (en) Uninterruptible power supply system
JP2010220339A (en) Uninterruptible power supply system
JP2016049011A (en) Uninterruptible power supply
JP2013090524A (en) Uninterruptible power supply system
JP7278800B2 (en) power supply system
JP5926673B2 (en) Uninterruptible power system
JP7443157B2 (en) uninterruptible power system
JP2020178475A (en) Uninterruptible power supply system
JP2020088937A (en) Power supply system
JP2018148703A (en) Uninterruptible power supply

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170602

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180924

R150 Certificate of patent or registration of utility model

Ref document number: 6418109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250